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ABSTRACT

We present a precision study of large-scale structure from large galaxy red-

shift surveys. We focus on two main subjects of large-scale structure: precision

cosmology with baryon acoustic oscillations from large galaxy surveys and the

evolution of galaxy clustering for passively flowing galaxies.

The baryon acoustic oscillations in galaxy redshift surveys can serve as an ef-

ficient standard ruler to measure the cosmological distance scale, i.e., the angular

diameter distances and Hubble parameters, as a function of redshift, and there-

fore dark energy parameters. We use a Fisher matrix formalism to show that such

a standard ruler tests can constrain the angular diameter distances and Hubble

parameters to a precision of a few percent, thereby providing robust measure-

ments of present-day dark energy density and its time-dependence.

We use N-body simulations to investigate possible systematic errors in the re-

covery of the cosmological distance scale from galaxy redshift surveys. We show

that the baryon signature on linear and quasi-linear scales is robust against non-

linear growth, redshift distortions, and halo (or galaxy) bias, albeit partial obscu-

ration of the signature occurs due to nonlinear growth and redshift distortions.

We present the improved Fisher matrix formalism which incorporates the La-

grangian displacement field to describe the nonlinear effects on baryon signature

as a function of time and scale. We present a physically motivated, reduced 2-

dimensional fitting formula for the full Fisher matrix formalism. We show that

distance precision from the revised formalism is in excellent agreement with dis-

tance precision from N-body simulations.

Finally, we present a numerical study of the evolution of galaxy clustering

when galaxies flow passively from high redshift to low redshift, that is, with-
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out merging or new formations. We show that passive flow evolution induces

interesting characteristics in the galaxy distribution at low redshift: we find an

asymptotic convergence in galaxy clustering and halo occupation distribution re-

gardless of the initial distribution of galaxies.
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CHAPTER 1

INTRODUCTION

At the beginning of the 20th century, Edwin Hubble found that the Universe is

expanding. Just before the end of the last millennium, we have reached the as-

tounding conclusion that the expansion of the Universe is in fact accelerating: the

distant type Ia supernovae appear fainter than they would in a non-accelerating

Universe (Riess et al., 1998; Perlmutter et al., 1999). Combined with the cosmic

microwave background (CMB) data, this implies that three quarters of the Uni-

verse is composed of a new energy component with negative pressure, dark en-

ergy, which competes against gravity from dark matter and thus accelerates the

expansion.

Although identifying the candidates for dark energy is left to particle physi-

cists, astronomers have various ways to measure the macroscopic nature of dark

energy. To be responsible for the observed acceleration, dark energy needs to

have pressure that is negative enough to overcome the gravitational attraction

due to other energy components (Ratra & Peebles, 1988; Frieman et al., 1995). The

popular and simplest model is based on the cosmological constant with no time-

dependence, first introduced in Einstein’s field equation, although this model,

given the observed small but nonzero dark energy, suffers the enormous magni-

tude expected from particle physics or otherwise suffers the fine-tuning problem.

Nevertheless, current data (WMAP, SDSS clustering and BAO, Lyman-α, SNe)

suggest that the dark energy is consistent with the cosmological constant model

up to z ∼ 1 (for example, w = −1.04±0.06 from Seljak et al. (2006) under constant

w prior in a flat Universe).

The comparable amount of dark energy and the matter observed in the present
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time shadows the cosmological constant model, as this implies that the amount

of matter relative to dark energy at the present epoch requires extreme fine-

tuning in the past. A dynamical form of dark energy as a rolling scalar-field,

a quintessence model, allows more general redshift-dependent density (or even

spatial density) so as to resolve the fine-tuning problem: this results in another

fine-tuning problem (e.g., Caldwell et al., 1998), which k-essence models in turn

try to resolve (e.g., Armendariz-Picon et al., 2000). Investigation of other possibil-

ities, such as the modification of gravity on cosmological scales, has been active

as well.

Thus the most essential step to identify the dark energy properties is to mea-

sure its time-dependence and present density. The time dependence of the energy

component is characterized by the ratio of pressure to density, i.e., the equation

of state w (Steinhardt, 1997; Turner & White, 1997): w = −1 for the cosmological

constant and w 6= −1 for general quintessence or k-essence models. In general, w

can be a function of time.

There are several ways to measure the dark energy density and its equation of

state. The amount of dark energy in the Universe affects the expansion rate of the

Universe, and this subsequently determines the structure growth and distance

measures.

As mentioned at the beginning, it was the type Ia supernova surveys by Riess

et al. (1998) and Perlmutter et al. (1999) that provided the primary evidence for

the accelerating Universe more than a decade ago. Future type Ia supernova

surveys, using the supernovae as a standard candle, will measure the luminosity

distance as a function of redshift for z < 2 with an impressive precision that in

turn measures dark energy evolution. The possible systematics of this method are

the redshift evolution of type Ia supernovae or dimming by intergalactic dust.
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Weak lensing surveys observe the shearing and the magnification of the back-

ground galaxies induced by the foreground mass distribution. As the signal de-

pends on the mass distribution as well as the geometry of the Universe, weak

lensing surveys (especially, with good photometric redshift precision) not only

are a powerful probe of the growth rate of the Universe but can also measure the

redshift-distance relation (Trotta & Bower, 2006; Munshi et al., 2006, and refer-

ences therein). The accuracy of the survey depends on the survey volume and

the number of galaxies, as with other dark energy probes. As the weak lensing

measures weak signals from often faint galaxies, the survey requires excellent im-

age quality and an accurate correction for the instrumental distortions such as a

point spread function. The intrinsic alignment of galaxies is another complication

which may be alleviated by good photometric redshifts (Munshi et al., 2006, and

references therein).

The number of clusters per volume as a function of mass is in principle a

sensitive function of dark energy. The comoving volume depends on dark energy,

providing a geometric test, and the number of clusters for a given mass depends

on the amplitude of the mass fluctuations, therefore providing information on

the growth function. While the performance sensitively depends on how well we

can measure the mass of each cluster, most of the cluster survey schemes, except

for weak lensing surveys, can not measure the mass directly (Albrecht et al., 2006,

and references therein). A small error in mass measurement can induce a large

error in the number counts per given mass, as the mass function is exponential

for this mass range.

Finally, we can use the baryon acoustic oscillations (BAO) in galaxy clustering

to probe dark energy by measuring the geometry of the Universe (e.g., Eisenstein

et al., 1998). The BAO is a signature imprinted by a series of sound waves that
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propagated in the hot plasma of tightly coupled photons and baryons in the early

Universe. The CMB data provides the sound horizon scale at recombination, the

characteristic scale for the BAO. The BAO signature in galaxy surveys then can

serve as an effective standard ruler to measure the cosmological distance scale,

i.e, the angular diameter distances and Hubble parameters, as a function of red-

shift. This method is by far the most free of systematics in that the intrinsic scale

used as a standard ruler is well-determined by the physics in the early Universe

and this scale can be measured from the current and future CMB data to suffi-

cient precision. While imaging surveys can measure only the angular diameter

distance, spectroscopic surveys with even a low redshift precision can measure

the Hubble parameter as well. The distinct advantage of this method is that it can

measure the expansion history up to z ∼ 3 (Eisenstein, 2005). Because the char-

acteristic scale of the BAO is fairly large (∼ 100h−1 Mpc), detecting this signature

with good precision requires a large volume galaxy survey. Thus it is very im-

portant to test the feasibility of the survey in terms of its performance in deriving

information on dark energy and any possible complications or systematics.

In this thesis, I study how well we can constrain the properties of dark energy

using BAO from future galaxy redshift surveys and what the complications are

using analytic methods and numerical simulations.

In the following subsections in Chapter 1, I will provide preliminary infor-

mation to help readers to understand the main chapters of the thesis and a brief

sketch of the important questions investigated here.

1.1 The physics of BAO

This section describes the physics of the BAO imprinting in the CMB and the

mass power spectrum. The following review is based on Hu & Sugiyama (1996),
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Hu et al. (1997), and Eisenstein, Seo, & White (2006)

1.1.1 In Fourier space

In the early universe, inflation seeded primordial fluctuations. For adiabatic per-

turbations, the overdensity of dark matter and baryons means an overdensity of

photons, and thus this region is overpressured (Peebles & Yu, 1970). Prior to the

recombination, photons are tightly coupled to baryons through Compton scat-

tering and electromagnetic interactions, providing pressure to the plasma. As a

result, these overpressured density peaks initiate a sound pulse in the plasma of

tightly-coupled photons and baryons at the sound speed cs.

c2
s =

∂p/∂T

∂ρ/∂T
=

c2

3

4ργ

4ργ + 3ρb

(1.1)

where ργ is the photon density and ρb is the baryon density.

In Fourier space, the evolution of this sound pulse can be expressed as a

plane wave perturbation of wavenumber k. The evolution of the perturbation

δb in mode k in the tight-coupling limit (i.e., when Compton scattering is ex-

tremely rapid) before recombination follows (Peebles & Yu, 1970; Doroshkevich,

Zel’dovich, & Sunyaev, 1978; Hu & White, 1996)

(1 + R)δ̈b +
k2c2

3
δb = (1 + R)(−k2c2Ψ) (1.2)

in the first order, ignoring the slow time-dependence in R = 3ρb/4ργ , which is

the baryon-to-photon momentum density ratio, and in Ψ, the Newtonian gravi-

tational potential Ψ. Here the derivative is taken with respect to the conformal

time η =
∫

dt/a. The equation is equivalent to a simple harmonic oscillator with

mass of (1 + R) and frequency of w = kc/
√

3(1 + R) = kcs driven by −k2c2Ψ (Hu

& Sugiyama, 1995). Assuming that R and Ψ are constants and applying initial

conditions, the solution to this equation is,

δb = (1 + 3R)Ψ(cos ks) − (1 + 3R)Ψ (1.3)
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at the epoch of decoupling. Here ks is the phase of the oscillations at decoupling

where s =
∫

csdτ .

For photons,

Θ + Ψ =
1

3
(1 + 3R)Ψ(cos ks) − RΨ (1.4)

where Θ = δT/T and Θ + Ψ is the temperature fluctuation of photons after they

climb up from the gravitational potential.

During the radiation dominated regime, radiation dominates as the source of

gravitational potential. Due to the rapid expansion, the potential does not remain

constant but decays such that the oscillations within a horizon scale are ampli-

fied. Oscillations at a smaller wavelength are more boosted as they stay within

the horizon for a longer time (Hu & Sugiyama, 1996). The effect lasts until the

matter-radiation equality; the horizon scale at this epoch is imprinted as another

characteristic scale that controls the amplitudes of the acoustic oscillations. Once

matter dominates the energy content of the Universe, the potential becomes close

to constant.

Meanwhile, (1 + R) that corresponds to the mass of the oscillator changes

with time as well, especially during the matter-dominated regime, as radiation

no longer dominates the energy density while it remains as a dominant source of

pressure. As the ratio of energy (1/2mw2A2) to frequency w in simple harmonic

motion is an adiabatic invariant for a slow change of w and A (Parker, 1971),

A2 ∝ 1/(mw) where m = (1 + R) and w ∝ 1/
√

3(1 + R) in this case. Then A ∝

(1+R)−1/4. Thus δb decays as (1+R)−1/4 and velocity (∝ wA) decays as (1+R)−3/4

(Hu & Sugiyama, 1996; Hu & White, 1996). The effect is small for the current

values of baryon density (Spergel et al., 2007; Steigman, 2006).

Even in the tight-coupling limit regime, the coupling between the baryon and

photons is not perfect. The non-zero mean free path of Compton scattering allows
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photons to diffuse through baryons and this process consequently damps fluctu-

ations on small scales and thus on large k modes. This is called the Silk damping

effect (Silk, 1968). As the mean-free path depends on baryon density, matter den-

sity, and the ionization fraction before recombination, so does the characteristic

scale of Silk damping (Hu & White, 1996).

Note that in equation (1.4), the effective temperature fluctuation Θ + Ψ os-

cillates around a zero-point of −RΨ. As R increases, the mass of the oscillator

increases, and the equilibrium point shifts such that a compressed fluctuation

(δT/T > 0) is enhanced relative to a rarefraction (δT/T < 0). As the baryon den-

sity increases, due to this baryon drag effect, the odd peaks of the temperature

spectrum of the CMB (∝ (δT/T )2) become more prominent relative to the even

peaks (Hu & Sugiyama, 1995).

When the temperature of the Universe drops to ∼ 3000K, electrons recombine

with protons, and the optical depth of photons and baryons to Compton scatter-

ing drops. Photons decouple from baryons (i.e., at the last scattering surface) and

the sound speed of baryons drops substantially. As a result, the fluctuations in

photons and baryons freeze at this epoch at a different phase ks for a different k

mode, leaving a series of oscillations in both photons and baryons (Peebles & Yu,

1970; Holtzman, 1989; Hu & Sugiyama, 1996; Eisenstein & Hu, 1998).

In reality, the time when baryons are released from Compton scattering does

not coincide with the recombination time when the photons are released. In terms

of the rate of momentum change due to Compton scattering, it takes a longer time

for baryons to decouple from photons than photons to decouple from baryons.

The epoch of baryon decoupling is called the ‘drag epoch’, and the sound horizon

s for the BAO in baryon fluctuations is defined as the distance that the sound

wave has traveled before the drag epoch (s =
∫ td csdη). This marks the wave
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number of the first compression at k = π/s; the sound horizon for the CMB is

defined at recombination (i.e., the last scattering surface).

While photon fluctuations before the last scattering surface are dominated

by density fluctuations, the growing mode of the baryon fluctuations after the

drag epoch is dominated by velocity fluctuations, i.e, ‘velocity overshoot’, not

by the density term (i.e., δb in eq. [1.3]), especially on large scales (Sunyaev &

Zeldovich, 1970; Press & Vishniac, 1980). As a result, the acoustic oscillations

in the baryon component are displaced from those in the CMB by a phase shift

of π/2 on large scales. In addition, as a velocity term of oscillations is symmetric

around a zero point even when a density term is not, the baryon peaks in a baryon

component under the ‘velocity overshoot’ will not show the baryon drag effect

(Hu & Sugiyama, 1996).

Due to the driving effect during the radiation-dominated epoch and the baryon

drags, the relative shape of the acoustic peaks in CMB therefore are sensitive to

the baryon density and the matter density. Therefore these two quantities can be

determined from accurate CMB data.

Meanwhile, the sound horizon scale at the drag epoch depends on the sound

speed cs and the time for the sound wave to travel before the drag epoch td. The

sound speed cs depends on the ratio of baryon to photon density (or baryon den-

sity, as photon density is measured directly from the CMB temperature), and td

depends on the ratio of matter to radiation density (or again, only matter density

once the photon density is known and the number of massless neutrinos is as-

sumed). Once we know the matter density and the baryon density from the CMB

data, we can derive the sound horizon scale s and therefore predict the exact

location of acoustic peaks in the baryon power spectrum.

Current CMB observations (Spergel et al., 2007) support that the primordial
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power spectrum for dark matter, baryons, and photons is close to the scale-invariant

Harrison-Zeldovich spectrum, i.e, P (k) ∝ k (Harrison, 1970; Zeldovich, 1972).

Pressureless dark matter follows relatively simple evolution in early times once

the primordial perturbations are seeded. During the radiation-dominated epoch,

the expansion rate is so high that the time scale of the expansion is too short com-

pared to the collapse time of the perturbations: the perturbations rarely grow

within the horizon while those outside the horizon can continue to grow (Lifshitz,

1946; Peebles & Yu, 1970; Sunyaev & Zeldovich, 1970; Groth & Peebles, 1975;

Doroshkevich, Zel’dovich, & Sunyaev, 1978; Wilson & Silk, 1981; Peebles, 1981;

Blumenthal et al., 1984; Bond & Efstathiou, 1984). During the matter-dominated

epoch, perturbations both inside and outside the horizon can grow. As a result,

the growth of structure on smaller scales than the horizon scale is suppressed

prior to the epoch of matter-radiation (MR) equality, and this modifies the pri-

mordial Harrison-Zeldovich power spectrum.

After the drag epoch, now pressureless baryons quickly fall into the poten-

tial well of cold dark matter due to gravity: the oscillatory features are diluted

relative to the CMB because of the small abundance of baryons relative to dark

matter.

1.1.2 In configuration space

We return to configuration space and consider a spherical pulse of overdensity of

photons and baryons propagating from a point-like primordial overdensity peak

of all species (dark matter, baryons, neutrinos, and photons), i.e., in adiabatic

perturbations (Peebles & Yu, 1970). The pulse propagates at the speed of cs =

c/
√

3 during the radiation-dominated epoch and slows down during the matter-

dominated epoch. At recombination, when the pressure-supplying photons are

released from baryons, the sound speed plunges, and the pulse stalls, leaving
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a spherical shell of baryon overdensity at a distance that the pulse has traveled

before the drag epoch, i.e., at the sound horizon at the drag epoch. In reality, the

peak is further shifted toward a larger scale due to velocity fields of the growing

mode (Sunyaev & Zeldovich, 1970; Press & Vishniac, 1980).

Of course, the baryon (or photon) overdensity peak is not point-like. The

shape of the primordial scale-invariant density perturbations will give an initial

non-zero width. Then, the same mechanisms to damp the BAO in Fourier space

will now broaden the baryon peak in configuration space. The decay of (1 + R)

during the matter-radiation epoch and, more importantly, photons (and baryons)

with non-zero mean free path seeping through each other broaden the peak (i.e.,

the Silk damping effect) (Silk, 1968).

Meanwhile, the overdensity peak for dark matter stays near the origin. In

Figure 1.1, the dark matter overdensity peak is slightly displaced from the origin

and is further broadened from the primordial shape despite its being a pressure-

less component. This corresponds to the suppression of growth in perturbations

within a horizon scale during the radiation-dominated time (i.e., the turn-over of

the power spectrum at the matter-radiation equality scale) in Fourier space. We

reinterpret this in configuration space (Lifshitz, 1946; Peebles & Yu, 1970; Sunyaev

& Zeldovich, 1970; Groth & Peebles, 1975; Doroshkevich, Zel’dovich, & Sunyaev,

1978; Wilson & Silk, 1981; Peebles, 1981; Blumenthal et al., 1984; Bond & Efs-

tathiou, 1984). To keep the density field homogeneous everywhere except for

the origin while the central overdensity grows, the velocity field for the growing

mode should be divergenceless except for the origin and toward the overden-

sity at the origin. That is, dark matter is flowing toward the center due to the

gravity of the overdensity at the center. During the radiation-dominated time,

the energy of the Universe is dominated by relativistic species such as photons
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and neutrinos. Thus the outward pulse of these species reduces such an inward

acceleration of matter and, as a result, the velocity field of the infalling matter

will have a non-zero divergence at a radius other than the origin. That is, a wake

caused by outgoing photons and neutrinos broadens and displaces the dark mat-

ter overdensity peak: the outgoing neutrino peak is also broadened due to the

wake raised by photons lagging behind.

After the drag epoch, baryons and dark matter attract each other, leaving a

large central overdensity and a lower-amplitude spherical shell of overdensity in

both species. Of course, the real mass density fields are of many superpositions of

such central overdensities and the spherical shells. Statistically, this overdensity

structure means that there are likely a large number of excess pairs of mass tracers

separated by a very small distance and an additional small amount of excess pairs

separated by the sound horizon. The two-point correlation function describes an

excess number of pairs as a function of separation and is a Fourier conjugate of

the power spectrum.

ξ(∆r) = 〈δ(r′)δ(r′ + r)〉 (1.5)

Therefore, the baryon peak appears as a single, weak, broadened peak at r = s

in the two-point correlation function while it appears as a series of oscillations in

the power spectrum.

1.2 The BAO as a standard ruler

The comoving size of an object or a feature at z in line-of-sight (r‖) and trans-

verse (r⊥) directions is related to the observed sizes ∆z and ∆θ by the Hubble

parameter H(z) and angular diameter DA(z):

r‖ =
c∆z

H(z)
(1.6)
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Figure 1.1 Snapshots of evolution of the radial mass profile versus comoving ra-
dius of an initially point-like overdensity located at the origin. The perturbations
on the relativistic species, i.e., photons and neutrinos, are divided by 4/3 and
thus put on the same scale as the perturbations on other species. The black, blue,
red, and green lines are the dark matter, baryons, photons, and neutrinos, respec-
tively. Each panel corresponds to a different time after the Big Bang. Near the
initial time (top left), the photons and baryons travel outwards as a pulse. Be-
fore recombination (top right), outgoing photons and neutrinos cause a wake in
the dark matter overdensity peak. At recombination (middle left), Photons de-
couple from baryons and leak away. After recombination (middle right), one can
see a central overdensity peak of dark matter and a spherical overdensity shell of
baryons. Baryons and dark matter attract each other (bottom left) and eventually
share the same profile. These figures were produced based on CMBfast (Seljak
& Zaldarriaga, 1996; Zaldarriaga & Seljak, 2000). (From Eisenstein, Seo, & White
(2006)).
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r⊥ = (1 + z)DA(z)∆θ (1.7)

Thus the measurements of the observed dimensions, ∆z along the line-of-sight

direction and ∆θ in the transverse direction, give r‖H(z) and r⊥/DA(z). When

the true physical scale of the object or the feature, r‖ and r⊥, are known, we can

derive estimates of H(z) and DA(z). The same argument applies in Fourier space.

This is called a “standard ruler test”.

We now apply this to the BAO. With good CMB data such as from the Wilkin-

son Microwave Anisotropy Probe (WMAP) (Spergel et al., 2007) or the Planck satel-

lite, we can measure the matter density and baryon density to high accuracy,

from the relative amplitudes of the BAO in the CMB. This gives the estimate of

the sound horizon scale, s, the characteristic scale of the BAO in matter or galaxy

clustering. In configuration space, the baryon signature appears as an excess of

pairs of tracers (i.e., galaxies) separated by the sound horizon s. In Fourier space,

it appears as a series of harmonic oscillations with peaks and troughs of their

amplitudes located at multiples of k = π/s.

In real observations, we measure the distribution of mass tracers, such as

galaxies, and find the characteristic scale for the excess clustering due to the BAO

in coordinates of ∆z and ∆θ. Once we determine the sound horizon from the

CMB data, we know at what physical scale the excess clustering due to the BAO

should be located, that is, r‖ and r⊥ in configuration space or k‖ and k⊥ in Fourier

space. We therefore can derive the Hubble parameter H(z) and the angular di-

ameter distance DA(z) independently.

The Hubble parameter at redshift z is the expansion rate of the Universe at z

and the angular diameter distance is the integrated effect of the expansion rate

between the observer and the redshift. As the expansion rate depends on the

energy content of the Universe, cosmological distance scales, such as H(z) and
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DA(z), are functions of dark matter and dark energy density.

H(z) = h

√

√

√

√Ωm(1 + z)3 + ΩK(1 + z)2 + ΩX exp

[

3
∫ z

0

1 + w(z)

1 + z
dz

]

(1.8)

DA(z) =
c

1 + z

∫ z

0

dz

H(z)
(1.9)

where w(z) (Steinhardt, 1997; Turner & White, 1997) is the equation of state of

dark energy and ΩX is the present-day dark energy density fraction with respect

to the critical density. Then, the evolution of dark energy density is,

ρX(z) = ρX(0) exp

[

3
∫ z

0

1 + w(z)

1 + z
dz

]

(1.10)

as a function of redshift. Again, for the cosmological constant model, w(z) = −1

and ΩX is constant.

Thus, by measuring H(z) and DA(z) as a function of redshift, we can esti-

mate ΩX and w. Derivation of w takes the second derivative of H(z) and the

third derivative of DA(z). Therefore, in principle, H(z) is more sensitive to w. As

DA(z) is an integration of H(z), the two independently-measured quantities can

be cross-checked for internal consistency.

1.3 Error forecasts for DA(z) and H(z)

The key question is how well we can constrain dark energy parameters, such as

ΩX and w, with the BAO from galaxy redshift surveys. It is obvious that a better

measurement of DA(z) and H(z) will constrain ΩX and w more precisely. In detail,

an error on w depends on our assumption of the parameter space. For example,

an error on w when w is parameterized as an unknown constant will be different

from an error on w when it is allowed to be redshift-dependent; furthermore, a

different formulation for the redshift dependence will give a different answer.
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Because of our lack of knowledge of the properties of dark energy, it is hard to

decide which form of w is more plausible. Meanwhile, the definition of H(z) and

DA(z), which is r‖ = c∆z
H(z)

and r⊥ = (1 + z)DA(z)∆θ, is fairly robust. Therefore it is

often convenient to quote errors on DA(z) and H(z) rather than on ΩX and w .

Now, what does the precision on DA(z) and H(z) depend on? From galaxy

redshift surveys, we measure a clustering strength: galaxy power spectrum P (k)

in Fourier space and (two-point) correlation function ξ(r) in configuration space.

The precision on DA(z) and H(z) depends on the observational errors of this clus-

tering strength.

Under Gaussian approximations of density fields, the power at ~k is indepen-

dent from the power at ~k′ for ~k′ 6= −~k. For a single wave vector ~k, the statistical

error is
σP

P
=

P + 1/n

P
. (1.11)

where 1/n is shot noise and n is the number density of galaxies.

The statistical error on the observed power spectrum when averaged over a

wavenumber range ∆~k is a combination of not only shot noise but also sample

variance. The sample variance is due to the finite volume of the survey, as the

number of independent modes within a wavenumber range ∆~k is proportional

to Vsur∆~k/2. Then,

σP

P
=

1√
# of independent modes

P + 1/n

P
∝
√

2

Vsur∆~k

P + 1/n

P
. (1.12)

Thus σP

P
decreases, as the survey volume and the number density increase. By

propagating the errors on σP

P
, we can estimate errors on DA(z) and H(z) for future

surveys for various survey volumes and number densities. The Fisher matrix

formalism presented in Chapter 2 and 4 basically estimates the covariance matrix
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of cosmological parameters, C, as

C−1 = F =

〈

∂2χ2

∂pi∂pj

〉

, (1.13)

where χ2 of observables is ∫k(Pmodel(k) − Pobs(k))2/σ2
P and we assume the true

cosmology is the fiducial model (i.e., Pobs = Ptrue).

1.4 Complications

The baryon method is considered to be fairly robust to systematic effects com-

pared to other dark energy probes: the characteristic scale of the signature, the

sound horizon, is determined by the physics in the early Universe. In linear per-

turbation theory (i.e., for small density perturbations), a density perturbation at

one wave-mode ~k evolves independently from perturbations at other modes (ex-

cept for −~k) in Fourier space and, as a result, the shape of the power spectrum

is fixed in comoving coordinates in the absence of massive neutrinos (Bond &

Szalay, 1983) and only the overall amplitude increases with time.

Complications arise when the density perturbation reaches an order of unity.

In second-order perturbation theory, the evolution of a given mode involves non-

negligible contribution from other modes in this case (e.g., Jain & Bertschinger,

1994). Modes are increasingly coupled, and the shape of the power spectrum is

altered with density evolution: the mode-coupling effect erases oscillatory fea-

tures with time, therefore degrading the standard ruler test, and also increases

small-scale power above the linear growth rate, altering the broadband (i.e., over-

all) shape of the power spectrum. This nonlinear process first appears on small

scales and proceeds to larger scales with time, reaching the size of clusters of

galaxies at the present epoch. This process also increases the statistical errors in

diagonal and off-diagonal terms of the covariance matrix of the power spectrum.

That is, the nonlinear growth decreases the signal and increases the noise.
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Another complication is due to the redshift distortions. In galaxy surveys,

we measure redshifts of galaxies, which are a combination of their physical posi-

tions and peculiar velocities along the line of sight. On large scales, where linear

theory is still a good approximation, the redshift distortions are a simple angle-

dependent amplification of the real-space power spectrum (Kaiser, 1987). On

small scales, the virialization of galaxies within a halo erases fluctuations along

the line of sight, degrading the BAO (de Lapparent et al., 1986).

As we measure clustering of the tracers of mass, i.e., galaxies, rather than mass

itself, the measured clustering strength is biased relative to that of dark matter de-

pending on whether galaxies are distributed among halos that are more clustered

or less clustered than average. It has been shown that, as long as biased galaxy

formation only depends on the local mass density (i.e., a local bias assumption),

galaxy bias reduces to a simple form on large scales: a constant multiplication

of mass power spectrum plus an additive constant term (Coles, 1993; Scherrer &

Weinberg, 1998; Meiksin et al., 1999; Coles et al., 1999; Seljak, 2000).

Therefore, we may assume that the baryonic signature is well-preserved on

large scales, while the small-scale portion is erased. A typical way to include

these various nonlinear complications on small scales in the analytic error es-

timation is to assume a characteristic nonlinear scale, exclude all information on

smaller scales, and treat all information on larger scales as linear, as done in Chap-

ter 2.

We generally determine the characteristic nonlinear scale based on the mag-

nitude of the underlying mass density fluctuations. There are a number of draw-

backs with this assumption. First, the transition from nonlinear (small) scales to

linear (large) scales in reality is not discrete. Second, although the underlying

density fluctuations are certainly an indicator for nonlinearity, we are less certain
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about how to exactly relate this quantity to the degradation of the baryon signa-

ture. Third, the choice of the nonlinear scale depends on how conservative one

wants it to be. Finally, redshift distortions and galaxy bias may further degrade

the baryonic signature as well. In fact, it has been suggested from N-body sim-

ulations that the redshift distortions and bias can be slightly nonlinear even on

large scales in terms of deviation from the scale-independent amplitude modifi-

cation (Scoccimarro, 2004; Smith et al., 2007; Angulo et al., 2007). Such nonlinear

bias may affect the baryon signature as well.

Another important question is whether the effects of cosmology (i.e, DA(z)

and H(z)), which dilates the distance scale, can efficiently be distinguished from

the amplitude distortions due to the various nonlinear effects, such as nonlinear

growth, redshift distortions, and galaxy bias: in Chapter 2, we will show that this

is the case on large scales. Even if these nonlinear effects deviate from the scale-

independent linear model even on large scales, it is unlikely that they will attain

a large, preferred scale that is comparable to the sound horizon and thus leave

the location of peaks and troughs of the baryon signature critically confused. We

believe that these nonlinear effects can be marginalized over with a proper pa-

rameterization.

However, to access realistic effects of various nonlinearities on baryon signa-

ture, it is necessary to proceed to N-body simulations (Chapter 3). Only by using

the N-body results, we can calibrate the assumptions made in the analytic er-

ror estimation technique (Fisher matrix formalism), such as nonlinear scales and

the effects of nonlinear growth, bias, and redshift distortions on large scales, and

compare the actual distance measurements from the N-body study (Chapter 3)

with those from analytic calculations (Chapter 3).
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1.5 Quantitative model for the nonlinear degradation of baryon signature

1.5.1 A Lagrangian displacement distribution

While Chapter 3 will present the nonlinear effects on the baryon signature qual-

itatively, it is desirable to build a quantitative model to accurately describe the

gradual nonlinear degradation with time and with scale. In Eisenstein, Seo, &

White (2006), we present such a model using a Lagrangian displacement distri-

bution. As the analysis in Chapter 4 adopts the quantitative model derived from

Eisenstein, Seo, & White (2006), I will briefly describe the model in this section.

Again, in configuration space, the BAO signature is a single peak, from an

excess number of pairs separated by its characteristic scale of ∼ 100h−1 Mpc,

broadened by the Silk damping effect. During structure formation, particles of

pairs that comprise this peak will move around from their initial positions, by

about 10 Mpc at z = 0.3. The process will broaden the baryon peak in configura-

tion space or, equivalently, damp the higher harmonics of the power spectrum in

Fourier space, which explains the actual nonlinear evolution of the baryon signa-

ture.

This picture then allows us to design a quantitative model for the nonlinear

effects on the baryon signature. The displacement of particles from their nearly

homogeneous initial state is called a Lagrangian displacement. The claim is that

the evolved correlation function near the baryon peak can be approximated as a

convolution of the initial spatial distribution of the pairs with a probability distri-

bution of a Lagrangian displacement (more exactly, a difference in the Lagrangian

displacement of pairs, or equivalently, a difference between the final separation

and the initial separation of pairs). In detail, the Lagrangian displacement de-

pends on the underlying density such that pairs of overdense regions tend to

move toward each other due to infall and pairs of underdense regions tend to
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move away from each other due to outflow.

We can ignore such dependence of a Lagrangian displacement on density

when we are interested in estimating a broadening of the baryon peak. Eisen-

stein, Seo, & White (2006) found that the overall Lagrangian displacement distri-

bution is well approximated by a Gaussian centered at zero.

One may ask how clustering can grow at all if the Lagrangian displacement

distribution is Gaussian with a zero mean. Again, the overdense regions move

toward each other and underdense regions move outward. However, matter in

overdense regions flows in during spherical collapse such that it enhances the

overdense contrast (i.e., negative divergence of velocity at the baryonic ridge).

Matter flows out in the underdense region such that it enhances the underdense

contrast (i.e., positive divergence). Both of these effects contribute more pairs

at 100 Mpc (i.e., more overdense-overdense pairs and underdense-underdense

pairs) and enhance clustering.

Note that the assumption of the overall Lagrangian displacement distribution

as a Gaussian without any density dependence will no longer be valid for small

scales where the clustering is much stronger. Thus our formalism is only valid

for describing the memory of the initial correlation pattern on large scales. In

Fourier space, this means that our formalism only represents the degradation of

the oscillatory feature but cannot describe the broadband (i.e., the overall shape)

evolution of the power spectrum that is due to small-scale power increase.

The convolution of the correlation function with a Gaussian function is straight-

forward in Fourier space: a multiplication of the power spectrum with an expo-

nential function. Now the exponential function can quantitatively describe the

damping of baryon oscillations on quasilinear and nonlinear scales due to the
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mode-coupling effect.

PBAO,nonlinear(~k) = PBAO,linear(~k) exp



−
k2
‖

2Σ2
‖

− k2
⊥

2Σ2
⊥



 (1.14)

Pnonlinear(~k) = PBAO,linear(~k) + PBB,nonlinear(~k) (1.15)

where PBAO is the oscillatory portion of the power spectrum and PBB is the broad-

band power spectrum without the oscillations. Here Σ‖ and Σ⊥ are the standard

deviation of the Lagrangian displacement distribution along and across the line

of sight, respectively.

We can analytically estimate the Lagrangian displacement distribution ~u12 us-

ing the Zel’dovich approximation (Zel’Dovich, 1970) and linear theory.

~u12 =
∫ d~k

(2π)3
δ~k

~k

ik2

[

ei~k·~r1 − ei~k·~r2

]

. (1.16)

The mean of ~u12 is zero. The resulting variance of ~u12, that is, 〈u2
12〉 is mostly

contributed by P (k) on large scales: 50% contribution from k < 0.05h Mpc−1 for

radial direction and k < 0.08h Mpc−1 for transverse direction. That is, a large-

scale bulk flow dominates the Lagrangian displacement. Much larger scales (k <

0.02h Mpc−1) contribute little to the total displacement, as a perturbation on such

scales will move both pairs together. From equation (1.16), it is obvious that 〈u2
12〉

will scale with σ2
8 of matter, as P (k) scales with σ2

8 .

In redshift space, the displacement along the line of sight will be distorted due

to the peculiar velocities of pairs such that pairs moving toward each other will

look even closer and pairs moving away from each other will look even further

away. As a result,
〈

u2
12,‖

〉1/2
increases by a factor of (1 + f) along the line of

sight where f = d(lnD)/d(lna) ∼ Ω0.56
m accounts for a bulk flow velocity in linear

theory.

Eisenstein, Seo, & White (2006) measure the Lagrangian displacements di-

rectly from N-body simulations. These numerical results are similar to the ana-
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lytic estimation from linear theory from equation (1.16), which is reasonable be-

cause the displacement is dominated by large-scale bulk flows for which a linear

theory is a good approximation. From the N-body results, the displacements

along and across the line of sight are fitted well by:

Σ⊥ ∝ Σ0D (1.17)

Σ‖ ∝ Σ0D(1 + f), (1.18)

where D is a growth function and Σ0 depends on cosmology, linearly scaling

with σ8. At z = 0.3, using the 1st year WMAP cosmology (Spergel et al., 2003),

Σ⊥ ∼ 8.2h−1 Mpc and Σ‖ ∼ 13.6h−1 Mpc (for the baryon peak) including redshift

distortions.

Eisenstein, Seo, & White (2006) show that equation (1.14) with the numeri-

cal estimates of Σ⊥ and Σ‖ gives an excellent description for the degradation of

the baryon signature in power spectrum (Figure 1.2) and in correlation function,

enabling a quantitative description of the nonlinear effects on the BAO signa-

ture as a function of redshift and scale. Note that measuring the Lagrangian dis-

placements requires a smaller volume of N-body simulations than detecting the

baryon signature, as the former depends on all pairs at the given initial separation

while the latter depends on the small excess number of pairs.

As the displacements are dominated by bulk flow and the bulk flows more or

less affect galaxies and mass the same, the galaxy bias adds only a small amount

of displacements (∼ 10%) due to additional motions in a small-scale environment

such as inside massive halos. Therefore we can predict that the nonlinear growth

and redshift distortions degrade the baryon signature while the effect of galaxy

bias is minor. I will show that the BAO detected from our N-body study in Chap-

ter 3 does indeed agree with this prediction.

Finally, by modeling nonlinear degradation on the BAO as evolution in the



36

displacement distribution of pairs, we can also correctly implement Fisher ma-

trix formalism to reflect the gradual loss of information in scale and time due to

nonlinear growth, nonlinear bias, and nonlinear redshift distortions (Chapter 4).

Recent analytic descriptions of BAO nonlinear evolution using perturbation

theory, though not quantitative, can be found in Crocce & Scoccimarro (2006),

Jeong & Komatsu (2006), and Crocce & Scoccimarro (2007).

1.5.2 Reconstruction of the baryon signature

As detecting the BAO signature requires a very large volume galaxy survey, it

is desirable to maximize the cosmological information from a given survey. By

understanding the nonlinear degradation of the BAO as displacements of pairs,

Eisenstein, Seo, Sirko, & Spergel (2006) use N-body simulations to show that un-

doing the displacements due to bulk flow can partially recover the erased portion

of the signature. A simple scheme based on the Zel’dovich approximation, ap-

plying the linear continuity equation to the nonlinear density fields, can reduce

the error on cosmological distance at least by a factor of two at z = 0.3, which is

equivalent to quadrupling the size of a galaxy survey.

1.5.3 Possible systematics on the acoustic scale?

Currently proposed future BAO surveys aim at the percent level or sub-percent

level of distance measurements. This means that the sound horizon scale needs

to be calibrated below this level of error. The future CMB mission, Planck will

measure the sound horizon scale as well as within ∼ 0.2% of error. However,

whether the subsequent nonlinear evolution will alter the observed location of

the baryon peak on the galaxy power spectrum or not is yet to be settled. The

shift in the observed acoustic scale will result in a shift in distance measurements

such as DA(z) and H(z), and therefore a bias in dark energy parameters.
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Figure 1.2 The power in the simulations compared to the model. Left panels: real
space. Right panels: redshift space. Top panels: at z = 0.3. Middle panels: at
z = 1. Bottom panels: at z = 3. The power spectrum from simulations are fitted
over the range 0 < k < 0.4h Mpc−1 to a model of b2PBAO,nonlinear + PBB,nonlinear (in
eq. [1.14] and eq. [1.15]) where PBB,nonlinear = a0 + a2k

2 + a4k
4 + a6k

6 and the
coefficients ai are the fitting parameters. The data points represent the residual
Pres = (Pmeasured − PBB,nonlinear)/b

2 divided by the linear power spectrum. Note
that PBAO,nonlinear is constructed from equation (1.14) using the measurements of
Σ⊥ and Σ‖. The solid line is our model: PBAO,nonlinear divided by the linear power
spectrum. Thus the oscillations in this plot describe the amount of the BAO por-
tion that has been erased due to nonlinear growth (left) and redshift distortions
(right). This figure shows that our model provides an excellent description of the
nonlinear degradation on the BAO observed from the simulations. (From Eisen-
stein, Seo, & White (2006)).
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In Eisenstein, Seo, & White (2006), we show analytically that, assuming a

Gaussian density field, the mean shift of the Lagrangian displacement for mass

(thus a shift in the observed acoustic scale and a resulting shift in distance mea-

surements) will be at most an order of 0.01% in first order, while galaxy bias can

increase the shift to the sub-% level as a result of weighting overdense peaks more

relative to underdense peaks. However, according to the latest result by Crocce

& Scoccimarro (2007), the shift is an order of 0.5% for a nonlinear mass field when

second-order terms are included in the calculation. Meanwhile, the Lagrangian

displacement distributions measured from our N-body results, which therefore

account for nonlinear evolution, are consistent with the negligible shift from our

analytic calculation. In Chapter 3 and Chapter 4, we use ∼ 7h−3 Gpc3 of N-body

results to show that the distance measurements from the resulting power spec-

trum do not show a shift within the % level even for tracers with a galaxy bias

similar to LRGs, once the broadband (i.e., overall) shape of the power spectrum

due to nonlinearity is properly marginalized over. The results of course will de-

pend on the volume of the simulations.

1.6 Galaxy clustering evolution: going beyond the BAO

Galaxy clustering obviously contains more information than the BAO. For ex-

ample, the correlation function on scales smaller than the sound horizon is char-

acterized by the matter and radiation equality scale. As mentioned before, the

growth of structure on scales smaller than the horizon scale is suppressed prior

to the epoch of matter-radiation (MR) equality. Theories with more dark mat-

ter end the radiation-dominated era earlier and thereby allow more structure on

small scales relative to large scales. In principle, we can measure the matter den-

sity from galaxy clustering data independently of, and as well as, the CMB data.
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However, in reality, the small-scale clustering is altered by a possibly nontrivial

galaxy bias in addition to nonlinear growth. It is therefore difficult to distinguish

the cosmological information, such as matter density from galaxy bias, unless

we understand the galaxy bias of the given population precisely. Conversely, if

we acquire a good theory to predict the characteristics of galaxy clustering for

a given population, we can probably reduce the uncertainty in modeling galaxy

bias.

