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ABSTRACT

We provide a novel and efficient algorithm for computing accelerations in the peri-

odic large-N-body problem that is at the same time significantly faster and more accurate

than previous methods. Our representation of the periodic acceleration is precisely math-

ematically equivalent to that determined by Ewald summation and is computed directly

as an infinite lattice sum using the Newtonian kernel (|r |−1). Retaining this kernel implies

that one can (i) extend the standard open boundary numericalalgorithms and (ii) harness

the tremendous computational speed possessed by Graphics Processing Units (GPUs) in

computing Newtonian kernels straightforwardly to the periodic domain. The precise form

of our direct interactions is based upon the adaptive softening length methodology intro-

duced for open boundary conditions by Price and Monaghan. Furthermore, we describe

a new Fast Multipole Method (FMM) that represents the multipoles and Taylor series as

collections of pseudoparticles. Using these techniques wehave computed forces to ma-

chine precision throughout the evolution of a 1 billion particle cosmological simulation

with a price/performance ratio more than 100 times that of current numerical techniques

operating at much lower accuracy.
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CHAPTER 1

INTRODUCTION

The gravitationalN-body problem is to describe the dynamical evolution of a setof N

point particles subject to their mutual gravitational interactions. Thecosmological N-

body problem is just the usual gravitational one with two differences. The first is that

the canonical problem is set in an expanding background metric given by a solution of

the Einstein-De Sitter equations. This is simply a continuous re-scaling of variables and

hence does not change the essential character nor mathematics of the solution. The second

difference is more fundamental. We require that the solution satisfies, or at least approx-

imates, the cosmological principle of homogeneity and isotropy at the largest scales. In

practice, this is achieved by replacing the open boundary conditions of the usual N-body

problem with periodic boundary conditions. While this results in, perhaps, a more rig-

orous enforcement of the principle than one really has in mind, no other mathematical

artifice can match the simplicity and precision of its statement, and periodic boundary

conditions are universally employed in cosmological N-body simulations. This intro-

duces some fundamental differences.

In the usual gravitationalN-body problem, which we describe withN particles at

positions{r i} and with masses{mi}, the force experienced by a particle,r i , (which we

will call the “sink” particle) due to the present of another (a “source”),r j , is given by the

familiar direct interactionexpression,

mimj r i j

|r i j |3
(1.1)

wherer i j = r i − r j . For the open boundary problem the acceleration atr i is simply the
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sum of the contributions of all of the sources upon each particle in turn,

ai = −
N

∑
j=1
j 6=i

mj r i j

|r i j |3
(1.2)

Under periodic boundary conditions, the solution becomes more complex; a sink par-

ticle “sees” not only each source, but also the infinite number of periodic replicas of each

source. One might start by writing down the effect of periodicity as an additional lattice

sum over all of the periodic replicas, as adirect summation, i.e.

ai = −
N

∑
j=1
j 6=i

mj r i j

|r i j |3
+ ∑

n 6=(0,0,0)

N

∑
j=1

mj(r i j −n)

|r i j −n|3 (1.3)

wheren is a tuple of integers(a,b,c) denoting each individual replicas. Without loss

of generality we assume that the simulation volume is unity and centered on the origin.

There are two problems with this formulation. First, we havenot shown that this is the

correct solution to the periodic problem; in fact, while close, it is not quite correct. Sec-

ond, it is not clear how to perform the infinite sum over replicas in the second term; such

sums are well-known to be only conditionally convergent. These problems have driven

people to consider different numerical methods for solvingthe periodic N-body problem;

ones which generally employ a representation of the solution in terms of Fourier modes

which are a more “natural” representation of periodic functions. I demonstrate in this dis-

sertation that solution methods based upon direct summation are more computationally

efficient than other methods currently in use.