As a last project of this thesis, we intend to test whether we can find such char-

acteristics of the galaxy correlation function that are destined to appear as a result

of its special evolutionary track. Aside from the cosmological merit, a critical ap-

plication of such a study will be in possibly providing another route to trace the

ancestry of galaxy populations, that is, through their clustering evolution rather

than the evolution of their appearances, such as color, gas content, or luminos-

ity. Chapter 5 will present a numerical study of the evolution of galaxy cluster-

ing when galaxies flow passively from high redshift to low redshift, i.e., without

merging or new formation, respecting the continuity equation throughout. While

passive flow is a special case of galaxy evolution, it allows a well-defined study

of galaxy ancestry, and also serves as an interesting limit for us to compare with

non-passive cases. We will compare our results with the observed Luminous Red

Galaxy (LRG) sample from Sloan Digital Sky Survey and study the implication

of the resulting discrepancy in the evolution of LRGs.

This thesis is organized as follows. Chapter 2 uses a Fisher matrix formal-

ism to propagate uncertainties of our observations to calculate constraints on the

cosmological distance scale and therefore constraints on the properties of dark
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energy, for various dark energy models and survey conditions. I will show the

BAO from future galaxy redshift surveys can constrain the cosmological distance

scale to a precision of a few percent, thereby providing robust measurements of

present-day dark energy density and its time-dependence that are compatible to

future type Ia supernova surveys.

Chapter 3 uses N-body simulations to investigate the effects of nonlinear growth,

nonlinear redshift distortions, and halo bias on the precision and accuracy of

acoustic oscillations at various redshifts. The result will show that the BAO sig-

nature is robust against these nonlinear effects on linear and quasi-linear scales.

In detail, while mild halo bias barely affects the appearance of the BAO signa-

ture, nonlinear redshift distortions have partially erased the BAO feature in red-

shift space compared to real space. The statistical constraints on cosmological

distance scale from the N-body simulations will be compared with the previous

constraints calculated using the Fisher matrix formalism in Chapter 2.

Chapter 4 presents an upgraded Fisher matrix formalism. I implement Fisher

matrix formalism to reflect the gradual loss of information in scale and time due

to various nonlinear effects. I present the contraction of this multi-dimensional

(i.e, 17 dimension) calculation into 2-dimensional or even 1-dimensional formal-

ism with physically motivated approximations. This will greatly simplify calcu-

lations of the ability of future galaxy surveys to determine cosmological scale.

Chapter 5 diverts from the BAO study to the study of galaxy clustering evo-

lution. This chapter presents the characteristics of galaxy clustering evolution

when galaxies evolve passively from high redshift to low redshift. In this chap-

ter, I compare the results from dissipationless N-body study with the observed

massive red galaxies to search for a possible non-passive evolution signature.
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CHAPTER 2

PROBING DARK ENERGY WITH BARYONIC ACOUSTIC OSCILLATIONS FROM

FUTURE LARGE GALAXY REDSHIFT SURVEYS

We show that the measurement of the baryonic acoustic oscillations in large high

redshift galaxy surveys offers a precision route to the measurement of dark en-

ergy. The cosmic microwave background provides the scale of the oscillations

as a standard ruler that can be measured in the clustering of galaxies, thereby

yielding the Hubble parameter and angular diameter distance as a function of

redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix

formalism to study the statistical errors for redshift surveys up to z = 3 and report

errors on cosmography while marginalizing over a large number of cosmological

parameters including a time-dependent equation of state. With redshift surveys

combined with cosmic microwave background satellite data, we achieve errors of

0.037 on ΩX , 0.10 on w(z = 0.8), and 0.28 on dw(z)/dz for the cosmological con-

stant model. Models with less negative w(z) permit tighter constraints. We test

and discuss the dependence of performance on redshift, survey conditions, and

fiducial model. We find results that are competitive with the performance of fu-

ture supernovae Ia surveys. We conclude that redshift surveys offer a promising

independent route to the measurement of dark energy.

2.1 Introduction

Recent observations of distant type Ia supernovae have reached the startling con-

clusion that the expansion of the Universe is accelerating (Perlmutter et al., 1999;

Riess et al., 1998, 2001; Tonry et al., 2003). Under the premise of Friedmann

equations, this implies the existence of an energy component, christened dark
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energy, with negative pressure (Ratra & Peebles, 1988; Frieman et al., 1995). The

detailed characterization of the accelerated expansion and its cause is now one of

the main subjects of cosmology. Dark energy presently constitutes about 2/3 of

the total energy density of the Universe and its physical property is often param-

eterized by the ratio of pressure to density, that is, the equation of state (Stein-

hardt, 1997; Turner & White, 1997). A cosmological constant (for a review, see

Carroll, Press, & Turner, 1992) has a constant equation of state of −1, while gen-

eral quintessence models (Caldwell et al., 1998) and other theories (Zlatev et al.,

1999; Bucher & Spergel, 1999; Armendariz-Picon et al., 2000; Boyle et al., 2001;

Gu & Hwang, 2001; Kasuya, 2001; Bilic et al., 2002; Deffayet et al., 2002; Freese &

Lewis, 2002) typically allow equations of state with a redshift dependence. Mea-

suring the time dependence of the equation of state, as well as its present density,

is an essential step in identifying the physical origin of dark energy (Hui et al.,

1999; Cooray & Huterer, 1999; Huterer & Turner, 1999; Newman & Davis, 2000;

Haiman et al., 2001; Huterer & Turner, 2001; Maor, Brustein, & Steinhardt, 2001;

Wang & Garnavich, 2001; Kujat et al., 2002; Maor, Brustein, McMahon, & Stein-

hardt, 2002; Newman et al., 2002; Weller & Albrecht, 2002; Frieman et al., 2003;

Linder & Huterer, 2003). Because of the inertness and the relative smoothness of

this energy component, as commonly believed in the standard pictures of dark

energy, the best cosmological probe of dark energy is the expansion history of the

Universe, measured by the Hubble parameter and angular diameter distance.

In this chapter, we demonstrate that the Hubble parameter H(z) and angular

diameter distance DA(z) can be measured to excellent precision by using the bary-

onic acoustic oscillations imprinted in the large-scale structure of galaxies. We are

familiar with this signature as the now-famous Doppler peaks in the anisotropies

of the cosmic microwave background (Peebles & Yu, 1970; Bond & Efstathiou,
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1984; Miller et al., 1999; de Bernardis et al., 2000; Hanany et al., 2000; Halverson

et al., 2002; Benoı̂t et al., 2003; Bennett et al., 2003); however, the same structure is

predicted to be present in the late-time clustering of galaxies as a series of weak

modulations in the amplitude of fluctuations as a function of scale (Peebles &

Yu, 1970; Bond & Efstathiou, 1984; Holtzman, 1989; Hu & Sugiyama, 1996). The

physical scale of the oscillations is determined by the matter and baryon densi-

ties, which can be precisely measured with CMB anisotropy data. This calibrates

the acoustic oscillations as a standard ruler (Eisenstein et al., 1998; Eisenstein,

2003). The observed length scales of oscillations in the transverse and line of

sight directions in a galaxy redshift survey then determine the angular diame-

ter distance DA(z) and the Hubble parameter H(z) as functions of redshift. As

an oscillatory feature, the acoustic signature is less susceptible to general sys-

tematic errors and distortions; however, only large surveys map enough cosmic

volume to achieve the precision required to detect these features. In addition, the

features along the line-of-sight clustering are on sufficiently small scales that re-

solving them requires an accurate measurement of redshift, motivating the need

for spectroscopic redshift surveys. Surveys at higher redshift are preferred so as

to avoid the erasure of the oscillatory features by nonlinear structure formation

(Jain & Bertschinger, 1994; Meiksin et al., 1999; Meiksin & White, 1999). Recent

analyses of large surveys may be beginning to reveal these features (Percival et

al., 2001; Miller et al., 2001)

There have been numerous studies on how the combination of CMB anisotropy

data and large-scale structure data, either present (Scott, Silk, & White, 1995;

Gawiser & Silk, 1998; Lange et al., 2001; Tegmark et al., 2001; Efstathiou et al.,

2002; Spergel et al., 2003) or future (Hu et al., 1998; Eisenstein et al., 1998; Wang,

Spergel, & Strauss, 1999; Eisenstein et al., 1999; Popa et al., 2001), can constrain
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cosmological parameters. These studies have considered an increasing number

of parameters and degeneracies and build on a body of work in CMB parame-

ter estimation (Knox, 1995; Jungman et al., 1996; Zaldarriaga et al., 1997; Bond

et al., 1997). However, most previous work on galaxy surveys has concentrated

on low redshifts and used spherically averaged power spectra. The spherical as-

sumption neglects the effects of redshift distortions and cosmological distortions.

Including the non-isotropic information in the clustering of galaxies allows one

to recover these effects (Ballinger et al., 1995; Heavens & Taylor, 1997; Hatton &

Cole, 1999; Taylor & Watts, 2001; Matsubara & Szalay, 2002, 2003).

In this chapter, we design large galaxy redshift surveys at high redshift that

can recover the acoustic peaks with a level of precision that allows us to put

competitive constraints on the dark energy. We describe the constraints in terms

of statistical errors using a Fisher matrix treatment of the full three-dimensional

power spectra. We study galaxy surveys at z = 0.3, z ∼ 1, and z = 3 so as to

have access to cosmological distortions across a wide range of cosmic history. As

our goal is to optimize survey design based on realistic statistical errors, we try to

be conservative in our methodology. For example, we adopt conservative values

for the non-linear scales and marginalize over a large number of cosmological

parameters. We present the predicted performance of the our baseline surveys

with constraints derived for H(z) and DA(z) and then propagate these errors to

the constraints on the dark energy parameters at our fiducial cosmology model,

ΛCDM. This work extends that of Blake & Glazebrook (2003) in that we have

used a full Fisher matrix formalism to treat the cosmological constraints from

large-scale structure, CMB anisotropies, and supernova data simultaneously and

that we have considered time-variable equations of state. It differs from Linder

(2003b) in that it is an explicit treatment of the survey data sets in addition to a
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discussion of dark energy parameter estimation. Contemporaneously with this

study, Hu & Haiman (2003) used a Fisher matrix technique similar to ours to

study the performance of a mid-redshift cluster survey. The two analyses differ

in numerous details.

In § 2.2, we discuss the details of the physics to probe dark energy. In § 2.3,

we present the survey condition we assume, and our Fisher information matrix

methodology. We present and discuss our results in § 2.4. We consider varia-

tions in survey design, and fiducial model. We compare the performance to a

supernovae survey (SNe) and to pure imaging surveys.

2.2 From Baryonic Oscillations to Dark Energy

2.2.1 Cosmography and Dark Energy

The expansion history of the universe can be written as the redshift z(t) as a

function of time, which in turn is completely specified by the Hubble parameter

H(z) as a function of redshift. We will probe the expansion history by measuring

H(z) and the angular diameter distance DA(z).

The evolution of dark energy density can be described by the present-day

dark energy density ΩX and the equation of state of dark energy, wX(z) (Stein-

hardt, 1997; Turner & White, 1997), where

wX(z) =
pX

ρX

∣

∣

∣

∣

∣

z

(2.1)

This yields an energy density as a function of redshift

ρX(z) = ρX(0) exp

[

3
∫ z

0

1 + w(z)

1 + z
dz

]

(2.2)

Assuming a flat Universe, DA(z) and H(z) are then related to the dark energy

density through

H(z) = h

√

√

√

√Ωm(1 + z)3 + ΩX exp

[

3
∫ z

0

1 + w(z)

1 + z
dz

]
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=

√

Ωmh2

1 − ΩX

√

√

√

√Ωm(1 + z)3 + ΩX exp

[

3
∫ z

0

1 + w(z)

1 + z
dz

]

(2.3)

DA(z) =
c

1 + z

∫ z

0

dz

H(z)
(2.4)

where ΩX is the present-day dark energy fraction with respect to the critical den-

sity. In a general sense, H(z) and DA(z) are the fundamental observables, to be

interpreted here as ΩX and w(z). The comoving sizes of an object or a feature

at redshift z in line-of-sight (r‖) and transverse (r⊥) directions are related to the

observed sizes ∆z and ∆θ by H(z) and DA(z):

r‖ =
c∆z

H(z)
(2.5)

r⊥ = (1 + z)DA(z)∆θ (2.6)

When the true scales, r‖ and r⊥, are known, measurements of the observed di-

mensions, ∆z and ∆θ, give estimates of H(z) and DA(z). The object is then known

as a “standard ruler.” Equations (2.5) and (2.6) can be applied equally well in

Fourier space (inverted, of course).

It is well-known that even if we do not know the scale of a feature, we can still

extract the product H(z)DA(z) (Alcock-Paczynski, 1979). The acoustic oscillation

method presented here is not an Alcock-Paczynski method because we do know

the scale of the sound horizon.

The cosmological feature to be measured need not be an actual object. Instead,

we can use a statistical property of structure in many realizations such as corre-

lation length (Ballinger et al., 1995; Matsubara & Szalay, 2003). On large scales,

features in the power spectrum may be more prominent and hence easier to use.

w(z) can be written as a derivative of the H(z) versus redshift, which in turn

is a derivative of the angular diameter distance versus redshift (eq. [2.3] & eq.

[2.4]). If we seek not only to measure the mean value of w(z) but its slope in



47

redshift, we are adding yet another derivative to the process. In short, to measure

the time variation of the equation of state, we must be able to measure the second

derivative of H(z) or the third derivative of the distance-redshift relation. As each

derivative magnifies the measurement noise in its parent function, we require

enormous precision to proceed. In the context of galaxy surveys, this will drive

us to require large volumes.

2.2.2 Baryonic Acoustic Oscillations in the Matter Power Spectrum

Baryonic acoustic oscillations are a generic feature of the power spectrum of

large-scale structure and an excellent candidate for the standard ruler test. Prior

to recombination, the baryons in the universe are locked to photons of the cosmic

microwave background, and the photon pressure interacting against the grav-

itational instability produces a series of sound waves in the plasma. After re-

combination, the baryons and photons separate, but the effects of the acoustic

oscillations remain imprinted in their spatial structure of the baryons and even-

tually the dark matter (Peebles & Yu, 1970; Holtzman, 1989; Hu & Sugiyama,

1996; Eisenstein & Hu, 1998). The resulting power spectrum is shown in Figure

2.1.

The physical length scale of the acoustic oscillations depends on the sound

horizon of the universe at the epoch of recombination. The sound horizon is the

comoving distance a sound wave can travel before recombination and depends

simply on the baryon and matter densities. The relative heights of the acoustic

peaks in the CMB anisotropy power spectra measure these densities to excel-

lent accuracy, thereby producing an accurate measurement of the sound horizon

(Eisenstein et al., 1998; Eisenstein, 2003).

While the matter power spectrum is simply a product of the spectrum of pri-

mordial fluctuations and the modification of those fluctuations in later epochs,
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Figure 2.1 The linear power spectrum in two different cosmological models, Ωm =
0.35, h = 0.70, and Ωb = 0.04 and Ωm = 0.25, h = 0.65, and Ωb = 0.05. Each power
spectrum has been divided by the zero-baryon power spectrum for that Ωm and
h. The series of acoustic oscillations is clearly seen. Lines at the bottom show
the non-linear scale, shortward of which the acoustic oscillations are washed out,
as a function of redshift. The scales probed by the WMAP and Planck satellite
measurements of primordial anisotropy are also shown. The error bars show the
spherically averaged bandpower measurements from the z = 3 survey we will
present in §2.3.1.
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notably the radiation-domination era and recombination, our observations of this

power spectrum are complicated by the biases of galaxy clustering, the distor-

tions from peculiar velocities, and the errors induced from reconstructing dis-

tances with the wrong cosmology. The latter two effects break the intrinsic statis-

tical isotropy of the clustering of matter and introduce variations that depend on

the angle of the wavevector to the line of sight.

In the absence of massive neutrinos (Bond & Szalay, 1983), linear perturbation

theory fixes the shape of the matter power spectrum in comoving coordinates

and changes only the amplitude as the structure evolves. The growth function

G(z) rescales the amplitude of the fixed matter power spectrum to account for

the growth of structure from the recombination to a redshift z. The growth func-

tion does depend on the details of dark energy. However, the subtle changes in

the amplitude of the matter power spectrum are easily confused in galaxy red-

shift surveys with evolution in the bias of galaxies. While bias can be estimated

from redshift distortions, recovering it to the 1% accuracy required for interest-

ing constraints on dark energy is unlikely, especially in light of the systematic

uncertainties of poorly known scale-dependencies of the redshift distortion.

In principle, galaxy clustering bias could be arbitrary (Dekel & Lahav, 1999);

however, under the assumptions of local bias and Gaussian statistics for the den-

sity field, the bias on large scales should be independent of scale in the correlation

function (Coles, 1993; Scherrer & Weinberg, 1998; Meiksin et al., 1999; Coles et al.,

1999). In the power spectrum, this appears as a constant multiplicative bias plus

a constant additive offset (Seljak, 2000). Moreover, even if the bias deviates from

scale independence on linear or quasi-linear scales, it is very implausible for it

to introduce oscillations in Fourier space on the acoustic scales, as this would

correspond to a preferred length scale in real space of enormous size (∼> 30 Mpc).
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Redshift distortions are an angle-dependent distortion in power caused by

the peculiar velocities of galaxies (Hamilton, 1998, and references therein). On

the largest scales, these distortions follow a simple form (Kaiser, 1987) in which

the distortion is an angle-dependent, multiplicative change in power. We will

follow this prescription. In reality, redshift distortions are non-linear, including

the finger of God effects on small scales. However, these deviations have no large

preferred length scale and will not disturb analysis of the acoustic oscillations.

Whereas the linear-theory redshift distortions are an angle-dependent mod-

ulation in the power spectrum amplitude, the cosmological distortion resulting

from an incorrect mapping of observed separations to true separations produces

a distortion in scale. Spherical features in power become ellipsoids under the

false cosmology. Were the power spectrum a simple power law, the cosmological

and redshift distortions would be indistinguishable in their quadrupole signa-

tures and difficult to separate overall. Fortunately, the matter power spectrum

is not a simple power law and the slow rollover in the power lifts some of the

degeneracy between the two distortions (Ballinger et al., 1995; Matsubara & Sza-

lay, 2003). However, strong features such as baryonic acoustic oscillations are far

more powerful at separating the two, because with a rapidly varying function,

the difference between dilating the scale and modulating the amplitude is very

stark.

Unfortunately, the use of baryonic oscillations as a standard ruler to derive

DA(z) and H(z) is not always straightforward. The nonlinear gravitational growth

of perturbation in the large scale structure erases the primordial features on smaller

scales (large wavenumbers). This occurs when perturbations on a given scale be-

come of order unity in amplitude, leading to non-linear coupling between Fourier

modes. The obscuration by nonlinearity moves to a larger scale as the Universe
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evolves, and today, the scale corresponds to wavelengths of about 60h−1 Mpc,

enough to wipe out all but the first and a part of the second of the acoustic os-

cillations (Meiksin et al., 1999). At higher redshift, the process is less advanced,

and we can recover the primordial signals on smaller scales, including the full

series of acoustic oscillations. For example, at z = 3, we should be able to recover

primordial information to roughly 12h−1 Mpc (a factor of two smaller than what

can be found in the primary anisotropies of the microwave background), which

means that many acoustic oscillations can be preserved outside of nonlinearity

region. In practice, we will be limited to about four peaks because Silk damping

makes the higher harmonics smaller than our expected power spectrum measure-

ments. Figure 2.1 shows the non-linear scale as a function of redshift, as well as

the scales probed by the CMB primary anisotropies as measured by the WMAP

and Planck satellites. While low-redshift surveys such as the Sloan Digital Sky

Survey (York et al., 2000) are much more restricted by the nonlinearity of cluster-

ing, they do provide a valuable data point at an epoch where the dark energy is

largest.

It is worth comparing the measurements from future redshift surveys to those

inferred from the observations of type Ia supernovae (hereafter SNe) (Riess et al.,

1998; Perlmutter et al., 1999; Riess et al., 2001; Tonry et al., 2003). The SNe survey

measure the luminosity distance as a function of redshift, which in standard cos-

mologies is equivalent to the angular diameter distance. While this requires an

additional derivative to extract w(z) relative to measures of H(z), future SNe pro-

gram such as the SNAP satellite could achieve extremely good precision on dis-

tances at redshifts below 1.7. While the cosmological implications of low-redshift

acoustic oscillations and SNe distances are partially degenerate, the systematic

errors will be completely different.
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In summary, the baryon acoustic oscillations form a standard ruler that can

be measured through galaxy redshift surveys to yield H(z) and DA(z) at a range

of redshifts. The scale of the acoustic oscillations is expected to be very robust to

non-linear gravitational clustering, galaxy biasing, and redshift distortions, mak-

ing this a potentially clean probe of cosmography. If we can show that the dis-

tance measurements can be made to sufficient precision, then acoustic oscillations

will offer an new and independent path to the quantification of dark energy.

2.3 Methodology

In this section, we present the methodology of constraining the dark energy through

distance measurements derived from surveys of galaxy clustering. To probe the

time evolution of the dark energy, we need galaxy power spectra at a variety of

redshifts. We design surveys at six different redshift bins, ranging from 0.3 to 3.

In this section, we present our methodology for computing the statistical errors

from these surveys and from our ancillary data sets. We do this using a Fisher

matrix formalism in a parameterized cosmological model.

2.3.1 Statistical Error on the Power Spectrum

To estimate errors on DA(z) and H(z), we begin with the errors on the power

spectrum that result from a galaxy survey. Under Gaussian approximations, the

statistical errors are a combination of the limitations of the finite volume of the

survey and the incomplete sampling of the underlying density field. These are

known as sample variance and shot noise, respectively. At a single wavevector ~k,

the intrinsic statistical error associated with power is the sum of the power and

shot noise (Feldman, Kaiser, & Peacock, 1994; Tegmark, 1997)

σP

P
=

P + 1
n

P
(2.7)
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Here, 1/n is a white shot noise from the Poisson sampling of the density field

assuming that the comoving number density n is constant in position. If the shot

noise term exceeds the true power, that is, when nP is less than unity, then shot

noise will significantly compromise the measurement. Note that nP depends on

wavenumber.

However, when the survey volume is finite, the power at nearby wavevec-

tors is highly correlated, and one can think of discretizing the Fourier modes of

the density field into cells in Fourier space whose volume is (2π)3/Vsur, where

Vsur is the comoving survey volume. Neglecting boundary effects, the statistical

power of the survey is well approximated by treating these cells as independent

(Tegmark, 1997). If the survey volume is large enough that the discretization scale

is small compared to the regions of wavevector space over which the power spec-

trum is constant, then we can estimate the bandpower as averaged over a finite

volume in Fourier space. We parameterize this by the wavenumber range ∆k

and the range ∆µ of the cosine of the angle between the wavevector and the line

of sight. The volume in Fourier space is simply 2πk2∆k∆µ and the number of

modes is 2πk2∆k∆µVsur/(2π)3. However, because the density field is real-valued,

the Fourier modes ~k and −~k are not independent, which reduces the number of

independent modes by a factor of two. The fractional error on the bandpower is

then (Feldman, Kaiser, & Peacock, 1994; Tegmark, 1997):

σP

P
= 2π

√

2

Vsurk2∆k∆µ

(

1 + nP

nP

)

(2.8)

where P is the average comoving bandpower. This fractional error on power

spectrum (eq. [2.8]) enters in Fisher matrix and will be propagated to the errors

on parameters which we want to calculate.
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2.3.2 The Fisher Information Matrix for Galaxy Redshift Surveys

Given the uncertainties of our observations, we now want to propagate these

errors to compute the precision of constraints on cosmological parameters. The

Fisher information matrix provides a useful method for doing this (see Tegmark,

Taylor, & Heavens, 1997, for a review). The method takes as input a set of observ-

ables and a parameterized theoretical model to predict those observables. We

denote the parameters as p1, . . . , pN . The Fisher information matrix incorporates

the likelihood function of the observables to yield the minimum possible errors

on an unbiased estimator of a given parameter, given that the true value of the

parameters are that of a so-called fiducial model. Mathematically, these mini-

mum errors are simply the square roots of the diagonal elements of the inverse

of the Fisher matrix.

Assuming the likelihood function for the bandpowers of a galaxy redshift sur-

vey to be Gaussian, the Fisher matrix can be approximated as (Tegmark, 1997)

Fij =
∫ ~kmax

~kmin

∂ ln P (~k)

∂pi

∂ ln P (~k)

∂pj

Veff(~k)
d~k

2(2π)3
(2.9)

=
∫ 1

−1

∫ kmax

kmin

∂ ln P (k, µ)

∂pi

∂ ln P (k, µ)

∂pj

Veff(k, µ)
2πk2dkdµ

2(2π)3

where the derivatives are evaluated at the parameter values of the fiducial model

and Veff is the effective volume of the survey, given as

Veff(k, µ) =
∫

[

n(~r)P (k, µ)

n(~r)P (k, µ) + 1

]2

d~r =

[

nP (k, µ)

nP (k, µ) + 1

]2

Vsur, (2.10)

where the last equality holds only if the comoving number density n is constant

in position. Here, µ = ~k · r̂/k, where r̂ is the unit vector along the line of sight and
~k is the wave vector with norm k = |~k|. Due to azimuthal symmetry around the

line of sight, the power spectrum P (~k) depends only on k and µ, but of course

it has an implicit dependence on the cosmological parameters pi. Equations (2.9)
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and (2.10) are not fully general, as we have assumed a flat-sky approximation

in which the survey box is imagined to be far from the observer. Given that the

clustering scales of interest will subtend small angles on the sky in all of our

designed surveys, this is an appropriate approximation.

We have not included information from all wavenumbers in our equation

(2.9). Wavenumbers smaller than kmin or larger than kmax have been dropped.

We use kmax to exclude information from the non-linear regime, where our linear

power spectra are inaccurate. We adopt conservative values for kmax by requiring

σ(R) = 0.5 at a corresponding R = π/2k. At z = 0, this sets kmax = 0.1h Mpc−1,

which is consistent with the numerical simulations of Meiksin et al. (1999) and

noticeably smaller than that used by most published analysis of past redshift sur-

veys. The kmax values used for different redshift bins are listed in Table 2.1. The

maximum scale of the survey kmin has almost no effect on the results; we adopt

kmin = 0.

In principle, the mapping from the observed galaxy separations to the physi-

cal separations and wavevectors depends upon the cosmological functions DA(z)

and H(z), which are varying continuously across the redshift range of the survey.

When doing an analysis of real data, one would of course include this variation.

For our forecasts, however, we opt to break the survey into a series of slabs in red-

shift, inside of which we treat the survey region as a fixed Euclidean geometry,

with a constant DA and H and a rectilinear division between the transverse and

radial directions. This approximation is harmless as regards the statistical power

of the survey or the parameter degeneracies involved. We use redshift bins that

are narrow enough to finely sample the dark energy behavior.
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Table 2.1. Baseline Survey Parameters

Survey z kmax Vsurvey
a Ngal

b biasc P (0.2h Mpc−1)d P (kmax) nP (0.2h Mpc−1) nP (kmax)

(h Mpc−1) (h−3 Gpc3) (105) h−3 Mpc3 h−3 Mpc3

SDSS 0.3 0.11 1.0 1.0 2.13 22900 2.29

z ∼ 1 0.6 0.15 0.29 1.44 1.25 4660 2.33

0.8 0.17 0.40 2.00 1.40 3590 1.80

1.0 0.19 0.49 2.46 1.55 3090 1.55

1.2 0.21 0.56 2.82 1.70 2860 2620 1.43 1.31

z = 3 3.0 0.53 0.50 5.0 3.30 2950 430 2.95 0.43

a1000 square degrees for z ∼ 1; 140 square degrees for z = 3

bThe number density n: 10−4h3 Mpc−3 for SDSS, 5 × 10−4h3 Mpc−3 for z ∼ 1, and 10−3h3 Mpc−3 for z = 3

cCalculated using Equation (2.17) assuming σ8,mass = 0.9 at z = 0, σ8,g = 1.8 for SDSS, σ8,g = 1 for z ∼ 1 and z = 3.
dPowers at k = 0.2h Mpc−1 are slightly different for z ∼ 1 and z = 3 because redshift distortions are included in

normalization of σ8,g
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2.3.3 Parameters

A Fisher matrix formalism relies upon a detailed parameterization of its space of

models. The performance forecasts are only as realistic as the generality of the

permitted models. For our forecasts, we proceed in two stages. First, we define

a very general parameterization based on CDM cosmologies and assigning inde-

pendent parameters to each redshift bin. This permits us to forecast cosmograph-

ical constraints independent of any dark energy model. Second, we introduce a

smaller set of parameters to describe dark energy by relating the distances in dif-

ferent redshift bins. This will allow us to combine many distance measurements

into constraints on a low-dimensional dark energy model.

2.3.3.1 Cold Dark Matter Cosmography

We use a very general space of cold dark matter models. Our parameter include

the matter density (Ωmh2), baryon density (Ωbh
2), matter fraction(Ωm), the optical

depth to reionization (τ ), the spectral tilt (ns), the tensor-to-scalar ratio (T/S), and

the normalization (ln AS
2). Our fiducial model is Ωm = 0.35, h = 0.65, ΩΛ = 0.65,

ΩK = 0, Ωbh
2 = 0.021, τ = 0.05, tilt, ns = 1, and T/S = 0.

We supplement this model with many additional parameters to describe the

behavior at each redshift. For the CMB, we include an unknown angular distance

DA,CMB to the last scattering surface at z = 1000. For each redshift survey bin, we

add a parameter for the angular diameter distance (ln DA), the Hubble parameter

(ln H), the linear growth function (ln G), the linear redshift distortion (ln β), and

an unknown shot noise Pshot. With 5 additional parameters in each of 6 redshift

bins, the total number of parameters for the CMB and galaxy surveys is 38. The

fiducial values of these parameters are evaluated at the central redshift of each

slice, and the fiducial values of β are computed from the values of the bias as

found from the fiducial values of the observed galaxy clustering.
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By keeping DA(z), H(z), and G(z) as separate parameters at each redshift,

we have avoided any assumption thus far of a specific dark energy model. The

only cross-talk between the various distances and amplitudes occurs through the

parameters of Ωmh2, Ωbh
2, and ns that set the shape of the galaxy power spectrum.

In other words, a good constraint at one redshift implies nothing for another

redshift because we have specified nothing about the behavior of the distances as

a function of redshift.

The unknown white shot noise Pshot is a shot noise in the observed power

spectrum at each redshift bin that remains even after the conventional shot noise

of inverse number density is subtracted from the observed power spectrum. These

terms can arise from galaxy clustering bias (Seljak, 2000) even on large scales be-

cause they zero-lag terms in the correlation function, which are permitted in the

theories of local bias (Coles, 1993).

The partial degeneracy between redshift distortions and cosmological distor-

tions requires care because the broadband aspects of the observed power spectra

are extremely well-constrained in these surveys. If one knew the precise ampli-

tude of the matter power spectrum at a given redshift, then one would know

the bias to high precision. This would yield the value of β, and knowing this,

we could extract the cosmological distortions from the quadrupole distortions of

the observed power. Unfortunately, we do not regard this as a robust cosmolog-

ical test. Non-linear redshift distortions are not well understood, particularly in

the context of poorly constrained bias models. We seek to isolate our measure-

ment of the cosmological distortions from overly optimistic assumptions about

redshift distortions. The unknown growth functions and shot noises aid in this

separation; the latter contributes because a white noise limits the localization of

a power-law break in a smooth power spectrum. We do not use the recovered
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growth functions in our dark energy fits. We will return to this topic in § 2.4.4

2.3.3.2 From Cosmography to Dark Energy

We next wish to define a more restricted parameterization for the study of dark

energy. We do this through a simple parameterization for the equation of state

w(z). The equation of state of a cosmological constant has w = −1 at all times,

whereas quintessence models have w > −1, generically with time dependence.

While the most important distinction of dark energy models would be to decide

whether w = −1 or not, we also want to develop methods for tracking the time

dependence. As a simplest approach, we assumed a linear equation of state in

redshift (eq. [2.11]).

w(z) = w0 + w1z (2.11)

Our choice of parameters for a dark energy is ΩX (eq. [2.3]), w0, and w1. Other

choices for parameterizing the free function w(z) have been explored in Tegmark

(2001), Linder (2003a), and Huterer & Starkman (2003).

We used a variety of dark energy fiducial models in this chapter. The param-

eters of these models are listed in Table 2.2. We will focus most of our attention

on a ΛCDM model with ΩX = 0.65, w0 = −1, and w1 = 0 and on a compar-

ison model (Model 2) with w0 = −2/3. The primary difference between these

is that dark energy remains more important at higher redshift in the w = −2/3

model. We consider four models with redshift-dependent equations of state. All

have w1 > 0, so that dark energy emerges at higher redshift than we would infer

from w today. In detail, we truncate the increase in w at early times by setting

dw/dz = 0 at z > 2 so that the value of w at z > 2 is simply w(2). This is of minor

importance because the dark energy is subdominant at these high redshifts, but

it is necessary to avoid dark energy domination at early times. Models 5 and 6

have w < −1 today, which is a challenge to theory (but see Caldwell et al., 1998);
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Table 2.2. Dark Energy Models

Model w0 w1

1 (ΛCDM) −1 0a

2 −2/3 0a

3 −2/3 1/6b

4 −1 1/3b

5 −4/3 1/3b

6 −1.15 1/3b

aw1 perturbations in these models were considered to

extend to z = ∞; however, the derivatives were com-

puted with infinitesimal stepsizes, so the w > 0 region

at high redshift was not an issue.
bw(z) = w0 + w1z for z < zt and w0 + w1zt beyond. We

use zt = 2.

we include these simply to study the phenomenological differences.

Equation (2.11) defines the equation of state today as the parameter w0. Be-

cause the observations are all at higher redshift, the errors on w0 are misleadingly

poor, because uncertainties in w1 allow the value today to vary around a well-

measured value at higher redshift. Errors on w at higher redshifts decrease to a

minimum at a redshift zpivot, similar to the central redshift of the observations,

and then increase again. For any choice of zpivot, we can recast the parameteriza-

tion in equation (2.11) as

w(z) = w0 + w1z = w(zpivot) + w1(z − zpivot) (2.12)

At this redshift of minimum error, the covariance between w(zpivot) and w1 van-

ishes, so that the two parameters are statistically independent. zpivot can be com-
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puted from the covariance matrix of w0 and w1 via the method in Appendix A of

Eisenstein et al. (1999).

2.3.4 Completion and Transformation of Fisher Matrices

We must complete our formula (eq. [2.9]) for the Fisher information matrix for

galaxy surveys by identifying the power spectrum for the corresponding redshift

bin. P (~k) in equation (2.9) is a three-dimensional galaxy redshift power spec-

trum, to be reduced to two dimensions by symmetry. When we reconstruct our

measurements of galaxy redshifts and positions using a particular reference cos-

mology, which differs from the true cosmology, the observed power spectrum

is

Pobs(kref⊥, kref‖) =
DA(z)2

ref × H(z)

DA(z)2 × H(z)ref

Ptrue(k⊥, k‖) + Pshot. (2.13)

Here, DA and H values in the reference cosmology are distinguished by the sub-

script ‘ref’, while those in the true cosmology have no subscript. k⊥ and k‖ are

the wavenumbers across and along the line of sight in the true cosmology. These

are related to the wavenumbers calculated assuming the reference cosmology, by

kref⊥ = k⊥DA(z)/DA(z)ref and kref‖ = k‖H(z)ref/H(z). The prefactor of distance

ratios accounts for the difference in volume between the two cosmologies. We

adopt the reference cosmology to be equal to our fiducial cosmology for simplic-

ity.

Next, the true cosmology must be constructed, included the redshift distor-

tions. We do this by scaling to z = 0:

Pobs(kref⊥, kref‖) =
DA(z)2

refH(z)

DA(z)2H(z)ref

b2



1 + β
k2
‖

k2
⊥ + k2

‖





2 (
G(z)

G(z = 0)

)2

Pmatter,z=0(k)+Pshot

(2.14)

where the bias b is Ωm(z)0.6/β(z). The normalization used to derive the power



62

spectrum at z is,

P (knorm, z = 1000) = A2
S

knorm

kfid

(

c

H(1000)

)4

(2.15)

where kfid = 0.025/ Mpc and k−1
norm = 3000 Mpc. The actual power spectrum and

derivatives with respect to various parameters are reconstructed from equation

(2.14), using the numerical methods and results at z = 0 from Eisenstein et al.

(1999).

For the Fisher matrix of CMB, we assume errors for the Planck satellite includ-

ing polarization from Eisenstein et al. (1999). With Planck, the fractional error on

Ωmh2 and Ωbh
2 are 0.9% and 0.6%, respectively. Together, these more than suffice

to calibrate the sound horizon to 1%. The recovered error on the angular diameter

distance to z = 1000 is 0.2%.

For the Fisher matrix of SNe, we introduce 16 redshift bins, at 0.05 and at 0.3 to

1.7 by steps of 0.1, to represent the supernovae distance information. We assign

1% independent errors to each redshift point (i.e., 0.022 mag error in distance

modulus), with an overall 5% uncertainty in the distance scale (since the SNe

method by itself gives only a relative distance measurement). The appropriate

covariance matrix is constructed and then inverted to give the Fisher matrix. In

practice, the uncertainty in the distance scale is substantially reduced from the 5%

starting value by combination with the CMB, because the CMB’s measurement of

Ωmh2 is combined with the SNe measurement of Ωm to yield the Hubble constant

itself.

Our SNe model was chosen to give similar performance to that of the pro-

posed SNAP mission (Aldering et al., 2002) but differs in fine detail from that of

the SNAP team. One should note that our 16 redshift points are statistically in-

dependent, so that with modest rebinning we are asserting better than 0.01 mag

calibration between low and high redshift SNe. This is well beyond the current
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Figure 2.2 A flowchart of transformations of the Fisher matrices necessary to pro-
duce forecasts for the distance and dark energy parameters.
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state of the art and is essentially the design goal of the SNAP mission.

Once the Fisher matrices for all the constituent data sets are set, we must de-

rive marginalized errors on DA(z) and H(z) and eventually on the dark energy

parameters. Figure 2.2 shows the steps of the procedure graphically. To begin, the

Fisher matrices are summed up and inverted. The square roots of the diagonal

terms of this inverse Fisher matrix are the marginalized errors on parameters. We

marginalize over and remove all the parameters that are not concerned with cos-

mography by taking a submatrix of the inverse Fisher matrix that includes only

the rows and columns for Ωmh2, DA,CMB, and the H(z)’s and DA(z)’s at all red-

shift bins. This yields the covariance matrix for the cosmographical parameters.

Although this is an intermediate result, it is very useful because it is independent

of any dark matter model.

Next we project these errors through to the dark energy parameter space. Be-

cause the dark energy model makes explicit predictions for the various distances,

we are not marginalizing over parameters. Rather, we are contracting the inverse

of the covariance matrix, as one would do in a multi-dimensional χ-square anal-

ysis. Hence, we invert the cosmographic covariance matrix to get a Fisher matrix

F and contract this with the set of derivatives between the the distances and the

dark energy parameters (Ωmh2, ΩX , w0, and w1).

FDE,ij =
∑

m,n

∂pn

∂qi

F nm
∂pm

∂qj

, (2.16)

where the pm are the distance parameters and the qi are the dark energy parame-

ters. By inverting this Fisher matrix, we attain marginalized errors of dark energy

parameters.

Equation (2.16) implies that the constraints on dark energy will be a combina-

tion of how well DA(z) and H(z) are estimated within a given set of surveys and

how effectively measurements of DA(z) and H(z) can constrain dark energy. Fig-
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Figure 2.3 Derivatives of angular diameter distance(DA) and Hubble
parameter(H) with respect to ΩX , w0, and w1 with Ωmh2 being held fixed.
As these are partial derivatives, one should remember that two of the three
parameters are held fixed as well in each case. Notably, these are not the basis
that leave the CMB anisotropies unchanged. The ΩX parameter is equivalent to
Ωm. Left: w = −1.0 (ΛCDM). Right: w = −0.667 (Model 2).
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ure 2.3 shows the derivatives of DA(z) and H(z) with respect to the dark energy

parameters. The left panel is for ΛCDM; the right panel is for Model 2 (w = −2/3).

One should remember that these are partial derivatives, so that three of the pa-

rameters Ωmh2, ΩX , w0, and w1 are being held fixed. The derivatives with respect

to w0 at fixed Ωmh2, ΩX and w1 have larger amplitude than those to w1, meaning

that DA and H place better constraints on w0 than on w1. Based on the positions of

maximum amplitudes, we expect that the information on w1 comes from higher

redshift than w0. It is interesting to note that while an advantage of this acous-

tic oscillation method is to measure H(z), the peaks of derivatives of H(z) are at

lower redshift where, as we will find, this method has poorer error bars. This

tends to favor lower redshift probes such as SNe. It also implies that, improv-

ing error bars on w1 could be done by changing the redshift survey conditions

at higher redshifts, that is, we may want to decrease error bars on H(z) over the

range z = 1 to 3 or on DA(z) at z ∼> 2. Comparing w = −2/3 to ΛCDM, one

finds that the derivatives of both DA(z) and H(z) peak at higher redshift when w

is more positive. This will favor the galaxy surveys at higher redshift. Models 3

through 6 share this trend.

2.3.5 Survey Design

We want to design redshift surveys that are optimized to derive DA(z) and H(z)

within accessible resources. Our requirement is that we should be able to measure

multiple acoustic peaks at various redshifts with high precision. In this section,

we define two sets of baseline surveys, with parameters in Table 2.1; we will also

consider variations on these in § 2.4.

To constrain the scale of the acoustic peaks, we clearly need superb precision

in the power spectrum measurements. Equation (2.8) shows that the errors σP

depend on the survey volume Vsur and on the number density n of objects in



67

the survey. Of course, Vsur and n are limited by the available observational re-

sources. If we assume that the observational resources scale with the total num-

ber of objects N , then at fixed N , σP /P has a minimum at n = 1/P (Kaiser, 1986) at

each wavenumber k. However, near this minimum, the performance σP /P varies

slowly, and a small deviation from the minimum incurs little penalty. For exam-

ple, using nP = 3 or nP = 1/3 increase the error by only about 15%. With the

relatively small dependence of error on nP near the minimum, we suggest that

nP slightly larger than 1 is preferable for several reasons. First, larger nP increase

the signal-to-noise per pixel in the map. This enables computations beyond the

power spectrum, e.g. for higher-order correlations and non-Gaussianity. Second,

it avoids some complications from the non-Gaussianity of the shot noise itself.

Finally, it permits us to divide the survey into a few sub-samples based on galaxy

properties or other criteria with less loss in signal-to-noise. This allows certain

kinds of tests for systematic errors in the survey and for additional science return

from the study of type-dependent galaxy bias.

On the other hand, it is possible that observation resources do not simply scale

with the number of objects. For example, the field of view, i.e. Vsur, may be more

expensive than the number of spectroscopic targets. For a fixed survey volume,

the error bars improve monotonically as targets are added, but the benefit satu-

rates at nP À 1. For example, the error σP /P with nP = 5 is 1.7 times better

than that of nP = 1 (at fixed volume), but only 20% worse than that of nP = ∞.

In reality, increased target density is not free: hence higher number densities of

objects require fainter objects (i.e., a deeper survey) and hence longer exposure

times. Fortunately, the range of the number density we want is near the luminous

tale of the luminosity functions, where the source counts are quite steep, and so

it is rather easy to increase n moderately above 1/P .
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We conclude that nP ∼ 3 is a good choice based on these considerations.

An additional question is which wavenumber k to use in calculating the value

of nP . We are primarily interested in higher acoustic peaks, which occur around

k = 0.2h Mpc−1. The power at this wavenumber is ∼2500σ2
8,gh

−3 Mpc3, where σ2
8,g

is the rms overdensity of the galaxies in spheres of 8h−1 Mpc comoving radius.

This gives n = 4 × 10−4σ−2
8,gh

3 Mpc−3 for nP = 1. This is considerably less than

the density of L∗ galaxies. The power is higher at smaller k, so smaller densities

would be optimal when measuring larger scales.

At z ∼ 3, the obvious choice of galaxy targets are the Lyman-break galaxies

(Steidel et al., 1996). σ8,g for these galaxies is measured to be about 1 (Steidel et

al., 1998; Adelberger et al., 1998). The corresponding bias is calculated using

σ8,g = bσ8,mass

√

1 +
2β

3
+

β2

5
(2.17)

assuming σ8,mass of 0.9 for the matter distribution today and a linear redshift dis-

tortion effect (Kaiser, 1987). For the number density, 10−3h3 Mpc−3 is used so that

nP ≈ 3 at k = 0.2h Mpc−1. As an aside, a density nP (0.2h Mpc−1) > 1 is particu-

larly valuable at z = 3 because the non-linear scale has receded to much smaller

scales (kmax ≈ 0.5h Mpc−1!). To make full use of the survey at all linear scales, we

need a larger n. For our baseline survey, we adopt a total comoving volume of

0.5h−3Gpc3, which gives enough resolution and the precision to recover the first

four acoustic peaks (Figure 2.1). At this redshift, the comoving volume between

z = 2.5 and z = 3.5 is 960h−3 Mpc3 per square arcminute, yielding a total sur-

vey field of 140 square degrees. The areal number density is 1 galaxy per square

arcminute, similar to the depth of Steidel et al. (1998).

At z ∼ 1, the choice of galaxy target is less obvious. One could reasonably

use either giant ellipticals or luminous star-forming galaxies. Luminous early-

type galaxies have the advantage of high bias, probably σ8,g > 1, and strong
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4000Å breaks, but getting the redshift does require detecting this continuum

break, which takes longer integration time. Later-type galaxies may be less bi-

ased, meaning we need a larger number density, but they have strong 3727Å

emission lines, which can often be identified because the line is a doublet. For

either case, we assume σ8,g = 1 and n = 5 × 10−4h3 Mpc−3. This makes nP at

k ∼ 0.2h Mpc−1 slightly bigger than 1, which means that nP will be at our de-

sired value for the meaty part of the linear regime. From z = 0.5 to z = 1.3, there

is a comoving volume of 480h−3 Mpc3 per square arcminute, leading to a surface

density of 0.24 galaxies per square arcminute. We assumed a total survey field

of 1000 square degree, chosen to sample a similar volume to the Sloan Digital

Sky Survey (SDSS) luminous red galaxy sample. The total number of galaxies is

8.7×105. To ensure sufficient resolution on the variations of DA(z) and H(z), we

subdivide the z ∼ 1 survey into four redshift bins centering at z =0.6, 0.8, 1.0, 1.2

with widths ∆z = 0.2. Hereafter, unless noted, the term ‘z ∼ 1 survey’ designates

the sum of these four redshift bins.

For the nearby universe, we adopt the parameters of the on-going SDSS lumi-

nous red galaxy survey (Eisenstein et al., 2001). The survey volume for this sam-

ple is 1h−3Gpc3, and the comoving number density is 10−4h3 Mpc−3 at z ≈ 0.3.

This survey is included in all analyses in this chapter because it is well underway.

We use σ8,g = 1.8 for these galaxies.

To resolve the oscillations along the line of sight at k ≈ 0.2h Mpc−1, and

thereby measure H(z), requires that the position of the galaxy along the line of

sight be well estimated. As the crest-to-trough distance for this wavelength is

only 15h−1 Mpc, we need redshifts with accuracy of 10−3 in 1 + z. We will return

to this computation in § 2.4.5, but for now we note that this accuracy requires

low-resolution spectroscopy. Photometric redshifts cannot recover H(z) from the
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Table 2.3. Marginalized Errors on DA(z) and H(z) for ΛCDM

Redshift 0.3 0.6 0.8 1.0 1.2 3 1000

DA(z) (%) 5.19 4.30 3.22 2.30 2.03 1.19 0.219

H(z) (%) 5.80 5.19 3.59 2.84 2.53 1.48

Note. — The fractional percentage errors (1–σ) on cos-

mological distances from the combination of CMB, SDSS,

and our standard surveys at z ∼ 1 and z = 3.

acoustic oscillations.

2.4 Results and Discussion

2.4.1 Redshift surveys with SDSS and CMB

We begin by presenting the results for cosmography from our baseline surveys.

Table 2.3 lists the errors on DA(z) and H(z) for a combination of all the baseline

redshift surveys and the CMB data. The errors improve at higher redshift because

of the smaller scale of the nonlinear contamination. At z = 3, the constraints

are particularly good, better than 2% on both quantities. The errors on DA(z)

are generally smaller than those on H(z). This is simply because the number of

modes available in the two transverse directions is bigger than the number of

modes in the one line-of-sight direction.

The reduced covariance matrix of the DA(z) and H(z) values is shown in Table

2.4. DA(z) and H(z) at different redshifts are covariant only through the uncer-

tainty in the physical scale of the acoustic oscillations. From the tiny non-diagonal

terms between different redshift bins in Table 2.4, we can see that the sound hori-
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Figure 2.4 Errors on DA(z) and H(z) as a function of kmax and n for z = 1 data set.
n means the baseline number density in Table 2.1 (about 5 × 10−4h3 Mpc−3), and
n × 100 means 100 times the baseline number density.

zon scale is very well determined. The non-diagonal elements of DA(z) and H(z)

in the same redshift bin show that the degeneracy between the two is indeed

small as they are determined independently by the standard ruler test.

Most of the behavior in the errors can be explained as variations in the non-

linear cutoff scale kmax and in the survey sizes Vsur. We explore this in Figure 2.4

by showing how the performance at z = 1 depends on kmax. In the left panel of

Figure 2.4, we plot the errors on DA and H as functions of kmax for two values of

the number density n. The drop from kmax = 0.1h Mpc−1 to kmax = 0.2h Mpc−1

dominates the increase in performance from z = 0.3 to z = 1.2.

The errors on the distances flatten at around kmax ∼ 0.25h Mpc−1, implying a

saturation of the information from the locations of baryonic acoustic peaks. This

is easily understood as the drop in contrast of the higher harmonics because of

Silk damping. Beyond this wave number, the errors slowly decrease with more
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Table 2.4. Correlation Matrix for Distance Measurements in ΛCDM

z CMB 0.3 0.6 0.8 1.0 1.2 3.0

z DA DA hzz DA H DA H DA H DA H DA H

√
Dii

a 0.002 0.052 0.058 0.043 0.052 0.032 0.036 0.023 0.028 0.020 0.025 0.012 0.015

CMB DA 1.000 0.040 −0.048 0.054 −0.045 0.061 −0.064 0.103 −0.087 0.123 −0.100 0.233 −0.192

0.3 DA 0.040 1.000 −0.256 0.002 −0.002 0.003 −0.003 0.005 −0.004 0.006 −0.005 0.011 −0.009

H −0.048 −0.256 1.000 −0.003 0.003 −0.003 0.004 −0.006 0.005 −0.007 0.006 −0.013 0.011

0.6 DA 0.054 0.002 −0.003 1.000 −0.255 0.004 −0.004 0.006 −0.005 0.008 −0.006 0.015 −0.012

H −0.045 −0.002 0.003 −0.255 1.000 −0.003 0.003 −0.005 0.005 −0.006 0.005 −0.012 0.010

0.8 DA 0.061 0.003 −0.003 0.004 −0.003 1.000 −0.304 0.007 −0.006 0.009 −0.007 0.016 −0.013

H −0.064 −0.003 0.004 −0.004 0.003 −0.304 1.000 −0.008 0.006 −0.009 0.007 −0.017 0.014

1.0 DA 0.103 0.005 −0.006 0.006 −0.005 0.007 −0.008 1.000 −0.124 0.015 −0.012 0.028 −0.023

H −0.087 −0.004 0.005 −0.005 0.005 −0.006 0.006 −0.124 1.000 −0.012 0.010 −0.024 0.020

1.2 DA 0.123 0.006 −0.007 0.008 −0.006 0.009 −0.009 0.015 −0.012 1.000 −0.120 0.033 −0.028

H −0.100 −0.005 0.006 −0.006 0.005 −0.007 0.007 −0.012 0.010 −0.120 1.000 −0.027 0.023

3.0 DA 0.233 0.011 −0.013 0.015 −0.012 0.016 −0.017 0.028 −0.024 0.033 −0.027 1.000 −0.203

H −0.192 −0.009 0.011 −0.012 0.010 −0.013 0.014 −0.023 0.020 −0.028 0.023 −0.203 1.000

Note. — All terms are normalized by diagonal terms given in the first row: a′
ij =

aij√
aiiajj

aThe square root of the diagonal terms of the covariance matrix. These are the 1–σ fractional percentage errors on these quantities.
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efficiency for H(z). This slight increase in information seems to be due to the

Alcock-Paczynski effect reappearing as the deviation the power spectrum from

a pure power-law is revealed by the increasing range of wavenumbers in the

survey.

The oscillatory behavior versus kmax shown in Figure 2.4 is due to the os-

cillatory derivatives of the power spectrum with respect to dilations in the dis-

tance scales. When kmax is close to the nodes of power spectrum, the derivative

d ln P/d ln k has a local maximum and the survey can better distinguish the differ-

ing cosmologies. The right panel of Figure 2.4 shows the covariance between the

uncertainties in DA(z) and H(z). These show a similar dependence on d ln P/d ln k

but with a phase offset. When the performance improves suddenly, the ability to

separate the two distances has a local maximum. Thus, the decrease of the non-

diagonal term at z = 1 and 1.2 in Table 2.4 is simply because kmax has shifted to be

near one of the maxima of the plot in the right panel of Figure 2.4. The increasing

covariance between DA(z) and H(z) at very large kmax is another signature of the

Alcock-Paczynski effect in the broadband power that eventually intrudes.

Figure 2.4 also shows the degradation of performance caused by shot noise.

We generate results with essentially zero shot noise by increasing the galaxy num-

ber density by a factor of 100. This reveals the bare effect of kmax variations;

with the baseline surveys, the power spectrum errors at large k are somewhat

degraded by increasing shot noise. The left panel of Figure 2.4 displays the ratio

of performance in the two cases. For k ≈ 0.2h Mpc−1, the degradation due to

shot noise is less than a factor of 1.5, as expected. However, at large k, the effect

is a full factor of two. Improved performance at large k increases the strength of

the Alcock-Paczynski effect, as shown by the even larger covariance in the high

density case in the right panel.
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We next project the errors from the baseline surveys through to constraints

on the dark energy parameters. Table 2.5 shows the performance on dark energy

parameters using fiducial model 1 (ΛCDM). With all redshift surveys combined

with CMB and SDSS data, we can achieve a precision of 0.037 on ΩX , 0.25 on

w(z = 0), 0.10 on w(z = 0.8), and 0.28 on w1. For the ΛCDM model, as well as for

Model 2 in Table 2.2, we did not clip w1 for z > zt with zt = 2. Clipping w1 for

z > zt in ΛCDM increases the errors by a factor of 1.2.

In these calculations, we assumed not only that the errors on the distances

were Gaussian but that these generate a Gaussian likelihood function for the dark

energy parameters. This is appropriate for well-constrained parameters such as

distances, ΩX , and Ωmh2, but may be incorrect for w0 and w1. We repeated our

analysis with a more complete likelihood calculation, in which the likelihood at

each point in w0-w1 space was computed assuming a (more appropriate) Gaus-

sian likelihood in the other parameters. The result is the likelihood function in

w0 and w1 with the other parameters marginalized out. The resulting likelihood

contours were not ellipsoids, of course, and were slightly bent and offset. How-

ever, the extent and slope of the contours were excellent matches to the Gaussian

ellipsoids. We therefore conclude that the Gaussian analysis gives a reasonable

estimate of the dark energy performance and is sufficient for comparing different

combinations of surveys.

Constraints on dark energy fiducial models 2 through 6 are presented on Table

2.6. Some of these non-ΛCDM models have significantly improved performance

on dark energy parameters. In particular, models 2 (w = −2/3) and 3 (w0 =

−2/3, w1 = 1/6) have superb performance, with constraints on w1 reaching 9%.

Models 4 and 6 are also better than ΛCDM. Not surprisingly, these improvements

correlate directly with the value of w at intermediate redshifts and hence with the
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Table 2.5. Marginalized Errors on Dark Energy Parameters for ΛCDM

z ∼ 1 z = 3 SNe σΩm h2/Ωm h2 σΩx
σw0

σw1
zpivot σwzpivot

0.0094 0.0926 0.882 1.172 0.729 0.218
√ 0.0090 0.0378 0.281 0.353 0.735 0.107

√ 0.0086 0.0758 0.466 0.446 0.959 0.184
√ √ 0.0083 0.0368 0.245 0.280 0.796 0.102

√ 0.0093 0.0088 0.116 0.231 0.478 0.035
√ √ 0.0088 0.0083 0.093 0.183 0.471 0.033

√ √ 0.0086 0.0085 0.096 0.189 0.479 0.034
√ √ √ 0.0082 0.0082 0.083 0.161 0.476 0.032

Note. — Check marks indicate the data sets being used; CMB and SDSS data are

included in all sets. The fiducial redshift survey parameters (V1N1) are used. zpivot

is the redshift at which the errors on the value of w(z) is independent from the slope

w1. σ(wzpivot) is the error on the value of w at that redshift; this is also the error on

w that would be found if w1 were held fixed at the fiducial value. All errors are 1–σ.

amount of dark energy that remains at higher redshift. Most of improvements are

keyed by the measurement of H(z) and DA(z) at higher redshifts. This is reflected

in the systematic increase of zpivot in the cases of improved performance.

2.4.2 Incorporation of Supernovae Data

We next combine these redshift surveys with the SNe data set. The lower four

rows of Table 2.5 show the error on dark energy parameters with the SNe survey.

To begin, SNe data with only CMB and SDSS data yields impressive performance.

ΩX and w0 are well constrained, and the error on w1 is 0.23, slightly better than

what the redshift surveys produce. When we combine the SNe data with the

galaxy redshift surveys, the w1 error improves to 0.16. With the SNe and CMB
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data, the inclusion or exclusion of SDSS does not change the result much because

of the relatively large uncertainty both in H(z) and DA(z) from SDSS as compared

to the performance of SNe; most of the information in the survey is superceded

by SNe data.
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Table 2.6. Cosmological Errors from Different Fiducial Dark Energy Models

Model z ∼ 1 z = 3 SNe σΩm h2/Ωm h2 σΩx
σw0

σw1
zpivot σwzpivot

Model 2 √ 0.0090 0.0259 0.129 0.092 1.249 0.057
√ 0.0088 0.0485 0.247 0.158 1.484 0.078

√ √ 0.0085 0.0245 0.119 0.081 1.333 0.050
√ 0.0094 0.0134 0.087 0.122 0.682 0.023

√ √ 0.0090 0.0088 0.049 0.062 0.714 0.022
√ √ 0.0087 0.0097 0.056 0.072 0.713 0.023

√ √ √ 0.0084 0.0083 0.045 0.052 0.744 0.022

Model 3 √ 0.0090 0.0266 0.131 0.097 1.306 0.033
√ 0.0088 0.0530 0.268 0.190 1.389 0.043

√ √ 0.0085 0.0256 0.124 0.089 1.351 0.028
√ 0.0094 0.0158 0.081 0.107 0.741 0.019

√ √ 0.0090 0.0092 0.045 0.049 0.853 0.017
√ √ 0.0087 0.0103 0.051 0.058 0.821 0.018

√ √ √ 0.0085 0.0086 0.042 0.042 0.906 0.016

Model 4 √ 0.0090 0.0320 0.180 0.144 1.203 0.049
√ 0.0088 0.0653 0.367 0.275 1.314 0.065

√ √ 0.0085 0.0313 0.171 0.132 1.259 0.043
√ 0.0094 0.0127 0.106 0.142 0.729 0.022

√ √ 0.0090 0.0090 0.062 0.075 0.774 0.021
√ √ 0.0087 0.0098 0.070 0.087 0.764 0.022

√ √ √ 0.0085 0.0086 0.056 0.064 0.803 0.021

Model 5 √ 0.0090 0.0454 0.353 0.429 0.773 0.122
√ 0.0086 0.0844 0.560 0.547 0.968 0.183

√ √ 0.0083 0.0443 0.312 0.344 0.846 0.113
√ 0.0094 0.0089 0.132 0.258 0.488 0.040

√ √ 0.0089 0.0085 0.106 0.206 0.480 0.038
√ √ 0.0086 0.0087 0.109 0.208 0.491 0.038
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Table 2.6—Continued
√ √ √ 0.0083 0.0084 0.095 0.179 0.487 0.037

Model 6 √ 0.0090 0.0368 0.240 0.232 0.975 0.078
√ 0.0087 0.0766 0.463 0.386 1.166 0.107

√ √ 0.0084 0.0365 0.224 0.201 1.057 0.070
√ 0.0094 0.0101 0.119 0.190 0.604 0.029

√ √ 0.0090 0.0086 0.081 0.125 0.609 0.029
√ √ 0.0087 0.0090 0.087 0.133 0.619 0.028

√ √ √ 0.0084 0.0084 0.071 0.105 0.626 0.028

Note. — Check marks indicate the data sets being used; CMB and

SDSS data are included in all sets. The fiducial redshift survey parame-

ters (V1N1) are used.

Figure 2.5 shows the constraints in the w0-w1 plane as error ellipses, marginal-

izing over all other parameters. The left panel shows the ΛCDM model and the

right panel shows Model 2 (w = −2/3) as a comparison to ΛCDM. We see the

difference in the directions of the two ellipses: SNe with CMB and SDSS, and

redshift surveys with CMB and SDSS. The set with SNe shows a tight constraint

especially in w0 direction, and the improvement of the constraint on w1 by red-

shift surveys. By comparing two models, we can easily see that Model 2 allows

much better constraints on parameters than ΛCDM and favors redshift surveys

more. The redshift survey data is now comparable to the capability of SNe: in w1,

redshift survey data achieve 0.08, SNe survey data produces 0.12, and together

the data sets produce 0.05.

The supernova data has superb precision for z < 1.7 in DA(z) and gives excel-

lent constraints on the shape of distance-redshift relation. Our baseline redshift
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Figure 2.5 Elliptical error regions on w0 and w1 for two different fiducial models.
All other parameters have been marginalized over, and the contours are for 68%
likelihood. CMB and SDSS are included in all cases.

surveys, on the other hand, have larger error bars than SNe for z ≤ 1.2, but they

have an advantage of having a distance-redshift data point at very high redshift

(z = 3) and measuring H(z) in all redshift bins. In the ΛCDM fiducial model,

the contributions to w1 by H(z) measurements and DA(z) from the z = 3 redshift

survey are slightly less useful than the good precision of DA(z) from SNe at lower

redshifts (see Figure 2.3). On the other hand, dark energy models with more pos-

itive w have larger signatures at higher redshift. This is good for both data sets,

but helps the redshift surveys more.

2.4.3 Variation with Redshift Survey Parameters

We next show how performance varies with survey parameters such as the total

number of galaxies N and survey volume (Vsur). We present variations in Vsur and

N by factors of five in Table 2.7. Because the cosmographic performance in each

redshift survey is essentially independent, one can interpret this table as varying
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each survey independently. The SDSS and CMB data are unchanged in all cases.

From Table 2.7, we can see that the performance at z = 3 is more sensitive to the

increase in N at fixed Vsur (i.e. higher target density) than for the reverse. For the

z ∼ 1 surveys, the effect of increasing the number density is slightly larger for

z = 1.0 and 1.2 bins and is more efficient for DA(z) than for H(z). Increasing Vsur

was more effective for z = 0.6 and 0.8 bins with a general trend of being more

efficient for H(z) than for DA(z). This agrees with the result from Table 2.1 that the

nP ’s of z = 1.0 and 1.2 are somewhat less than those of z = 0.6 and z = 0.8. The

preference to H(z) when decreasing the number density is due to an increased

contribution from wave vectors along the line of sight, which suffer less shot

noise degradation due to their enhanced amplitude from redshift distortions.

The projected errors on the dark energy parameters under these various sur-

vey parameters are presented in Table 2.8. The results are consistent with the

changes in the errors on DA(z) and H(z). The graphical illustration of these er-

rors is shown by error ellipses in Figure 2.6. For this figure, the surveys at z ∼ 1

(left panel) and z = 3 (right panel) are used separately so that one can see the indi-

vidual scalings. As one would expect, larger surveys provide better constraints.

The slopes of the major axes are an indicator of the typical redshift zpivot of the

data. The twisting of the major axis direction in the z = 3 case is a visual sign that

larger z = 3 surveys pull zpivot to be higher than the CMB and SDSS data would

yield by themselves.

As regards the survey size, increasing Vsur at fixed number density causes the

performance to scale nearly as the square root of Vsur. In detail, the results fall

slightly short of this scaling because the SDSS and CMB data can not be simi-

larly scaled. For factor of 5 increases in the z = 3 survey, one begins to see the

limitations of the CMB calibration of the sound horizon.
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Table 2.7. Marginalized Errors on DA(z) and H(z) as a Function of Survey

Parameters

Surveys Redshift

z ∼ 1 z = 3 0.3 0.6 0.8 1.0 1.2 3.0

V1N1 V1N1 DA(z) 5.19 4.30 3.22 2.30 2.03 1.19

H(z) 5.80 5.19 3.59 2.84 2.53 1.48

V1N5 V1N5 DA(z) 5.19 3.50 2.57 1.74 1.52 0.88

H(z) 5.80 4.44 3.00 2.30 2.01 1.08

V5N1 V5N1 DA(z) 5.19 3.52 2.75 2.12 1.91 1.10

H(z) 5.80 3.83 2.79 2.32 2.13 1.33

V5N5 V5N5 DA(z) 5.19 1.93 1.45 1.04 0.93 0.57

H(z) 5.80 2.33 1.62 1.28 1.15 0.69

Note. — 1–σ fractional percentage errors on cosmological dis-

tances. CMB and SDSS are included in all sets. For SDSS, the fidu-

cial condition (V1N1) is always used. V1N1 means the fiducial

condition described in Table 2.1. V5N1: 5 times larger survey vol-

ume with 5 times smaller number density. V1N5: 5 times higher

number of objects with the standard survey volume, i.e. 5 times

higher number density. V5N5: 5 times more survey volume with

the standard number density.
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Table 2.8. Marginalized errors for ΛCDM for Various Survey Sizes

z ∼ 1 z = 3 σΩm h2/Ωm h2 σΩx
σw0

σw1
zpivot σwzpivot

V1N1 0.0090 0.0378 0.281 0.353 0.735 0.107

V5N5 0.0079 0.0195 0.142 0.191 0.680 0.056

V1N1 0.0086 0.0758 0.466 0.446 0.959 0.184

V5N5 0.0070 0.0724 0.399 0.306 1.239 0.126

V1N1 V1N1 0.0083 0.0368 0.245 0.280 0.796 0.102

V1N1 V5N5 0.0069 0.0358 0.210 0.199 0.961 0.088

V5N5 V1N1 0.0074 0.0192 0.135 0.176 0.699 0.055

V5N5 V5N5 0.0064 0.0186 0.120 0.142 0.762 0.053

Note. — Left two columns indicate how the sizes of the z ∼ 1 and z = 3

surveys are being varied; blanks mean that the survey is excluded. CMB and

SDSS are included in all rows. For SDSS, the fiducial parameters (V1N1) are

always used.
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Figure 2.6 Elliptical error regions on w0 and w1 as a function on survey parameters
(ΛCDM ). All other parameters have been marginalized over, and the contours
are for 68% likelihood. CMB and SDSS are included in all cases. V5N1 means
5 times the baseline survey volume with 5 times smaller number density. V1N5
means 5 times the baseline number density. V5N5 means 5 times the baseline
survey volume with the baseline number density. The ellipse with no notation on
survey parameters means the baseline survey parameters. For SDSS, the baseline
survey parameters was used in all cases.

When combined with the SNe data, it is more valuable to improve the z = 3

survey than the z ∼ 1 survey. Increasing Vsur by a factor of five (V5N5) for both

surveys improve the errors on w1 by a factor of 1.6, increasing the z ∼ 1 surveys

alone yields a 1.3 improvement, whereas increasing z = 3 alone improves by

a factor of 1.4. Pictorially, this is because the z = 3 constraint ellipsoids for dark

energy fall at more of an angle as compared to the SNe ellipsoids than do the z ∼ 1

ellipsoids. Physically, it is more advantageous to widen the redshift range of the

measurements, especially because the SNe data has somewhat higher precision

than the z ∼ 1 redshift survey constraints on DA(z).

As mentioned in § 2.3.5, adjusting the survey volume Vsur while holding the
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total number of targets fixed has an optimum point for the measurement of the

power spectrum at nP = 1. We therefore expect that this trend would extend

to performance on dark energy parameters. Indeed, we find that slightly larger

surveys (e.g., a factor of 2–3) do give small improvements and that much larger

surveys give steadily worse performance. Again, this is exactly as we expected

with our choice to aim for nP ≈ 3. True optimization of course requires detailed

knowledge of the survey instrument, the source population, the possible system-

atic errors, and the other science goals of the survey.

2.4.4 Baryonic Oscillations versus Broadband Constraints

To this point, we have discussed the baryonic oscillations as a distinct signature

from which to infer cosmological distances. Although these features are essential,

the Fisher matrix we calculate includes additional contributions such as the over-

all broadband shape of the power spectrum. In this section, we briefly assess the

amount of information on distances from baryonic oscillations apart from other

contributions.

To single out the non-baryonic contribution, we repeat our calculations with

a fiducial model with ten times lower baryon fraction (Ωb = 0.005), thereby re-

moving the acoustic oscillations from the power spectrum. Overall, the errors on

DA(z) and H(z) increase by a factor of 2 to 3, with more increase in the z ∼ 1

set and more increase in DA(z) than H(z), making the magnitudes of σDA(z) and

σH(z) nearly equal. The reduced correlation coefficient between DA(z) and H(z)

at the same redshift is about −0.8, indicating a strong correlation. This covari-

ance and the more equal precisions imply that the Alcock-Paczynski (1979) test

(hereafter AP test) is playing a significant role in constraining distances in the

low baryon case. The combination DAH is well constrained, whereas the sepa-

rate values of DA(z) and H(z) are constrained only by the broadband shape of the
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power spectrum.

The AP effect can isolate cosmological distortions in two ways. First, when

the power spectrum has a preferred scale—and any deviation from a power law

will suffice—we can measure the cosmological distortion DAH by requiring that

scale to be isotropic. The values of DA(z) and H(z) can be determined separately

only if the preferred scale is known, for example, from CMB data. Second, one

can attempt to separate the cosmological distortions from the redshift distortions

by the angular dependence of the power spectrum at a given k. When the redshift

distortion is weak (β ≈ 0), the two distortions have identical angular signatures,

both quadratic in µ, and hence are indistinguishable. However, for larger β, both

distortions take on more complicated forms that lift the degeneracy in principle.

Because in our analysis the shape of the power spectrum is known from the

CMB data, the first mode of the AP effect cannot produce the strong covariance

between DA(z) and H(z) that we find in the Ωb = 0.005 case. Hence the degen-

eracy between the redshift distortions and the cosmological distortions must be

angularly broken (i.e. the second mode of the AP effect). To test this, we intro-

duce a strong degeneracy between DAH and β by using β ≈ 0. For numerical

reasons, we decrease the fiducial β’s 30-fold. We apply these lower β’s only to

the computations of the derivatives; the original β’s are retained in computing

Veff so that the weighting of the radial and tangential modes is unchanged. The

upper two rows in Table 2.9 show the results with Ωb = 0.005. With negligible

β’s, the errors increase by 15% ∼ 35% compared to the case with the normal

β’s, with more increase for DA(z) than H(z) and more increase in the z ∼ 1 set,

which has larger β than the others. The reduced correlation coefficients decrease

to ∼ −0.3, supporting the interpretation that the AP effect has been removed and

the remaining constraints are due to the shape of the broadband power spectrum.
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Table 2.9. Marginalized Errors on DA(z) and H(z) with Negligible β for

Different Baryon Fractions

Ωb Redshift

0.3 0.6 0.8 1.0 1.2 3.0

0.005 DA(z) 13.03 15.64 11.47 9.21 7.68 3.16

H(z) 12.71 14.05 10.50 8.49 7.27 3.56

0.05 DA(z) 5.80 5.66 4.03 2.92 2.59 1.44

H(z) 6.68 7.83 4.75 4.04 3.64 2.03

Note. — 1–σ fractional percentage errors on cosmolog-

ical distances for ΛCDM. CMB and SDSS are included

in all sets. The derivatives are computed with β ≈ 0,

thereby causing the redshift and cosmological distortions

to be more degenerate. The usual β’s are used to compute

Veff .
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We next apply the same method for Ωb = 0.05 case so as to enforce degeneracy

between the cosmological and redshift distortions. The lower half of Table 2.9

shows the errors on distances in this case. The comparison between Ωb = 0.05

case and Ωb = 0.005 case in Table 2.9 shows that the broadband spectrum is a

minor effect compared to the baryonic oscillations. Comparing these results to

the previous results in Table 2.3 shows that the performance from the baryonic

oscillations will decrease by 10 ∼ 50% if we assume that we do not know the

behavior of the redshift distortions very well.

To summarize, in the absence of baryonic oscillations, the AP effect is capable

of constraining the combined quantity DAH very well provided that the shape of

the redshift distortions is relatively well-known (Ballinger et al., 1995; Heavens

& Taylor, 1997; Hatton & Cole, 1999; Taylor & Watts, 2001; Matsubara & Szalay,

2002, 2003). However, it is the baryonic oscillations that separate DA(z) and H(z)

most effectively and provide precision constraints regardless of the amount of

information on the redshift distortions.

2.4.5 Photometric Redshift Surveys

With the advent of deep wide-field multi-color imaging surveys, it is natural to

ask whether photometric redshifts can be used for studies of the acoustic oscil-

lations. In this section, we will study how uncertainties in the galaxy redshifts

affect our results. There are two basic lessons. First, recovering the Hubble pa-

rameter H(z) requires measuring clustering on fairly small scales along the line

of sight, such that redshift precision substantially better than 1% is needed. Sec-

ond, redshift slices selected with photometric redshifts can be sufficiently thin

that the acoustic oscillations survive in the angular power spectrum. This means

that one can measure DA(z) with these surveys, albeit with worse precision per

unit survey sky coverage. Hence, photometric redshift surveys lose the advan-
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tage of the acoustic oscillations to measure H(z) directly but could measure DA(z)

if one has a large enough survey. The idea of using transverse clustering to probe

dark energy was analyzed in the weak lensing context by Cooray et al. (2001).

When redshifts are uncertain, one is smearing together clustering at multiple

distances along the line of sight. Our first task is to consider whether the acoustic

oscillations, being narrow features in Fourier space, can survive this projection.

The controlling effect is the variation in the comoving angular diameter distance

across the range of redshift uncertainty. This can be addressed with Limber’s

equation (Limber, 1953; Baugh & Efstathiou, 1994). We model the redshift distri-

bution as a Gaussian of width σz and consider the effects on the angular power

spectrum. This is shown in Figure 2.7, where we plot the derivative d ln P/d ln k

that controls the measurement of cosmological distortions for 3 different values

of σz. We adopt a z = 1 slice and consider 0%, 4%, and 8% uncertainties (1–σ) in

1 + z. One can see that the oscillation pattern is essentially intact at 4% but sub-

stantially degraded at 8%. In detail, we estimate that the errors on DA(z) would

be increased by 13% for the 4% case and 54% for the 8% case. The effects at z = 3

are slightly more forgiving, despite the higher kmax and hence narrower features,

because the derivative of DA(z) versus z is slightly less. We therefore conclude

that photometric redshift errors of 4% in 1 + z (1–σ) are sufficient to preserve the

acoustic oscillations for the measurement of DA(z) at z ∼> 0.5.

Having found that the transverse power spectrum is not affected by reason-

able projections, we next include the redshift uncertainty in our Fisher matrix

formalism. We do this by retaining the Euclidean approximation, i.e. treating the

survey as a box of fixed DA and H , but smearing the radial position by a Gaus-

sian uncertainty. If the line-of-sight comoving position rz is convolved with an

uncertainty of the form exp[−(∆rz)
2/2σ2

r ] with an uncertainty σr, then the Fourier
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Figure 2.7 The derivative d ln P/d ln k as a function of wavenumber for three dif-
ferent values of the redshift uncertainty. Larger uncertainties cause line-of-sight
projections that smear the narrow acoustic oscillations and impede the detectabil-
ity of cosmological distortions. σz = 0.0 represents spectroscopic redshift error.
σz = 0.08 and σz = 0.16 corresponds to 4% and 8% of σz/(1 + z) at z = 1.
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transform of the density field will simply be diminished by the transform of this

kernal: δ~k ∝ exp(−k2
‖σ

2
r/2). The observed power spectrum is then (L. Hui, private

communication)

P (~k) = Pobs(~k)e
−k2

‖
σ2

r (2.18)

where Pobs was given in equation (2.14). In other words, the power is strongly

suppressed for large k‖. The positional uncertainty is related to the redshift un-

certainty σz by σr = cσz/H(z).

The introduction of this suppression enters the Fisher matrix calculation through

its effect on the effective volume. Modes with a relatively large k‖ will be swamped

by shot noise and therefore give no leverage on the power spectrum measure-

ments. Only modes with k‖σr ∼< 1 are useful. Much lower shot noise allows one

to retain modes of larger k‖, but one is fighting a Gaussian suppression.

Because the measurement of H(z) depends on modes aligned near the line of

sight, the suppressed contribution from modes with large k‖ increases the error

on H(z) significantly. The measurement of DA(z) arises from more transverse

modes, and modes with k‖ = 0 always exist to give some measurement of DA(z).

However, for large k, only a thin slab of modes with k‖ ∼< 1/σr remain useful. As

the number of modes will scale as σ−1
r , we expect that the errors on DA(z) will

scale as √σr for kmaxσr À 1.

Figure 2.8 shows the fractional errors on H(z) and DA(z) as a function of σr

for redshift surveys at z = 1.0 and z = 3. The errors are constant for small σr and

then increase rapidly beyond a characteristic threshold. Performance at z = 3

degrades at smaller σr than performance at z = 1.0. This is because of the larger

value of kmax for z = 3. An additional small but non-zero effect is that the redshift

distortions are smaller at z = 3 than at z = 1. Larger distortions increase the

power in the radial direction and allow modes with slightly larger k‖ to survive
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Figure 2.8 The error on DA(z) and H(z) as a function of the line-of-sight positional
uncertainty σr for z = 1 and z = 3 redshift bins. CMB and SDSS data are included
in each redshift bin. 1% of σz/(1 + z) corresponds to 34h−1 Mpc at z = 1 and
27h−1 Mpc at z = 3.



92

the shot noise. The errors on H(z) degrade sharply for σr ∼> 10h−1 Mpc at z = 1

and 5h−1 Mpc at z = 3. These correspond to redshift errors σz of 0.006 and 0.007,

respectively. In terms of wavelength resolution σλ/λ, these are 0.003 and 0.002.

Hence, our general result is that fractional errors of 0.25% in 1 + z are required to

recover H(z).

In Figure 2.8, the errors on DA(z) in both redshift bins increase relatively

slowly at σr ∼> 10h−1 Mpc and achieve the predicted √
σr dependence at large

σr. Therefore, to calculate σDA
with σr bigger than the values appeared in Figure

2.8, we can use √
σr dependence to interpolate (up to the limit of σz/(1+z) ≈ 4%).

For numerical reasons, we assume redshift error of 1% in photometric redshift.

This is too optimistic for a normal photometric redshift, but one can scale to larger

uncertainties. For example, a 4% uncertainty would have errors twice as large,

which could be compensated by making the survey area 4 times as large. 1%

errors in (1 + z) correspond to σr = 34h−1 Mpc at z = 1 and σr = 27h−1 Mpc at

z = 3.

Table 2.10 shows the errors on DA(z) and H(z) for different survey conditions.

Increasing the survey volume five-fold while keeping the target density fixed (i.e.

V5N5) decreases the error by ∼
√

5, as before. Further increases of the survey

volume, which are omitted in Table 2.10, continue to follow the simple trend of
√

Vsur. Increasing the number density with fixed Vsur is slightly more efficient

than the spectroscopic redshift case (σr = 0) because the exponential suppression

of modes with non-zero k‖ means that there are always modes that benefit from

a larger n to achieve nP ∼ 1.

Table 2.11 shows the propagated errors on dark energy parameters for ΛCDM.

The left panel of Figure 2.9 shows the corresponding error ellipses. The errors on

w0 and w1 using photometric redshifts increases by a factor of ∼ 2.4 with the
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Table 2.10. Marginalized Errors on DA(z) and H(z) for Photometric Redshift

Surveys

Surveys Redshift

z ∼ 1 z = 3 0.3 0.6 0.8 1.0 1.2 3.0

V1N1 V1N1 DA(z) 5.19 6.98 4.84 4.25 3.90 2.26

H(z) 5.80 22.37 19.58 18.28 17.77 16.15

V1N5 V1N5 DA(z) 5.19 4.84 3.26 2.81 2.56 1.57

H(z) 5.80 16.33 14.29 13.27 12.88 10.11

V5N5 V5N5 DA(z) 5.19 3.14 2.19 1.93 1.77 1.06

H(z) 5.80 10.02 8.78 8.21 7.99 7.26

Note. — The fractional percentage error on the cosmological dis-

tances under conditions appropriate to photometric redshifts. The

redshift accuracy has been degraded to 1% (1–σ) on σz/(1 + z) =

∆λ/λ, i.e. σz = 2% at z = 1 and 4% at z = 3. The results will scale

as √
σz , and σz would typically be larger for actual photometric red-

shifts. The left two columns show variations in the survey parameters.

V1N1 is the standard survey volume and number density. V1N5 al-

lows for a 5-fold increase in the number density. V5N5 is 5 times more

volume at the standard number density. CMB and SDSS are included

in all sets. For SDSS, the fiducial survey parameters (V1N1) are used

and spectroscopic redshifts (σz = 0) are adopted. The ΛCDM fiducial

model is used.
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Figure 2.9 Elliptical error regions for w0 and w1 for photometric redshift surveys
with 1% of σz/(1 + z) (σz = 0.02 for z ∼ 1, σz = 0.04 for z = 3.0). Left panel:
ΛCDM. Right panel: Model 2 (w = −2/3). CMB data and all redshift surveys are
included in all cases. The survey parameters written inside the parenthesis are for
both z ∼ 1 and z = 3 bins. V numbers specify the change in the survey volume
relative to the baseline; N the change in the number of galaxies. For SDSS, the
fiducial survey parameters (V1N1) with spectroscopic redshifts are used. In both
figures, V10N50 is nearly the same as V20N20.
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Table 2.11. Marginalized Errors for ΛCDM for Photometric Redshift Surveys

z ∼ 1 z = 3 σΩm h2/Ωm h2 σΩx
σw0

σw1
zpivot σwzpivot

V1N1 0.0091 0.0799 0.613 0.704 0.834 0.175

V1N5 0.0089 0.0736 0.534 0.578 0.887 0.150

V1N1 0.0090 0.0859 0.752 0.979 0.735 0.218

V1N5 0.0089 0.0820 0.670 0.855 0.742 0.217

V1N1 V1N1 0.0088 0.0777 0.584 0.668 0.834 0.175

V1N5 V1N5 0.0085 0.0708 0.504 0.544 0.887 0.148

V5N5 V5N5 0.0077 0.0592 0.413 0.437 0.904 0.118

V10N10 V10N10 0.0069 0.0485 0.335 0.352 0.912 0.094

V10N50 V10N50 0.0062 0.0375 0.256 0.267 0.921 0.071

V20N20 V20N20 0.0060 0.0379 0.261 0.276 0.908 0.073

Note. — Redshift uncertainties have been applied as in Table 2.10: 1% in σz/(1+

z). Various survey sizes are investigated, as detailed in the left two columns. V

numbers specify the change in the survey volume; N the change in the number of

galaxies. Note that V20 is 20,000 square degrees at z ∼ 1 and about 3000 square

degrees at z ∼ 3. Blanks indicate that a survey has been excluded. Larger redshift

uncertainties can be offset with more volume; for example, 4% errors in σz/(1+z)

would require 4 times more volume to produce the results in this Table. CMB

and SDSS are included in all rows. For SDSS, the fiducial parameters (V1N1) with

spectroscopic redshifts are used in all cases.
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Table 2.12. Marginalized Errors for ΛCDM for Photometric Redshift Survey

with SNe

z ∼ 1 z = 3 σΩm h2/Ωm h2 σΩx
σw0

σw1
zpivot σwzpivot

0.0093 0.0088 0.116 0.231 0.478 0.035

V1N1 0.0089 0.0085 0.106 0.212 0.473 0.034

V1N5 0.0087 0.0083 0.098 0.195 0.470 0.034

V1N1 0.0090 0.0087 0.114 0.229 0.477 0.034

V1N5 0.0087 0.0086 0.113 0.227 0.476 0.034

V1N1 V1N1 0.0086 0.0084 0.105 0.211 0.473 0.034

V1N5 V1N5 0.0083 0.0082 0.097 0.193 0.470 0.033

V5N5 V5N5 0.0073 0.0080 0.087 0.171 0.471 0.032

V10N10 V10N10 0.0065 0.0078 0.077 0.148 0.478 0.031

V10N50 V10N50 0.0060 0.0076 0.066 0.119 0.496 0.030

V20N20 V20N20 0.0058 0.0076 0.068 0.124 0.495 0.030

Note. — As Table 2.11, but the SNe data have also been included.

fiducial condition (V1N1) relative to spectroscopic results while w(zpivot) is less

affected. As shown in Figure 2.9, this is because the ellipse is more elongated with

a relatively little increase in its minor axis compared to left panel of Figure 2.5.