A great deal of computational effort has been devoted to studying the formation and

evolution of Galactic mass dark matter halos. The largest simulation of the Aquarius

project (Springel et al., 2008; Navarro et al., 2008) employed approximately 4.2 billion

particles in a 100h−1 Mpc box; it required 3.5 million CPU hours to perform 6.7×1013
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force calculations and used 3TB of memory (800 bytes per particle). It attained an ef-

fective computational rate of under 6000 particles/secondper CPU. The Millennium-II

simulation (Boylan-Kolchin et al., 2009) employed 21603 particles within a cubic simu-

lation box of side length 100h−1 Mpc. It required 8 TB of memory and 1.4 million CPU

hours to evaluate a total of 2.8×1013 force evaluations for a total of 22,142 simulation

time-steps. It attained essentially the same rate and memory usage per simulated particle

as the Aquarius simulations. Zemp et al. (2009) report that their Via Lactea II calculation,

employing 1.1×109 particles in a 40h−1 Mpc box, required 1.1 million CPU hours. The

Horizon Run simulation of Kim et al. (2008) simulated 70 billion particles in(6.592h−1

Gpc box to model the formation of luminous red galaxies, withthe aim of calibrating

non-linear gravitational and biasing effects in the futureSloan-III baryon oscillation scale

survey; this simulation required 25 days on 412 processors.Similarly, Teyssier et al.

(2008) performed a 70 billion particle simulation in a 2h−1 Gpc box with the aim of com-

puting a full-sky weak-lensing convergence map for calibrating future large-scale surveys

such as those planned for LSST. This simulation required 3072 processors for 2 months

( 4.4 million CPU hours) and used 18TB of memory. Clearly, theresources required to

perform these computations are very costly. For example, the IBM Roadrunner super-

computer at Los Alamos National Laboratory cost $133 million dollars (more than four

times the cost of a typical 6.5m telescope).

In this dissertation we present a scheme for dramatically reducing the computational

effort required to perform cosmological N-body simulations.

The state of a cosmologicalN-body simulation is represented by the particles’ co-

moving coordinate vectors{xi}, masses{mi}, and corresponding canonical momenta

pi = a2mi ẋi , wherea is the cosmological scale factor. Dimensionless variables, x̃ and t̃,

may be introduced by scaling the distance by the linear size of the simulation volume and
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by measuring the time in units ofH−1
0 . The equations of motion to be solved are then

dx̃i

dt̃
= a−2p̃i

dp̃i

dt̃
= a−1∇φ̃i

(1.4)

where the evolution of the cosmic scale factora is given by

ȧ
√

a = H0

√
Ω0+Ωcurv,0a+ΩΛ,0a3 (1.5)

The co-moving acceleration∇φ̃i is given by a solution of Poisson’s equation with

periodic boundary conditions. The analytic expression forthe co-moving acceleration at

positionr , first derived by (Ewald, 1921), is, denoting the position ofa replica particlex j

in replican by x̃ j ,n = x̃ j −n,

∇φ̃(r) =
N

∑
j=1

mj

{

∑
n

x̃ j ,n− r
|x̃ j ,n− r |3

[
erfc(α|x̃ j ,n− r |)

+
2α√

π
|x̃ j ,n− r |e−α2|x̃ j,n−r |2

]

+ ∑
k 6=0

2k
|k|2e−π2|k|2/α2

sin(2πk · (x̃ j ,n− r ))

}

(1.6)

Contrast this equation to the familiar acceleration at position r for the open boundary

counterpart to our periodic boundary condition solution ofPoisson’s equation

∇φ̃(r) = ∑
j

mj
r − x̃ j

|r − x̃ j |3
(1.7)

This is a vastly simpler than expression (1.6) and leads us toask, What is the total number

of operations required to obtain the force for a particle to machine precision (i.e a relative

error of 10−6, irrespective of the distribution the surrounding particles).

While the final resolution to this question is beyond the scope of this dissertation, we

have made significant progress towards its solution. The question is really concerned with
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the optimal computational representation of the periodic solution of Poisson’s equation.

Before we consider different representations of periodicity, we remind the reader of the

intriguing difference between the mathematical formulation of periodicity and it’s open

counterpart; despite the fact that the periodic solution also admits a purely Newtonian

(|r |−1) direct summation representation the asymptotic scaling of the periodic solution is

O(N3/2) in contrast to the familiarO(N2) scaling of it’s non-periodic counterpart. An

insight into the nature of this scaling was particularly well illustrated by Fincham, D.

(1994), and we present a precis of his derivation below.

Consider a cubic simulation box of sideL containingN particles, and assume thatL

varies asN1/3. Recall that the real space part of the Ewald potential involves the function

erfc(αr i j )/r i j . Asymptotically erfc(αr) behaves as exp(−α2r2). Assuming that we wish

to bound the real space term byε = exp(−p), we thus requireα2R2 ≈ p, whereR is the

real space cutoff distance corresponding to a tolerance ofε. The time required to evaluate

the real space sum, for allN particles, isTR = 1
2N4π

3 R3ntR, wheren is the number density.

The reciprocal space involves a term dominated by the term exp(−k2/4α2); if we

again require this term to be bounded byε at the reciprocal space cutoffK, then we

requirep = K2/(4α2). The time required to evaluate the reciprocal space points is given

by 4π
3 K3 L3

(8π3)
using the fact that the volume per reciprocal space point is(2π/L)3 since

k = 2π
L (l ,n,n). Writing L3 = N/n, then and using the expression forK in terms of p

above,TF = 1
2

4π
3 (p/π)3N2/(nR3)tF . The total execution time is

T =
1
2

4π
3

[
NnR3tR+

(p
π

)3 N2

nR3 tF

]
(1.8)

SettingdT/dR= 0, the value ofR which minimizes the above expression is

ROPT =
(p

π

) 1
2
(

tF
tR

)1
6 N

1
6

n
1
3

(1.9)
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Using thisR in the equation above forT we get

TOPT =
4π
3

N3/2 p
π

3/2
(tRtF)1/2 (1.10)

This O(N3/2) behavior exhibits a property of periodicity which is akin toDebye

shielding; i.e the net result is a reduction the effective interaction between particles to

a short-range ”screened” Coulomb interaction. Naturally one is lead to the tantalizing

notion that each particle need only interact with onlyO(
√

N) particles,e.g. in a 5123 par-

ticle simulation, each particle would only need to interactwith ≈ 12,000 other particles

in order to compute an acceleration to machine precision!

More generally, the previous derivation indicates thatfast-summationalgorithms can

be applied to periodic problems in addition to the open boundary problems to which they

have been applied. Fast-summation techniques (Barnes and Hut, 1986; Greengard and

Rokhlin, 1987) rely upon the artifice of partitioning each particle’s interactions into near

and far field sets. Since the force on a particle due to nearby particles will fluctuate

strongly with position, a smooth function will not be able accurately to represent their

aggregate effect. Thus the contribution from nearby particles must thus be determined by

summing the exact expression for the acceleration they induce (with or without a “soft-

ening” of the force law at small distances). Smooth functions can, however, represent the

force due to a collection of particles at sufficiently large distance. For the far field, one

can use so-called multipole expansions of varying orders, for all particles which are suffi-

ciently well separated from the test particle( (where the concept of order of an expansion

corresponds to the highest degree of an approximation polynomial in the Taylor series

expansion of a function). This notion of “well-separatedness” is the crucial desideratum

for applying the multipole expansion. Geometrically (and somewhat informally), two

sets of particles are well-separated if each set can be circumscribed within a sphere, if the
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two spheres do not intersect, and if the distance between thecenters of these spheres is

larger than the sum of their radii by a factor of order unity. The computational efficiency

of fast-summation methods comes from the fact that the contributions from subsets of

the far field sources can be aggregated into single interactions. Thus, the interactions

between a large number of distant particles can be represented by a smaller number of

aggregate interactions. Provided the work done in aggregating is smaller than performing

the equivalent number of direct interactions, a computational speed-up can be obtained.

Whilst fast summation is a critical component of our program, the question remains

as to what mathematical expression one partitions into nearand far fields. The application

of fast summation to the expression for the Ewald potential was implemented by Stadel

(2001). The problem with their approach is that the expression for the Ewald acceleration

which one must evaluate for all near field interactions is very expensive. In contrast, if

we were to represent the periodic acceleration as a direct interaction scheme, this would

allow the periodic acceleration to be computed using only the Newtonian 1/r2 gravita-

tional force between two point masses (which we will call a “direct interaction”), as if

the problem had open, not periodic, boundary conditions. Todo this, we represent the

periodic acceleration at positionr as as

Ψ(r) =
N

∑
j=1

mj(r j − r)
|r j − r |3 + ∑

n=(0,0,0)

N

∑
j=1

mj(r j ,n − r)
|r j ,n− r |3

− 4π
3

[

∑
j

mj r j − r ∑
j

mj

] (1.11)