This is due to the increased dominance of z ∼ 1 survey over z = 3. zpivot increases

slightly with photometric redshift data. As shown in Figure 2.3, DA(z) at higher

z contributes more to the information compared to H(z). Thus, eliminating H(z)

by using photometric redshifts will weight higher redshifts slightly more.

Table 2.11 also shows that increasing Vsur 20-fold (V20N20) or 10-fold with a

5-fold increase in target density n (V10N50) allows the results from photomet-

ric redshift surveys to achieve the accuracy of the spectroscopic redshift surveys.



97

Table 2.13. Marginalized Errors for Model 2 for Photometric Redshift Surveys

z ∼ 1 z = 3 σΩm h2/Ωm h2 σΩx
σw0

σw1
zpivot σwzpivot

V1N1 0.0091 0.0637 0.395 0.278 1.383 0.087

V1N5 0.0090 0.0563 0.332 0.224 1.452 0.069

V1N1 0.0092 0.0618 0.342 0.249 1.285 0.122

V1N5 0.0090 0.0590 0.284 0.187 1.376 0.119

V1N1 V1N1 0.0090 0.0545 0.305 0.207 1.412 0.086

V1N5 V1N5 0.0087 0.0457 0.245 0.160 1.476 0.068

V5N5 V5N5 0.0079 0.0346 0.182 0.118 1.476 0.053

V10N10 V10N10 0.0071 0.0264 0.138 0.090 1.463 0.041

V10N50 V10N50 0.0064 0.0191 0.099 0.065 1.453 0.030

V20N20 V20N20 0.0063 0.0195 0.102 0.067 1.436 0.032

Note. — As Table 2.11, but fiducial model 2 (w = −2/3) has been used.
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Table 2.14. Marginalized Errors for Model 2 for Photometric Redshift Surveys

with SNe

z ∼ 1 z = 3 σΩm h2/Ωm h2 σΩx
σw0

σw1
zpivot σwzpivot

0.0094 0.0134 0.087 0.122 0.682 0.023

V1N1 0.0091 0.0104 0.066 0.089 0.695 0.023

V1N5 0.0089 0.0091 0.057 0.072 0.716 0.023

V1N1 0.0091 0.0120 0.076 0.107 0.678 0.023

V1N5 0.0089 0.0112 0.068 0.095 0.676 0.023

V1N1 V1N1 0.0088 0.0100 0.062 0.084 0.693 0.023

V1N5 V1N5 0.0086 0.0088 0.053 0.067 0.713 0.023

V5N5 V5N5 0.0077 0.0079 0.046 0.054 0.743 0.022

V10N10 V10N10 0.0070 0.0073 0.041 0.044 0.799 0.021

V10N50 V10N50 0.0063 0.0068 0.037 0.035 0.904 0.019

V20N20 V20N20 0.0062 0.0069 0.038 0.037 0.881 0.020

Note. — As Table 2.11, but fiducial model 2 (w = −2/3) has been used and SNe

data is included.
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This corresponds to 10 or 20 thousand square degrees of sky at z = 1 (with 1% er-

rors in 1+z). Observationally, increasing the number density by 5 times (V10N50)

will be more difficult than doubling the survey area because the galaxy luminos-

ity function flattens out around this number density, so that
√

2 in depth is far less

than a factor of 5 in source counts. The errors of w0 and w1 do not scale trivially

with
√

Vsur because the SDSS and CMB survey parameters are being held fixed.

Results including the SNe survey data are shown in Table 2.12. With SNe, im-

proving the redshift survey condition to between V5N5 and V10N10 allows the

photometric redshift survey to recover the spectroscopic result in Table 2.5. This

is equivalent to an imaging survey of about 30,000 square degrees with 4% photo-

metric redshift error at z ∼ 1 and a depth to reach 1000 z ∼ 1 galaxies per square

degree. Surveys such as Pan-STARRS (http://pan-starrs.ifa.hawaii.edu) or the

Large Synoptic Survey Telescope (http://www.lssto.org) could achieve this.

Table 2.13 and Table 2.14 show the same analysis as Table 2.11 and 2.12, but

for Model 2 (w = −2/3) instead of ΛCDM. The degradation of performance rela-

tive to the spectroscopic case is similar. Like the ΛCDM case, V10N50 or V20N20

recovers the spectroscopic result without SNe, and V5N5 or V10N10 does the job

with SNe. The right panel of Figure 2.9 shows the corresponding error ellipses.

Therefore, after considering both the projection and power suppression effects

of redshift uncertainties, we expect that, when combined with supernovae data,

surveys with 4% errors on 1+z and roughly 30 times more volume than our base-

line surveys will be equivalent to the spectroscopic surveys. As this is essentially

the full sky at z ∼ 1, improving beyond these levels will require better redshift

accuracy.
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2.5 Conclusion

Understanding the acceleration of the Universe is one of the most important

problems in both cosmology and fundamental particle physics. Identifying the

physical cause, whether dark energy or some alteration to the theory of grav-

itation, is certain to be a major breakthrough. Precision measurements of the

expansion history of the universe could be crucial in choosing between alterna-

tive theories. In this chapter, we demonstrated that a standard ruler test using

baryonic acoustic oscillations imprinted in the large scale structure could be a

superb probe of the acceleration history. The oscillations in the galaxy power

spectrum are expected to be robust against contamination from clustering bias,

redshift distortions, and other broadband systematic errors.

We have studied the performance that could be achieved on dark energy mod-

els from the measurement of the acoustic oscillations in large galaxy spectro-

scopic surveys at redshifts 0.3, 1, and 3. The z ∼ 1 baseline survey uses 900,000

galaxies to probe 1.7h−3 Gpc3; the z = 3 survey uses a half million galaxies to

cover 0.5h−3 Gpc3. While these numbers are large, the number densities are not,

which means that relatively bright galaxies could be used. Using a Fisher matrix

treatment of the statistical errors that result from the three-dimensional power

spectra, as well as CMB and SNe data, we forecasted errors on the distances along

and across the line of sight and then projected these measurements of H(z) and

DA(z) onto dark energy parameters. Of course, the cosmographical performance

is independent of the details of the dark energy model. We summarize our major

results below.

First, we have shown that (1–σ) errors of 0.037 on ΩX , 0.10 on w(z = 0.8),

and 0.28 on dw/dz are achievable for ΛCDM when CMB provides the scale of the

baryonic oscillations. The constraints on dw/dz are comparable to those from the
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luminosity distances of future SNe data. Most of constraints were contributed by

information in the higher redshift surveys (z ∼> 0.6) because the baryonic oscilla-

tions in the power spectrum are better preserved against nonlinearity at higher

redshift. When we combined the redshift survey data with the SNe data, the

constraints were improved to 0.16 on dw/dz.

Second, we found that fiducial dark energy models with less negative w than

ΛCDM improve overall performance and also favor the galaxy redshift surveys

relative to the SNe data. Together, a 0.05 measurement of dw/dz is achieved!

Third, we discussed how the quality of constraints depends upon the the sur-

vey volume and number density. Increasing the survey volume with the number

density fixed always gives a better result by
√

Vsur. Increasing the number den-

sity, that is, going deeper with the volume fixed, will also improve the constraints

but with asymptotic saturation. Changing the survey volume with a fixed total

number of objects has a maximum in performance that is close to the baseline

values.

Forth, we computed how well an imaging survey with photometric redshifts

could measure the acoustic oscillations. We find that errors of 0.25% in 1 + z are

necessary to retain information on the Hubble parameter H(z). However, redshift

errors of 4% in 1 + z can be tolerated without losing the oscillations to projection

effects, and the angular diameter distance could be measured as a function of

redshift. We estimate that a survey 20 times larger than our baseline but with

1% redshift error on 1 + z is needed to replace the spectroscopy, but that the

requirement drops to 5–10 times larger when combined with the constraints from

SNe. 4% redshift errors require four times more volume.

To date, much of the attention in cosmological probes of acceleration has

rightly been given to the studies of distant supernovae. The acoustic oscillations
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in the galaxy power spectrum have not even been conclusively detected yet. Nev-

ertheless, we are encouraged by the result that the study of acoustic oscillations in

large galaxy surveys can achieve comparable performance to upcoming SNe data

sets. Given the mystery and importance of the acceleration of the universe, it is

crucial to have multiple experiments with independent systematic errors. More-

over, the ability to measure H(z) directly and to probe the expansion at higher

redshifts (z ≈ 3) opens the possibility of detecting new surprises. Although the

cosmological constant model is most easily probed at lower redshifts, given the

woeful history of theoretical predictions for dark energy, it seems to us unwise to

design experiments based too closely on the assumptions of ΛCDM.

While the required redshift surveys are large, they are feasible within the cur-

rent decade. 8-meter ground based telescopes are sufficiently sensitive, but cur-

rently lack the necessary highly multiplexed wide-field spectroscopic capability.

Instruments such as the KAOS concept (http://www.noao.edu/kaos) could per-

form these surveys in about a year of observing. The surveys would of course

have many other science applications, both for the study of galaxy evolution and

for the search for more speculative features of the linear perturbations, e.g. pri-

mordial non-Gaussianity or additional preferred scales. At z = 3, the reach into

the linear regime on intermediate scales exceeds even that of the CMB. Hence,

we conclude that such surveys are attractive options for the study of large-scale

structure over the next decade.
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CHAPTER 3

BARYONIC ACOUSTIC OSCILLATIONS IN SIMULATED GALAXY REDSHIFT

SURVEYS

Baryonic acoustic oscillations imprinted in the galaxy power spectrum provide a

promising tool for probing the cosmological distance scale and dark energy. We

present results from a suite of cosmological N-body simulations aimed at inves-

tigating possible systematic errors in the recovery of cosmological distances. We

show the robustness of baryonic peaks against nonlinearity, redshift distortions,

and mild biases within the linear and quasilinear region at various redshifts.

While mildly biased tracers follow the matter power spectrum well, redshift dis-

tortions do partially obscure baryonic features in redshift space compared to real

space. We calculate the statistical constraints on cosmological distortions from

N-body results and compare these to the analytic results from a Fisher matrix

formalism. We conclude that the angular diameter distance will be constrained

as well as our previous Fisher matrix calculations while the Hubble parameter

will be less constrained because of nonlinear redshift distortions.

3.1 Introduction

Baryons create a distinct oscillatory signature in the power spectrum of the large-

scale structure of the universe (Peebles & Yu, 1970; Bond & Efstathiou, 1984;

Holtzman, 1989; Hu & Sugiyama, 1996; Eisenstein & Hu, 1998). These bary-

onic acoustic oscillations have been seen in the anisotropies of cosmic microwave

background (Miller et al., 1999; de Bernardis et al., 2000; Hanany et al., 2000;

Halverson et al., 2002; Lee et al., 2001; Netterfield et al., 2002; Benoı̂t et al., 2003;

Bennett et al., 2003; Pearson et al., 2003) and recently in large galaxy redshift sur-
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veys (Eisenstein et al., 2005; Cole et al., 2005). Because the density of baryons

is less than that of cold dark matter, the oscillations in the matter power spec-

trum are weaker in amplitude than those in the cosmic microwave background

(hereafter CMB). However, whether in the CMB or in late-time structure, the os-

cillations define a constant comoving length scale in linear perturbation theory.

In our previous paper (Seo & Eisenstein, 2003, hereater SE03) [or in the pre-

vious chapter], we demonstrated that large galaxy redshift surveys can constrain

the Hubble parameter and angular diameter distance to a precision of a few

percent using the imprinted baryonic acoustic oscillations as a standard ruler.

The physical scale of the oscillations can be determined from matter density and

baryon density of the universe, which in turn are deduced from the shape and

relative amplitude of the baryonic peaks in CMB anisotropy data (Eisenstein et

al., 1998; Eisenstein, 2003). One can then compare the physical scale with the ob-

served length scales of oscillations in transverse and line-of-sight directions in

galaxy redshift surveys to yield the angular diameter distance and Hubble pa-

rameter at the given redshift. This in turn measures the evolution of dark energy

as well as the spatial curvature and Ωm. See Blake & Glazebrook (2003), Linder

(2003b), Hu & Haiman (2003), Amendola et al. (2005), Cooray (2004), Dolney et

al. (2006), and Matsubara (2004) for similar studies.

Because of its weak amplitude modulations in matter distribution, the bary-

onic features are susceptible to the erasure by the nonlinear coupling of Fourier

modes (Jain & Bertschinger, 1994; Meiksin et al., 1999; Meiksin & White, 1999;

Scoccimarro et al., 1999), such as can result from nonlinear growth, nonlinear bias

(Kaiser, 1987; Coles, 1993; Scherrer & Weinberg, 1998; Dekel & Lahav, 1999; Coles

et al., 1999; Seljak, 2000; White, 2001) or nonlinear redshift distortions (Hamilton,

1998; Hatton & Cole, 1998; Seljak, 2001; White, 2001; Scoccimarro, 2004). Nonlin-
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ear mode-coupling also produces additional small-scale power, thereby altering

the shape of the power spectrum and potentially disguising the locations of bary-

onic features. It is therefore crucial to examine whether the oscillatory features

are robust against various nonlinearities and whether the remaining ripples can

effectively distinguish a dilation in distance from other non-cosmological effects

in the clustering of galaxies.

In this chapter, we present an N-body study of the effect of nonlinear growth,

nonlinear redshift distortions, and halo bias on the detectability of acoustic os-

cillations. Previously, Meiksin et al. (1999) used N-body simulations to show

the effects of nonlinearity on baryonic signatures in the present-day large-scale

structure. They studied the effect of bias and redshift distortions for various cos-

mological models. Our study extends their work to higher redshifts. We adopt a

ΛCDM model consistent with Wilkinson Microwave Anisotropy Probe (WMAP)

data (Spergel et al., 2003) and generate density fields at redshifts of 3, 1 and 0.3.

We then investigate and quantify the erasure of baryonic features in the matter

power spectrum and biased galaxy power spectrum in real space and redshift

space at those redshifts. We also attempt to remove the nonlinear alteration from

the shape of the power spectrum and thereby recover the underlying contrast of

baryonic features. As this work was being completed, related studies by Springel

et al. (2005) and Angulo et al. (2005) appeared on this topic.

In SE03, we used the Fisher information matrix to calculate predictions for the

statistical constraints on dark energy. We used a conservative choice of nonlinear

scale kmax (=π/2R) by requiring σR ∼ 0.5 and excluded power in smaller scales

from our analysis. For larger scales, we adopted a linear growth function, linear

redshift distortions, and a linear bias model with an additive offset. In reality, as

the transition from linear to nonlinear scales is not discrete, the effects of nonlin-
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earity, i.e., mode coupling and more complicated scale-dependence, may mildly

contaminate the power spectrum even on large scales. Here, we use our N-body

simulations to assess the impacts of these nonlinear effects on the baryonic fea-

tures on large scales relative to the statistical constraints we calculated in SE03.

We compare our N-body results with the choices of nonlinear scale in SE03. Our

results will provide further guidance for linear approximations in various studies

with baryonic physics.

Finally we want to investigate the distance constraints available from galaxy

surveys taking account of the full N-body effect. The nonlinear effects not only

inhibit us from detecting the weak baryonic signatures on small scales but also

increase the statistical variance of power spectrum above the Gaussian estimates.

We perform χ2 analysis on our simulated power spectra to fit to the cosmolog-

ical distances and compare the constraints with those in SE03. The result will

show whether we can deduce the information on cosmological distances from

the power spectrum altered by the nonlinear effect.

In § 3.2 we describe the parameters of our cosmological N-body simulations.

In § 3.3 we present the effect of nonlinear growth and redshift distortions on bary-

onic features in the matter power spectrum. In § 3.3.3 we remove the effect of

nonlinearity on the broadband shape and study the resulting features. In § 3.4 we

study the baryonic signatures in biased power spectra in real space and redshift

space. In § 3.5 we present the errors on cosmological distances resulting from χ2

analysis.

3.2 Cosmological N-body simulations

We run a series of cosmological N-body simulations using the Hydra code (Couch-

man et al., 1995) in collisionless P3M mode. We use the CMBfast (Seljak & Zal-
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darriaga, 1996; Zaldarriaga et al., 1998; Zaldarriaga & Seljak, 2000) linear power

spectrum to generate many initial Gaussian random density fields at redshift of

49 and evolve them to redshifts of 3, 1, and 0.3. The cosmological parameters we

use to generate the initial fields are Ωm = 0.27, ΩX = 0.73, Ωbh
2 = 0.046, h = 0.72,

and n = 0.99. The initial fields are normalized by requiring σ8 = 0.9 at z = 0

and assuming a linear growth function. Each simulation box represents Vbox =

5123h−3 Mpc3 and contains 2563 dark matter particles (∼ 8.28×1011Msun/particle).

We compute gravity using 2563 force grids with a Plummer softening length of

0.2 h−1 Mpc. We use 51 simulations at z = 1 and 0.3, and 30 simulations at z = 3.

Note that the total volume of the simulations is much larger than the survey vol-

ume parameters listed in SE03 so that we can study the effect of nonlinearity with

little interference from statistical variance.

The resulting density field of each simulation box is Fourier transformed,

and the squared complex norms of Fourier coefficients are spherically averaged

over all simulations to give the matter power spectra in the wavenumber-shells

of widths ∆k = 0.005h Mpc−1. A mode is included in a shell if its discrete

wavenumber falls in the shell. Because each mode in the discrete transform is

included in one and only one wavenumber-shell, the shells are not correlated for

a Gaussian field even though the ∆k is smaller than the size of an independent

cell in Fourier space, 2π/V
1/3
box . Using small ∆k ensures that the contrast of narrow

features are not artificially reduced. However, because a thin shell contains fewer

modes, we do want to apply some smoothing. We use Savitzky-Golay filtering

(Press et al., 1992), as this can preserve peak heights better than boxcar smooth-

ing. The Savitzky-Golay method also gives estimates of the derivatives1. From

comparisons between power spectra before and after smoothing, we believe that
1We use 4th order polynomial with a filter width of ∆k = 0.04h Mpc−1 to smooth power

spectra and ∆k = 0.05h Mpc−1 to derive the derivatives of power spectra.
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this procedure neither introduce misleading baryonic features nor erase mean-

ingful features. For power spectra in redshift space, we spherically average the

Fourier transform of the density fields after displacing particles according to their

peculiar velocities assuming a distant observer.

3.3 The nonlinear matter power spectrum

3.3.1 Nonlinear effects in the matter power spectrum

As mass perturbations on a given scale approach order unity in amplitude, linear

perturbation theory breaks down and the gravitational growth of perturbations

in one mode is increasingly coupled with perturbations in other modes. The

higher-order contribution resulting from this mode coupling hinders the detec-

tion of features in the initial power spectrum, including the baryonic acoustic os-

cillations. That is, the additional power contributed from other modes blurs the

initial features at a given Fourier mode as they mix with a convolution of other

modes (Jain & Bertschinger, 1994, and references therein). Nonlinear growth

from mode coupling increases power above the linear growth rate on small scales,

resulting in a bigger statistical variance for any underlying initial features. As the

amplitude of density perturbations grows with time, these nonlinear effects be-

come stronger and proceed to larger scales.

As a basic model, one might distinguish the linear regime from nonlinear

regime with a scale R (= π/2kmax) for an appropriate rms overdensity fluctua-

tion, σR, at a given epoch, and assume scales with a smaller rms overdensity as

linear. In studies of the statistical expectations from large redshift surveys, impos-

ing more conservative values of R improves the linear approximation, but this is

at the expense of more of the remnant linear information in the quasilinear regime

beyond R. On the other hand, more forgiving criteria for R will result in an over-
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Figure 3.1 The matter power spectra at various redshifts. Left: each power spec-
trum is divided by a zero-baryon power spectrum at the given redshift. Solid
lines are for the real-space clustering, and dashed lines with the same color are
for the corresponding redshift-space clustering. Right: d ln P/d ln k from the mat-
ter power spectra at various redshifts in real space (upper panel) and in redshift
space (lower panel). Green dashed line: the input power spectrum from the CMB-
fast, black line: the linear matter power spectrum at z = 49 generated from the
input power spectrum, red: the nonlinear matter power spectra at z = 3, blue:
z = 1 and violet: z = 0.3. The first troughs in d ln P/d ln k from the N-body re-
sults are lower than that of the input power spectrum due to the interaction of
the Savitzky-Golay smoothing with the boundary at k ∼ 0.

estimation of the performance: the precision of the acoustic scale measurement

improves as kmax increases, finally saturating beyond about 0.25h Mpc−1 because

of Silk damping (see Figure 4 of SE03). Only an N-body study can say whether

this nonlinear scale accurately accounts for the erasure of features in the initial

power spectrum such as baryonic oscillations. This will give an additional han-

dle in the transition from linear to nonlinear regime beyond that traced by the

increased amplitude. We will use the notation kmax in this chapter to characterize

the nonlinear scale and to assess the linear information from the baryonic features

surviving nonlinearity.
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Figure 3.1 shows the effect of nonlinear gravitational growth on baryonic

acoustic oscillations in matter power spectra from N-body simulations. The solid

lines in the left panel of the figure show the spherically averaged real-space power

spectra divided by a zero-baryon power spectrum2 (Eisenstein & Hu, 1998) at var-

ious redshifts. The growth rate calculated from rms overdensity fluctuations at

16h−1 Mpc, σ16h−1 Mpc, is consistent with the linear growth rate, while the values

of σ8h−1 Mpc show nonlinear effects at lower redshift. The vertical lines denote the

nonlinear scales, kmax, adopted in SE03 to satisfy σR ∼ 0.5 (kmax = 0.11h Mpc−1 at

z = 0.3, 0.19h Mpc−1 at z = 1 and 0.53h Mpc−1 at z = 3).

As expected, nonlinear structure formation increases small-scale power and

obscures small-scale baryonic features. The effect proceeds to larger scales with

time. The difference in slope between the linear power spectrum at z = 49 and

the power spectra at lower redshift shows that remnant nonlinearity exists even

for k < kmax. At lower redshifts, the contrast of baryonic peaks on large scales is

decreased because of the nonlinear mode-coupling.

The right panel of Figure 3.1 shows logarithmic derivatives of the matter

power spectrum with respect to wavenumbers, generated from Savitzky-Golay

filtering. This plot of derivatives is useful not only because it effectively manifests

fine details of power spectra but also because d ln P/d ln k is what enters into the

Fisher information matrix and creates the standard ruler test with baryonic os-

cillations. Of course, the derivative d ln P/d ln k increases the noise in the power

spectra despite our use of smoothing.

The real-space d ln P/d ln k in Figure 3.1 (upper panel) demonstrates that the

oscillatory features are well distinguished for k < kmax at z = 0.3 and z = 1 de-

spite the slight nonlinearity. At z = 3, it becomes difficult to distinguish baryonic
2A power spectrum generated from the fitting formula in Eisenstein & Hu (1998) for our fidu-

cial Ωm and h but Ωbh
2 = 0
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features beyond k ∼ 0.4h Mpc−1 because the decreased contrasts of small-scale

peaks caused by Silk damping (Silk, 1968) make them susceptible to even small

amount of nonlinearity or noise. Fortunately, baryonic features in k > 0.3h Mpc−1

have minor contributions to cosmological information (SE03).

3.3.2 The effect of redshift distortions

Since we measure redshifts of galaxies rather than their physical distances, the

three-dimensional galaxy power spectrum is subject to redshift distortions, the

angle-dependent distortion in power spectra caused by the peculiar velocity of

galaxies (Kaiser, 1987; Hamilton, 1998; Scoccimarro, 2004). On large scales, the

bulk motions of large-scale structure toward overdense regions enhance power,

and on small scales, the virial motions within and among halos create an ap-

parent extension along the line of sight, known as the finger-of-God effect (de

Lapparent et al., 1986). This suppresses power on small scales. In linear theory,

the large-scale power enhancement by the redshift distortions follows a simple

form (Kaiser, 1987). This is true only for the asymptotic limit of large scale, and

in general, the nonlinear effect in velocity fields deviates the redshift-space power

from Kaiser formula even on fairly large scales (Scoccimarro, 2004). We seek to

estimate how much the nonlinear effect of large-scale redshift distortions affects

the baryonic features.

The dashed lines in the left panel of Figure 3.1 show the redshift-space power

spectra divided by a zero-baryon power spectrum. The figure depicts the progress

of redshift distortions with nonlinearity and their effect on the baryonic features

in the matter power spectrum. The redshift-space power spectra on large scales

have a higher amplitude than that of real space by the amount predicted by linear

theory (Kaiser, 1987) for the asymptotic limit. Even on large scales, we observe a

slight suppression in redshift-space power with respect to linear theory, in agree-
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Figure 3.2 Left: d ln P/d ln k from Pnonlinear−fL(c0, k, k2) at various redshifts in real
space. Gray solid line: the linear matter power spectrum at z = 49, black solid
lines: the nonlinear matter power spectra at various redshifts. Right: the redshift-
space d ln P/d ln k from Pnonlinear−fL(c0, k, k2) after corrected for the finger-of-God
suppression. Note that the gray lines in this panel denote the linear matter power
spectrum in real space at z = 49 while black lines are for the nonlinear matter
power spectra in redshift space. The vertical dashed lines denote the value of
kmax we assumed in SE03. We conclude that the baryonic features survive on
large scales despite the nonlinear growth with the redshift distortions imposing
an additional but mild degradation.
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ment with Scoccimarro (2004). On small scales, the finger-of-God effect not only

suppresses the overall power but also decreases the contrast in baryonic features.

As expected, the finger-of-God effect increases with time, and the resulting sup-

pression makes the position of the second peak (which is beyond the nonlinear

scale for z = 0.3) appear slightly shifted. For our cases of study, the finger-of-God

effect generally produces 10−20% of suppression in redshift-space power at kmax

in all redshifts when compared to the prediction by linear theory.

The lower right panel of Figure 3.1 gives a more clear view of the redshift dis-

tortions decreasing the contrasts and introducing noise at k < kmax. Nevertheless,

the baryonic features are still preserved up to k ∼ kmax for z = 0.3 and z = 1, and

k ∼< 0.3h Mpc−1 for z = 3. The result at z = 0.3 seems especially encouraging in

that the features are preserved even beyond kmax.

It is important to note that these curves are spherically averaged power spec-

tra in redshift space while we aim to use anisotropic information of power spec-

tra in real observations. In the three-dimensional power spectra in redshift space,

wavevectors nearly perpendicular to the line-of-sight direction will preserve bary-

onic features as well as the real-space power in Figure 3.1, and wavevectors

nearly along the line-of-sight direction will appear more smeared than the redshift-

space power in the figure.

3.3.3 Acoustic features after restoration of the broadband shape

In this section, we consider the effect of nonlinear modification of the slope of the

power spectrum on the baryonic features. While the nonlinear mode-coupling ef-

fect directly erases the baryonic features, the accompanied increase in small-scale

power due to nonlinear growth will modify the slope of the power spectrum as

a function of wavenumber. The resulting change in slope will shift the appar-

ent locations of the baryonic peaks. A careful look at Figure 3.1 reveals that the
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higher harmonics of the baryonic peaks appear at slightly larger wavenumbers

compared to the initial power spectrum. Furthermore this addition of broadband

power can misleadingly decrease the contrast of the peaks and thereby overesti-

mate the loss in information by the mode coupling effect on the baryonic features.

We attempt to correct for the nonlinear growth effect on the broadband shape

of the power spectrum by modeling the gradual modification to the broadband

shape due to nonlinearity as a smooth function of wavenumber and subtracting

off this smooth function from the nonlinear power spectrum to restore the oscilla-

tory portion to its original slope. We fit the nonlinear power spectra in real space

to a multiple of the linear power spectrum, g2Plinear, and a 2nd-order polynomial

function fL = c0 + c1 k + c2 k2 (with g2 and the ci as constants) and then sub-

tract the smooth function fL from the nonlinear power spectra before calculating

d ln P/d ln k. This process increases the fractional variation in P by decreasing the

overall amplitude. In other words, noting that d ln P/d ln k = (1/P )× (dP/d ln k),

we have decreased P but not substantially changed its derivative. Increasing

the degree of the function fL up to 3rd-order does not have a sizable effect on

d ln P/d ln k on large scales. As required, the resulting function fL is nearly con-

stant on large scales in all cases. The returned values of g2 are not consistent

with linear growth rate at lower redshift because the fitting process tends to de-

crease g2 to account for the erasure of baryonic features. Since we do not want to

over-amplify the baryonic features by oversubtracting beyond a true nonlinear

power, as a sanity check, we calculate and subtract fL by fixing g2 to the ana-

lytic linear growth rate. This reduces the contrast of resulting baryonic features

in d ln P/d ln k at z = 0.3 but only by a small amount.

The left panel of Figure 3.2 shows the resulting nonlinear d ln P/d ln k in real

space (black lines) in comparison to the linear power spectrum at z = 49 (gray
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lines). The agreement between the power at z = 3 and the linear power spectrum

is excellent. We also recover larger contrasts in z = 0.3 and z = 1 cases after

the broadband shape is restored. Our result shows that it is possible to trace

baryonic features up to k ∼ 0.3h Mpc−1 at z = 1 and k ∼ 0.2h Mpc−1 at z = 0.3.

The results suggest that the performance of baryonic features as a standard ruler

will be diminished due to the decreased contrast at k < kmax, but the features

preserved beyond kmax will tend to compensate for the reduction.

In short, we find that correcting for the nonlinear effects on the broadband

shape with a smooth function helps us rescue baryonic features by some degree,

implying that the nonlinear effects are relatively smooth in power. We interpret

the amount we cannot recover as having been lost to mode coupling effects.

For the redshift-space power spectrum, we first correct for the finger-of-God

suppression. We fit the nonlinear power spectrum in redshift space to the coun-

terpart in real-space by a multiplicative smooth function in the form of Ffog =

1/(kmσm + 1)1/m where σ and m are fitting parameters. We find m ∼ 2.3 − 2.95.

After dividing by Ffog we calculate and subtract fL to match the restored redshift-

space power spectrum to the linear power spectrum. Although Ffog may not nec-

essarily match the conventional form of an exponential finger-of-God suppres-

sion, the function behaves properly at the limits of small and large wavenum-

ber and is capable of characterizing the difference between the real-space and

redshift-space power from our N-body results. The right panel of Figure 3.2

shows the resulting d ln P/d ln k in redshift space (black lines) in comparison to

the linear power spectrum at z=49 in real space (gray lines). The restored redshift-

space power spectra show slightly larger contrasts in baryonic features at lower

redshift relative to the uncorrected ones (lower right panel of Figure 3.1). From

the comparison between the real-space and redshift-space d ln P/d ln k (Figure
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3.2), the redshift-space power reasonably traces the details in the real-space power

on linear and quasilinear scales although the contrast of the baryonic features de-

grades in redshift space.

In summary, the real-space (redshift-space) matter power spectrum traces bary-

onic features up to k ∼ 0.4 (0.3)h Mpc−1 at z = 3. At z = 1, kmax of 0.19h Mpc−1

seems a reasonable choice for the linear approximation in real space considering

the features preserved on even smaller scales, but a lenient standard in redshift

space. At z = 0.3, kmax ∼ 0.11h Mpc−1 is conservative both in real space and

redshift space. Adopting a slightly larger kmax appears justified at this redshift.

3.4 The effect of bias

3.4.1 Anomalous power

In galaxy redshift surveys, we do not directly observe the real-space matter power

spectrum but instead observe the distribution of biased tracers of matter in red-

shift space. The assumptions of local bias and Gaussian statistics for the density

fields lead to a scale-independent bias on large scales for the correlation function

(Coles, 1993; Scherrer & Weinberg, 1998; Meiksin et al., 1999; Coles et al., 1999).

Any excess small-scale correlation from biasing will appear as an additional con-

stant term in the biased power spectrum on large scales. This holds even when

the matter density field is nonlinear (Scherrer & Weinberg, 1998; Coles et al., 1999;

Seljak, 2000). The bias on large scales is thus scale-independent up to this con-

stant term. On smaller scales, the bias will generically deviate from the simple

approximation of scale independence. We use the term ‘nonlinear bias effect’ in

this chapter to designate any deviation from a simple multiplicative bias in the

power spectrum.

As the biased tracers such as galaxies are rare objects compared to the un-



117

derlying matter, the biased power spectrum is subject to a shot noise. Conven-

tionally, one writes the shot noise as a white noise (P ∼ constant) equal to the

inverse of the number density of particles. However, the effects of the limited

number of particles can be more complicated than a simple Poisson noise, such

as in biasing schemes where halos are not equally weighted or, more enigmati-

cally, the discreteness effects in the process of finding halos. For example, the fact

that a halo finder cannot identify two halos arbitrarily close together means that

the shot noise will not be white. Therefore it is not straightforward to identify the

shot noise with the conventional white noise based on an inverse number density.

Rather than singling out the shot noise term, we hereafter group this term with

the nonlinear bias term without distinguishing one from the other. Both terms are

easily approximated as an additive constant on large scales. Hereafter, ‘anoma-

lous power’ is used to refer to a combination of these two terms. We find that the

fractional level of the anomalous power compared to the linearly biased power

is important to track. We hereafter will describe this fractional level as ‘larger’ or

‘smaller’ anomalous power.

The anomalous power will contribute additional power above the linearly

biased power spectrum, therefore increasing the statistical variance of the under-

lying features. The nonlinear bias effect in the anomalous power may also induce

a mixture of information from different Fourier modes and so erase features.

3.4.2 Bias schemes

In generating biased tracers of the matter, we do not attempt to reproduce real-

istic galaxy populations but instead to reflect an interesting range of models of

galaxy populations using simple deterministic halo-based biasing schemes. The

current halo occupation distribution (HOD) models suggest a single galaxy per

halo for low-mass halos above a mass threshold and an additional power-law
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mean occupation for more massive halos while the details vary in different stud-

ies of galaxy populations (Berlind et al., 2003; Kravtsov et al., 2004; Zehavi et al.,

2005b). We reduce the complexity by decomposing the HOD models into the two

extreme bounding cases: one in which halos above a mass threshold host a single

galaxy and one in which halos above a mass threshold have mean occupation as

linear to the halo mass (i.e., the power-law index of unity). To create different am-

plitudes of bias, we apply various minimum group multiplicities (i.e., halo mass-

thresholds) for both cases. Various superpositions of these trial cases then can

comprise more complex HOD models. Note that the resulting populations them-

selves already represent superpositions of different-mass halos. Therefore our

biasing schemes will be sufficient for examining the robustness of the baryonic

features in various galaxy populations because, if baryonic oscillations are found

to survive in both of the extreme cases, it seems unlike that a mixture would fair

worse. This will be further justified once our results can show that different bias

models indeed extrapolate to linear biasing on large scales.

We use the friends-of-friends method (Davis et al., 1985) and identify halos

by adopting a linking length of 0.6 h−1 Mpc and minimum group multiplicities

of 4, 10, or 30 particles. We assign zero galaxy density for the regions below this

threshold. For the regions identified as halos with a given threshold, we assign

galaxies with two schemes:

1. Number Weighted (NUM), where we assign one galaxy per halo, using

the center-of-mass position and velocity. In this case, the number of galaxies does

not follow the mass of halos, and the information on the virialized motions within

each halo (the finger-of-God effect) is lost.

2 Mass Weighted (MASS), where we retain the velocity and density structure

of the halo by assigning one galaxy per simulation particle. This way, the number
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of galaxies follows the mass of the halo, and the finger-of-God effect is preserved.

The minimum group multiplicity, m, of 4 and 10 are small compared to 20−30

particles usually desired for robust halo identification (Somerville et al., 2000;

Jenkins et al., 2001). However, the low multiplicity halos are still tracing over-

dense regions, albeit in a more stochastic manner. This randomness would not be

favorable for recovering acoustic oscillations, implying that our results are con-

servative.

At lower redshifts, both methods are able to provide us a sufficient range of

bias values of our interest. However, at z = 3, the mass resolution of our sim-

ulation is too low to find halos with masses low enough to yield mild values of

biases (i.e. b ∼ 3). For this reason, we use an additional bias scheme at this red-

shift, where the density of the tracers approximately follows the matter density

squared (hereafter, Rho2). In this biasing scheme, each particle is weighted by the

average density with a 2h−1 Mpc spline-smoothing kernel centered on the parti-

cle. We implement this with the SMOOTH code3. From the distribution of the

weighted particles, we calculate the density in each mesh in real space and red-

shift space. The finger-of-God effect is preserved in redshift space in this scheme.

We first discuss the biased power spectra at z = 1 and z = 0.3 because the two

share common bias schemes. We then present the z = 3 results.

3.4.3 Bias effects at z = 1

Figure 3.3 shows power spectra of biased tracers divided by a zero-baryon power

spectrum in real space and redshift space. The left and right panels show number-

weighted cases (NUM) and mass-weighted cases (MASS), respectively, with the

minimum group multiplicity m, of 4, 10, and 30.

NUM cases with m = 4, 10, and 30 produce biased tracers with b ∼ 1.7, 2, and
3http://www-hpcc.astro.washington.edu/tools/
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Figure 3.3 Biased power spectra at z = 1 divided by a zero-baryon power spec-
trum. The left panel is for the number-weighted cases (NUM), and the right panel
is for the mass-weighted cases (MASS). The label ‘m’ denotes the minimum group
multiplicity for selecting halos. For the NUM cases, b ∼ 1.7, 2, and 2.5, and for
the MASS cases, b ∼ 2.4, 2.7, and 3.1 as m increases. The solid lines are for the
real-space power, and the dashed lines are for the redshift-space power.

2.5 where b is the ratio of the biased power spectra to the matter power spectra

on large scales. The mass-weighted tracers (MASS) in the right panel of Figure

3.3 show larger biases than number-weighted cases for the same m: b ∼ 2.4, 2.7,

and 3.1. This is because the mass-weighted cases give more weight to the high-

mass halos with larger biases while the number-weighted cases are dominated

by halos close to the mass threshold.

In both cases, the relative anomalous power increases as the amplitude of

bias increases. For example, the m = 4 cases show little anomalous power, and

the m = 10 and m = 30 cases show larger but still mild anomalous power for

k < kmax (0.19h Mpc−1). When different bias models with the same multiplicity

are compared, the MASS cases have slightly larger anomalous power up to k ∼

0.3h Mpc−1. When different bias models with a similar value of bias are compared

(e.g., m = 4 of MASS and m = 30 of NUM), the MASS case exhibits smaller
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Figure 3.4 d ln P/d ln k from the biased power spectra at z = 1 in real space
(upper panels) and in redshift space (lower panels). The left panel is for the
number-weighted cases (NUM), and the right panel is for the mass-weighted
cases (MASS). Green dashed line: the input power spectrum, black: the non-
linear matter power spectrum at z = 1, red: biased with m = 4, blue: biased with
m = 10 and violet: biased with m = 30.

anomalous power up to k ∼ 0.3h Mpc−1 than the NUM case. MASS cases with all

galaxies placed at the center of a halo showed the same trend, which means that

the trend is not due to the effect of the halo density-profile. Thus, the bias scheme

for the NUM cases introduces larger anomalous power, be it from the shot noise

or from the nonlinear bias effect. One interesting question will be whether the

difference in anomalous power directly relates to the erasure of baryonic features.

The upper panels in Figure 3.4 show d ln P/d ln k of biased power in real space

(solid lines) in comparison to the input power spectrum (dashed lines). In the

figure, all biased power spectra in real space preserve oscillatory features at least

up to k ∼ 0.2h Mpc−1 while the contrast appears decreasing due to the nonlinear

bias effect as bias increases. As before (§ 3.3.3), adding a smooth component due

to a shot noise or nonlinear bias to the power spectrum will decrease the contrast

in baryonic features. Subtracting off this smooth component will help to recover
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some of the baryonic features. We will revisit this in § 3.4.4.

In redshift space (dashed lines in Figure 3.3), the power spectra of the MASS

cases clearly show the finger-of-God suppression as k increases. The finger-of-

God suppression is mostly removed in the spectra of the NUM cases, as is to be

expected from the methods of biasing, and they show a mild remnant suppres-

sion in power with respect to the Kaiser formula4 as k increases. The lower panels

of Figure 3.4 show that baryonic oscillations are smeared more in redshift space

than in real space not only in MASS cases but also in NUM cases despite the sup-

pressed finger-of-God effect in the latter case. Again, until we remove the bias

effect on the broadband shape, it is hard to determine the degree of erasure.

3.4.4 Bias effects at z = 1 with the broadband shape restored

We next subtract the anomalous power from the biased power spectrum to re-

store the broadband shape and eliminate the superficial decrease in contrast of

the baryonic features. The restoring process we adopt is intended to assess the

optimal amount of information on baryonic features available from the biased

tracers. In real galaxy redshift surveys, this unbiasing would be determined si-

multaneously in the parameter estimation, which is an additional complication.

We fit the biased power spectra to a multiple of the nonlinear matter power

spectrum b2Pmatter at the given redshift plus a polynomial function fNL = c0 +

c1 k + c2 k2. We then subtract the smooth function fNL that represents the anoma-

lous power from the biased power spectra when calculating d ln P/d ln k. As the

anomalous power from bias is smooth, this will help recover baryonic features.

The ranges of wavenumber in real or redshift space is chosen suitably at each red-

shift so as to span well beyond the linear region to constrain fNL but short enough
4Kaiser formula in our context means (1 + 2β(k)/3 + β2(k)/5) where β(k) = Ω0.6

m (z)/b(k), and
b(k) is calculated from the ratio between the biased power spectra and the matter power spectra.
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Figure 3.5 d ln P/d ln k from Pbiased − fNL(c0, k, k2) at z = 1 in real space. The
left panel is for the number-weighted cases (NUM), and the right panel is for the
mass-weighted cases (MASS). The label m denotes the minimum group multiplic-
ity for selecting halos. Gray dashed line: the input power spectrum, gray solid
line: the nonlinear matter power spectrum at z = 1, black solid lines: the biased
power spectra at z = 1. The vertical dashed line denotes kmax = 0.19h Mpc−1. One
sees that the biased power spectra follow the features in the underlying matter
power spectrum fairly well on linear and quasilinear scales once the broadband
shape is restored.
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Figure 3.6 d ln P/d ln k from Pbiased − fNL(c0, k, k2) at z = 1 in redshift space. Note
that the MASS cases are corrected for the finger-of-God suppression beforehand.
The left panel is for the number-weighted cases (NUM), and the right panel is for
the mass-weighted cases (MASS). Gray: the nonlinear matter power spectrum
at z = 1 in real space, black: the nonlinear matter power spectrum in redshift
space (NO BIAS) and biased power spectra in redshift space. Note that the matter
power spectrum in redshift space (NO BIAS) is also corrected with Ffog to fit to the
matter power in real space. The fitting range (k < kfit) is indicated by the extent
of the black lines. The number-weighted cases are fitted to kfit = 0.5h Mpc−1

but kfit = 0.35h Mpc−1 elsewhere. The vertical dashed line denotes the value of
kmax. The redshift-space biased power spectrum nearly reproduces the baryonic
features of the real-space biased power spectrum with mild degradation.

so as not to weight the fit too much towards large wavenumbers. Variations in

fNL due to choosing different ranges of wavenumbers or different degrees of the

function (up to 3rd-order) do not show a meaningful impact on d ln P/d ln k on

large scales. The resulting function fNL behaves as constant on large scales as re-

quired, although on small scales, fNL for the MASS cases show a slow roll-over

due to the extended halo profiles compared to the NUM cases.

Figure 3.5 shows the resulting derivatives at z = 1 after anomalous power

fNL is subtracted (black lines) in comparison to the nonlinear (solid gray lines)

and input matter power spectra (dashed gray lines). For k < kmax, the agreement



125

between the biased power spectra and the nonlinear matter power spectrum is

excellent regardless of the different biasing schemes. Beyond kmax, we observe

small variations depending on bias schemes. The variations appear related to

the amount of anomalous power as this contributes additional power above the

underlying baryonic features, increasing the statistical noise. Within the same

bias models, higher mass thresholds and hence larger biases yield noisier deriva-

tives, as would be expected from the increase in anomalous power. If we com-

pare two bias models with similar bias values, m = 4 of MASS and m = 30 of

NUM, then the baryonic features in m = 30 of NUM appear noisier as it has a

larger anomalous power. However, when those with the same group multiplicity

are compared between different bias models, the baryonic features in the MASS

cases look no worse than those in the NUM cases even with the larger bias and

the slightly larger anomalous power for k ∼< 0.3h Mpc−1.

Despite slight variations depending on bias schemes, the baryonic features

in general have not been obviously damaged by the biasing process; the biased

power spectrum closely follows the details in the underlying nonlinear matter

power spectrum over a broad range beyond kmax. This is different from the effect

of nonlinear gravity shown in § 3.3.3 where we saw the effect of mode coupling.

This supports the hypothesis that the anomalous power, whether due to shot

noise or nonlinear bias, is a smooth function of wavenumber. The contrasts of

the baryonic features appear slightly larger in some of the biased power spec-

tra relative to the matter power spectrum, but this is likely due simply to the

increased noise.

For the redshift-space power spectrum of the MASS cases, we apply a similar

fitting process to the one in § 3.3.3 to restore the broadband shape both from the

nonlinear bias and nonlinear redshift distortions. First we correct for the finger-
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of-God effect with a multiplicative function Ffog to match the biased power in

redshift space to the biased power in real space. We then calculate and subtract

fNL to remove the anomalous power. For the redshift-space power spectrum of

the NUM cases, we do not correct for the finger-of-God suppression despite the

slight deviation from the Kaiser formula. We calculate and subtract an additive

fNL from the redshift-space power in this case.

Figure 3.6 shows the resulting derivatives at z = 1 in redshift space (black

lines) in comparison to the nonlinear matter power spectrum in real space (gray

lines). In redshift space, the contrast of the last feature before k = 0.2h Mpc−1 is

smaller than in real space but still in good agreement. Beyond kmax, we see the

traces of baryonic features although they look noisier than in real space. Again,

the nonlinear effect of redshift distortions on baryonic features in the NUM cases

are no better than that in the MASS cases even though the virialized motions

within the halos are suppressed in NUM cases, and this probably is related to the

nonlinear effect on the velocity fields on large scales (Scoccimarro, 2004).

3.4.5 Bias effects at z = 0.3

We next investigate the effects of bias at lower redshift. Figure 3.7 shows power

spectra of biased tracers divided by a zero-baryon power spectrum at z = 0.3.

The NUM cases (left panel) generate tracers with b ∼ 1.2, 1.3, and 1.6, and the

MASS cases (right panel) generate b ∼ 1.8, 2, and 2.3. At this redshift, we are

particularly interested in tracers with b ∼ 2, which corresponds to the luminous

red galaxy sample (LRG) of Sloan Digital Sky Survey (SDSS). This corresponds

to m = 10 in the MASS cases although anomalous power in the m = 10 case is

half the inverse of the number density of galaxies in the LRG sample, suggesting

that the m = 10 bias model is not exactly right. The bias and relative anomalous

power is small up to k ∼ 0.15h Mpc−1 in all cases relative to z = 1. Recovering
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Figure 3.7 Biased power spectra at z = 0.3 divided by a zero-baryon power spec-
trum. The left panel is for the number-weighted cases (NUM), and the right panel
is for the mass-weighted cases (MASS). The label m denotes the minimum group
multiplicity. For the NUM cases, b ∼ 1.2, 1.3, and 1.6, and for the MASS cases,
b ∼ 1.8, 2, and 2.3 as m increases. The solid lines are for the real-space power, and
the dashed lines are for the redshift-space power.

baryonic features beyond kmax (0.11h Mpc−1) will be possible both in real space

and in redshift space from Figure 3.8.

Figure 3.9 shows the derivatives in real space after a corresponding smooth

function fNL is subtracted. From the figure, the baryonic features in biased power

spectra trace those in the matter power spectrum well up to k ∼ 0.2h Mpc−1.

Again, despite the larger biases of the MASS cases, they preserve baryonic fea-

tures no worse than the NUM cases. Figure 3.10 shows the derivatives in redshift

space compared to the matter power spectrum in real space. All biased redshift-

space power spectra trace the features in the real space matter power spectrum

fairly well up to k ∼ 0.2h Mpc−1 but with more degradation in the NUM cases.

To summarize, subtracting the smooth anomalous power helps to recover the

contrast of the baryonic features at z = 0.3 as well. With small biases (b ∼< 2),
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Figure 3.8 d ln P/d ln k from the biased power spectra at z = 0.3 in real space
(upper panels) and redshift space (lower panels). The left panel is for the
number-weighted cases (NUM), and the right panel is for the mass-weighted
cases (MASS). Green dashed line: the input power spectrum, black: the non-
linear matter power spectrum at z = 0.3, red: biased with m = 4, blue: biased
with m = 10 and violet: biased with m = 30.

the recovered contrast is comparable to the contrast in underlying matter power

spectra even in quasilinear scales meaning that the nonlinear scales deduced in

§ 3.3.3 is valid despite biasing. Also the recovered contrasts do not seem very

sensitive to moderate variations of biases, which is consistent with the results at

z = 1.

3.4.6 Bias effects at z = 3

We next show the results at our highest redshift bin, z = 3. The number of sim-

ulation boxes used for this redshift is 30, which is smaller than the other redshift

bins. We generated three biased tracers: m = 4 for MASS, m = 4 for NUM, and

Rho2 (Figure 3.11). The former two cases generate power spectra with b ∼ 5.5

and 4.9, which are too high for Lyman break galaxies (Steidel et al., 1996). Corre-

spondingly, the number density of these halos is very small, leading to significant
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Figure 3.9 d ln P/d ln k from Pbiased − fNL(c0, k, k2) at z = 0.3 in real space. The
left panel is for the number-weighted cases (NUM), and the right panel is for
the mass-weighted cases (MASS). Gray dashed line: the input power spectrum,
gray solid line: the nonlinear matter power spectrum at z = 0.3, black solid lines:
the biased power spectra. Fitting to kfit = 0.5h Mpc−1. The vertical dashed line
denotes kmax = 0.11h Mpc−1.

noise in the power spectra. The Rho2 model, on the other hand, generates a bias

of b ∼ 2.5, similar to that of Lyman break galaxies (LBG). The anomalous power

of Rho2 is 70% of the shot noise effect from the number density of 10−3h3 Mpc−3

that we assumed for the sample in SE03 although the relative effect is nearly

equivalent. The relative anomalous power amplifies the power by a factor of two

at k ∼ kmax(= 0.53h Mpc−1) for the Rho2 case.

While the matter power spectrum preserves baryonic peaks up to k ∼ 0.4h Mpc−1

(Figure 3.1), Figure 3.12 shows that even the Rho2 case cannot probe baryonic fea-

tures beyond k ∼ 0.35h Mpc−1 either in real space (left panel) or redshift space

(right panel). The MASS and NUM cases trace the acoustic oscillations only up

to k ∼ 0.25h Mpc−1. That is, the tracers with very large bias do not mimic the

underlying matter power spectra very well, unlike tracers with moderate biases
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Figure 3.10 d ln P/d ln k from Pbiased − fNL(c0, k, k2) at z = 0.3 in redshift space.
Note that the MASS cases are corrected for the finger-of-God suppression be-
forehand. The left panel is for the number-weighted cases (NUM), and the right
panel is for the mass-weighted cases (MASS). Gray: the nonlinear matter power
spectrum in real space, black: the nonlinear matter power spectrum in redshift
space (NO BIAS) and biased power spectra in redshift space. The fitting range
(k < kfit) is indicated by the extent of the black lines. For the number-weighted
cases (NUM), kfit = 0.5h Mpc−1 but kfit = 0.35h Mpc−1 elsewhere. The vertical
dashed line denotes the value of kmax.
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Figure 3.11 Biased power spectra at z = 3. Left: biased power divided by a
zero-baryon power spectrum. Solid lines are for the real space clustering, and
dashed lines with the same color are for the corresponding redshift-space clus-
tering. Right: d ln P/d ln k from the biased power spectra. Green dashed line: the
input power spectrum, black: the matter power spectrum at z = 3, red: Rho2,
blue: NUM with m = 4 and violet: MASS with m = 4.

at lower redshift bins. This is likely because of the statistical noise from a small

number of high mass halos, but we cannot exclude the possibility of an emer-

gence of mode coupling as the nonlinear bias effect becomes very large.

We estimate that galaxies with b ∼ 3 at this redshift will recover baryonic

features up to wavenumber of about 0.3h Mpc−1. The details of the result may

vary depending on the biasing schemes and the shot noise.

3.4.7 Summary of the effect of bias

To summarize the general effect of bias on baryonic features, subtracting a smooth

function to match the slope of the matter power spectrum largely restores the

baryonic features in the underlying matter power spectra if the amplitude of bias

is moderate. This implies that a moderate anomalous power of bias whether

from shot noise or a nonlinear bias effect does not erase the initial features. In
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Figure 3.12 d ln P/d ln k from Pbiased − fNL(c0, k, k2) at z = 3 in real space and red-
shift space. The Rho2 case and the MASS case in redshift space are corrected for
the finger-of-God suppression beforehand. Left: the real-space power spectra.
Gray dashed line: the input power spectrum in real space, gray solid line: the
matter power spectrum in real space, black solid lines: the biased power spectra
in real space. Right: the redshift-space power spectra. Gray solid line: the matter
power spectrum in real space, black solid lines : the biased power spectra in red-
shift space. Note that the y-axes in the left and the right panels are not scaled the
same unlike the previous figures. The vertical line is at kmax of 0.53h Mpc−1. From
the figure, the tracers with a very large bias do not mimic the underlying matter
power spectra very well. One sees that the mildly biased Rho2 case (b ∼ 2.5)
probes baryonic features up to k ∼ 0.35h Mpc−1.
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other words, it is reasonable to assume that the anomalous power is smooth in

wavenumber and does not generate features that mimic baryonic oscillations.

We find that the detailed effects of bias not only scale with the amplitude of

bias and the anomalous power but also depend on the biasing schemes used. For

very large amplitudes of bias, we clearly lose information whether it is due to

increased nonlinear bias effects or merely shot noise.

Based on the baryonic features preserved in the matter power spectra (§ 3.3)

and the effect of bias, we summarize the nonlinear scales in the biased power

spectra. At z = 0.3, the results are encouraging in that moderately biased power

spectra (b ∼< 2) preserve baryonic features at k < kmax (0.11h Mpc−1) and record

a fair amount of linear information even beyond kmax in both real and redshift

space. The biased power spectra at z = 1 (b ∼< 2) show decreased contrast for

k < kmax (0.19h Mpc−1) and contain attenuated traces of baryonic features beyond

kmax. At z = 3, the biased power spectrum with b ∼ 3 will preserve the features

up to k ∼ 0.3h Mpc−1, but no further.

The biased power in redshift space traces the real-space biased power rea-

sonably well with partial degradations in the baryonic features depending on

biasing schemes. Suppressing the finger-of-God effect does not help to preserve

real-space features any better, implying that the motions between halos do not

strictly respect linear theory.

To this point, we have shown the successful restoration of baryonic features

in linear and quasilinear scales from various biasing schemes based on halo-mass

thresholds. Given that all mass thresholds preserve the features, it is unlikely that

more complex descriptions of galaxy populations, e.g., superpositions of our bi-

asing schemes, would change the results. Similarly, a more stochastic local bias

would not likely remove the oscillations, although stochastic models can increase
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anomalous power (Dekel & Lahav, 1999; Scherrer & Weinberg, 1998) thereby re-

ducing contrast and increasing noise.

3.5 Impacts on cosmological distance estimation : χ2 analysis of the N-body

data

We next consider the impact of nonlinearity and bias on the statistical constraints

on cosmological distances from the baryonic features. We are interested in using

the power spectrum measurement to constrain a distance scale, and therefore we

want to estimate how well we can constrain dilations in wavenumbers. We define

this dilation parameter as α(= kref/ktrue). The error on the dilation parameter α

represents the errors on the angular diameter distance DA(z) and Hubble param-

eter H(z). We perform a χ2 analysis to fit the spherically averaged power spectra

in real space from N-body simulations, Pobs, to a linear combination of the input

linear power spectrum, Plinear, and an additional polynomial function (eq. [3.1]).

The fit parameters are α, a multiplicative bias b0, a scale-dependent bias b1, and

additive terms for nonlinear growth or an additional constant (a0, a1 and a2). The

mean value of α is expected to be unity since we set the reference cosmology to

be equal to the true cosmology for simplicity.

Pobs(kref) = (b0 + b1kref) × Plinear(kref/α) + (a0 + a1kref + a2k
2
ref) (3.1)

We try two cases, with and without including b1. In both cases, we fit power at

wavenumbers beyond kmax to set the nonlinear trends. We note that even though

the model spectrum contains higher harmonics of the baryon oscillations that

may be absent from the data, this need not bias the distance measurement. The

smooth portion of the nonlinear power spectrum that replaces higher harmon-

ics does not have narrowband features to match on the linear model and hence
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impose a preferred physical scale. We will return to this point later in this section.

The mean value and error of α are computed using jack-knife subsampling

of the simulations (Lupton, 1993). Since we do not know the true covariance

matrix, we assume a Gaussian error in each k-bin constructed from the power

spectrum averaged over all sets. Although assuming a Gaussian error implies

that we underestimate the statistical noise relative to the true non-Gaussian er-

ror, the variations among jack-knife estimates of α in the 51 subsamples (30 at

z = 3) should reflect the non-Gaussian, mode-coupled error as these subsam-

ples are drawn from actual nonlinear N-body data. In other words, our fitting

slightly misweights the data relative to optimum but should not produce overly

optimistic σα compared to the true error.

The behavior of resulting errors are consistent with the effect of nonlinearity

and bias that we studied in the previous sections. For the underlying matter

power spectra at z = 3, we derive σα ∼ 0.35(0.36)% with wavenumbers less

than kfit = 0.3(0.5)h Mpc−1. For the Rho2 biased power spectrum, σα ∼ 0.35%

when kfit ∼ 0.3h Mpc−1. Increasing the range of k beyond this value increases

the error, which is consistent with the noisy feature in the left panel of Figure

3.12. If we scale the error to the survey volume assumed in SE03, this error value

corresponds to 1%. The anomalous power in the Rho2 case is close to the shot

noise we assumed there. The analytic results in SE03 implies σα ∼ 0.93% (from

1/σ2
α = 1/σ2

DA(z) + 1/σ2
H(z)), in good agreement.

At z = 1, we calculate σα ∼ 0.4% for the underlying nonlinear matter power

spectrum if we include a region up to kfit = 0.3h Mpc−1. Among the biased power

spectrum, the NUM case with m = 4 has a bias value close to that of the red-

shift bin at z = 1 in SE03. For this case, σα ∼ 0.4 − 0.5%, which corresponds

to σα ∼ 1.6 − 1.8% when scaled to the baseline survey volume in SE03. This is
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to be compared with σα of 1.4% for the corresponding number density in SE03.

Thus the simulation indicates a slightly worse precision relative to our previ-

ous predictions in SE03. The equivalent kmax for a linear approximation will be

0.17 − 0.18h Mpc−1 at z = 1, rather than 0.19h Mpc−1.

At z = 0.3, we find more optimistic results, as we would expect from Fig-

ure 3.9. For the underlying nonlinear matter power spectrum, we get σα ∼ 0.6%

for kfit = 0.3h Mpc−1. For the Mass cases with m = 10 and m = 30, which are

similar to LRG samples, we find σα ∼ 0.8 − 0.9%. When scaled for a survey vol-

ume of 1h−3 Gpc3, σα is 2.1 − 2.3% (the equivalent kmax ∼ 0.15 − 0.155h Mpc−1),

which is better than the 3.9% calculated from values in SE03. This is to be com-

pared with the current observations: the 4% measurements from Eisenstein et al.

(2005) would give σα ∼ 3% when scaled to 1h−3 Gpc3. The cause of the difference

between 2.1 − 2.3% and 3% is due to the neglect of redshift distortions in this

modeling.

In general, the errors calculated with and without b1 are consistent. Without

b1, the mean values of α are close to unity, indicating negligible bias. But α is

slightly biased above 1 in cases with b1, particularly at lower redshift, albeit by

< 1% in most of cases. Since we use the linear power spectrum to match nonlin-

ear power, the fitting process favors a negative b1 to match the erased baryonic

features and, in order to compensate the resulting phase shifts of the oscillations,

biases α preferentially above 1. On the other hand, without b1, the fitting process

does not have means to use bias on α to account for the erased features, giving

little bias on α. Including an appropriate recipe to account for the erasure of the

baryonic features should remove this bias. That is, this bias would likely be easy

to calibrate and remove using N-body simulations of a reasonable cosmological

model.
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The results of χ2 analysis can be translated to the survey volumes required to

achieve σα ∼ 1%. Table 3.1 presents estimates of the required survey volumes,

assuming biased power spectra in real space.

We do not extend the χ2 analysis to the redshift-space power spectra because

of our lack of a reliable model of the redshift distortions to fit. There are devia-

tions from the Kaiser formula on large scales as well as the finger-of-God effect on

intermediate and small scales, both of which could involve an arbitrary angular

dependence in two dimensions (reduced from three dimensions by the azimuthal

symmetry). Nevertheless, the comparisons between the real-space and redshift-

space power spectra in our study lead to qualitative estimations of the effects of

redshift distortions. Due to the decreased contrast of the baryonic features we

observed in the spherically averaged power spectra in redshift space, we expect

that the errors on H(z) will be degraded relative to the analytic prediction. At

z = 3, we expect the effect will be insignificant. At z = 1, the degradation will

produce a larger error on H(z) than in SE03. At z = 0.3, a degradation due to

the redshift distortions will increase σH but likely no worse than the estimates in

SE03.

It is important to note that the information in the spherically averaged redshift-

space power spectra will not be quantitatively equivalent to that in the two-

dimensional redshift-space power spectra. Here we are averaging out the non-

linear redshift distortions, which are actually angle-dependent. For example, a

simple exercise of χ2 analysis using only the modes nearly along the line of sight

suggests that the degradation of H(z) at z = 1 could be as large as a factor of

two between real space and redshift space. We plan to investigate this in a future

study.
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Table 3.1. Required Survey Volume to Achieve σα = 1%

Redshift bias Vsur(h
−3 Gpc3) neff(h3 Mpc−3)

0.3 2.0 4.4 2.1 × 10−4

2.3 5.5 1.2 × 10−4

1 1.7 1.4 2.1 × 10−3

2.4 1.7 3.4 × 10−4

3 2.5 0.5 1.4 × 10−3

Note. — The approximate survey volumes re-

quired to achieve σα = 1% for the biased power

spectra. Note that the values are based on our χ2

analysis of the real space power spectra, and this

means that redshift distortions are not accounted for.

The effective number density neff is the inverse of the

anomalous power at k ∼ 0.
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3.6 Conclusion

We have used a large set of N-body simulations to show that the baryonic oscil-

lations from the large galaxy redshift surveys survive on large scales well despite

the mild nonlinearity of gravity, redshift distortions, and bias. We compared the

nonlinear effect on the baryonic features observed in the N-body results with the

choices of nonlinear scale kmax in SE03.

As expected, the nonlinear gravitational evolution erased the baryonic fea-

tures progressively from smaller scales to larger scales as the redshift decreased.

In real space, the nonlinear scales we have assumed in SE03 seem fairly conser-

vative at z = 0.3 and z = 1. We find that we need a slightly smaller kmax for z = 3,

but this modification has a minor effect on standard ruler test due to the small

nonlinear scale. The redshift distortions imposed an additional obscuration for

k < kmax. Nevertheless, the redshift-space power spectra reasonably traced the

features in the real-space power.

We have shown that moderate nonlinear bias (b < 3) does not erase the initial

features. The biased power spectra follow the features in the underlying matter

power spectrum fairly well once the broadband shape is restored. The effect of

bias is not only proportional to the amplitude of the bias and anomalous power

but also depends on the biasing models as well. However, these dependences

seem to have minor effect on the underlying baryonic features. In redshift space,

suppressing the finger-of-God effect does not improve recovery of the features,

and this indicates that nonlinear effects in the velocity fields on large scales ob-

scure baryonic features as well. Nevertheless, the redshift-space biased power

spectrum reproduces the baryonic features of the real-space counterpart reason-

ably well despite the degradation mainly due to the modes along the line of sight.

From χ2 analysis of N-body results in real space, we predict errors on cosmo-
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logical distances similar to those in SE03. Thus the nonlinear scale kmax we have

adopted in SE03, with minor modification detailed below, adequately describes

the effect of nonlinearity on the standard ruler test. Furthermore, this implies

that the cosmological distortions will be indeed distinguishable from nonlinear

growth and scale-dependent bias, and so the derived uncertainty on cosmological

distances depends on the degree of erasure of the baryonic features. Considering

nonlinear gravity, redshift distortions and the clustering bias effect from N-body

results all together, we estimate nonlinear scales appropriate for calculation of the

information in the baryonic features. We consider both the loss of information for

k < kmax and the additional linear information on smaller scales which compen-

sates the loss. Referring to the results from the χ2 analysis, the biased power

spectra at z = 3 with b ∼ 3 traces baryonic features well up to k ∼ 0.3h Mpc−1

both in real and redshift space. At z = 1 with b ∼< 2, kmax ∼ 0.17 − 0.18h Mpc−1

are appropriate in real space, but we need a slightly smaller kmax for redshift

space. At z = 0.3 with b ∼< 2, kmax ∼ 0.15h Mpc−1 for real space but smaller

kmax(> 0.11h Mpc−1) if we consider redshift distortions. We translate these re-

sults to the distance measurements: at z = 3 and z = 0.3, we expect that DA(z)

will be constrained as well as the estimates in SE03 while H(z) will be slightly less

well constrained because of the nonlinear redshift distortion effect on the bary-

onic features. At z = 1, the deviation will be the largest. While DA(z) will be near

the estimates in SE03, H(z) can be as large as twice of DA(z).

To summarize, the standard ruler test using baryonic features are robust against

nonlinear effects in the linear and quasilinear regime. Therefore, using the stan-

dard ruler, the on-going and future large galaxy redshift surveys will measure the

dilations in observed scales due to cosmological distortions at various redshifts

to excellent accuracy, providing a superb probe of the acceleration history of the
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universe.
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CHAPTER 4

IMPROVED FORECASTS FOR THE BARYON ACOUSTIC OSCILLATIONS AND

COSMOLOGICAL DISTANCE SCALE

We present the cosmological distance errors achievable using the baryonic acous-

tic oscillations as a standard ruler. We begin from a Fisher matrix formalism that

is upgraded from Seo & Eisenstein (2003) [i.e., Chapter 2]. We isolate the informa-

tion from the baryonic peaks by excluding distance information from other less

robust sources. Meanwhile we accommodate the Lagrangian displacement dis-

tribution into the Fisher matrix calculation to reflect the gradual loss of informa-

tion in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear

redshift distortions. We then show that we can contract the multi-dimensional

Fisher matrix calculations into a 2-dimensional or even 1-dimensional formal-

ism with physically motivated approximations. We present the resulting fitting

formula for the cosmological distance errors from galaxy redshift surveys as a

function of survey parameters and nonlinearity, which saves us going through

the 12-dimensional Fisher matrix calculations. Finally, we show excellent agree-

ment between the distance error estimates from the revised Fisher matrix and the

precision on the distance scale recovered from N-body simulations.

4.1 Introduction

The famous Hubble expansion drives more distant objects to recede faster from

us. Recent observations of supernovae argue that this expansion is in fact accel-

erating, implying an existence of dark energy with negative pressure (Riess et al.,

1998, 2001; Perlmutter et al., 1999; Knop et al., 2003; Tonry et al., 2003; Riess et

al., 2004). This dark energy, which contributes two third of energy density in the
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present Universe, is mysterious in its physical origin. Precise measurements of

its time evolution will be crucial for uncovering the identity of this energy com-

ponent. One of most promising probes to measure the dark energy is a standard

ruler called baryonic acoustic oscillations in large-scale clustering (Eisenstein et

al., 1998, 1999)

Baryonic acoustic oscillations (hereafter BAO) arise from sound waves that

propagated in the hot plasma of tightly coupled photons and baryons in the

early Universe. As the Universe expanded and cooled, photons finally decoupled

from baryons 400,000 years after the Big Bang, with the sound waves revealed as

the acoustic oscillations in the anisotropies of the cosmic microwave background

(hereafter CMB; Miller et al., 1999; de Bernardis et al., 2000; Hanany et al., 2000;

Lee et al., 2001; Halverson et al., 2002; Netterfield et al., 2002; Benoı̂t et al., 2003;

Bennett et al., 2003; Pearson et al., 2003; Hinshaw et al., 2007). The equivalent

but attenuated feature exists in the clustering of matter, as baryons fall into dark

matter potential well after the recombination (Peebles & Yu, 1970; Sunyaev & Zel-

dovich, 1970; Bond & Efstathiou, 1984; Holtzman, 1989; Hu & Sugiyama, 1996;

Eisenstein & Hu, 1998). These were recently detected in galaxy redshift surveys

(Eisenstein et al., 2005; Cole et al., 2005; Hütsi, 2006; Percival et al., 2007; Tegmark

et al., 2006). Good CMB anisotropy data provides the absolute physical scale for

these baryonic peaks; comparing this to the observed location of the baryonic

peaks in the two-point correlation function or power spectrum provides mea-

surements of cosmological distance scale. Clustering in the transverse direction

probes the angular diameter distance, and clustering in the line-of-sight direction

probes the Hubble parameter. The cosmological distance scale as a function of

redshift is then the record of the expansion history of the Universe, which in turn

measures the evolution of dark energy density.
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Many studies have been devoted to estimations of precision on cosmologi-

cal distance scale achievable using the BAO from future galaxy redshift surveys

(Eisenstein, 2003; Blake & Glazebrook, 2003; Linder, 2003b; Hu & Haiman, 2003;

Seo & Eisenstein, 2003; Cooray, 2004; Matsubara, 2004; Amendola et al., 2005;

Blake & Bridle, 2005; Glazebrook & Blake, 2005; Dolney et al., 2006; Zhan & Knox,

2006; Blake et al., 2006). A common scheme is to assume the Gaussian statistical

errors on the power spectrum, which are constructed straightforwardly from the

finite volume of the survey and the incomplete sampling of the underlying den-

sity field with galaxies (Tegmark, 1997), and then to propagate these errors to

constrain the errors on cosmological parameters including cosmological distance

scale whether by using Monte Carlo simulations or by using an analytic method

such as a Fisher matrix formalism. In Seo & Eisenstein (2003), we used a Fisher

matrix formalism to show that the BAO from future galaxy redshift surveys can

constrain the cosmological distance scale to percent level precision, thereby pro-

viding robust measurements of present-day dark energy density and its time-

dependence that are comparable to future Type Ia supernova surveys.

The most important element in these methods, other than the survey spec-

ifications, is how to include the effects of nonlinear structure formation, which

depends on redshift as well as bias. The primary nonlinear effect on the stan-

dard ruler test is that the BAO signature is reduced with time by the nonlinear

growth of density fields into present-day structures (Meiksin et al., 1999; Springel

et al., 2005; Angulo et al., 2005; Seo & Eisenstein, 2005; White, 2005; Crocce &

Scoccimarro, 2006; Jeong & Komatsu, 2006; Huff et al., 2007). This nonlinear

mode-coupling also alters the overall shape of the power spectrum by increas-

ing the small-scale power relative to the linear growth of power spectrum (Jain &

Bertschinger, 1994, and references therein). At the same time, this mode-coupling
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increases statistical errors above our Gaussian approximations (Meiksin & White,

1999; Scoccimarro et al., 1999). The nonlinear effects first appear on small scales

and then proceed to larger scales, tracing the hierarchical formation of structures.

Nonlinear redshift distortions and nonlinear galaxy bias can further degrade the

BAO (e.g., Springel et al., 2005; Angulo et al., 2005; Seo & Eisenstein, 2005; White,

2005; Huff et al., 2007) and modify the statistical variance.

In Seo & Eisenstein (2003) [i.e., in Chapter 2], we used a sharp wavenum-

ber cut to exclude the nonlinear wavenumbers from the Fisher matrix formal-

ism. That is, we treated all wavenumbers up to a certain threshold as linear

and excluded all larger wavenumbers from our calculations, while the threshold

varied depending on redshift. Our choice of linear wavenumbers was based on

the magnitude of underlying mass density fluctuations rather than direct estima-

tions of degradation of baryonic signature with redshift, as we did not have any

means to estimate the latter without N-body simulations. In addition, the effects

of bias or redshift distortions on the BAO were too ambiguous to parameterize

and include in the Fisher matrix. However, the nonlinear effect does not turn

on sharply with wavenumber but instead appears gradually. In Seo & Eisenstein

(2005) [i.e., Chapter 3], we used N-body simulations to study the effect of nonlin-

ear growth, bias, and redshift distortions on the appearance of the BAO. While

we have shown in that paper that our choice of linear scales in Seo & Eisenstein

(2003) reasonably represents the amount of standard ruler information at differ-

ent redshift, we still lacked a quantitative description of the gradual erasure on

the BAO as a function of redshift, bias, and redshift distortions.

Recently, a quantitative model has been provided by Eisenstein, Seo, & White

(2006). In a two-point correlation function, the BAO signature is an excess of pairs

separated by its characteristic scale of ∼ 100h−1 Mpc. Eisenstein, Seo, & White



146

(2006) model the nonlinear process of erasing the BAO signature as differential

motions or Lagrangian displacements of these pairs of tracers. Using the N-body

simulations from Seo & Eisenstein (2005), we estimated the amount of differential

motions caused by nonlinear growth, halo bias, and redshift distortions at differ-

ent redshifts. We then showed that the nonlinear erasure of the BAO signature

is successfully modeled by approximating these displacement fields as Gaussian

and convolving this Lagrangian displacement distribution with the BAO peak in

the two-point correlation function, or by multiplying the linear power spectrum

by the Fourier transform of the Gaussian function. As noted in Eisenstein, Seo, &

White (2006), estimating the Lagrangian displacement fields with a reasonable

precision does not require a simulation as large as estimating the degradation in

the BAO signature does: Lagrangian displacements are calculated from all pairs

separated by ∼ 100h−1 Mpc, while the BAO depend on the small number of ex-

cess pairs at that separation.

In this chapter, we use the Lagrangian displacement distribution calculated

from Eisenstein, Seo, & White (2006) to modify the Fisher matrix formalism pre-

sented in Seo & Eisenstein (2003) so as to correctly reflect the gradual loss of stan-

dard ruler information from the BAO in scale and in time due to not only nonlin-

ear growth but also bias and redshift distortions. We isolate the cosmological dis-

tance information from the BAO more strictly than in Seo & Eisenstein (2003), i.e.,

without information from Alcock-Paczynski (1979) test or from the broadband

shape of power spectrum, and derive distance error estimates using the Fisher

matrix calculations. We show that the full, 12-dimensional (for one redshift bin)

Fisher matrix in Seo & Eisenstein (2003) can be contracted to a 2-dimensional or

even 1-dimensional covariance matrix of DA and H with physically motivated

approximations. We present the resulting fitting formula, for errors from the full
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dimensional Fisher matrix, based on the reduced 2-dimensional covariance ma-

trix, which is a function of survey volume, galaxy number density, and param-

eterized nonlinearity. Note that the effect of bias and redshift distortions on the

BAO is now straightforward to parameterize as an increase in Lagrangian dis-

placement field and easy to mingle into the Fisher matrix calculation. We show

that the application of the formula extends to the photometric redshift surveys.

This fitting formula will save a considerable amount of computational efforts in

forecasting distance errors for future galaxy surveys. We compare these results

with distance constraints from a χ2 analysis of the full N-body results from Seo &

Eisenstein (2005). Our fitting formula differs from Blake et al. (2006) in many de-

tails, such as the different treatments of nonlinear degradation of standard ruler

test and ours having a structure based on physically motivated model.

In § 4.2, we present the full Fisher matrix calculation that is upgraded by using

the Lagrangian displacement field. In § 4.3, we show a 1-dimensional model as an

approximation of the full Fisher matrix in § 4.2. In § 4.4, the 1-dimensional model

is extended to a 2-dimensional model. We present the resulting fitting formula.

We also discuss the extension of this formula for photometric redshift surveys.

In § 4.5, we compare distance errors from the fitting formula with the estimates

from the full Fisher matrix. In § 4.6, we compare the distance errors from the full

Fisher matrix calculations (or from the fitting formula) with the distance errors

from a χ2 analysis of the N-body data.

4.2 Full Fisher matrix calculation

In this section, we construct the Fisher matrix that assesses the amount of distance

information available exclusively from using the BAO as a standard ruler. This

enables us to use the Lagrangian displacement distribution (Eisenstein, Seo, &
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White , 2006) to account for the nonlinear effects on baryonic peaks and therefore

nonlinear effects on the distance precision.

Assuming the likelihood function of the band powers of galaxy power spec-

trum to be Gaussian, the Fisher matrix is approximately (Tegmark, 1997; Seo &

Eisenstein, 2003):

Fij =
∫ ~kmax

~kmin

∂ ln P (~k)

∂pi

∂ ln P (~k)

∂pj

Veff(~k)
d~k

2(2π)3
(4.1)

=
∫ 1

−1

∫ kmax

kmin

∂ ln P (k, µ)

∂pi

∂ ln P (k, µ)

∂pj

Veff(k, µ)
2πk2dkdµ

2(2π)3

where P (~k) is the observed power spectrum at ~k, µ is the cosine of the angle of
~k with respect to the line-of-sight direction, pi are the cosmological parameters to

be constrained, and Veff is the effective volume of the survey, given as

Veff(k, µ) =
∫

[

n(~r)P (k, µ)

n(~r)P (k, µ) + 1

]2

d~r =

[

nP (k, µ)

nP (k, µ) + 1

]2

Vsur

=

[

nP (k)(1 + βµ2)2

nP (k)(1 + βµ2)2 + 1

]2

Vsur, (4.2)

where n(~r) is the comoving number density of galaxies at the location ~r, β is the

linear redshift distortion parameter, and Vsur is the survey volume. This formu-

lation assumes that the density field is Gaussian and that boundary effects are

not important. The second equality in equation (4.2) holds only if the comoving

number density n is constant in position, and the third equality assumes linear

redshift distortions (Kaiser, 1987).

From Eisenstein, Seo, & White (2006), the Lagrangian displacement fields due

to nonlinear growth and nonlinear redshift distortions at separation of 100h−1 Mpc

can be approximated as an elliptical Gaussian function. Since most of the ef-

fect comes from the bulk flow, galaxy bias does not have much effect on La-

grangian displacement. The rms radial displacements across (Σ⊥) and along the

line of sight (Σ‖) at this separation follow Σ⊥ = Σ0G and Σ‖ = Σ0G(1 + f),
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where Σ0 = 12.4h−1 Mpc for a cosmology with σ8 = 0.9 at the present-day,

f = d(ln G)/d(ln a) ∼ Ω0.6
m , and G is the growth function while G is normalized to

be G = 0.758 at z = 0 such that G(z) = (1 + z)−1 at high z. Σ0 should be scaled

proportionally to σ8. Then the surviving baryonic features in the nonlinear power

spectrum can be expressed as:

Pb,nl(k, µ) = Pb,lin(k, µ) exp

(

−k2
⊥Σ2

⊥

2
−

k2
‖Σ

2
‖

2

)

(4.3)

= Pb,lin(k, µ) exp

[

−k2

(

(1 − µ2)Σ2
⊥

2
+

µ2Σ2
‖

2

)]

(4.4)

where Pb,lin is the portion of the linear power spectrum Plin with the acoustic

signature, including the effects of Silk damping (Silk, 1968).

From equations (4.1) and (4.2), the distance precision from a galaxy redshift

survey depends on Vsur, nP , and the redshift of the survey. The redshift depen-

dence enters because of the loss of information due to nonlinear effect, such as

the erasure of baryonic features as well as the nonlinear growth of power at large

wavenumber. In Seo & Eisenstein (2003), the scales degraded by nonlinear effects

were removed from the Fisher matrix calculation by cutting off the wavenumber

integral at a kmax, where kmax depends on redshift by requiring σ(r) ∼ 0.5 at a

corresponding r = π/2kmax. In reality, the nonlinear effect is progressive with k:

there is acoustic scale information even beyond kmax while some information is

lost within k < kmax (Seo & Eisenstein, 2005). Now that we have a good model

to describe the degradation in baryonic features (eq. [4.3]), we can remove the

redshift dependent kmax. We set kmax = 0.5h Mpc−1 for all redshifts and change

Σ‖ and Σ⊥ to account for the erasure of baryonic features.

As we seek to isolate the information from the acoustic scale, we attach the

exponential suppression in equation (4.3) to the full power spectrum when com-

puting ∂P (k, µ)/∂pi. This means that we are removing all information, bary-
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onic and non-baryonic, from smaller scales, where the broadband shape of the

power spectrum might give distance information. Moreover, when we compute

the derivatives of P , we take the exponential factor in equation (4.3) outside of

the derivatives. This is equivalent to marginalizing over a large uncertainty in

Σ⊥ and Σ‖ when computing distance errors; we do not want to include any dis-

tance information from the anisotropy and scale of the nonlinear damping of the

acoustic peaks.

With these prescriptions, the Fisher matrix becomes

Fij =
∫ 1

−1

∫ ∞

0

∂ ln Plin(k, µ)

∂pi

∂ ln Plin(k, µ)

∂pj

Veff(k, µ)

× exp
[

−k2Σ2
⊥ − k2µ2(Σ2

‖ − Σ2
⊥)
]2πk2dkdµ

2(2π)3
(4.5)

where Plin(k, µ) is the linear power spectrum.

To this point, we have not excluded the distance information on linear scales

from non-baryonic features. There are two sources of such information: first,

from the Alcock-Paczynski (1979) test (hereafter, the AP test) using angular anisotropy

of power spectrum, and second, from the power spectrum not following a simple

power law.

First, at a given k, both the redshift distortions from large scale infall and the

cosmological distortions give rise to angular anisotropies in power. When the

linear redshift distortion parameter β becomes very small, both distortions con-

verge to an identical angular signature, a quadratic in µ, causing the effect of

redshift distortions to be degenerate from the effect of DA H . In this case, the

distance information from the AP test will be suppressed. However, when β is

non-negligible, as we assume a specific angular dependence of redshift distor-

tions (e.g., linear redshift distortions), the two effects can be in principle distin-

guished as both distortions have different higher multiples, and we can therefore
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isolate the cosmological distance information on DA H (i.e., the AP test) from the

effect of β.

Second, if the galaxy power spectrum follows a simple power law without any

preferred scale, the cosmological distortions remain degenerate from the redshift

distortions for a negligible β. However, the galaxy power spectrum contains an-

other preferred scale, the horizon scale at the epoch of matter-radiation equality.

This effect produces much broader feature in power spectrum, but in principle

can provide an extra standard ruler (Cooray et al., 2001).

However, we consider both of these sources of information less robust than

the BAO. For the AP test, we do not believe we understand the quasilinear and

nonlinear behavior of redshift distortions with very high accuracy. For the broad-

band shape of the power spectrum, the resulting distance information will be sus-

ceptible to the systematic effect such as tilt, nonlinear bias, or nonlinear growth

in power.

Therefore we want to remove distance information from both non-baryonic

features. For the distance information from the broadband shape, we remove

this by computing the Fisher matrix FΩb=0.005 with Ωb = 0.0051 and subtracting it

from the Fisher matrix FΩb
with the fiducial Ωb. In addition, in order to remove

any distance information from a presumed form of redshift distortions, we as-

sume β ∼ 0 in the derivatives in equation (4.5) in computing both FΩb=0.005 and

the fiducial Fisher matrix. That is, the angular AP test is removed. Meanwhile,

we hold the amplitude of power in Veff and therefore the statistical error per each

k bin constant by keeping β in the redshift distortions R in Veff (eq. [4.2]) un-

changed. Note that our inclusion of an arbitrary growth function already implies

that any constraints on β are not yielding distance scale information from the
1We cannot use Ωb = 0 to produce a reasonable CMB information.
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amplitude of the power spectrum; setting β ∼ 0 in derivatives will not have any

further effects. The resulting Fisher matrix after subtraction by FΩb=0.005 (while

σ8,m is the same) will only contain the distance information from the BAO. We

ignore the minor effect that the broadband shape of the fiducial power spectrum

is slightly different from that of the Ωb = 0.005 case.