In this expression the first term is the familiar open boundary problem; the remaining

terms represent the contribution from an infinite periodic lattice of replicas of the vol-

ume being simulated, where as beforer j ,n = r j −n, with n a lattice vector denoting the

particular replica in the sum. We will demonstrate in Chapter 2 that this acceleration is
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mathematically equivalent to the Ewald acceleration introduced earlier. Comparing the

Ewald representation and this direct sum over replicas formulation, one can easily see

that the latter might well be much faster to compute, provided that the infinite sum over

replicas can be handled efficiently. To do this, we exploit the translational symmetry

implicit in periodic boundary conditions and the considerable simplification afforded by

recognizing that the mass distribution, by definition, is identical in each periodic replica

and can therefore be removed from the lattice sum analytically.

Most current cosmological simulation codes ( GOTPM, Dubinski et al. 2004; PM-

FAST, Merz et al. 2005; GRACOS, Shirokov and Bertschinger 2005; GADGET2, Springel

2005; MC2, Heitmann et al. 2005; to name but a few) employ Fourier methods to rep-

resent periodic solutions of Poisson’s equation. The most venerable technique in this

category is the Particle Mesh (PM) scheme. The density field represented by the particles

is first interpolated onto a mesh, and the potential is then computed using the fast Fourier

transform (FFT). Schematically,

∇2Φ(r) = ρ(r) = ∑
k

ρ̂(k)eik·r → k2Φ̂(k) = ρ̂(k) → Φ(r) = ∑
k

ρ̂(k)

k2 eik·r

where the carat above a quantity refers to its Fourier transform. The solution represented

in this manner is a straightforward convolution of the density field and a Green’s function

(1/k2). The periodic acceleration is then just the gradient of thispotential, interpolated

at the positions of the particles. This method suffers from the limited resolution afforded

by representing the density on a regular grid and whilst the scheme has been extended

to adaptive meshes (such as the adaptive P3M scheme (AP3M) ) it is unable to obtain

periodic accelerations to machine precision.

A further advance came from considering the Ewald potentialwhich is the analytic

solution to Poisson’s equation with periodic boundary conditions whose kernel is written



15

as

GEwald(r) = ∑
n

erfc(α|x−n|)
|x−n| − ∑

h 6=0

1
π|h|2 exp

(
−π2|h|2

α2

)
cos(2πh ·x) (1.12)

Rybicki (1986) recognized that theh-space term in the Ewald potential might most eas-

ily be calculated in Fourier space while the real-space term(the sum overn) could be

evaluated directly. He thus split the Green’s function intotwo terms

Φk = −4πGρk

k2

= −4πGρk

k2 exp(−k2r2
s) − 4πGρk

k2 (1−exp(−k2r2
s))

= Φl
k +Φs

k

(1.13)

whereΦl
k andΦs

k are the long and short range potential, respectively. The long range po-

tential is computed in Fourier space, just as in a PM code, butusing the kernel exp(−k2r2
s)/k2

instead of the standard 1/k2 kernel, whereas the short-range force is computed using a

kernel of the form

ξ(r) = −Gmr
r3

(
erfc

(
r

2rs

)
+

r

rs
√

π
exp

(
− r2

4r2
s

))
(1.14)

over volumes of a few Fourier grid cells. Both TreePM (Bagla,2002) and Gadget-II

and -III (Springel, 2005) codes implement this scheme. We will show that the direct

summation scheme is preferable to any of these Fourier schemes.

The only aspect which remains is to quantify our original claim that we can dra-

matically reduce the computational effort required to perform N-body simulations. We

will demonstrate in this dissertation that a direct summation representation of periodicity

along with commodity Graphics Processing Units (GPU’s) (which can compute 45 bil-

lion direct interactions per second) can reduce the cost of large computations by at least
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a factor of 100; typically a factor of at least 10 from the direct summation representation

and a factor of 10 from the GPU. This is not merely a hypothetical conjecture. Consider

the results of Merz (2006) for his CubePM code on the BlueGene/L supercomputer for

a simulation which employed 10243 particles in a box 1 Gpc on a side. CubePM uses a

two-level particle-mesh scheme and is designed to run on massively parallel computers,

using a distributed Fast Fourier Transform (the 3DFFT Library of M. Eleftheriou et al.

2005). Merz reports that the wallclock time per time step (averaged over the first 10

steps) was 20 seconds on 4096 BlueGene/L processors. Given that the 65,000 processors

on this machine cost $100 million, the 4096 processors used effectively cost $6.3 million.

In contrast, on a desktop computer which currently costs $6,000, we have performed the

same calculation in 50 seconds, and to very much higher accuracy. Even ignoring this

increased accuracy, we have demonstrated an increase in price/performance by a factor

of more than 400, turning a supercomputer problem into a routine desktop calculation.

This incredible price/performance increase is the result of using new algorithms tailored

to commodity hardware, and especially to our effective use of GPUs. We have already

used this code to produced 70 simulations with one billion particles in a box 1 h−1 Gpc on

a side which have been used to study non-linear shifts of the baryon acoustic oscillation

scale and to provide a large set of mock catalogs for our analysis of the SDSS and BOSS

data sets.
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CHAPTER 2

FAST COMPUTATION OF ADAPTIVE SOFTENING LENGTHS

If one is to make a faithful simulation of the evolution of an N-body system, it is essential

to make an accurate computation of the periodic acceleration Ω(r). Equally important,

however, is representing the evolution of a collision-lessfluid with a (relatively) small

number of particles. The smaller the number of particles, the more strong (large-angle)

scattering introduces a spurious collisionality to the simulation. One remedy is simply to

increase the number of particles in the simulation; the greater the number of particles, the

less often any particle’s near field is dominated by a single other particle. More practically

however, one must “soften” the interaction at small inter-particle separations, thereby

lessening the effect of large-angle scattering.

Force softening is crucial since ultimately one is concerned not with computing N-

body trajectories of individual particles, but rather withsimulating the solution of the

coupled Vlasov and Poisson equations for a continuous, collisionless fluid. Two-body

encounters artificially introduce collisional relaxation, as otherwise, for any finiteN, there

would always be a closest particle which would dominate a given particle’s acceleration.

Force softening is a technique used to minimize this effect,by modifying the force so that

as the inter-particle separation falls below some specifiedlength, thesoftening length, the

force is bounded by a constant value. All of the N-body simulations mentioned previously

use a constant co-moving softening length. Because bound structures cannot form within

the softening length, in the quest to resolve ever-smaller structures a softening length is

often chosen appropriate to the highest densities the simulation will ever produce. The

result is that this length is too small for most of the volume in the simulation, which then

experiences excessive two-body relaxation. This in turn affects the density profiles of
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halos and the halo mass function.

The choice of optimal softening length has been discussed atlength (Athanassoula

et al., 2000; Dehnen, 2001; Price and Monaghan, 2007). Thesestudies were carried out in

the context of isolated hales in dynamical equilibrium using analytic distributions so that

it is possible to compute the relative error in various physical quantities with analytical

expressions derived from the distribution functions. Dehnen (2001) concluded that the

optimal softening length must adapt to the local inter-particle separation as a function of

space and time. We incorporate the formulation of variable softening length proposed

by Price and Monaghan (2007) which conserves momentum and energy explicitly. The

modified force kernel is now given by

φ′ =
4π
r2

Z r

0
Wr′2dr′ (2.1)

andW(r,h) has compact support,e.g. the cubic spline kernel of Monaghan & Lattanzio

(1985)

W(r,h) =






1
πh3

[
1− 3

2

(
r
h

)2
+ 3

4

(
r
h

)3
]

r
h < 1

1
πh3

[
1
4

(
2− r

h

)3]
1≤ r

h < 2

0 r
h ≥ 2

(2.2)

may be written in the form

φ
′
(r,h) =





1
h2

(
4
3

( r
h

)
− 6

5

( r
h

)3
+ 1

2

( r
h

)4
)

r
h < 1

1
h2

(
8
3

(
r
h

)
−3
(

r
h

)2
+ 6

5

(
r
h

)3− 1
6

(
r
h

)4− 1
15

(
h
r

)2
)

1≤ r
h < 2

1
r2

r
h ≥ 2

(2.3)

whereh is the softening length.