The resulting Fisher matrix is combined with the CMB information (Planck

satellite including polarization) and then inverted to give a covariance matrix.

We calculate the distance errors marginalized over a total of 12 parameters in-

cluding the angular diameter distance (ln DA) and the Hubble parameter (ln H)

at the redshift of the galaxy survey and 10 others: Ωmh2, Ωbh
2, τ , tilt (ns), T/S,

the normalization, ln DA (CMB), ln β, an unknown growth rate (G(z)), and an

unknown shot noise.

In detail, we use the 1st year and the 3rd year Wilkinson Microwave Anisotropy

Probe (hereafter, WMAP1 and WMAP3, respectively) results as our fiducial cos-

mologies (Spergel et al., 2003, 2007). Our fiducial model for WMAP1 is then

Ωm = 0.27, h = 0.72, ΩΛ = 0.73, ΩK = 0, Ωbh
2 = 0.0238, τ = 0.17, ns = 0.99,

and T/S = 0. For WMAP3, we use Ωm = 0.24, h = 0.73, ΩΛ = 0.76, ΩK = 0,

Ωbh
2 = 0.0223, τ = 0.09, ns = 0.95, and T/S = 0.

By adopting Σnl (i.e., Σ⊥ and Σ‖), we no longer need to specify the redshift of

survey, and the distance error will only depend on Vsur, nP , and Σnl. We assume a

fiducial galaxy survey of Vsur = 1h−3 Gpc3. While there is a simple scaling relation

for varying Vsur, the effect of nP depends on the value of Σnl. We try various nP

and a large range of Σnl. We characterize nP as a value at k = 0.2h Mpc−1, i.e.,

nP0.2, where P is real-space power. In redshift space, the linear theory redshift

distortions enhance the power along the line-of-sight direction by R = (1 + βµ2)2

against shot noise.
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4.3 1-D approximation of Fisher matrix : a centroid problem

Motivated by the single peak in the correlation function, we next consider whether

acoustic distance scale precision can be modeled simply as the problem of cen-

troiding a peak in the presence of the noise generated from shot noise and the

cold dark matter (CDM) power spectrum. We study this in spherical geometry in

this section and generalize to the anisotropic case in the next. Nonlinear effects

will broaden the peak and therefore increase the uncertainty in measuring the

location of the peak. We approximate the full Fisher matrix based on how well

we can centroid the location of the peak, that is, the sound horizon so at the drag

epoch when observed in the reference cosmology:

Fln so
= Vsur

∫ kmax

kmin

1

(P (k) + n−1)2

[

∂Pb(k)

∂ ln so

]2
4πk2dk

2(2π)3
. (4.6)

We first find an appropriate form of ∂Pb(k)/∂ ln so. If the peak in the correlation

function is a delta function at r = so, the Fourier transformation of the peak takes

the following form in the power spectrum:

Pb(k) ∝ sin kso

kso

. (4.7)

A broadened peak will have the same power spectrum multiplied with an ad-

ditional damping envelope set by the Fourier transformation of the broadened

peak shape. For example, if the peak in the correlation function is broadened

with a Gaussian function due to the Silk damping effect (Σs) and Lagrangian dis-

placement distribution (Σnl), then the convolution in configuration space with the

Gaussian function is Fourier-transformed to a multiplicative exponential factor in

Fourier space:

Pb(k) ∝ sin kso

kso

exp (−k2Σ2/2), (4.8)

where Σ2 = Σ′2
s + Σ2

nl.
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In reality, the decoupling between photons and baryons is not instantaneous

at the recombination, and therefore the resulting Silk damping effect D(k) in-

tegrated over time deviates from a Gaussian and can be better approximated

by exp (−(k/ksilk)
1.4) with the Silk-damping scale ksilk(≡ 1/Σs) (Hu & Sugiyama,

1996; Eisenstein & Hu, 1998). We therefore have

Pb(k) ∝ sin kso

kso

exp (−(k/ksilk)
1.4) exp (−k2Σ2

nl/2)

=
sin kso

kso

exp (−(kΣs)
1.4) exp (−k2Σ2

nl/2). (4.9)

Starting from physical models of the transfer function gives the same results.

Let Pb = P − Pc.

P (k) = AknT 2(k) = Akn
[

Ωb

Ωm

Tb(k) +
Ωc

Ωm

Tc(k)
]2

(4.10)

= Akn

[

(

Ωc

Ωm

Tc(k)
)2

+ 2
Ωc

Ωm

Ωb

Ωm

Tb(k)Tc(k) +
(

Ωb

Ωm

Tb(k)
)2
]

(4.11)

As kTc(k) is a slow function of k relative to Tb(k), the leading order term for

baryonic features can be approximated to

Pb(k) ∝ 2
Ωc

Ωm

Ωb

Ωm

Tb(k). (4.12)

From Eisenstein & Hu (1998, and references therein), Tb(k) ∝ D(k) sin kso/(kso)

where the Silk damping effect D(k) ∼ exp (−(k/ksilk)
1.4) ≡ exp (−(kΣs)

1.4). In-

cluding the nonlinear damping returns equation (4.9):

Pb(k) ∝ sin kso

kso

exp (−(kΣs)
1.4) exp (−k2Σ2

nl/2). (4.13)

As the amplitude of Pb(k) grows with redshift by G2, we describe the normaliza-

tion of Pb as:

Pb(k) =
√

8π2A0P0.2
sin kso

kso

exp (−(kΣs)
1.4) exp (−k2Σ2

nl/2) (4.14)
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where P0.2 is galaxy power at k = 0.2h Mpc−1 at the given redshift. We now

differentiate Pb(k) to calculate ∂Pb(k)/∂ ln so.

∂Pb(k)

∂ ln so

=
√

8π2A0P0.2

[

cos kso −
sin kso

kso

]

exp (−(kΣs)
1.4) exp (−k2Σ2

nl/2). (4.15)

Then the Fisher matrix becomes

Fln so
=

∫ ∞

0

8π2Vsur

(P (k) + n−1)2

[

A0P0.2

(

cos kso −
sin kso

kso

)]2

× exp (−2(kΣs)
1.4) exp (−k2Σ2

nl)
4πk2dk

2(2π)3
. (4.16)

The comoving sound horizon is ∼ 100h−1 Mpc and most of baryonic informa-

tion comes from k ∼> 0.05h Mpc−1, which keeps kso large over the wavenumber

of our interest. Therefore, the sinusoidal terms oscillate rapidly relative to the

wavenumber dependence of the exponential factor. Treating these oscillations as

rapid relative to all other wavenumber dependence, we approximate the leading

term cos2 kso as 1/2. The large kso values also leave sin2 kso/(kso)
2 small relative

to cos2 kso and so we drop this term. These approximations then yield

Fln so
∼

∫ ∞

0

8π2VsurA
2
0

(P (k)/P0.2 + (nP0.2)
−1)2

1

2
exp (−2(kΣs)

1.4) exp (−k2Σ2
nl)

4πk2dk

2(2π)3
.

(4.17)

The resulting error on the location of the baryonic peak is

σln so
= σso

/so =
√

F−1
ln so

(4.18)

=





VsurA
2
0

∫ ∞

0
dk

k2 exp (−2(kΣs)
1.4) exp(−k2Σ2

nl)
(

P (k)
P0.2

+ 1
nP0.2

)2







−1/2

. (4.19)

The fractional error on the location of the peak from the observed galaxy red-

shift surveys, σln so
(= σso

/so), is equivalent to the fractional error on the distance

estimation when the physical location of the peak, that is, the true value of the
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sound horizon s at the drag epoch, is well known from the CMB. More specifi-

cally, it is equivalent to the distance information exclusively from baryonic peaks

as a standard ruler, as we have used only ∂Pb/∂ ln so in deriving equation (4.17).

In comparison to the full Fisher matrix (eq. [4.5]), knowing that ∂P (k)/∂ ln k in

equation (4.5) is dominated by ∂Pb(k)/∂ ln k, we hypothesize that equation (4.17)

is a good approximation to equation (4.5) in spherical symmetry.

4.4 2-D approximations of the Fisher matrix

In this section, we upgrade the spherically symmetric model in § 4.3 to a 2-D

model. In allowing anisotropic behavior of the correlation function, we want

to measure the location of the baryonic peak in the correlation function along

(s‖) and across the line of sight direction (s⊥) in the reference cosmology, that is,

two axes of an oblate ellipsoidal ridge in the correlation function. The Fourier

transform of the ellipsoid is sin x/x where x = (k2
⊥s2

⊥ + k2
‖s

2
‖)

1/2.

Measuring the fractional errors on s⊥ and s‖ is equivalent to measuring the

fractional errors on DA /s and sH , respectively, where s is the true physical value

of the sound horizon. When the precision on the sound horizon s from the CMB

data is much better than the precision on sH and DA /s from galaxy redshift

surveys, again, the errors on s⊥ and s‖ are virtually equivalent to the errors on

DA and H .

When Σ⊥ < Σ‖, the baryonic peak along the line of sight direction is further

broadened. In Fourier space, the modes along the line of sight are damped fur-

ther than other modes at given k, introducing an angular dependence within the

integrand of Fij .

We choose parameters p1 = ln s−1
⊥ and p2 = ln s‖. We choose ln s−1

⊥ instead

of ln s⊥ to be consistent with the sign of derivatives for DA in equation (4.5).
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Using ln s⊥ instead would only change the sign of the off-diagonal term of the

final Fisher matrix we will derive. The derivatives with respect to the anisotropic

distances are

f1(µ) ≡ ∂ ln x/∂ ln s−1
⊥ = µ2 − 1 (4.20)

f2(µ) ≡ ∂ ln x/∂ ln s‖ = µ2, (4.21)

when we evaluate the derivatives f1 and f2 at the fiducial cosmology, i.e., the true

cosmology where s⊥ = s‖ = s. Using these we can write the 2-D Fisher matrix as

Fij =
∫ 1

−1

∫ ∞

0

Vsur

(P (k)R(µ) + n−1)2

×
[√

8π2A0P0.2R(µ)
∂PBAO(x)

∂ ln x

]2 [
∂ ln x

∂pi

∂ ln x

∂pj

]

2πk2dk dµ

2(2π)3

(4.22)

where R(µ) = (1 + βµ2)2 is the linear redshift distortions. We can make a similar

approximation to equation (4.15) for ∂Pb(x)/∂ ln x:

∂Pb(x)/∂ ln x ∝ ∂(sin x/x)/∂ ln x (4.23)

= cos x − sin x/x. (4.24)

We subsequently approximate that cos2 x ∼ 1/2, as before.

Fij =
∫ ∞

0

2πk2dk

(2π)3

Vsur

2
exp

[

−2(kΣs)
1.4
]

×
∫ 1

−1

dµ

2

(
√

8π2A0P0.2R(µ))2

(P (k)R(µ) + n−1)2
fi(µ)fj(µ) exp

[

−k2(1 − µ2)Σ2
⊥ − k2µ2Σ2

‖)
]

(4.25)

= VsurA
2
0

∫ 1

0
dµ fi(µ)fj(µ)

×
∫ ∞

0
dk

k2 exp [−2(kΣs)
1.4]

(

P (k)
P0.2

+ 1
nP0.2R(µ)

)2 exp
[

−k2(1 − µ2)Σ2
⊥ − k2µ2Σ2

‖

]

(4.26)
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where Σs is the Silk damping scale, Σ⊥ is the real-space nonlinear Lagrangian dis-

placement, and Σ‖ is the redshift-space nonlinear displacement along ẑ. Equation

(4.26) holds even if the redshift distortion effect R deviates from the linear red-

shift distortions, e.g., R(k, µ) (see § 4.4.1). The quantity (nP0.2R)−1 becomes the

effective shot noise N−1
eff . Any additive power due to nonlinear growth or bias

will decrease Neff below nP0.2R.

We propose to use equation (4.26) as our fitting function to the full Fisher

matrix calculation (eq. [4.5]). As usual, the covariance matrix is the inverse of the

Fisher matrix. Unless Σ⊥ or Σ‖ is very large, the µ dependence of the integrand

is mild and therefore easy to compute. We find excellent convergence using a

simple midpoint method with a grid of 20 points in µ and 50 points in k with

dk = 0.01h Mpc−1 (up to k = 0.50h Mpc−1). One can precompute P (k)/P0.2 at the

gridpoints in k, as these do not depend on nP0.2, β, Σ⊥, or Σ‖. The integral over k

can be done once for all three matrix elements, so that computing the full matrix

takes negligibly more time than computing one element.

By comparing the numerical results from equation (4.26) with those from

equation (4.5), which is presented in § 4.5, we derive A0. We calculate Σs(≡ 1/ksilk)

from the equation given in Eisenstein & Hu (1998).2 For WMAP1, A0 = 0.4529

and Σs = 1/ksilk = 7.76h−1 Mpc. For WMAP3, A0 = 0.5817 and Σs = 1/ksilk =

8.38h−1 Mpc. Note that Vsur should be in h−3 Mpc3 if k is in h Mpc−1 units. The

derived A0 values are consistent with the analytic estimates from equation (4.10)

although not exact.

Approximating the Silk damping effect as a Gaussian function, that is, exp (−k2Σ′2
s ),

is less exact in the limit of large Σnl and a small nP0.2 but is convenient because

we can add the effect of the Silk damping and the nonlinear damping quadrati-
2Here, ksilk = 1.6(Ωbh

2)0.52(Ωmh2)0.73
[

1 + (10.4Ωmh2)−0.95
]

h−1(h Mpc−1)
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cally (i.e., Σ2 = Σ′2
s + Σ2

nl in eq. [4.8]). We quote A′
0 and Σ′

s for this case as well.

For WMAP1, we calculate A′
0 = 0.3051 with a choice of Σ′

s = 8.3h−1 Mpc, and for

WMAP3, A′
0 = 0.3794 with a choice of Σ′

s = 8.86h−1 Mpc.

4.4.1 Redshift distortions and photometric redshift surveys

The contribution of nP0.2R in equation (4.26) implies that the effect of redshift dis-

tortion R offsets the behavior of the shot noise n−1. On large scales, the anisotropic

contribution from R(µ) relative to R = 1 will increase Neff = nP0.2R along the line

of sight, decreasing the effective shot noise not only for the measurement of H

but also for DA , albeit by a smaller amount.

If the distance to galaxies are uncertain in an uncorrelated way, e.g., due to

thermal peculiar velocities (i.e., the finger-of-God effect) or due to photometric

redshifts, it is straightforward to include this effect in equation (4.26) by fixing

R(µ); we simply need to include a Gaussian uncertainty that corresponds to halo

velocity dispersion due to the finger-of-God effect or redshift uncertainty for pho-

tometric surveys, that is,

R(k, µ) = (1 + βµ2)2 exp (−k2µ2Σ2
z). (4.27)

Note that we do not increase values of Σ‖ by the amount of uncertainty in the

distance. The reason why we only need to modify R, whether due to the non-

linear redshift distortions or due to photometric redshift errors, is because the

resulting exponential suppression in power spectrum [P → P exp (−k2µ2Σ2
z)] not

only decreases the signal but also decreases the variance from the CDM power

spectrum in the line-of-sight direction. The net effect is thus equivalent to a rela-

tive increase of shot noise. In § 4.5.2, we present distance error estimates from a

photometric redshift survey using equation (4.27).

In the case of photometric redshift errors, there is an additional drawback
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other than the exponential suppression of power in the line-of-sight direction;

features in the transverse power spectrum are smeared by projections of clus-

tering at different redshifts onto a mean redshift. We ignore this effect in our

formulation. As we presented in Seo & Eisenstein (2003), this effect will increase

the error on DA by 13% for photometric uncertainty (1σ) of 4% in 1 + z at z = 1.

Meanwhile, using R(µ) exp (−k2µ2Σ2
z) may be a redundant correction in the

case of thermal peculiar velocities, as we may already be including these peculiar

velocity term in the computation of Σ‖ (of course, in redshift space) from simu-

lations. In fact, it is more conservative to put this term into Σ‖ than it is to put

into Σz, because while both cases decrease the signal by the same amount, the

latter case also decreases the noise by the same amount while the former does

not. Therefore, we do not take any steps to isolate thermal velocities in the La-

grangian displacements and move that contribution to Σz. We simply reserve Σz

for the inclusion of observational uncertainties such as spectroscopic or photo-

metric redshift errors.

4.4.2 A return to spherical symmetry

When Σ⊥ = Σ‖ and R = 1, the nonlinear exponential damping becomes isotropic,

and the 2-D Fisher matrix (eq. [4.26]) reduces to 1-D Fisher matrix (eq. [4.17])

multiplied by simple angular integrals.

F11 = Fln so

∫ 1

0
(µ2 − 1)2dµ (4.28)

F22 = Fln so

∫ 1

0
(µ2)2dµ (4.29)

F12 = Fln so

∫ 1

0
µ2(µ2 − 1)dµ (4.30)

This gives a 2 × 2 matrix of

Fij = Fln so







8
15

− 2
15

− 2
15

3
15





 . (4.31)
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Then the covariance matrix is

Cij = F−1
ij = F−1

ln so







9
4

3
2

3
2

6





 . (4.32)

The off-diagonal term is not zero, implying that the constraints on s−1
⊥ and s‖,

and hence the constraints on DA and H , are not independent even in the limit of

superb data. The off-diagonal term being positive means that DA and H −1 are

anticorrelated. For all modes except those at µ = 0 and 1, there exist positively

correlated changes in DA and H that leave the measured quantity of the mode

unchanged. Summing all the modes, with relative weight depending on µ, leaves

a net anticorrelation between DA and H −1. Geometrically, we are attempting

to measure the axes of an ellipsoidal shell, but a quadrupole distortion of the

shell is less well constrained because it leaves the intermediate angles relatively

unchanged. The value of r = C12/(C11C22)
1/2 ≈ 0.41 from equation (4.32). In fact,

we find that r ≈ 0.4 regardless of the choice of Σ⊥, Σ‖, nP0.2, and β.

We recommend that this covariance be included in assessing the implications

of acoustic scale measurements for dark energy. We note that DA is an integral

of H −1, so the fact that the acoustic scale measurements of these two are anticor-

related means that the constraints are slightly stronger than the diagonal errors

would imply.

If one is fitting a model in which the transverse and radial distance scales

are required to be the same, for example at low redshift, then this implies a

contraction of the Fisher matrix with the vector (1,−1). This yields an error

σln α = σln DA
[(1 − r2)/(1 + 2rσln DA

/σln H + σ2
ln DA

/σ2
ln H )]1/2 where σ2

ln DA
= C11

and σ2
ln H = C22. For the case of spherical symmetry, this reduces to (2/3)σln DA

(= F
−1/2
ln so

) as expected from equation (4.32).
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4.5 Testing the approximation

4.5.1 Distance errors from the full Fisher matrix and the 2-D model

We next compare the forecasts on DA and H from the full Fisher matrix (eq. [4.5],

hereafter, ‘full-D errors’) to those from our fitting formula (eq. [4.26], hereafter,

‘2-D errors’) for various values of nP0.2, Σ⊥, and Σ‖. We hold R = 1, as this is

a minor term. We will present the comparisons for the WMAP3 cosmology; the

performance is similarly good for the WMAP1 cosmology.

We first study the case where Σ‖ = Σ⊥. The upper panels of Figure 4.1 show

expected errors on DA and H using the baryonic peaks as a function of nonlinear

parameter, Σ⊥ and Σ‖ respectively, for various nP0.2. The blue lines show the

full-D errors and the black lines show the 2-D errors. The figure shows that the

errors from our fitting formula are in excellent agreement with the errors from

the full Fisher matrix calculations. Deviations are typically only a few percent.

The deviation becomes only noticeable for very large shot noise nP0.2 (< 0.1), and

very large Σ‖ (> 20h−1 Mpc) where our assumptions to derive equation (4.26)

break down.

We next present the distance errors when Σ⊥ < Σ‖. As nonlinear redshift dis-

tortions elongate the Lagrangian displacement distribution of pairs at 100h−1 Mpc

along ẑ by (1 + f), where f = Ω0.6, the distance errors for Σ⊥ < Σ‖ represent the

effect of nonlinear redshift distortions on baryonic features. We consider cases

where c = Σ‖/Σ⊥ = 2 and 3, while c = 2 corresponds to more realistic redshift

distortions, and c = 3 depicts an extreme case of anisotropy in Lagrangian dis-

placement fields.

In the lower panels in Figure 4.1, we show the full-D errors and the 2-D errors

from equation (4.26) for c = 2. Again. the 2-D model reproduces the full-D errors

to a good extent. We find a similarly good agreement between the full-D errors
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Figure 4.1 2-D errors from eq. (4.26) (black lines) and errors from the full Fisher
matrix calculations (blue lines) for WMAP3. Upper panels: c = Σ‖/Σ⊥ = 1.
Lower panels : c = 2. Left: Distance errors on DA . Right: distance errors
on H . Off-diagonal terms in the middle field of each panel are defined as
r = C12/(C11C22)

1/2. The bottom field of each panel shows the discrepancy be-
tween the 2-D errors and the full-D errors as a ratio of the two. The shaded region
corresponds to 2% of discrepancy. We find that the 2-D model gives excellent fits
to the errors from the full Fisher matrix calculations. Solid lines : nP0.2 = 76.1,
short-dashed : nP0.2 = 7.61, dotted : nP0.2 = 3.81, long-dashed : nP0.2 = 0.761,
dot-short-dashed : nP0.2 = 0.381, and dot-long-dashed : nP0.2 = 0.076. These val-
ues are chosen because nP0.2 ∼ 0.76 is appropriate for the luminous red galaxy
sample from SDSS in real space.
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and the 2-D errors for c = 3.

Note that errors from the fitting formula predict r ∼ 0.4 regardless of c and

R(µ). Values of r from the full-D calculations are fairly close to the expected

values.

4.5.2 Photometric redshift surveys

We use our fitting formula to derive distance errors for photometric redshift sur-

veys. We do this by modifying R(µ) → R(k, µ) as described in § 4.4.1. We

use WMAP3 cosmology and assume a photometric redshift error (1σ) of Σz =

34h−1 Mpc, which corresponds to 1% rms in (1 + z) at z = 1. We use equation

(4.27) to properly include the photometric redshift errors into the Fisher matrix.

Figure 4.2 shows good agreement between errors on DA from our fitting formula

and errors from the full-D Fisher matrix. Although the discrepancy is larger than

spectroscopic cases (i.e., Figure 4.1), the offset is at most 8%. Fortunately the devi-

ation happens to be small at the common values of nP0.2 for photometric redshift

surveys, e.g., nP0.2 = 3 − 10.

4.6 Comparing the distance estimates to N-body data

In this section, we compare our revised full Fisher matrix formalism (eq. [4.5])

to the distance estimates from a χ2 analysis of N-body data. We find that our

revised Fisher matrix formalism provides an excellent forecast for the distance

errors from the N-body data.

We use the N-body simulations from Seo & Eisenstein (2005) and perform a χ2

analysis to extract the acoustic scale from the simulated power spectrum. Seo &

Eisenstein (2005) used WMAP1 cosmology and the Hydra code (Couchman et al.,

1995) to generate 51 sets of cosmological N-body simulations with a box size of

5123h−3 Mpc3 that were evolved from z = 49 to z = 3 (30 sets at z = 3), 1, and 0.3.
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Figure 4.2 Errors on DA for photometric redshift surveys. We assume a redshift
error of Σz = 34h−1 Mpc. We compare the 2-D errors from eq. (4.26) using R(k, µ)
in eq. (4.27) (black lines) and the errors from the full Fisher matrix calculations
(blue lines) for WMAP3. The lower field of the panel shows the discrepancy be-
tween the 2-D errors and the full-D errors as a ratio of the two. The 2-D errors
from our fitting formula are in good agreement with the full-D errors; the dis-
crepancy is at most 8%, but is smaller for nP0.2 = 3− 10. Solid lines : nP0.2 = 76.1,
short-dashed : nP0.2 = 7.61, dotted : nP0.2 = 3.81, long-dashed : nP0.2 = 0.761,
dot-short-dashed : nP0.2 = 0.381, and dot-long-dashed : nP0.2 = 0.076.
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In the χ2 analysis, the spherically averaged real-space power spectra Pobs(kref)

from the N-body data are fitted to model power spectra including a scale dilation

parameter α, Pm(kref/α). In detail, we use an additive polynomial function to

represent the effect of shot noise and nonlinearity:

Pobs(kref) = (b0 + b1kref) × Pm(kref/α) + (a0 + a1kref + a2k
2
ref). (4.33)

The additive polynomial function should also suppress the distance information

from the broadband shape of the power spectrum. Recall that, in the Fisher ma-

trix calculations, we explicitly subtracted from the Fisher matrix the distance in-

formation from the broadband shape (§ 4.2).

Seo & Eisenstein (2005) used the linear power spectrum for Pm(kref/α); we

improve this by modifying the linear power spectrum to include the nonlinear

erasure of the acoustic peaks based on Eisenstein, Seo, & White (2006). In detail,

we use

Pm = (Plinear(k) − Psm(k)) exp
[

−k2Σ2
nl/2

]

+ Psmooth(k), (4.34)

where Psm is the “no wiggle” form from Eisenstein & Hu (1998). The value of Σnl

here does not need to be precisely the same as Σnl measured in Eisenstein, Seo, &

White (2006) and used in the Fisher matrix calculations. Σnl is used here merely

to improve the template power spectrum. The resulting errors on α presented

below are a smooth function of our choice of Σnl for Pm.

In equation (4.33), the fit parameters are α, a multiplicative bias b0, a scale-

dependent bias b1, and additive terms a0, a1, and a2 from nonlinear growth, bias,

or shot noise. The dilation parameter α is the ratio of the true distance to our

estimate from a χ2 analysis. For simplicity, we set the true cosmology as the ref-

erence cosmology, and therefore the mean value of α is expected to be unity. The

error on α represents the combined errors on DA(z) and H(z), more specifically

σα = (2/3)σDA
(§ 4.4.2), as we use the power spectra in real space.
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Since we do not know the true covariance matrix of power spectrum, we do

not trust differences in χ2 to give an accurate error on α. Instead, we calculate

the mean value and error of α using jackknife subsampling of simulations while

assuming an error on the band power to be given by a Gaussian random field as-

sumption, i.e., based on the number of modes contributing to the band power. We

derive 51 (30) subsamples by removing one simulation each time from our 51 (30

at z = 3) simulations. Each subsample is then fitted assuming a Gaussian random

error on the band power. The error and mean value of α is computed from the

variations among the jackknife subsamples. As we emphasized in Seo & Eisen-

stein (2005), assuming a Gaussian error ignores mode-coupled errors between

wavenumbers and therefore underestimates the statistical noise on small scales.

Nevertheless, the variations among jackknife sampling should reflect the true

non-Gaussian error to a reasonable extent, as these subsamples are drawn from

actual nonlinear N-body data. That is, χ2 statistic slightly misweights the data on

small scales in each subsample but the variation among subsamples should not

produce an overly optimistic σα compared to the true error.

The resulting σα from the revised χ2 analysis is, in general, similar to or slightly

smaller than the quoted values in Seo & Eisenstein (2005). At all redshifts, the

value of σα is stable with respect to different fitting ranges of wavenumber k < kfit

(kfit = 0.3, 0.4, and 0.5h Mpc−1) or the inclusion of b1. Note that in Seo & Eisen-

stein (2005), we had to use a narrower fitting range (kfit = 0.3h Mpc−1) at z = 0.3.

We will quote errors for kfit = 0.4h Mpc−1 without b1. When fitting to the matter

power spectrum, we will use nP0.2 ∼ 80.

Meanwhile, in all cases but one, the mean values of α are within 1.44σα of

unity, including 17 out of 24 cases within 1σα, indicating that there is no detection

of a bias on the mean value of α. The worst out of 24 cases, without b1 with
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kfit = 0.5h Mpc−1 at z = 0.3, gives a mean value of α that is 2.24σα off from unity.

In detail, in Seo & Eisenstein (2005), we reasoned that using b1 will slightly bias

α above unity, beyond 1% in worse cases, because the fitting process will favor

a negative b1 to match the erased portion of the BAO, and the resulting phase

shift in the baryonic peaks will be compensated by α above 1. Now that we

have accounted for the erased features in generating Pm(k), this bias on α has

decreased compared to Seo & Eisenstein (2005).

At z = 3, we find σα ∼ 0.35% for Vsur = 4h−3 Gpc3 from the N-body data.

This corresponds to 0.7% for Vsur = 1h−3 Gpc3. The full-D error (c = 1, Σnl =

3.07h−1 Mpc and nP0.2 ∼ 80) predicts σα = 0.65%, which is about 8% smaller

than the N-body data. Note that these Fisher matrix errors are different from the

values quoted in Seo & Eisenstein (2005), mainly because of the different fiducial

cosmology.

At z = 1, we find σα = 0.38% for Vsur = 6.845h−3 Gpc3. For Vsur = 1h−3 Gpc3,

this rescales to σα = 0.99%. The corresponding full-D error for Σnl = 5.90h−1 Mpc

and nP0.2 ∼ 80 predicts σα = 1.01% for Σnl = 5.90 and nP0.2 ∼ 80, in excellent

agreement.

At z = 0.3, we calculate σα = 0.60% for Vsur = 6.845h−3 Gpc3 of simulations.

For Vsur = 1h−3 Gpc3, the error rescales to σα = 1.57%. In comparison, the full-D

error for Σnl = 8.15h−1 Mpc and nP0.2 ∼ 80 predicts σα = 1.50%.

We also compute the results when the baryonic signature in these nonlinear

density fields at z = 0.3 is reconstructed using the simple scheme presented in

Eisenstein, Seo, Sirko, & Spergel (2006). We use a 10h−1 Mpc Gaussian filter to

smooth gravity, displace the real particles and a set of smoothly distributed ref-

erence particles by the linear theory motion predicted from the nonlinear density

fields, find new density fields from the difference of the density fields of the real
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particles and the reference particles, and compute the power spectra of these new

fields. Fitting these spectra, we find σα of 0.34% for 4h−3 Gpc3 of simulation vol-

ume3 and thus 0.68% for 1h−3 Gpc3. This is a considerable improvement over the

1.57% measured without reconstruction. This matches the Fisher matrix predic-

tion if Σnl ∼ 3.4h−1 Mpc, while we measured Σnl ∼ 4.4h−1 Mpc in Eisenstein, Seo,

Sirko, & Spergel (2006). Whether this difference is due to sample variance or due

to our technical difficulties in estimating Σnl for the reconstructed density fields

remains to be studied. While this result is an example for a negligible shot noise

without galaxy bias, our χ2 result implies an impressive prospect for the recon-

struction in the existing and future galaxy surveys. We will investigate the effects

of shot noise and galaxy bias on reconstruction in future papers.

For the biased case at z = 0.3, we use the MASS case with m = 10 from Seo

& Eisenstein (2005), which has galaxy bias similar to the luminous red galaxy

(LRG) samples in SDSS (Zehavi et al., 2005a). From the χ2 analysis, we find

σα = 0.74% for Vsur = 6.845h−3 Gpc3. The error is equivalent to σα = 1.94% for

Vsur = 1h−3 Gpc3. To evaluate errors using the Fisher matrix, we need to know the

value of nP0.2 that corresponds to this case. This is tricky because the nonlinear

growth and bias effect in the MASS case with m = 10 increases the small-scale

power above a nominal shot noise that would be strictly from the inverse number

density. In addition, this anomalous power is not likely to be constant in scale.

Thus, we roughly estimate Neff = nP0.2 using the best fit additive polynomial in

equation (4.33) evaluated at k = 0.2h Mpc−1: we derive Neff ∼ 1.5, which corre-

sponds to σα ∼ 2.2% for Vsur = 1h−3 Gpc3.

In general, we find excellent agreement between the errors from the χ2 analy-
3We only include 30 out of 51 sets of simulations because the other 21 sets were produced from

initial input power spectra that omitted the baryonic signature at k > 0.3h Mpc−1. Hence, we use
the full 51 only when the non-linearities have reduced the role of the k > 0.3h Mpc−1.
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sis of the N-body data and the analytic full-D/1-D errors. The discrepancy is at

most 13% for the cases we have shown. Some of the discrepancy is probably from

sample variance. With only 51 values of α, we cannot estimate σα perfectly. In

addition, while the small-scale power added due to various nonlinearities can be

accounted for by properly modifying Neff below nP0.2, variance due to nonlinear-

ity are not accounted for in our Fisher matrix formalism: this will induce slightly

larger distance errors from the N-body data than the full-D/1-D errors. While

our fitting formula in the χ2 analysis produces reasonable estimates of distance

errors, it is not necessarily a most optimized one (other examples can be found

in Huff et al., 2007; Koehler et al., 2007; Smith et al., 2007). More sophisticated

fitting schemes may also reduce the discrepancy between the χ2 analysis and the

Fisher matrix estimates.

4.7 Discussion

We have computed the cosmological distance errors available from the BAO in

future galaxy redshift surveys using a Fisher matrix formalism that incorporates

the Lagrangian displacement field to account for the erasure of the BAO due to

nonlinear growth, bias, or redshift distortions. The resulting formalism is only

a function of survey volume, shot noise, and a nonlinear parameter that can be

measured quantitatively. We have derived physically motivated lower dimen-

sional approximations to the full Fisher matrix and showed excellent agreement

between distance error estimates from the approximations and the full Fisher

matrix. We present the resulting fitting formula to calculate a 2-dimensional co-

variance matrix for DA(z) and H(z). The fitting formula straightforwardly ap-

plies to photometric redshift surveys with a simple modification to the effective

shot noise, although its agreement to the estimates from the full Fisher matrix
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becomes slightly degraded. The merit of the fitting formula is its simplicity in

terms of input variables and computation.

Finally, we compared the error estimates from the revised Fisher matrix with

the error estimates from a χ2 analysis of N-body simulations. For the χ2 analysis,

we also used the Lagrangian displacement field to account for the nonlinear effect

on baryonic peaks in the template power spectrum. This improved various as-

pects of the error estimates. We showed that both error estimates are in excellent

agreement. The discrepancies (at most 13%) could be due to non-Gaussianity con-

tributions to the variance not included in the Fisher matrix calculation, but may

simply be sample variance due to the limited number of N-body simulations.

At http://cmb.as.arizona.edu/∼eisenste/acousticpeak/bao

forecast.html, we provide a C-program for the fitting formula that can be

used both for spectroscopic and photometric redshift surveys.

To use the formula, one must construct Σ⊥, Σ‖, and nP at the redshift of the

survey in question. Note that Σ⊥ and Σ‖ are dominated by the bulk flows in the

Universe; their simple scalings were given in § 4.2, although one should probably

impose a lower σ8,matter and rescale Σ0 for WMAP3 cosmology. Eisenstein, Seo,

& White (2006) found that highly biased tracers could increase the Lagrangian

variances by small amounts, although this has not been calibrated in detail. The

value of nP0.2 is easy to calculate by using P0.2 = 2710σ2
8,g for WMAP3, and P0.2 =

2875σ2
8,g for WMAP1.

Reconstructing the density field reduces the Lagrangian displacements and

restores the baryonic peaks from nonlinear degradation (Eisenstein, Seo, Sirko,

& Spergel , 2006). In Eisenstein, Seo, Sirko, & Spergel (2006), we found that our

simple scheme was able to decrease Σ⊥ and Σ‖ about by half at z = 0.3 (from Σ⊥ ∼

8h−1 Mpc and Σ‖ ∼ 14h−1 Mpc). In the middle panel of Figure 4.1, this decrease
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due to the reconstruction happens where the performance is improving rapidly

with Σ, making future galaxy redshift surveys more promising. The χ2 results

in § 4.6 implies that the improvements may be better than 50%. We have not yet

quantified these improvements in Σ as a detailed function of nP and redshift,

but we recommend, to be conservative, that one consider a 50% drop in Σ as

an estimation of what reconstruction can do; Figure 1 of Eisenstein, Seo, Sirko,

& Spergel (2006) estimates that correcting for bulk flow on scales larger than

k ≈ 0.1h Mpc−1 will decrease the displacement by 50%.

Although equation (4.26) appears complicated in that one must compute three

two-dimensional integrals, it is far simpler than the full Fisher matrix. The 12-

dimensional problem requires that one compute many integrals of oscillatory in-

tegrands to high precision to avoid degeneracies. In contrast, the few integrals

in the approximation are all smooth and can be computed rapidly and robustly.

Meanwhile, the approximation includes the anisotropic effects of redshift distor-

tions in the shot noise and the nonlinear degradations of the acoustic scale.

The 1-D model presented in § 4.3 offers an estimate of how the performance

scales with the non-linear degradation. Let us rework equation (4.19), replacing

the Silk damping form with a Gaussian and approximating the denominator as a

power law k2n. The performance then becomes proportional to
∫ ∞

0
dk k2−2n exp(−k2Σ2) (4.35)

where Σ2 = Σ′2
s + Σ2

nl. Hence, we find that the distance-scale performance scales

as Σ1.5−n. For the case of white noise, we have n = 0 and the result that the

precision scales as Σ3/2. This is familiar with white noise: a peak has a higher

signal-to-noise ratio proportional to the inverse square root of its width, while

the measurement of its centroid scales as the width divided by the signal-to-noise

ratio.
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However, the cold dark matter power spectrum is better approximated by k−1

near k ≈ 0.15h Mpc−1. Therefore, if our acoustic scale measurements are sample-

variance limited, we expect to use n = −1, which implies a precision scaling as

Σ5/2. Alternatively stated, the survey volume to reach a given precision scales as

Σ5. In the language of centroiding a peak, what is happening is that the noise

is not white and instead has large correlations between neighboring separations.

Shifts in the centroid of a narrower peak require larger changes on smaller scales

that the noise model disfavors.

This rapid scaling with Σ implies that one gains rapidly with improvements

in reconstruction so long as Σnl is not much smaller than the Silk damping scale

of 8h−1 Mpc. The difference between Σnl = 8h−1 Mpc and 4h−1 Mpc is a factor of

1.8 in distance and 3.2 in survey area. It should be noted that the redshift-space

boosts of the displacements along the line of sight cause Σ‖ to be interestingly

large even at z ∼ 2.

Finally, we consider the cosmic variance limits of the acoustic oscillation method.

Figure 4.3 presents the fractional errors on DA /s and sH from a survey of 3π sr,

i.e., the reasonably accessible extragalactic sky. Redshift bins of width 0.1 are

used. The solid (black) lines show the precision available for a survey with per-

fect reconstruction and no shot noise. The dotted (blue) lines show the precision

for a survey with the unreconstructed nonlinear degradations and shot noise of

nP0.2 = 3. The dashed (red) lines show a survey with reconstruction halving

the values of Σ⊥ and Σ‖, again with nP0.2 = 3. This last case is what we would

suggest as a reasonable estimate for a densely sampled survey.

For comparison, a photometric survey with photometric redshift errors of 3%

rms in (1 + z) and a number density of nP0.2 = 3 will achieve errors on the an-

gular diameter distance that are
√

12 worse at z = 1 and
√

8 worse at z = 3 (the
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dot-dashed magenta line in Fig. 4.3). Here, we assume that reconstruction is not

possible due to confusion arising from the projection of the density field. Hence,

as a rule of thumb, the photometric survey carries a factor of 10 penalty in effec-

tive area. If the photometric redshifts are improved to 1% rms in (1 + z), then

the results improve by a factor of about 2.5 in the variance, i.e., only a factor of 4

worse in area relative to the spectroscopic survey. The constraints on the Hubble

parameter are uselessly poor.

In summary, with a spectroscopic survey, the acoustic oscillation distance

scale can reach precisions of about 0.4% and 0.7% on DA /s and sH , respectively,

for each ∆z = 0.1 bin at z ≈ 1, improving slightly toward z = 3. Of course, most

dark energy models predict smooth trends in DA and H on scales of ∆z = 0.1, so

in practice one would combine several bins in constructing tests. Hence, effective

precisions better than 0.2% in distance are available with the acoustic oscillation

method.
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Figure 4.3 Fractional errors on DA /s (left) and sH (right) available as a function
of redshift assuming redshift bins ∆z = 0.1 and a 3π sr survey area of a spec-
troscopic survey. The solid line (black) in each case is the cosmic variance limit,
assuming perfect linearity and no shot noise. The dotted line (blue) assumes
unreconstructed level of non-linearity and a shot noise level of nP0.2 = 3. The
dashed line (red) uses the same shot noise and assumes that reconstruction can
halve the values of Σ⊥ and Σ‖. For comparison, the dot-dashed line (magenta) in
the left panel assumes a photometric redshift survey with redshift errors of 3%
rms in (1 + z) and a number density of nP0.2 = 3.
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CHAPTER 5

PASSIVE EVOLUTION OF GALAXY CLUSTERING

We present a numerical study of the evolution of galaxy clustering when galaxies

flow passively from high redshift, respecting the continuity equation throughout.

While passive flow is a special case of galaxy evolution, it allows a well-defined

study of galaxy ancestry and serves as an interesting limit to be compared to

non-passive cases. We use dissipationless N-body simulations, assign galaxies

to massive halos at z = 1 and z = 2 using various halo occupation distribution

(HOD) models, and trace these galaxy particles to lower redshift while conserv-

ing their number. We find that passive flow results in an asymptotic convergence

at low redshift in the HOD and in galaxy clustering on scales above ∼ 3h−1 Mpc

for a wide range of initial HODs. As galaxies become less biased with respect to

mass asymptotically with time, the HOD parameters evolve such that M1/Mmin

decreases while α converges toward unity, where Mmin is the characteristic halo

mass to host a central galaxy, M1 is the halo mass to host one satellite galaxy, and

α is the power-law index in the halo-mass dependence of the average number of

satellites per halo. The satellite populations converge toward the Poisson distri-

bution at low redshift. The convergence is robust for different number densities

and is enhanced when galaxies evolve from higher redshift. We compare our re-

sults with the observed Luminous Red Galaxy (LRG) sample from Sloan Digital

Sky Survey that has the same number density. We claim that if LRGs have experi-

enced a strict passive flow, their 〈Ng(M)〉 should be close to a power law with an

index of unity in halo mass. Discrepancies could be due to dry galaxy merging

or new members arising between the initial and the final redshifts. The spatial

distribution of passively flowing galaxies within halos appears on average more
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concentrated than the halo mass profile at low redshift. The evolution of bias for

passively flowing galaxies is consistent with linear bias evolution on quasilinear

as well as large scales.