19

Mathematically, the softened acceleration is given by the expression,

ai = G∑
j

mj

[
φ′i j (hi)+φ′i j (h j)

2

]
r i − r j

|r i − r j |

− G
2

[
ζi

Ωi

∂Wi j (hi)

∂r i
+

ζ j

Ω j

∂Wi j (h j)

∂r j

] (2.4)

where

ζi =
∂hi

∂ρi
∑

j
mj

∂φi j (hi)

∂hi
, Ωi = 1− ∂hi

∂ρi
∑

j
mj

∂Wi j (hi)

∂hi
(2.5)

and where

dW(r,h)

dh
=






1
πh4

[
−3+ 15

2

( r
h

)2− 9
2

( r
h

)3] r
h < 1

1
πh4

3
2

(
2− r

h

)2( r
h −1

)
1≤ r

h < 2

0 r
h ≥ 2

(2.6)

and

dW(r,h)

dr
=
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πh4

r
r

(
−
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h

)
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4

( r
h

)2
)

r
h < 1

3
πh4

r
r

(
−1
4

(
2−
(

r
h

))2
)

1≤ r
h < 2

0 r
h ≥ 2

(2.7)

and the derivative of the potential with respect toh is given by

∂φ
∂h

=





1
h2

(
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h

)2
+ 3

2
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h

)4− 3
5

( r
h

)5
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)
r
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1
h2

(
−4
(
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h

)2
+4
(

r
h

)3− 3
2

(
r
h

)4
+ 1

5

(
r
h

)5
+ 8

5

)
1≤ r

h < 2

0 r
h ≥ 2

(2.8)

Note that the sum overj in the expression for the accelerationai only contains non-

zero terms for a small subset of particles due to the fact thathi ,h j is typically chosen to

contain around 60 particles. The algorithm (Price and Monaghan, 2007) employed for

setting the softening length is outlined in pseudocode in Figure (2.1). The gist of the

algorithm to obtainh may be summarized as using a Newton-Raphson iteration scheme
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Algorithm AdaptiveSofteningLength(r ,ε,h0,Nneighbours,σ)

f = f ′ = 1

h = h0

while( f > f ′ε)
{b} = {i · |r − r i | < 2h}

ρΣ(r ,h) = ∑
{b}

W(|r − rb|,h)

ΩΣ(r ,h) = ∑
{b}

∂W(|r − rb|,h)

∂h

ρ =
(η

h

)3

Ω = 1+
h
3ρ

ΩΣ(r ,h)

f = ρ−ρΣ(r ,h)

f ′ = 3
ρ
h

Ω

h = h− f
f ′

endwhile

Figure 2.1: Adaptive Smoothing Length Algorithm

on the functional
(η

h

)3
−ρΣ(h) (2.9)

where the first term reflects a rough relation between the smoothing length and the den-

sity andρΣ(h) is the current value of the density computed via the usual SPHsmoothing

estimate using the current value ofh. η defined as parameter which specifies the smooth-

ing length in terms of average inter-particle spacing.η is related to the desired number

of neighbours viaNneighbours=
4π
3 (ση)3 and σ is the compact support radius of the

kernel (= 2 for the cubic spline),ε is a convergence tolerance for the Newton-Raphson
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Algorithm CoalescedAdaptiveSofteningLength(Sni ,ε,h0i ,Nneighbours,σ)

S
′
= Sni

f = f ′ = 1

∀ j ∈ S
′

h j =h0, j

while(|S′| > 0)

~c =
∑ j∈S′ r j

|S′|
h = max

j∈S′
h j

r = max
j∈S′

|r j −~c|

{b} = RangeSearch(~c, r +2h)

∀ j ∈ S
′
ρΣ, j = ∑

{b}
W(|r j − rb|,h j)

∀ j ∈ S
′
ΩΣ, j = ∑

{b}

∂W(|r j − rb|,h j)

∂h

∀ j ∈ S
′ {

ρ j =

(
η
h j

)3

Ω j = 1+
hi j

3ρ j
ΩΣ, j

f j = ρ j −ρΣ, j

f ′j = 3
ρ j

h j
Ω j

h j = h j −
f j

f ′j
if ( f j < f ′jε) S′ = S′−{ j}

}
endwhile

Figure 2.2: Coalesced Adaptive Smoothing Length Algorithm
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iteration andh0 is an initial guess for the softening length, say the distance to the nearest

neighbour. A naive implementation to obtainρΣ andΩΣ for all N particles would led to

anO(N2) algorithm, if the quantity{b}, which is the set of particles within a radius of 2h

of the particle at locationr , could not be obtained in less thanO(N) time.