5.1 Introduction

An accurate match between galaxies at different redshifts can provide essential

clues for constructing theories of galaxy evolution. The ancestry of a given pop-

ulation of galaxies, however, is complicated to establish: as galaxies undergo ma-

jor or minor merging with different probabilities or have different star-formation

rates, individual galaxies may no longer retain the common internal, observa-

tional properties at later redshifts. Meanwhile, the evolution of clustering of the

given initial galaxy population as a whole can provide another route to trace

ancestry, independent of the evolution of the appearance (i.e., the internal prop-

erties) of galaxies: except for on very small scales where the baryonic physics

may dominate, the clustering of galaxies depends on the clustering of the typi-

cal underlying density peaks where they reside. Understanding the evolution of

clustering of galaxy populations can provide a key tool for controlling the uncer-

tainties in the evolution of the appearance of galaxies. As a starting point, in this

chapter we will study how a given galaxy population is spatially distributed at

low redshift under the assumption that a single unchanging set of galaxies flows

from various initial distributions at high redshift. In other words, we consider

the effect of the continuity equation in gravitational clustering, with no sources

or sink terms due to galaxy merging or formation.

Recent studies show that one can reproduce the clustering of observed galax-

ies by taking the halos and their subhalos as a proxy between the galaxies and

mass with a proper correspondence of galaxy luminosity to halo mass (Colı́n et



178

al., 1999; Neyrinck et al., 2004; Kravtsov et al., 2004; Conroy et al., 2006; Wein-

berg et al., 2006). The resulting occupancy of the galaxies among halos is often

parameterized in the form of halo occupation distribution at the given redshift

(hereafter, HOD) (Benson et al., 2000; Peacock & Smith, 2000; Seljak, 2000; Scoc-

cimarro et al., 2001; Benson, 2001; White et al., 2001; Berlind & Weinberg, 2002;

Berlind et al., 2003; Kravtsov et al., 2004; Zehavi et al., 2005b; Zheng et al., 2005;

Zheng & Weinberg, 2007; Zheng et al., 2007a). In those semi-analytic and SPH

simulations, galaxy populations are selected by stellar or baryon mass that would

correspond to observational properties at the given time. Such snapshots at dif-

ferent redshifts collectively offer a general idea on the evolution of clustering and

halo occupation statistics of galaxies. For example, the distinction between old

and young populations in Berlind et al. (2003) and Zheng et al. (2005) hints an

evolution of HOD of galaxies with time.

However, the characteristics of the clustering evolution of a given population

are difficult to directly infer from these studies, as here the set of galaxies at low

redshift does not necessarily have a one-to-one relation with the set at high red-

shift. Conversely, the connection between populations at different epochs can

be tested and confirmed once we understand the characteristics of the clustering

evolution for a given population by means of N-body simulations.

In addition, once we understand the evolution of clustering of galaxies, we

also acquire a better handle for the clustering bias between the galaxies and mass,

which is crucial for deriving cosmological information from the galaxy distribu-

tion. That is, to isolate useful cosmological information from the observed galaxy

distributions, we need a good theory to predict the characteristics of galaxy cor-

relation function for a given population so that we can reduce the uncertainty in

modeling galaxy clustering.
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What is meant by ‘a given population of galaxies’ of course depends on our

definition. By defining a population at the initial redshift regardless of their ap-

pearance at the observed time, we naturally exclude the addition of any new

members to the population during evolution. The galaxies of a given initial pop-

ulation in reality may undergo merging among them, in which case members

of the population at different redshifts no longer have a one-to-one correspon-

dence. In this study, we want to test the clustering evolution of a galaxy popu-

lation when its members are preserved throughout evolution. As such, the pop-

ulation respects the continuity equation without source (i.e., new members) and

sink terms (i.e., merging) and therefore its number is conserved. We refer to this

as ‘passive flow’ evolution of a galaxy population, as an analogy to the passive

stellar evolution where the stellar population within an individual galaxy is pre-

served. Although this passive flow is certainly not the whole picture of galaxy

evolution, it serves as an interesting limit of galaxy clustering evolution by itself

and so as a template to be compared to non-passive flow evolution. It is shown

that the continuity equation naturally forces the evolution of clustering of biased

tracers to converge to a small area of parameter space, at least on large scales:

the bias on large scales converges toward unity with time (Dekel & Rees, 1987;

Nusser & Davis, 1994; Fry, 1996; Hamilton, 1998; Tegmark & Peebles, 1998). In

this chapter we test whether the continuity condition, i.e., passive flow, results in

further distinct parametric signatures.

We use dissipationless N-body simulations, identify halos, and assign galaxies

to halos based on various halo occupation distributions. We trace these galaxies

to lower redshifts while conserving their numbers, and study the evolution of

HOD and the correlation function in the turn-around regime (i.e., quasilinear or

smaller scales).
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We then compare the results of passive flow with observed galaxy popula-

tions. While galaxies flow passively, the stellar contents of individual galaxies

may or may not passively evolve. Even without merging, some galaxies within

a given initial population may continue to form stars with existing cold gas and

stay blue, while others might end star formation and become red. However, such

a heterogeneous appearance makes it difficult to select a consistent set of objects

at the two redshifts, i.e., to avoid sources and sink terms. We thus consider red

galaxies that have lost their cold gas content and ceased star formation before

z ∼ 1 or 2 (i.e., galaxies with passive stellar evolution) as an observational coun-

terpart. Such galaxies will likely maintain a common observational appearance

during the subsequent evolution. When comparing to the observations, we will

look for any discrepancies in galaxy correlation function and HOD that might in-

dicate galaxies entering or leaving the observed population. Hereafter, we often

use the term galaxy ‘evolution’ to describe the evolution of galaxy distributions

through passive flow. We will explicitly use ‘passive stellar evolution’ to distin-

guish from passive flow. An example of such comparison between the numerical

passive flow evolution and the observed red galaxies is found in White et al.

(2007). In this chapter, we aim at a more extensive study of characteristics of

passive flow evolution.

We compare our results with Luminous Red Galaxies (hereafter, LRGs) from

Sloan Digital Sky Survey (hereafter, SDSS) at z = 0.3 (Eisenstein et al., 2001),

as an observational counterpart. These galaxies reside in very massive halos,

and their red colors, lack of cold gas, and the evolution of luminosity function

imply that they have had low star formation rates for a few billions of years (e.g.,

Wake et al., 2006; Brown et al., 2007). The observed small-scale clustering implies

their low merger rate, at least at low redshift (Masjedi et al., 2006). Therefore the
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comparison of our results to the LRGs will manifest signatures of non-passive

flow evolution in the LRGs if any. With these realistic counterparts available, we

focus our study of passive flow evolution on galaxies that give the LRG number

density at low redshift. We call these galaxies as ‘progenitors’ of the LRGs. We do

not assume any specific observational properties of these progenitors, but only

assume that these progenitors are a population that is distributed in halos as a

function of the host halo mass at the initial redshift and are set to undergo passive flow

after the initial redshift. We look for any dependence of the outcome on the initial

redshift. We also study the passive flow evolution for lower mass halos to find

whether the signatures of passive flow depend on a halo mass range.

In § 5.2 we describe the parameters for N-body simulations and methods for

assigning LRG progenitors at high redshift. In § 5.3 we present the results of the

first moments of HOD, the average number of galaxies per halo as a function

of halo mass, and correlation function of passively flowing galaxies. In § 5.4 we

investigate the second moments of HOD, the average pair counts within a given

mass of halo, for passively flowing galaxies. In § 5.5 we compare the resulting

statistics for passively flowing galaxies with the best fit for the observed LRGs,

and in § 5.6 we search for a signature of passive flow evolution or environmental

effects in correlation function for the given HOD. In § 5.7 we study the evolution

of bias, compared to linear theory. In § 5.8 we discuss the details in the clustering

of passively flowing galaxies.

5.2 Simulated halos and galaxy populations

5.2.1 N-body simulations

Our cosmological N-body simulations use the Hydra code (Couchman et al.,

1995) in collisionless AP3M mode. We use the CMBfast (Seljak & Zaldarriaga,



182

1996; Zaldarriaga et al., 1998; Zaldarriaga & Seljak, 2000) linear power spectrum

to generate many initial Gaussian random density fields at redshift of 49 and

evolve them to lower redshifts. We generate the initial fields using the cos-

mological parameters similar to the 1st year Wilkinson Microwave Anisotropy

Probe (WMAP) data (Spergel et al., 2003): Ωm = 0.27, ΩΛ = 0.73, Ωbh
2 = 0.046,

h = 0.72, and n = 0.99. We normalize the initial fields by requiring σ8 = 0.9

at z = 0 and assuming a linear growth function. Each simulation represents

Vbox = 2563h−3 Mpc3 and follows the evolution of 2563 dark matter particles

(∼ 1.0355 × 1011M¯/particle). We compute gravity using 2563 force grids with

a Plummer softening length of 0.1 h−1 Mpc in comoving unit. A total of 29 simu-

lations are used to allow little interference from statistical variance.

We use the friends-of-friends method (Davis et al., 1985) and identify host

halos by adopting a comoving linking length of 0.2 h−1 Mpc. We assign galaxies

to dark matter halos with various halo occupation models. In our models, halos

with fewer than 100 particles host at most 0.2% of the galaxy population at z = 1

and 3% at z = 2. We use small group multiplicities only to represent the extreme

low mass tail of the halo occupation distribution.

5.2.2 HOD models and galaxies

We start with an assertion that the number of galaxies in a halo at the initial

redshift is only a function of the halo mass not of environments. We assume

that the initial halo occupation distribution follows those observed in the local

universe and adopt the following form:

〈Ng(M)〉 = exp(−Mmin/M) × [1 + (M/M1)
α] (5.1)

where M is the mass of a halo, Mmin is a characteristic mass scale for a halo to

have one central galaxy, and M1 is a mass for a halo with a central galaxy to
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have one satellite galaxy. A central galaxy is assigned to a halo based on the

nearest integer distribution with the average of 〈Ncen(M)〉 = exp(−Mmin/M). We

find the most bound particle1 within each halo and label it as a central galaxy.

For those halos hosting central galaxies, a number of satellites are randomly

assigned to the rest of particles in the halo, based on the Poisson distribution

with the average of 〈Nsat(M)〉 = (M/M1)
α (that is, the average of 〈Nsat(M)〉 =

exp(−Mmin/M)(M/M1)
α over all halos). The satellite galaxies therefore trace mass

inside the halo at the initial redshift.

The observed spatial distribution of galaxies within a halo is similar to mass

distribution while the subhalo distribution from simulations is antibiased with

respect to mass and galaxies (Ghigna et al., 1998, 2000; Colı́n et al., 1999; Springel

et al., 2001; Diemand et al., 2004; Gao et al., 2004a,b; van den Bosch et al., 2005a;

Nagai & Kravtsov, 2005; Zentner et al., 2005; Weinberg et al., 2006, and obser-

vational references therein) (but see Taylor & Babul, 2004). Meanwhile, Nagai &

Kravtsov (2005) and Conroy et al. (2006) showed that tracing subhalos based on

their mass at the time of accretion removes most of the antibias, and using this

scheme, Conroy et al. (2006) reproduced the clustering of the observed galaxies.

Based on these results, we assume that satellites of LRG progenitors trace mass

inside a halo; we cannot be more rigorous, as our mass resolution does not allow

us to find subhalos or the mass of subhalos at any given time.

We have little information on how the progenitors of the LRGs are distributed

at z ∼> 1, and therefore we test a wide range of initial 〈Ng(M)〉. We define 11

different HOD models at z = 1 (Models 1–11) and at z = 2 (Models 21–31) with

variations in M1/Mmin and α, shown in Table 5.1 and 5.2: at each redshift, 9 mod-

els with M1/Mmin = 2, 10, and ∼ 25, and α = 0.5, 1, and 2 and additional two
1We find a particle with the lowest total energy in a halo.
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models with only central galaxies. For Model 10 and Model 30, we assign central

galaxies without the satellite term in Eq 5.1. For Model 11 and Model 31, we do

not use Eq 5.1 but consider a case in which halos in a very narrow range of mass

can host central galaxies: we take a mass range of a factor 2. We constrain the

appropriate initial M1 and Mmin by fitting the total number density of galaxies to

10−4h3 Mpc−3, the number density of the observed LRG sample with luminosity

limit −23.2 < Mg < −21.2 at 0.16 < z < 0.36 (Zehavi et al., 2005a).

We trace and locate the labeled particles (i.e., galaxies) in the dark matter halos

at lower redshifts down to z = 0.3 and derive their correlation function. We con-

struct HODs of the evolved galaxies by counting the number of galaxies per halo

at different halo mass bins. We do not physically identify which of the galax-

ies become central or satellite galaxies in halos at low redshift, but we make a

parametric distinction of the central and the satellite populations. That is, we es-

timate 〈Ncen(M)〉 by counting halos with galaxies. When halos host more than

one galaxy, we count the additional galaxies as satellites and calculate 〈Nsat(M)〉.

By construction, the central galaxies at low redshift follow the nearest integer

distribution, while the probability distribution of satellites will be studied in the

following sections. From the central and satellite number densities we derived,

we fit the resulting 〈Ng(M)〉 to Eq 5.1 and derive the best fit parameters: Mmin

from 〈Ncen(M)〉 and M1 and α from 〈Nsat(M)〉. The resulting 〈Ng(M)〉 is not nec-

essarily in the exact form of Eq 5.1, but close enough in most cases that HOD

parameters at the initial redshift and the final redshift can be compared. M1 and

α are fitted over halo mass roughly larger than M1 to have a better description of

the HOD for massive halos.
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5.2.3 Two-point correlation function

The mapping between two-point correlation function and halo occupation distri-

bution can be described analytically by a halo model of two components: a 1-halo

term from the distribution of excess pairs within the same halo, which dominates

the small-scale correlation function, and a 2-halo term from excess pairs between

different halos, which dominates the large-scale correlation function (Seljak, 2000;

Ma & Fry, 2000; Berlind & Weinberg, 2002; Cooray & Sheth, 2002). The distribu-

tion of galaxy pairs within and between halos depends on the first and the second

moments of HOD, given the halo mass function and the halo profile. Thus fea-

tures in HOD are closely related to the 1-halo and 2-halo terms of the correlation

function.

From our simulations, the two-point correlation function of galaxies is cal-

culated by counting the number of excess pairs at a given separation for each

simulation box and then averaging spherically over all simulations. As we only

study the distribution of pairs in this chapter, we hereafter abbreviate ‘two-point

correlation function’ to ‘correlation function’.

5.3 HOD and correlation function of passively flowing galaxies

We start by summarizing the characteristics of passive flow evolution in the HOD,

mainly the first moment 〈Ng(M)〉, and the correlation function. The clustering

bias of these galaxies will converge toward unity with time on linear scales (Dekel

& Rees, 1987; Nusser & Davis, 1994; Fry, 1996; Hamilton, 1998; Tegmark & Pee-

bles, 1998), which means that the clustering of different models will converge

with time2. In this section, we will find how this translates to the way for halos to
2The expected bias at z, bz , for passively flowing galaxies from z0, is bz = (bz0

− 1)/G + 1 on
linear scales where bz0

is the galaxy bias at z0 and G is the growth factor between z and z0. See
§ 5.7.
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populate galaxies and whether there is a similar convergence in correlation func-

tion on smaller scales. We assume galaxy populations that passively flow from

z = 1 and z = 2. We use various HOD models that span from models with a

significant satellite fraction to models with little or no satellite galaxies and study

the difference in their fate. We also find how the result depends on the number

density of galaxies (and hence the mass scale of the halos).

5.3.1 Galaxies flowing passively from z = 1

We assign galaxies to dark matter halos at z = 1 using 11 different HOD mod-

els (Models 1–11) and trace the resulting evolution of the HODs and correlation

functions down to redshifts of 0.8, 0.6, 0.4, and 0.3.

Table 5.1 lists the HOD parameters at z = 1 and at z = 0.3 for Models 1–11.

Figure 5.1 shows the evolution of correlation functions and HODs for Models 1,

3, 5, 7, 10, 11 among those listed in Table 5.1. The black solid lines represent the

initial HODs and correlation functions at z = 1, and the blue solid lines are for

the resulting HODs and correlation functions at z = 0.3 while the reddish solid

lines show the values at intermediate redshifts. The data points shown here are

taken from Zehavi et al. (2005a) for the observed clustering of the LRGs between

−23.2 < Mg < −21.2 at z = 0.3, which sets the fiducial number density of LRG

progenitors in this chapter. As expected, the galaxy clustering (except for Model

3) grows slowly with time on all scales while the bias with respect to the dark

matter decreases.

In Models 1, 2, and 3, in which M1/Mmin ∼ 2, the fraction of satellite galaxies is

much larger compared to those with larger values of M1/Mmin. As massive halos

populate more satellites, low-mass halos host a smaller number of central galax-

ies at a fixed number density. Thus the clustering is more weighted by high mass

halos. The 1-halo term is prominent in these models because the large satellite
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Table 5.1. The initial and final HOD parameters of the galaxies passively

flowing from z = 1

Model α M1/Mmin M1
a Mmin

a fcen α M1/Mmin M1
a Mmin

a fcen

z = 1 z = 0.3

1 0.5 2.061 1.0 0.4853 0.58 0.829 2.149 1.847 0.8592 0.53

2 1 2.167 1.0 0.4614 0.63 1.06 2.414 1.964 0.8133 0.56

3 2 1.929 1.0 0.5185 0.53 1.67 2.159 1.994 0.9236 0.48

4 0.5 9.814 4.0 0.4076 0.74 0.916 4.223 3.00 0.7097 0.67

5 1 11.16 4.0 0.3585 0.88 1.11 5.979 3.704 0.6195 0.79

6 2 11.90 4.0 0.3360 0.97 1.23 7.408 4.281 0.5779 0.86

7 0.5 26.50 10 0.3774 0.83 0.927 5.390 3.525 0.6540 0.74

8 1 29.43 10 0.3398 0.95 1.033 7.353 4.302 0.5851 0.84

9 2 30.39 10 0.3291 0.99 1.10 8.646 4.890 0.5655 0.88

10 0.3275 1 1.04 9.052 5.091 0.5625 0.88

11 0.2141 1 1.43 12.01 10.39 0.8651 0.91

aMass of halos are in the unit of 1014M¯.

Note. — We show the input HOD parameters at z = 1 and the best fit HOD parameters at

z = 0.3 for Models 1–11. Note that M1 and α at z = 0.3 are fitted over M > M1 in order to

better describe the shape of satellite HODs at the massive end. The value fcen is the fraction of

central galaxies to the total number of galaxies.
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Figure 5.1 The evolution of correlation functions and HODs of galaxies that flow
passively from z = 1. The left panels show ξ in real space (upper) and ξ in redshift
space (lower). The data points are from Zehavi et al. (2005a) for the observed
clustering of the LRGs between −23.2 < Mg < −21.2 at z = 0.3. The middle
panels show the evolution of HODs, and the right panels show the decomposed
HODs of central galaxies and satellite galaxies at z = 1 (gray) and z = 0.3 (cyan).
Black line: the initial condition at z = 1. Blue: at z = 0.3. Red: at z = 0.8, 0.6, 0.4.
The input HOD for Model 11, which is a square function, appears smoothed due
to our choice of mass bin. The values in the parenthesis in the right panels denote
(α, M1/Mmin) at z = 1.
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fraction of massive halos emphasizes the structure of a halo. The trend becomes

extreme in Model 3 in which massive halos are weighted most heavily. The evo-

lution of clustering in Model 3 is not as evident as in other models, first because

of the statistical noise due to the small number of very large halos and and sec-

ond because of the large initial bias which drives a decrease in bias toward unity

faster: as the galaxy clustering catches up with that of dark matter, the growth of

galaxy clustering with a larger initial bias slows down more relative to the growth

of dark matter clustering. As halos accrete mass and merge, the final 〈Ng(M)〉 at

z = 0.3 is parameterized with bigger values of Mmin and M1 than at z = 1 (Table

5.1). The evolution of α shows an increase in Model 1, but changes very little in

Models 2 and 3. In all cases, the fraction of satellites increases with time due to

halo merging events.

Models 4, 5, and 6 start with M1/Mmin ∼ 10 at z = 1 with larger values of M1

and smaller values of Mmin, compared to Models 1–3. As a result, the clustering

both from 1-halo and 2-halo terms is lower than in Models 1–3. While Mmin in-

creases with time, M1 changes little. The value of α increases or decreases toward

near unity. Due to the steady M1, 〈Ng(M)〉 along different redshifts overlaps near

M1. Model 5, with an initial α = 1, shows little evolution in α.

In Models 7, 8, and 9, M1/Mmin ∼ 30 initially. The clustering strength is even

lower in these models as the values of Mmin is even smaller. As the satellite pop-

ulation decreases from Models 7 to 9, the 1-halo term in the correlation functions

is suppressed due to the exclusion effect in a halo finder. However, the evolution

of clustering quickly recovers the exclusion effect at later redshifts. The value of

M1 decreases with time while Mmin increases with time. Again, α evolves toward

near unity.

In Model 10, we initially populate only the halos with central galaxies with-
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out satellites. At low redshift, many of these central galaxies turn into satellite

galaxies by halo merging, and the results at z = 0.3 are very similar to those of

Model 9.

The evolution of HOD for Models 1–10 is therefore characterized as follow-

ing: α approaches toward an attractor near unity, and a large initial M1/Mmin

decreases with time (due to halo merging without galaxy merging) while a small

initial M1/Mmin stalls. Such evolution of HOD parameters drives the convergence

of 〈Ng(M)〉 at low redshift. Figure 5.2 and 5.3 show the comparisons of HOD and

correlation functions between different models at the initial redshift (z = 1) and

the final redshift (z = 0.3). From the figures, it is clear that passive flow evolution

leads to an asymptotic convergence of clustering on scales above r ∼ 3h−1 Mpc

and of the first moment of HOD. Most of the models produce a stronger cluster-

ing than that of the observed LRG data while Model 10 marginally fits the data.

From Figure 5.3, clustering on small scales (r ∼< 3h−1 Mpc) varies considerably

despite the similarity in their HODs. The difference on small scales implies that

the second moment of HOD, that is, the average number of galaxy pairs within

a halo, may differ for different models. The difference in redshift-space cluster-

ing at z = 0.3 extends to the larger scale than in real-space clustering due to the

finger-of-God effect. We revisit this issue of second moments in § 5.4.

In all models, the increase in Mmin is consistent with the typical mass accretion

between z = 1 and z = 0.3 for the corresponding mass range (e.g., Wechsler et al.,

2002). On the other hand, the mass accretion of halos near M1 will often involve

accretions of new galaxies into the halos. For Models 1–3, the galaxy accretion

near M1 is minor compared to the mass accretion, as the initial value of M1 at

z = 1 is closer to Mmin, driving the increase in M1 with time. For Models 7–9,

the large M1/Mmin at z = 1 implies that the mass accretion to a halo near M1 will
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Figure 5.2 The initial HODs at z = 1 (left) and the final HODs at z = 0.3 (right)
for Models 1–11. Black : Models 1–3 (from Solid, long-dashed to short-dashed in
order). Red : Models 4–6. Blue : Models 7–9. Cyan : Model 10. Green : Model 11.
One finds that different initial 〈Ng(M)〉s asymptotically converge at z = 0.3.
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Figure 5.3 The initial ξ at z = 1 (left) and the final ξ at z = 0.3 (right) for Models
1–11. Top : ξ in real space. Bottom : ξ in redshift space. Black : Models 1–3 (from
Solid, long-dashed to short-dashed in order). Red : Models 4–6. Blue : Models
7–9. Cyan : Model 10. Green : Model 11.
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often accompany galaxy accretion, which must be efficient enough to decrease

M1 with time. Models 4–6 shows an intermediate behavior.

The small values of M1/Mmin at low redshift, that is, the lack of shoulder be-

tween M1 and Mmin, is different from the predictions of 〈Ng(M)〉 for subhalos or

galaxies in non-passive studies (e.g., Berlind et al., 2003; Kravtsov et al., 2004;

Conroy et al., 2006; Weinberg et al., 2006)). The discrepancy is a natural result

for passive flow evolution as we do not include any merging or tidal disruption

of tracers. With tidal stripping and merging between subhalos or merging to the

center, the number of subhalos will decrease with time for a broad range of host

halo mass. Semi-analytic studies and N-body simulations show that the resulting

cumulative number density of subhalos reaches unity at a small subhalo-to-host

halo mass ratio (or circular velocity ratio) (e.g., Zentner & Bullock, 2003; Taylor &

Babul, 2004; Oguri & Lee, 2004; Diemand et al., 2004; Gao et al., 2004b; van den

Bosch et al., 2005b; Zentner et al., 2005). This small ratio should roughly represent

a large value of M1/Mmin by the definition of Mmin and M1. Conversely, the cumu-

lative subhalo mass function with no tidal disruption and merging (e.g., Zentner

& Bullock, 2003; van den Bosch et al., 2005b) hints small values of M1/Mmin for

our passively flowing case. Thus, one can reason that, with non-passive flow, M1

would increase, and then, for fixed number density, Mmin would have to decrease

to include new central galaxies (i.e., host halos that have accreted enough mass to

pass the threshold). The value of M1/Mmin will remain large even with decreasing

Mmin, as the subhalo mass function is roughly self-similar for different host halo

mass, although slightly more abundant in more massive host halos (e.g., Gao et

al., 2004b; van den Bosch et al., 2005b; Zentner et al., 2005).

For galaxies, tidal disruption will be much less efficient than for subhalos as



195

they are more tightly bound systems. Nevertheless, dynamical friction will even-

tually merge some of them to the central object, more effectively for satellites

sitting in more massive subhalos (Binney & Tremaine, 1987), which will result in

a larger M1/Mmin than our passively flowing case. The merging products corre-

sponding to the discrepancy between passively and non-passively flowing galax-

ies should have consequences elsewhere, such as in LRG luminosity function, so

that we can verify the model.

As a caveat, we note that our passively flowing samples at the observed time

might not simply correspond to galaxy populations in non-passive studies, which

are constructed by relating the luminosity of galaxies to the subhalos and host

halos above a given mass (or velocity) cut, whether the selection of the subhalos

is based on values at the time of accretion or at the observed time. Again, our

samples are defined at the initial time, not at the observed time.

All the models we discussed so far show the composite information on galaxy

statistics from halos of various mass. To probe the response of the delta function

in host-halo mass to passive flow evolution, we select a mass range with a width

2 which gives the fiducial number density and assign one central galaxy per each

halo (Model 11). This scheme populates more galaxies in lower mass halos than

the previous models do, depriving massive halos of galaxies at the initial redshift.

Due to the deprivation of galaxy-hosting halos of mass between Mmin and M1, rel-

ative to the other models, this model mimics the observed shoulder in HOD of

the LRGs at z = 0.3. The resulting correlation function at z = 0.3 appears con-

sistent with the observed data for LRGs as well. The response of a delta function

at different mass will slightly vary; otherwise, a superposition of delta functions

of different halo-mass, when weighted by the initial 〈Ng(M)〉, will correspond to

the evolution of galaxies in Model 10. The correlation function of Model 11 does
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not appear different from other models as much as its HOD does.

5.3.2 Galaxies flowing passively from z = 2

We next observe the response of correlation function to passive flow from higher

redshift. We populate galaxies at z = 2 for Models 21–31 and compare the result-

ing evolution of correlation function and HODs at z = 0.3 (Figure 5.4 and Table

5.2) with those from z = 1 (Models 1–11). We investigate whether and where the

convergence of HOD parameters occurs if galaxies flow passively from z = 2,

relative to the galaxies from z = 1. We will show that the evolution from z = 2 to

z = 0.3 is qualitatively similar to the evolution from z = 1 to z = 0.3 except that

the consecutive time steps cover a broader range of evolution.

At higher redshift, the typical halos have a lower mass. The average mass of

host halos for the fiducial number density is smaller by more than a factor of 2

than that at z = 1, but these halos are more biased than the typical host halos

at z = 1 due to the rarity of the halos at high redshift (Press & Schechter, 1974;

Bardeen et al., 1986). The initial clustering strengths at z = 2 are similar to those

from z = 1, and so the resulting correlation function at z = 0.3 is larger for Models

21–31 than Models 1–11.

In general, the transition from the 1-halo to the 2-halo term in the correlation

function occurs at a smaller separation at the initial redshift, as expected from

the smaller halo-size of the dominant halo population and the steeper halo mass

function at z = 2. Models 21–31 start with a similar or slightly smaller initial ratio

of satellite to central galaxies compared to Models 1–11 except for Model 23 and

Model 3. However, Models 21–31 produce a larger satellite fraction at z = 0.3,

which is due to the longer time available for halo merging and accretion events.

In Model 21, 22, and 23, in which M1/Mmin ∼ 2, the fraction of satellite galaxies

is much larger compared to the other models, like in Models 1-3. Both Mmin and
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Table 5.2. The initial and final HOD parameters for galaxies passively flowing

from z = 2

Model α M1/Mmin M1
a Mmin

a fcen α M1/Mmin M1
a Mmin

a fcen

z = 2 z = 0.3

21 0.5 1.986 0.425 0.2140 0.60 0.927 1.754 1.601 0.9131 0.50

22 1 2.120 0.425 0.2005 0.67 1.11 2.226 1.877 0.8431 0.55

23 2 2.144 0.425 0.1982 0.68 1.46 2.454 2.040 0.8311 0.56

24 0.5 9.167 1.7 0.1855 0.76 1.11 3.162 2.422 0.7660 0.62

25 1 10.23 1.7 0.1661 0.90 1.15 4.151 2.783 0.6705 0.72

26 2 10.78 1.7 0.1577 0.98 1.20 4.814 3.022 0.6277 0.78

27 0.5 24.34 4.25 0.1746 0.83 1.131 3.762 2.679 0.7121 0.67

28 1 26.60 4.25 0.1598 0.96 1.17 4.651 2.978 0.6403 0.76

29 2 27.30 4.25 0.1557 0.995 1.18 5.134 3.173 0.6180 0.79

30 0.1553 1 1.18 5.234 3.225 0.6162 0.79

31 0.1056 1 1.12 4.679 3.735 0.7983 0.80

aMass of halos are in the unit of 1014M¯.

Note. — We show the input HOD parameters at z = 2 and the best fit HOD parameters at

z = 0.3 for Models 21–31. Note that M1 and α at z = 0.3 are fitted over M > M1 in order to

better describe the shape of satellite HODs at the massive end. The value fcen is the fraction of

central galaxies to the total number of galaxies.
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Figure 5.4 The evolution of correlation functions and HODs of galaxies that flow
passively from z = 2. The left panels show ξ in real space (upper) and ξ in redshift
space (lower). The data points are from Zehavi et al. (2005a) for the observed
clustering of the LRGs between −23.2 < Mg < −21.2 at z = 0.3. The middle
panels show the evolution of HODs, and the right panels show the decomposed
HODs of central galaxies and satellite galaxies at z = 2 (gray) and z = 0.3 (cyan).
Black line: the initial condition at z = 2. Blue: at z = 0.3. Red: at z = 1.5, 1, 0.6.
The input HOD for Model 31, which is a square function, appears smoothed due
to our choice of mass bin. The values in the parenthesis in the right panels denote
(α, M1/Mmin) at z = 2.
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M1 increase at z = 0.3, and α approaches somewhere near unity.

Model 24, 25, and 26 have initial M1/Mmin ∼ 10. Both Mmin and M1 increase

with time, unlike Models 4-6, but the ratio of M1/Mmin decreases considerably at

z = 0.3, as in Models 4-6. Again, the value of α converges toward near unity.

In Model 27, 28, and 29 with M1/Mmin ∼ 25 initially, we observe the strong

exclusion effect at z = 2 that quickly recovers with time. In these models, M1 at

z = 0.3 is less than M1 at z = 2 just like in the corresponding models at z = 1

(Models 7–9). Again, α approaches toward unity.

Model 30 is almost identical to Model 29. Model 31 evolves to have a region

of shoulder at z = 1 but then takes on a power-law shape at z = 0.3 and produces

a stronger clustering than the observed LRGs.

From the evolution of the real-space correlation, we find a feature prevailing

in most of the models: the growth of clustering is impeded near r ∼ 2−5h−1 Mpc

(but r > 3h−1 Mpc for Model 23). That is, in Figure 5.4, the correlation functions

at different redshift become squeezed together over r ∼ 2 − 5h−1 Mpc, implying

a suppression in growth of galaxy clustering. This could be a signature associ-

ated with a turn-around and infall in the structure formation. In redshift space,

the features are less obvious but still traceable. For Models 1–11, the correspond-

ing feature is observable on slightly larger scales. We further discuss about this

feature in § 5.8.

Figure 5.5 and 5.6 show the comparisons of HOD and correlation function

for Models 21–31 at the initial redshift (z = 2) and the final redshift (z = 0.3).

Figure 5.5 shows a stronger convergence of these final HODs than observed in

Models 1–11. The asymptotic α at z = 0.3 moves toward slightly larger α than

in Models 1–11(Figure 5.5). Likewise, Figure 5.6 shows a stronger convergence

between models in the large-scale clustering (r ∼> 3h−1 Mpc) at z = 0.3 as well
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Figure 5.5 The initial HODs at z = 2 (left) and the final HODs at z = 0.3 (right) for
Models 21–31. Black : Models 21–23 (from Solid, long-dashed to short-dashed in
order). Red : Models 24–26. Blue : Models 27–29. Cyan : Model 30. Green
: Model 31. One finds that the asymptotic convergence of 〈Ng(M)〉 is stronger
when galaxies flow passively from z = 2 than from z = 1.
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Figure 5.6 The initial ξ at z = 2 (left) and the final ξ at z = 0.3 (right) for Models
21–31. Top : ξ in real space. Bottom : ξ in redshift space. Black : Models 21–23
(from Solid, long-dashed to short-dashed in order). Red : Models 24–26. Blue
: Models 27–29. Cyan : Model 30. Green : Model 31. The convergence in cor-
relation function is stronger when galaxies flow passively from z = 2 than from
z = 1.
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as in small-scale clustering, which is due to the larger bias at the initial redshift

and longer evolution time. Again, the small-scale correlation function remains

different between models although their HODs look nearly identical.

Figure 5.7 provides a clear view of similarities and differences in the evolution

of HOD parameters for the two formation redshifts. The middle panel shows

that Mmin increases with time while α converges toward near unity. The range

of resulting Mmin at z = 0.3 for Models 21–31 is similar to the range of Mmin

at z = 0.3 for Models 1–11. The right panel shows that M1 tends to converge to

M1 ∼ 2−5×1014M¯ at low redshift while the convergence is stronger and at lower

M1 for Models 21–31. The left panel shows that the resulting M1/Mmin converges

toward M1/Mmin ∼ 3 − 4 while the convergence is stronger and at lower value of

M1/Mmin for Models 21–31. It appears that the convergence of α is stronger and

at a slightly larger value, somewhere above unity, for Models 21–31 than Models

1–11.

5.3.3 A test with host halos of lower mass: increasing the number density

We have shown the characteristics of passively flowing galaxies for high mass

halos that are consistent with the number density of the LRGs between −23.2 <

Mg < −21.2 at z = 0.3. The characteristics could depend on the peculiarity (or

rarity) of an extreme tail of nonlinearity, and thus we investigate the effect of

passive flow for the galaxies of a larger number density, i.e., in lower mass halos.

As both Models 1–11 and Models 21–31 produced a clustering stronger than one

observed for the LRGs, we also ask whether the observed LRG clustering can be

better explained as a random fraction of a parent population with a larger number

density that has evolved passively to lower redshift.

We assign galaxies to dark matter halos at z = 1 using values of M1/Mmin

and α similar to Models 7–10 but with four times the fiducial number density
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Table 5.3. HOD parameters at z = 1 with four times the number density of the

LRGs

Model α M1/Mmin M1
a Mmin

a fcen α M1/Mmin M1
a Mmin

a fcen

z = 1 z = 0.3

7n4 0.5 19.70 2.6 0.1320 0.78 0.927 5.502 1.175 0.2135 0.656

8n4 1 22.61 2.6 0.1150 0.907 0.995 7.574 1.403 0.1852 0.83

9n4 2 23.91 2.6 0.1088 0.97 1.132 9.609 1.681 0.1749 0.83

10n4 0.1062 1.0 0.952 10.27 1.7532 0.1707 0.83

aMass of halos are in the unit of 1014M¯.

Note. — We show the input HOD parameters at z = 2 and the best fit HOD parameters at

z = 0.3 for Models 7n4–10n4. Note that M1 and α at z = 0.3 are fitted over M > M1 in order to

better describe the shape of satellite HODs at the massive end. The value fcen is the fraction of

central galaxies to the total number of galaxies.
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Figure 5.7 The evolution of passively flowing galaxies in the HOD parameters.
Arrows denote the direction of evolution. Black points : initial HODs of Models
1–10 (at z = 1) and Models 21–30 (at z = 2). Blue points : the final HODs at
z = 0.3 for Models 1–10. Red points : the final HODs at z = 0.3 for Models 21–30.
The dashed lines are for Model 10 and 30 for which we cannot define the initial
M1 and α. One finds that for passively flowing populations, a large M1/Mmin in
general decreases with time and α approaches toward near unity.

(= 4× 10−4h3 Mpc−3) and trace the resulting evolution of 〈Ng(M)〉 and two-point

correlation functions down to redshifts of 0.8, 0.6, 0.4, and 0.3 (Table 5.3). We label

these models as Models 7n4–10n4. These models have slightly larger initial and

final satellite fractions compared to Models 7–10.

The evolved clustering of Models 7n4–10n4 is weaker at z = 0.3 than the clus-

tering of the LRGs, which implies that the parent population of the observed

LRGs will have a number density between 10−4h3 Mpc−3 and 4 × 10−4h3 Mpc−3

under passive flow evolution. The evolution of M1/Mmin and α for these models

is very similar to that for Models 1–11, although the convergence of Mmin and

M1 is at lower mass than in Models 1–11. Therefore the characteristics of passive

flow evolution in HOD parameters we find, that is, the decrease in M1/Mmin and

α, are fairly robust for a wide range of halo mass.
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The convergence of M1/Mmin and α can be understood from the idea that

the passive flow drives the galaxies to flow and distribute like mass, as grav-

ity does not distinguish galaxies from other mass components. The distribution

of passively flowing galaxies will then converge to 〈N(M)〉 of mass, which is a

power law with an index of unity. With our parameterization, the convergence

of 〈Ng(M)〉 to the linear equation in halo mass forces a decrease in M1/Mmin and

convergence of α toward slightly larger than unity due to our division to central

and satellite populations. This asymptotic convergence will be less efficient in

mass components lower than Mmin, as host halos build up hierarchically to larger

ones with time rather than disassemble in field, therefore maintaining the biased

clustering. The normalization of 〈Ng(M)〉 will be determined by distributing the

total number of galaxies to halos of M ∼> Mmin.

Note that HODs of all models except for Model 11 resemble the old galaxy

population defined at the observed redshifts (i.e., without passive-flow restric-

tion) in studies of SPH simulations or semi-analytic models (Berlind et al., 2003;

Zheng et al., 2005). Model 11 on the other hand resembles the young galaxy pop-

ulations in those studies.

5.4 The evolution of pair counts within a halo

In the previous sections, we found that while various initial models evolve to a

well-defined region of 〈Ng(M)〉 at z = 0.3, there still remains a considerable differ-

ence in the small-scale clustering at z = 0.3 between models. While the clustering

on large scales can be modeled by the 2-halo term that depends on the excess

number of pairs between halos, i.e., 〈Ng(M)〉 weighted by halo bias and halo

mass function, the small-scale clustering (1-halo term) depends on the average

counts of excess pairs within a halo, i.e., 〈Ng(Ng − 1)〉M , the spatial distribution
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of the pairs within the halo, and halo mass function. Therefore the comparison

of pair counts within a halo will help to explain the difference in the small-scale

correlation functions.

When samples are defined at the observed redshifts, SPH and semi-analytics

calculations imply that the satellite probability distribution is modeled well by

the Poisson distribution (White et al., 2001; Berlind & Weinberg, 2002; Kravtsov et

al., 2004; Zheng et al., 2005) that gives 〈Ng(Ng−1)〉M = 〈Ng(M)〉2, while the central

galaxies follow 〈Ng(Ng − 1)〉M = 0. From the pair counts of the passively flowing

galaxies, we thus will find the effect of removing processes, such as merging,

destruction, or creation of galaxies, on the second moments of HOD.

Figure 5.8 shows the pair counts at z = 0.3 for galaxies that passively flowing

from z = 2 (Models 21, 23, 25, 27, 30, and 31) and the corresponding small-scale

correlation function in real space. In the second field of the panels, the pair counts

are divided by 〈Ng(M)〉2 to be compared to the nearest integer and the Poisson

distribution: 〈Ng(Ng−1)〉/〈Ng〉2 = 0 for the nearest integer distribution and unity

for the Poisson distribution. For HOD models with a negligible satellite fraction

for halos at the low-mass end where 〈Ncen〉 < 1, 〈Ng(Ng − 1)〉/〈Ng〉2 will start

from zero and approach unity as the satellite fraction grows with M (such as

Models 26, 28, and 29). On the other hand, some of our models allow a non-zero

satellite fraction for 〈Ncen〉 < 1 at the initial redshifts, and this reverses the shape

of 〈Ng(Ng − 1)〉/〈Ng〉2 at the low-mass end as shown in Figure 5.8 for Models 1

and 7.