Clearly, to start, we require an algorithm to obtain all particles within radius 2h of the

current particle under consideration, in at worstO(logN) time. This is usually referred

to as a range search. In two and three dimensions thekd-treeintroduced by Jon Bentley

in 1975, is the de-facto standard data structure employed for range searching. Trees are

a hierarchical representation of a point set, i.e the set is recursively subdivided into a

subsets (nodes) Vi such thatV =
S

Vi andVi ∩Vj = 0 with each subsetVi also satisfying

this property. Nodes are notionally volumes if the set comprises three dimensional particle

coordinates. The kd-tree is a binary tree (each node is subdivided into two nodes) where

each subset (node) is recursively bisected via an axis aligned splitting hyperplane. The

canonical method of cycling the axis of the splitting plane (x,y,z,x,y,z, · · · ,x,y,z) at a

location such that an equal number of particles lie in each sub-volume leads to a balanced

kd-tree.

Unfortunately spatial data structures which involve quasi-random memory accesses

are not particularly suited to the GPU due to the penalty of main memory accesses. In-

stead, we employ a non-hierarchical data structure based purely upon triply sorting the

particle set. Our algorithm is based upon the canonical one dimensional scheme for find-

ing all particles within radiusR from a given positionx, namely to sort the particles based

on their co-ordinate, and then binary search for the indiceswithin the sorted list closes to

x−R andx+R. In two dimensions, assuming we haveN2 particles, sort the particles on

the x-coordinates and then bin the particles intoN bins. Within each of theN bins sort

on they-coordinate. Consider a particleφ = (px, py); find thex bin which contains thex
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Algorithm 3waySort(N,particles)

sort( &(particles[0]), &(particles[np]), ParticleSortX() );
xbegin[0] = −0.5;
for(int i = 0;i < ns; i++) {

if(i < ns−1){
xend[i] = particles[ns×ns× (i+1)].x;
xbegin[i+1] = xend[i];

}
else

xend[ns-1] = 1
2;

sort(&(particles[ns×ns× i]),&(particles[ns×ns× (i+1)]),ParticleSortY());
ybegin[i×ns] = −1

2
for(int j = 0;j < ns; j++) {

if( j < ns-1) {
yend[i×ns + j] = particles[ns×ns× i+ns× (j+1)].y;
ybegin[i×ns + (j+1)] = yend[i×ns + j];

}
else

yend[i×ns + (ns-1)] = 1
2;

sort(&(particles[i×ns×ns+j×ns]),&(particles[i×ns×ns+(j+1)×ns]),
ParticleSortZ() );

}
}

Figure 2.3: Pseudocode for a 3 way sort

coordinate value ofpx−Rdenotes this binX−; and obtain the binX+ ( corresponding to

the bin containingpx +R). For each binX from X− to X+, form the two indicesY−
X and

Y+
X , which are within±Rof py. Any particle within the indicesY−

X · · ·Y+
X in bin X can be

tested for inclusion in the circle for radiusR surroundingφ. The generalization of both

the sorting scheme and range searching to three dimensions is completely straightforward,

and shown in Figures (2.3) and (2.4).
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Algorithm RangeSearch(r, R, S)

X− = BinarySearchX(rx - R)
X+ = BinarySearchX(rx + R)
for(x = X−;x ≤ X+;x++) {

Y− = BinarySearchY(ry - R,x)
Y+ = BinarySearchY(ry + R,x)
for( y = Y−;y <= Y+;y++) {

Z− = BinarySearchZ(rz - R,x,y);
Z+ = BinarySearchZ(rz + R,x,y);
for( p = Z−;p <= Z+;p++) {

if(Distance(r, rp) ≤ R) S = S∪{p};
}

}
}

Figure 2.4: Pseudocode for RangeSearch

Whilst our algorithm reduces theO(N2) naive implementation ofρΣ andΩΣ toO(N logN)

unfortunately it exhibits lowarithmetic intensity- a high memory access ratio to computa-

tion ratio (typical of spatial data structure traversals).In other words, arithmetic intensity

is the ratio of the cycles devoted to floating point operations to cycles required to trans-

fer a memory word; consequently, large register sets and caches are necessary to obviate

the penalty associated with memory accesses as cached variables enhance arithmetic in-

tensity through the rescue of variables without the penaltyof a memory access. High

arithmetic intensity can be exposed thorough a generic pattern (template) we refer to as

coalesced interaction, whereby for two sets,{xi}, {y j}, the quantity∑ j K(xi ,y j) is accu-

mulated into{ai}, as outlined in Figure (2.5) using the NVIDIA CUDA extensions to the

C programming language.