From the figure, the evolved 〈Ng(Ng − 1)〉/〈Ng〉2 at z = 0.3 nicely converges

to unity for massive halos in all models. This implies that the passive flow evolu-

tion results in satellite populations that follow a Poisson distribution over a wide

range of halo mass, although some of the models, such as Models 29, 30, and 31,
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Figure 5.8 The comparisons of 〈Ng(Ng−1)〉M and real-space ξ of galaxies at z = 0.3
for Models 21, 23, and 25 (left) and 27, 30, and 31 (right). Three different models
in each panel are distinguished by different line types : solid lines for Models 21
and 27, long-dashed for Models 23 and 30, and short-dashed for Models 25 and
31. Rξ, R〈Ng(Ng−1)〉M , and R〈Ng(M)〉2 are the ratios of the model quantities to those
from Model 30 (for example, Rξ = ξModel X/ξModel 30). In the second and the third
fields, red lines are for z = 2, and black lines are for z = 0.3. In the third field,
〈Nsat(Nsat − 1)〉M and 〈Nsat(M)〉 for satellites are calculated among halos with
central galaxies. We find that the galaxy populations asymptotically converge to
Poisson at low redshift for massive halos. The difference in small-scale clustering
appears consistent with the difference in the average pair counts within a halo.
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started with a nearly or purely nearest integer distribution at z = 2. In low-mass

halos, galaxies at z = 0.3 follow a nearest integer distribution by construction

(§ 5.2.2) as long as each halo hosts one or zero central galaxy. The third field of

the panels, where we show the pair counts of satellites alone calculated among

halos with central galaxies, reveals further details on satellite distributions. Ex-

cept for Model 31, satellites in models with a smaller initial satellite fraction or

a larger increase in the satellite fraction between z = 2 and z = 0.3 (i.e., Model

26, 28, 29, 30), converge better to the Poisson distribution, though slightly sub-

Poisson. Satellites in models with a larger initial satellite fraction and those in

Model 31 tend to be slightly super-Poisson, while converging toward a Poisson

distribution at the massive end.

Considering the Poisson distribution of subhalos or satellite galaxies from

non-passive evolution (White et al., 2001; Berlind & Weinberg, 2002; Kravtsov

et al., 2004; Zheng et al., 2005), our results implies that the processes of merg-

ing, formation, or destruction of galaxies (or subhalos), which are not included in

our passive flow evolution schemes, preserve the Poisson distribution. This im-

plies that the convergence toward the Poisson distribution probably arises from

the random nature of the halo merging (Zheng Zheng, a private communica-

tion). Although not shown in the figure, Models 1–10 show similar results while

the convergence toward the Poisson statistics is not as strong as Models 21–31.

In Model 11, all galaxies for M > 1014M¯ approach a Poisson distribution (i.e.,

〈Ng(Ng − 1)〉/〈Ng〉2 ∼ 1), while being slightly super-Poisson, due to the relatively

large satellite-to-central galaxy ratio for intermediate mass halos despite the small

total satellite fraction. Model 31 has a more moderate transition from central to

satellite domination.

The fourth and the fifth fields in Figure 5.8 show ratios of 〈Ng(Ng − 1)〉M
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and 〈Ng(M)〉2 with respect to the values for Model 30. When we compare the

first and the fourth fields of the figure, we find that the trend of 〈Ng(Ng − 1)〉M
for M ∼> 1014M¯ is qualitatively consistent with the trend of ξ on small scales,

even without considering the details of the mass-dependent halo profile. The

comparison between 〈Ng(Ng − 1)〉M and 〈Ng(M)〉2 shows that the difference in

〈Ng(Ng − 1)〉M is rooted in the small difference in 〈Ng(M)〉2 between models (see

§ 5.6). The overall convergence of 〈Ng(M)〉 gives the convergence in clustering,

and it is stronger on large scales because the 2-halo term depends on the inte-

grated effect of 〈Ng(M)〉 over halo mass. The small-scale clustering is more sen-

sitive to the details of 〈Ng(M)〉 through 〈Ng(Ng − 1)〉M , as each mass bin corre-

sponds to a range of scale r in ξ(r) consistent with a typical halo size of that

mass. We conclude that the difference in small-scale clustering between models

is consistent with the difference in the pair counts within a halo and therefore the

difference in 〈Ng(M)〉 between models.

5.5 Comparisons to the current observation of the LRGs

Previous sections show that passive flow leads to a small value of M1/Mmin and α:

in general, M1/Mmin < 10 and α slightly above unity. In this section, we compare

our HOD parameters for the passive flow with the fit to the observed LRGs by

Zheng et al. (2007b). Even for the same cosmology, the details of the group find-

ing method or the resolution of simulation may alter mass scale or mass function

of halos. Therefore, in order to discuss the differences between our results and

the fit by Zheng et al. (2007b), we first need to identify an LRG population at

z = 0.3 in our own simulations that is consistent with the observed clustering

and the shape of 〈Ng(M)〉 adopted by Zheng et al. (2007b). By this, we can cali-

brate our mass scale and assess the physical significance of the parameter space
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Table 5.4. The five-parameter HOD at z = 0.3 for Model LRG

Model α M ′
1
a M ′

min
a fcen

LRG 1.86 (1.84) 6.875 (6.875) 0.8226 (0.7764) 0.931 (0.932)

aMass of halos are in the unit of 1014M¯.

bWe use M0 = 3.209 (3.056)×109M¯ and σM = 0.556 (0.556).
cNumbers in the parentheses are the best fit values by Zheng et al.

(2007b) for our fiducial cosmology.
dThe number density of galaxies for Model LRG is 9.817 ×

10−5h3 Mpc−3. This is only slightly different from the fiducial num-

ber density 10−4h3 Mpc−3 that we adopted for passive flow.

Note. — HOD parameters at z = 0.3 in our simulations that cor-

respond to the best fit HOD by Zheng et al. (2007b) for the observed

LRG clustering. For comparison, when Model LRG is fitted to the

three-parameter HOD (eq. [5.1]), we find α = 1.86, M1/Mmin = 12.2,

M1 = 6.790 × 1014M¯, and Mmin = 0.5563 × 1013M¯.

of the HOD confined by passive flow evolution.

A five-parameter HOD fit (eq. [5.2]) to the observed LRG clustering, derived

for our fiducial cosmology, is kindly provided by Zheng Zheng (in the footnote

of Table 5.4). The five-parameter HOD is defined as

〈Ng(M)〉 = 0.5 [1 + erf[log10(M/M′
min)/σM]]

× [1 + [(M − M0)/M
′
1]

α] (5.2)

where M ′
min is the characteristic minimum mass to host a central galaxy, M ′

1 is a

mass for a halo with a central galaxy to host one satellite when M0 ¿ M ′
1, M0
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Figure 5.9 An example of our HOD fits to the observational LRGs. The resulting
〈Ng(M)〉 and correlation function (black lines) is compared with the observed cor-
relation function for LRGs from Zehavi et al. (2005a) (black points) and Models
7, 10, 11 (red lines). Left : correlation functions in real space (top) and in redshift
space (bottom). Right : 〈Ng(M)〉 at z = 0.3. Model 7 : solid lines. Model 10 :
long-dashed lines. Model 11: short-dashed lines.

is the truncation mass for satellites, and σM is the characteristic transition width

(Zheng et al., 2005).

Compared to the Jenkins mass function (Jenkins et al., 2001) used by Zheng

et al. (2007b), our halo mass function produces slightly more halos for M < 2 ×

1015M¯, which can be corrected by rescaling our halo mass down by ∼ 5%, and

less halos for 2 × 1015M¯ < M < 3 × 1015M¯, which is possibly due to Poisson

noise.

We derive the corresponding values of M ′
1, M ′

min, M0, and α in our simulations

that closely reproduce the best fit number density of central and satellite galaxies

provided by Zheng et al. (2007b) so that the relative strength of 1-halo and 2-

halo terms is consistent with the observation despite the slight discrepancy in
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the mass function. In detail, we account for the difference in the mass function

by rescaling M ′
min and M0 up by 5 ∼ 6%, as our halo mass scale in this range is

overestimated by ∼ 5%, while adjusting M ′
1 or α. Note that we do not fit to the

observed correlation function directly. We show one example of such fits (we call

‘Model LRG’) and the resulting correlation function (Table 5.4 and Figure 5.9). As

shown in Table 5.4, M ′
min and M0 for Model LRG are increased by 6% relative to

the Zheng’s values, while σM , M ′
1, and α remain nearly the same as Zheng’s.

In Figure 5.9, the clustering of Model LRG is fairly consistent with the ob-

served clustering in real and redshift space except for r < 0.5h−1 Mpc: the slope

of ξ over r < 0.5h−1 Mpc is determined by our smallest bin at r ∼ 0.2h−1 Mpc that

is likely subject to the effect of our force resolution. In addition, a small discrep-

ancy remains near r ∼ 2.5h−1 Mpc in real space and r ∼ 1 − 2h−1 Mpc in redshift

space. Again, note that Model LRG is derived based on the fitted values of central

and satellite number densities from Zheng et al. (2007b) rather than a direct fit to

the observed clustering data. Although a slight modification in 〈Ng(M)〉 of Model

LRG may bring the resulting ξ closer to the observed ξ, we find this unnecessary

as we will focus on quantitative but low-precision comparisons.

Model LRG produces a shape of ξ which is roughly a power law, mainly be-

cause of the existence of the shoulder in HOD that drives a smaller 1-halo term

relative to the 1-halo term of dark matter. The shoulder implies a smaller frac-

tion of satellites that is mostly from massive halos in this case, and so smaller

pair counts relative to that of dark matter (see Seljak, 2000; Berlind & Weinberg,

2002). Model 11 in Figure 5.9 also shows a shoulder in HOD. Despite the small

overall satellite fraction, pair counts of this model imply a Poisson distribution

for M > 1014M¯ unlike Model LRG (§ 5.4). Nevertheless, the correlation function

does not deviate too much from a power-law shape. We revisit this and relate
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this to the effect of evolution in § 5.6.

We have found that the observed LRG clustering is mostly reproducible in

our simulations with large values of M1/Mmin and α imposed directly at z =

0.3, as motivated by Zheng et al. (2007b). Meanwhile, the observed correlation

function of the LRGs does not eliminate the possibility of the LRGs having flowed

passively from z ∼ 1: from Figure 5.9, those near Model 10 or Model 11 will not

fare much worse with the observed LRG clustering than models near Model LRG

would.

However, if we take the fit to the LRGs by Zheng et al. (2007b) as concrete,

the shoulder in their HOD at z = 0.3 requires some amount of non-passive flow

evolution, as it is difficult to reproduce a large M1/Mmin and α at z = 0.3 with

passive flow. In general, we need a process to suppress the LRG satellites in low

or intermediate mass halos (i.e., 1014M¯ − 1015M¯) while we need more LRGs

in very massive halos. As discussed in § 5.3.1, including dynamical friction will

cause our LRG progenitors to merge to the center, increasing M1/Mmin and pos-

sibly moving α around. This process will be more efficient in lower mass halos,

as lower mass halos are in general older than more massive halos, and so they

would have had more time for this destructive process (Kravtsov & Klypin, 1999;

Taffoni et al., 2003; Zentner & Bullock, 2003; Zentner et al., 2005; van den Bosch

et al., 2005b; Taylor & Babul, 2005). For very massive halos, however, we face

a contradiction of requiring more satellites at z = 0.3 than the conserved num-

ber density can give, which means we need a new source of LRGs in these very

massive halos. These new LRGs, which are admittedly rare, must have built up

enough mass between z = 1 and z = 0.3 through dry merging preferentially in

very massive halos. Note however that some models with large initial α (∼ 2)

do not violate the number conservation for high mass halos. For example, Model
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9n4 (§ 5.3.3) might reduce to a large M1/Mmin and α after non-passive evolution

without a necessity for new satellites for very massive halos.

5.6 Galaxies assigned at z = 0.3 : finding a hidden signature of passive flow

evolution

We have assigned galaxies based on the assertion that the number of galaxies

is only a function of halo mass at the initial redshift. However, the subsequent

evolution may cause a deviation from this assertion; the clustering or the HOD at

z = 0.3 may no longer be a function of halo mass alone. Several studies (Navarro

et al., 1997; Bullock et al., 2001; Wechsler et al., 2002; Sheth & Tormen, 2004; Gao

et al., 2005; Wechsler et al., 2006; Zhu et al., 2006; Harker et al., 2006; Croton et al.,

2007; Wetzel et al., 2007; Jing et al., 2007; Gao & White, 2007) have indicated that

details of halo formation history can affect clustering and properties of halos of

the same final mass. For example, at a given final mass, halos that formed earlier

show stronger concentration, reflecting the high density of the Universe at early

times, and contain smaller number of satellites due to ongoing dynamical friction.

It is also shown that, for low mass halos, the clustering of early forming halos

at a given final halo mass is stronger than late forming halos (Gao et al., 2005;

Wechsler et al., 2006; Zhu et al., 2006; Harker et al., 2006; Croton et al., 2007; Wetzel

et al., 2007; Jing et al., 2007; Gao & White, 2007). The clustering trend weakens

and reverses for very massive halos, in which most of the galaxies studied in this

chapter reside.

In this section, we look for signatures of passive flow evolution in correlation

function at z = 0.3 that cannot be parameterized by halo mass at z = 0.3 alone.

As a caveat, as we assigned galaxies to halos only based on halo mass at the initial

redshift of z = 1 or 2, we ignored the effect of halo assembly history on galaxy
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Figure 5.10 The comparisons between ξ at z = 0.3 for passively flowing galaxies
(Models 1–31) and ξH for prompt populations (Models 1H–31H) that are assigned
at z = 0.3 using 〈Ng(M)〉 and the second moment of Models 1–31. Left : the
ratio of correlation functions in real space. Right : redshift space. Solid, dashed,
and dotted lines are for three different models, for example, solid line in the top
panels are the ratio of correlation functions of Model 1H to Model 1, long-dashed
line : Model 3H to Model 3, and short-dashed line : Model 5H to Model 5. The
clustering of the two cases is indistinguishable on large scales while different on
small scales.

occupation prior to the initial redshift. It is important to note that the condition

of passive flow may draw evolutionary signatures that are different from non-

passive populations. We construct ‘prompt’ populations at z = 0.3 that have the

same 〈Ng(M)〉 and 〈Ng(Ng − 1)〉M as those from passively flowing galaxies but

that are randomly distributed among halos of a given mass. As a result, this

‘prompt’ population is a galaxy population assigned only as a function of halo

mass at z = 0.3, i.e., without any evolutionary effect. We compare the clustering

of passively flowing galaxies, i.e., evolved populations, with that of the ‘prompt’

populations at z = 0.3.

In detail, we calculate 〈Ng(M)〉 by locating passively flowing galaxies (Models
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1–11 and Models 21–31) in the halos at z = 0.3 and consider the first galaxy

in each halo as the central galaxy and the rest as satellites. We then reassign

galaxies back to random halos at z = 0.3 using the derived 〈Ng(M)〉 for central

and satellite galaxies. In § 5.4, we claimed that these passively flowing galaxies at

z = 0.3 are consistent with central galaxies in a nearest integer distribution and

satellite galaxies in a Poisson distribution. We therefore assume these statistics to

construct the ‘prompt’ populations. The central galaxies are located at the most

bound particles of halos, while the satellite galaxies trace mass. We label these

models as Models 1H–11H and Models 21H–31H, where Models 1H–11H are

from Models 1–11, and Models 21H–31H are from Models 21–31. Some models

result in a number of galaxies without any associated host halos (about 0.06 ∼

0.2%) at z = 0.3, especially from Models 1–11. We simply ignore these galaxies.

Figure 5.10 shows the difference in clustering between the evolved popula-

tions (Models 1–11 and Models 21–31) and the prompt populations at z = 0.3

(Models 1H–11H and Models 21H–31H). Both populations produce very similar

large-scale clustering for the given 〈Ng(M)〉, which means that it is a good approx-

imation in this scale range to take the halo mass as the only variable to decide the

number of galaxies per halo, at least for populations in very massive halos, such

as LRGs. The difference remains only on small scales, and is larger for models

constructed at z = 2 than at z = 1. In detail, the clustering of Models 21H–31H

is larger than Models 21–31 over r = 1 − 2h−1 Mpc, even by up to a factor of two

for the models with a large number of initial satellites (Models 21–23).

In Figure 5.8, we have seen the consistency between the small-scale clustering

and the corresponding pair counts among different models. Similarly we will

look for any remaining difference in the second moments between the evolved

populations and the prompt populations, that is, the effect of any deviation from
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Figure 5.11 The comparisons of pair counts at z = 0.3 between galaxies passively
flowing from z = 2 and prompt galaxy populations that are directly assigned at
z = 0.3 (Models 21H (solid), 25H (long-dashed), and 27H (short-dashed). Top :
ratios of correlation functions of Models 21H, 25H, and 27H to Models 21, 25, and
27, respectively. Middle : ratios of 〈Ng(Ng − 1)〉M . Bottom : ratios of 〈Ng(M)〉2.
The difference in ξ is probably due to the difference in a radial distribution of
galaxies within a halo, as the first and the second moments of HODs are almost
identical for the evolved and the prompt populations.
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a Poisson distribution for the evolved satellite populations. Figure 5.11 illustrates

the ratios of 〈Ng(M)〉2 and 〈Ng(Ng − 1)〉M between Models 21H, 25H, 27H and

Models 21, 25, and 27, compared with the ratio of ξ. The ratio of 〈Ng(Ng − 1)〉M
shows that the evolved populations at z = 0.3 are statistically very similar to

the prompt populations. The noisy fluctuation at the most massive halos con-

tributes only little to the overall clustering. The result again supports that the the

satellite galaxies at z = 0.3 from passive flow evolution follow nearly a Poisson

distribution at low redshift. As a caveat, pair counts in intermediate mass halos

with a small satellite fraction are not very sensitive to the statistics because they

are dominated by central galaxy-satellite galaxy pairs, which in turn depends on

〈Ncen(M)〉 and 〈Nsat(M)〉. Because we set these quantities to be almost identical,

the shape of 〈Ng(Ng − 1)〉M is naturally very similar between the passive and

prompt populations as long as satellite populations asymptotically converge to

Poisson statistics. Based on the similarity of the resulting pair counts, therefore,

the small-scale difference observed in ξ appears rooted in the evolutionary effect

of the halo profiles rather than pair counts.

From Figure 5.10, the difference in ξ is not constant over scale: the ratio de-

creases below 1 for r < 1h−1 Mpc but increases above 1 near r ∼ 1h−1 Mpc.

The shape of the non-monotonic trend implies a broadened ξ for the prompt

populations (except for Models 9, 10, and 11), more close pairs in the evolved

populations, and therefore the evolved galaxies taking a steeper radial gradient

than the prompt populations whose satellite galaxies follow dark matter gradi-

ent at z = 0.3. For comparisons, the cluster galaxy radial gradient suggested

from non-passive studies as well as observations is close to or slightly shallower

than mass profile (e.g., Diemand et al., 2004; Gao et al., 2004a; van den Bosch

et al., 2005a; Nagai & Kravtsov, 2005; Weinberg et al., 2006, and observational
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references therein) with variations in morphological type of galaxies (Springel et

al., 2001). We try below to provide some physical intuition for why the galaxy

gradient would be steeper than the mass gradient for the passively flowing pop-

ulations.

Our LRG progenitors in passive flow resided in massive halos that correspond

to high and rare density peaks at early times. At low redshift, material from these

high peaks tends to be more centrally concentrated within a host halo than that

from lower density peaks and the overall mass distribution (Diemand et al., 2005;

Moore et al., 2006). Mass coming from these lower density regions remains with

few galaxies, as we do not allow any new sources of galaxies. As a result, a

host halo at low redshift will have a high galaxy density in its inner region and

little galaxy content accreted into the outer region of the halo. In other words,

the memory of the typical host-halo size at high redshift remains in the process

of passive flow, resulting in the small-scale difference in ξ. On the other hand,

the trend is reversed for Models 9–11 in Figure 5.10, where the radial gradient of

galaxies appears weaker for evolved population, that is, galaxies are on average

less concentrated than mass in this case. These models started with no satellites

and probably did not have enough time to populate satellites at a close distance

while Models 29, 30, and 31 were able to. In summary, passive flow will result in

the galaxies being more concentrated than dark matter within a host halo, unless

these galaxies are recent descendants of central galaxies.

We found that for some cases the difference in small-scale clustering due to

passive flow evolution is enough to cause the correlation functions of evolved

galaxies to appear more like a power law compared to the prompt populations,

and vice versa. For example, Models 7H, 10H, and 11H will give much worse fits

to the observed LRG points than Models 7, 10, and 11 did in Figure 5.9. Therefore



221

the effect of evolution could alter the best fit HOD parameters to the observed

clustering. Note that Model LRG in § 5.5 corresponds to a prompt population.

The stronger radial gradient for evolved populations could also be interpreted

in the context of the concentration evolution of the halos themselves with redshift

(Bullock et al., 2001; Wechsler et al., 2002; Zhao et al., 2003a,b), rather than in the

context of a radial stratification within a halo with redshift. In other words, what

we observe could be due to the passively flowing galaxies at low redshift and at

a given final halo mass being more likely distributed among older halos, where

mass concentration is on average stronger (Bullock et al., 2001; Wechsler et al.,

2002), as they are halos from massive progenitors at z = 2 or z = 1. As the host

halos are fairly massive, it is likely that the corresponding difference in large-scale

clustering is little, as in Figure 5.10 (Gao et al., 2005; Wechsler et al., 2006; Harker

et al., 2006; Wetzel et al., 2007; Jing et al., 2007; Gao & White, 2007).

In redshift space, the difference generally appears as a relative suppression

in the prompt populations, except for Models 9, 10, and 11, especially for r <

1h−1 Mpc. The finger-of-God effect evacuates more small-distance pairs in the

prompt populations than in evolved populations. As the pairwise velocity dis-

persion within virialized halos increases with distance (Sheth et al., 2001), the

evolved populations with closer pairs will have a weaker finger-of-God effect.

Also, according to Diemand et al. (2005), the velocity dispersion of material from

the rarer peaks is lower than that of matter at a given radius from halos, which

may contribute to the weaker finger-of-God effect as well.

We consider the possibility that central galaxies in the passively flowing pop-

ulations have not settled down at the center of their host halos at z = 0.3 after

a series of halo merging events. This will also change the small-scale clustering

relative to Models 1H–11H and Models 21H–31H but probably in an opposite di-
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Figure 5.12 The comparisons between Model 27 and a prompt population 27H
when the central galaxies of Model 27H are displaced from the center of a halo
(solid lines), compared with the original Model 27H (dashed lines). In the top
panel, black lines are for the real-space correlation functions and the red lines are
for the redshift-space correlation functions. There is no difference in 〈Ng(Ng −
1)〉M and 〈Ng(M)〉2 between the adjusted Model 27H and the original Model 27H.
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rection to what we have observed. We test an extreme case in which no halos in

prompt populations host central galaxies. In detail, we substitute central galaxies

in Model 27H with random satellite galaxies. Figure 5.12 shows that removing

the central galaxy strengthens the difference between Model 27H and Model 27.

In redshift space, the effect is more intense: the finger-of-God effect is strongly

enhanced up to r ∼ 10h−1 Mpc due to the missing pairs at small separation. This

implies that the evolved populations at z = 0.3 probably have a relatively well-

positioned central galaxy and, again, satellites closer to the center.

To summarize, the large-scale clustering of populations that have evolved

through passive flow is reproducible with 〈Ng(M)〉, and therefore we do not ob-

serve significant environmental effects on large-scale clustering in this sample.

The satellite galaxies of passively flowing populations closely follow a Poisson

distribution, and so they are indistinguishable in pair counts from the prompt

populations with the same 〈Ng(M)〉. The effect of passive flow evolution, how-

ever, appears in the spatial distribution of galaxies within a halo, in that the pas-

sively flowing populations, unless they are recent descendants of central galaxies,

show on average more centrally concentrated distribution than the prompt pop-

ulations (i.e., mass profile).

5.7 Evolution of bias

In this section, we study the evolution of bias of passively flowing galaxies and

compare it to the linear theory for passive flow evolution.

Figure 5.13 shows the typical bias evolution for Models 1–11 and Models 21–

31. As the exclusion effect in a halo finder is prevailing at initial redshifts, the

evolution of bias is considered only between z = 0.6 and z = 0.3 for Models 1–11

(left panels) and between z = 1 and z = 0.3 for Models 21–31 (middle panels).
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Figure 5.13 The evolution of bias. Left: bias evolution for Models 1, 5, 7, 10, and
11 at z = 0.6 (black lines) and z = 0.3 (red). Middle: bias evolution for Models
21, 25, 27, 30,31 at z = 1 (black lines) and z = 0.3 (red). Right: bias evolution for
Models 7n4–10n4 at z = 0.6 (black lines) and z = 0.3 (red). Orange lines denote
the expected bias values at z = 0.3 assuming linear bias evolution adopting a
scale-dependent bias b(r) and a growth factor G(r) from z = 0.6 (left and right)
or z = 1 (middle). Y-axes of all panels are in logarithmic scale.

The bias factor at z = 0.3 is compared to the expected linear bias evolution (Fry,

1996; Tegmark & Peebles, 1998) where we define ‘linear bias evolution’ by uncon-

ventionally adopting a scale-dependent bias b(r) and a scale-dependent growth

factor of dark matter G(r) at z = 0.6 (left, for Models 1–11) or z = 1 (middle, for

Models 21–31). That is, we define the growth factor G(r) at given redshift z as

(ξm,z(r)/ξm,z0
(r))1/2 where z0 = 0.6 for Models 1–11 and 1 for Models 21–31, and

the bias factor bz0
(r) as (ξg(r)/ξm(r))1/2 at z0. Then the ‘linear bias evolution’ at z

expected from z0 is derived from

blin(r) = (bz0
(r) − 1)/G(r) + 1. (5.3)

We then compare the expected bias, blin(r), with the actual bias, b(r) = (ξg(r)/ξm(r))1/2

measured at z.

The bias values at z = 0.3 are consistent with the expected bias evolution over



225

r > 2h−1 Mpc in most of the models, with only small discrepancies on smaller

scales. In detail, the bias at z = 0.3 implies that the growth in clustering becomes

slightly impeded over r = 2 − 6h−1 Mpc but enhanced over r < 2h−1 Mpc either

relative to the growth of mass or relative to the linear bias evolution. The dis-

crepancies appear bigger for Models 21–31, probably due to the longer evolution

time and the larger initial bias.

For Models 7n4–10n4 (right panel), the decrease in bias is less than that of

Models 7–10 due to the smaller initial bias values and is also consistent with

the expected linear bias evolution over r > 2h−1 Mpc. Due to the dominance of

lower mass halos in these models, their bias factor at low redshift deviates from

the scale-independent bias on smaller scales than Models 7–10.

To summarize, the evolution of bias for the passively flowing galaxies is rela-

tively ‘linear’ for r > 2h−1 Mpc although slightly scale-dependent.

5.8 Evolution of correlation function: a signature of infall?

In this section, we attempt to characterize the evolution of clustering of passively

flowing galaxies on quasilinear scales.

In Figure 5.14, real-space correlation functions at z = 1, 0.6, and 0.3 for a

number of models among Models 21–31 are divided by a real-space correlation

function at z = 0.3. The apparent features are the suppression of growth near

r = 2 − 5h−1 Mpc, and the large growth inside the radius (also see the left pan-

els of Figure 5.1 and 5.4). The scale where the suppression appears is slightly

larger than the transition from a 1-halo to a 2-halo term where the inflection of a

power-law model of biased correlation functions occurs. We compare the growth

between z = 1 and z = 0.6 with what is expected from the linear bias evolution

(as defined in § 5.7) from z = 1: the growth between z = 1 and z = 0.3 and be-
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Figure 5.14 The evolution of real-space correlation function of passively flowing
galaxies for Models 21, 23, 25, 27, 30, and 31. Correlation functions are divided
by the correlation function at z = 0.3 (solid lines). Black lines : z = 1. Red :
z = 0.6. Blue : z = 0.3. Long-dashed lines : the expected correlation functions
at z = 0.6 (red) and at z = 0.3 (blue) assuming the linear bias evolution from
z = 1 (as defined in § 5.7). Short-dashed : the expected correlation function at
z = 0.3 assuming the linear bias evolution from z = 0.6. One finds that growth
of clustering is relatively suppressed near r = 2 − 5h−1 Mpc, compared to the
growth on other scales.
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Figure 5.15 The evolution of correlation functions of passively flowing galaxies
for Models 7n4and 10n4(ξb, left panel) and matter (ξm, right). Correlation func-
tions are divided by the correlation function at z = 0.3 (solid lines). Black lines :
z = 1. Red : z = 0.6. Blue : z = 0.3. Long-dashed lines : the expected correlation
functions at z = 0.6 (red) and z = 0.3 (blue) assuming the linear bias evolution
from z = 1. Short-dashed : the expected correlation functions at z = 0.3 assuming
the linear bias evolution from z = 0.6. Cyan lines are at constant values and are
drawn to help to estimate a scale-dependence of the growth in correlation func-
tions. One finds that the suppression of growth near r = 2 − 5h−1 Mpc is not
apparent at all for dark matter or galaxies with small bias (b < 2).

tween z = 0.6 and z = 0.3 is compared with the linear bias evolution from z = 1

and z = 0.6, respectively. The figure shows that the suppression in growth is not

explained by linear evolution of clustering of biased tracers.

This effect may be interpreted as pairs at r = 2 − 5h−1 Mpc moving rapidly

to smaller scales as we go to lower redshift, that is, an evacuation of pairs on

this scale as structure grows linearly on larger scales but nonlinearly on smaller

scales. The feature is less obvious and appears at a larger radius for Models 1–11.

In Figure 5.15, we test whether we see the corresponding feature in the dif-
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ferent populations or in the matter correlation function. The evolution of matter

correlation function does not show an obvious suppression, probably because

matter is in steady state in flow from a linear to nonlinear region of radius. On

the other hand, 1-halo and 2-halo terms of the galaxies do not equally weight

the corresponding terms for matter (Schulz & White, 2006) but trace the flow of

matter differently in the two regions, breaking the steady state.

To examine whether the suppression is a prevalent behavior of biased tracers,

we test Models 7n4–10n4. Figure 5.15 shows the suppression in growth of correla-

tion function is not obvious at all for Models 7n4–10n4 and so the growth of clus-

tering is scale-independent for r > 2 − 3h−1 Mpc. As a minor point, when com-

pared to the matter correlation functions (right panel), the nonlinear growth of

the correlation functions for Models 7n4–10n4 happens on smaller scales than that

of matter; this slightly overpredicts the linear bias evolution at r = 2 − 4h−1 Mpc

beyond a scale-independent growth (in the left panels). The missing feature of

suppression for Models 7n4–10n4 therefore implies that the feature appears pref-

erentially in strongly biased tracers (b ∼> 2 at z = 0.3).

5.9 Conclusions

We have used dissipationless N-body simulations to study the effect of passive

flow evolution on galaxy clustering and halo occupation distributions. We as-

sumed populations of progenitor galaxies at z = 1 and z = 2 with a wide range

of initial HODs, and then studied their properties as they flowed passively to

z = 0.3. We investigated for a region of the parameter space at low redshift con-

strained by passive flow, especially in the halo occupation distribution and in

galaxy clustering. Our results are summarized as follows.

Passive flow results in an asymptotic convergence in halo occupation distri-
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butions and galaxy clustering. The distribution of the average number of galaxies

per given halo mass converges toward a power law for a broad range of the initial

halo occupation distributions. The values of M1/Mmin decreases with time, except

for the cases with very small initial M1/Mmin. The value of α asymptotically con-

verges toward unity. Both evolutionary behaviors result in 〈Ng(M)〉 without a

shoulder and thus a shape close to a power law at low redshift.

A similar convergence is observed in the evolution of correlation function.

While it is not surprising to find that the large-scale convergence is consistent

with the expected clustering from linear bias evolution (Fry, 1996; Tegmark &

Peebles, 1998), the intermediate-scale clustering also shows a fair degree of con-

vergence in its shape and amplitude when the galaxies have evolved from high

redshift (z ∼ 2). The remaining differences in small-scale clustering appears con-

sistent with the differences in 〈Ng(M)〉. Modeling these intermediate and small

scales is left for future research.

The asymptotic convergence is enhanced if the galaxies passively flow from

higher redshift and so have more time to flow. We also find that the satellite

populations are fairly large at low redshift as a result of passive flow evolution.

We have tried the same tests with galaxy populations of a larger number den-

sity and found qualitatively similar results. The asymptotic convergence in the

HODs and correlation functions is not an extreme behavior for the very high

mass halos but is a general result of passive flow evolution. We conclude that the

convergence of M1/Mmin and α is the result of galaxies asymptotically becoming

less biased with respect to mass with time.

Passive flow evolution drives satellite galaxies to converge toward the Pois-

son distribution. Other studies for non-passive evolution reproduce the Poisson

distribution as well, implying that the merging, formation, and destruction of
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galaxies happen so that the resulting populations remain in the Poisson distribu-

tion.

The comparison of these characteristics of passive flow evolution with the ob-

served LRG data hints at any non-passive flow processes during the evolution of

the LRGs. A suggested existence of a shoulder between M1 and Mmin or a large

α in the HOD of LRGs when fitted to the observed clustering data (Zheng et al.,

2007b, also see Blake et al. (2007), but see Kulkarni et al. (2007) and Ho et al.

(2007) for different results) implies that LRGs have not undergone a strict passive

flow evolution. These discrepancies could be due to dry galaxy merging between

two LRGs or new LRGs arising between the initial and the final redshifts, with

different efficiencies in different environments. The discrepancies should show

self-consistent consequences in other observational properties such as in the lu-

minosity function of the LRGs (e.g., Wake et al., 2006; Brown et al., 2007). See

White et al. (2007) for an example of such a study.

We compared two populations with the identical 〈Ng(M)〉 at z = 0.3, one that

is reached after passive flow evolution and the other constructed from random

halos at z = 0.3, to study whether the evolution imposes any distinct signature

in the second moments of the HOD and clustering. The evolved population and

the prompt population showed no significant difference in the second moments

of the HOD when both satellite populations are assumed to be Poisson at the

initial redshift. The effect of evolution did not impose a noticeable environmental

dependence in large-scale clustering. In small-scale clustering, inside halos, we

find that the spatial distribution of the passively flowing galaxies is on average

more centrally concentrated than mass.

The evolution of bias for passively flowing galaxies were consistent with lin-

ear bias evolution on quasilinear as well as large scales once the scale-dependent
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growth factor of dark matter is considered.

We identified a suppression of growth of galaxy clustering near r = 2 −

5h−1 Mpc. The feature is observed in a population with a large initial bias, but

not in a population with a small bias nor in clustering of matter.

In future research, we plan to investigate the characteristics of passive flow

evolution in velocity space. Once we understand both spatial and velocity sig-

natures of passively flowing galaxies, we will have a better handle to model the

clustering evolution of such galaxy populations. We will further study the impli-

cations of any discrepancy between an observed galaxy population, such as the

LRGs, and the passively flowing galaxies. For example, we will prescribe and

tune phenomenological galaxy merging within our dissipationless simulations

until we match the LRG data; the results will hint any environmental preference

of dry merging, which of course needs to be explained on physical basis. If any

observed galaxy population, such as the LRGs, turns out to be passively flowing

galaxies, we may even be able to predict their initial distribution based on this

study.
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CHAPTER 6

CONCLUSIONS

To this point, I have presented a study of precision cosmology with baryonic

acoustic oscillations and a galaxy clustering evolution for passively flowing galax-

ies. In this chapter, I summarize the main results of this thesis.

In Chapter 2, I used a Fisher matrix formalism to analytically study the perfor-

mance of the baryonic acoustic oscillations from large galaxy surveys as a stan-

dard ruler in probing cosmological distance scale, such as H(z) and DA(z), and

therefore dark energy parameters. I assumed future large spectroscopic galaxy

surveys of Vsur = 1.7h−3 Gpc3 and n ∼ 5 × 10−4h3 Mpc−3 at z ∼ 1, Vsur =

0.5h−3 Gpc3 and n ∼ 1 × 10−3h3 Mpc−3 at z = 3 and a survey at z = 0.3 that

corresponds to the current SDSS LRG sample. When combined with CMB satel-

lite data, I found that these surveys will provide excellent measurements of dark

energy parameters that are competitive with the performance of future Type Ia

supernova surveys: the resulting 1σ error is 0.10 for w(z = 0.8) and 0.28 for dw/dz

for the cosmological constant model. As the baryon signature is better preserved

at higher redshift, most of the information is contributed by redshift surveys at

z > 0.6. The precision differs depending on dark energy models: models with an

early domination of dark energy are constrained more by the high redshift bins

and therefore they improve the performance of the galaxy survey.

Imaging surveys with photometric redshifts can also detect the baryon signa-

ture, although the signature is projected along the line of sight. I found that at

least 0.25% photometric redshift precision is needed to recover the Hubble pa-

rameter H(z), while a least 4% is needed to preserve the baryon signature across
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the line of sight from the projection effect. Imaging surveys with 1% redshift er-

ror would need a 20 times larger survey volume than the spectroscopic surveys

described in this Chapter for equivalent performance.

In Chapter 3, I extended to the numerical study of complications and possible

systematic errors in recovering the cosmological distance scale from the baryon

signature in large galaxy redshift surveys. Using a large volume of N-body sim-

ulations, I showed that the nonlinearity indeed obscures the baryon signature on

small scales and such nonlinear scales proceed to larger scales with decreasing

redshift. When redshift distortions are included, the resulting power spectrum

reasonably traces the baryon signature in the real-space power spectrum, albeit

with an additional obscuration. Meanwhile, I found that a mild halo bias (b < 2)

does not degrade the baryonic signature much. Overall the baryon signature on

large scales is robust against nonlinear growth, redshift distortions, and halo bias.

I conducted a χ2 analysis of the N-body results to constrain cosmological dis-

tances, which is a simple version of what one would do with real galaxy redshift

surveys. The resulting errors on the distance scale from biased power spectra are

consistent with those from Chapter 2, when the redshift distortion effect is not

included. I did not have a clear detection of a shift in the acoustic peak larger

than 1%. I expect that, if the redshift distortion effects are included, the errors on

H(z) will be partially degraded with respect to the calculations in Chapter 2.

In Chapter 4, I returned to the Fisher matrix formalism. I upgraded the for-

malism in several ways. Most importantly, I implemented the formalism with

the Lagrangian displacement distribution (Eisenstein, Seo, & White , 2006) to

correctly account for the obscuration of the baryon signature due to nonlinear

growth, bias, and redshift distortions as a function of time and scale. In addition,

any distance scale information other than from the baryon signature, such as any
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information from the broadband shape of the power spectrum and the Alcock-

Paczynski (1979) test, is rigorously removed this time. The resulting Fisher matrix

calculation only depends on survey volume, shot noise, and the nonlinear param-

eter that represents the Lagrangian displacement field. I presented a physically

motivated fitting formula, which calculates a 2-dimensional covariance matrix

for DA(z) and H(z), to this multi-dimensional Fisher matrix.

The Lagrangian displacement is also useful in a χ2 analysis, as we now can

construct a template power spectrum with nonlinear effects on the baryon peaks

to which an observed power spectrum will be fitted. We compared the distance

scale errors from the upgraded Fisher matrix with those from the revised χ2 anal-

ysis of N-body simulations. Both were in excellent agreement.

The revised Fisher matrix formalism or its fitting formula can also calculate

distance errors for photometric redshift surveys. While we recently have found

that the obscured baryon signature due to various nonlinearities can be partially

reconstructed (Eisenstein, Seo, Sirko, & Spergel , 2006) for spectroscopic surveys,

this is not likely the case for photometric redshift surveys: the photometric red-

shift error will obscure the density field structure along the line of sight that is

required for the reconstruction. When a photometric redshift survey with 1%

redshift error is compared with a spectroscopic survey with reconstruction, the

photometric survey requires 4 times more survey area than the spectroscopic sur-

vey for the equivalent precision for DA(z): the constraints on the Hubble param-

eter are lost for the photometric survey.

Chapter 5 presented a numerical study of the evolution of galaxy clustering

and halo occupation distribution when galaxies flow passively from high red-

shifts to low redshifts. When a galaxy population experiences neither merging

nor a formation of new members between z = 1 and z = 0.3 or between z = 2
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and z = 0.3, its spatial evolution results in an asymptotic convergence in halo

occupation distribution and galaxy clustering at z = 0.3 regardless of its initial

distribution. The average number of galaxies per given halo mass asymptoti-

cally converges such that the difference between the minimum halo mass to host

a central galaxy and the halo mass to host one satellite galaxy decreases. Also

the average number of satellites asymptotically becomes proportional to the halo

mass at low redshift. This implies that the passive flow evolution increases the

satellite population. The satellite populations at low redshift converged to a Pois-

son distribution, even when the initial populations are composed of only central

galaxies. I found a corresponding convergence on large-scale clustering in the

two-point correlation function. The small-scale clustering showed a relatively

weaker convergence than large-scale clustering.

When I compared the resulting halo occupation distributions with the best fit

halo occupation distribution of the observed LRGs (Zheng et al., 2007b), the dis-

crepancy implies that we need processes along with evolution to decrease satel-

lites in intermediate-mass halos and increase satellites in very high-mass halos.

The former might be due to processes such as dry merging but the latter is hard

to explain. Meanwhile, I also found that the passive flow induces an evolution-

ary feature: the passively flowing galaxies show a different small-scale clustering

from prompt populations for the identical halo occupation distribution. Thus, it

will be interesting to find out how the discrepancy described above would change

if such an evolutionary effect is included in the analysis of the observed LRGs.

To conclude, I have presented my study of largest-scale structures of the Uni-

verse in this thesis. As emphasized numerous times here, observing these large-

scale structure can provide excellent measurements of the most mysterious in-
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gredients of the Universe: dark matter as well as dark energy. However, the light

distribution that we actually observe differs from the mass distribution. While

the underlying mass distribution contains the cosmological information, the bias

in the light distribution relative to mass contains information on galaxy formation

and galaxy evolution. The goal of understanding the BAO is to isolate the former

(i.e., cosmological information) from the latter. The goal of understanding galaxy

clustering evolution is to help understand formation and evolution of different

galaxy populations and subsequently differentiate cosmological information.

To date, the enthusiasm of the scientific community to understand dark sec-

tors of the Universe has driven ambitious plans for future cosmological probes

that would cover very large areas of sky. Meanwhile, the improvement of the

computational resources is so rapid that it will soon be possible to conduct rig-

orous cosmological simulations to study the large-scale structure evolution with

unprecedentedly high precision, which will be essential for calibrating future cos-

mological surveys. Hence, the near future appears to be an era of high precision

large-scale structure study. The questions explored in this thesis will be impor-

tant subjects for further investigation in this exciting era.
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