The computational rate for coalesced interactions; which include computing and ac-

cumulating direct accelerations or nearest neighbours, orin the present case softening
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lengths can be obtained quite precisely asF/(ki j) interactions per second, where kernel

K(x,y) requiresk flops and the total number of flops available is denoted byF. For the

NVIDIA GTX 280 GPUF ≈ 1012 flops and interactions for obtaining distances between

particles (squared distances are actually employed to avoid thesqrt operation) requirek =

11 cycles. Clearly we need to reformulate the computation ofρΣ andΩΣ as a sequence of

purely local operations based upon sets of points, rather than individual particles. Query-

ing our range searching data structure in this manner for a coalesced set of particles obvi-

ates the overheads associated with traversing the data structure for each point individually.

Consider the set ofN particlesS= {r1, · · · , rN}, and select a subsetSn = {r i1, · · · , r in}.

Define dual(Sn) = {r
′
i1, · · · , r

′
im}, ∀r ∈ S∧ r i ∈ Sn · |r − r i| < 2hi → r ∈ dual(Sn) where

we intend the notation to imply that|Sn| = n and|dual(Sn)| = m. Naturallyn ≤ m≤ N,

however ifSn was randomly selected would expect that even forn≪ N, m≈ N; clearly

for n≪ N one desiresm≪ N. We desire a partitioning ofS, into k subsets, i.e

k
[

i=1

Sni = S,
k

∑
i=1

ni = N, Si ∩Sj = φ 1≤ i < j ≤ k (2.10)

and we seek to minimize

Wni = ∑
i
|Sni ||dual(Sni)| (2.11)

Wni is a metric which quantifies the amount of work to computeρΣ(Sni) and ΩΣ(Sni).

Given a setSni we form

~c =
∑ j mj r j

∑ j mj
, r j ∈ Sni

r = max
j

|r j −~c|, r j ∈ Sni

h = max
j

h j , r j ∈ Sni

(2.12)
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and then use a range search query to obtain all particles centered on~c within a radius or

r +2h an approximation to dual(Sni). In order to select subsets which are spatially com-

pact spherical regions we employ the Mutually Nearest Neighbour (MNN) tree structure

introduced by Press 1986. Informally, the MNN tree is constructed by determining all

particles nearest neighbours and then replacing mutually nearest neighbours with another

particle at the center of mass of those particles. The process is repeated until only one

particle remains. In this manner this tree has 2N−1 nodes, whereN is the number of

particles. With an MNN tree one could selectSni by a simple recursive scheme whereby

the algorithm descends the MNN tree,T, and if the amount of workWT is greater than

the pre-specified amountm, then the daughtersWTR andWTL are recursively traversed.

The construction of the MNN tree itself is completely amenable to our coalesced inter-

actions; sets,S, are obtained from the octree representation of theN particles and the

setdual(S) is similarly formed whereh is the maximum of the nearest neighbour dis-

tances inS. The octree is a tree data structure in which each internal node has up to eight

children, and moreover, each node in an octree subdivides the space it represents into

eight equal sub-octants, irrespective of the particle distribution within the volume. The

octree data structure is based upon the idea of mapping a three dimensional co-ordinate

into a one dimension key using a space filling curve, and subsequently range partitioning

this one dimensional key hierarchically across a set of nodes. We construct the octree

by first forming the Morton order (introduced by G.M. Morton in 1966) of each particle

by interleaving the binary representations of integer representations of the floating point

coordinate values of the particles. Once the particles are sorted into this ordering the

resulting ordering is equivalent to a depth-first traversalof an octree.

As an illustrative example, the effective rate of computation of these softening lengths

for a Plummer distribution was almost 5 million particles per second on a GTX 295 for
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a maximum set size of 800 particles. We also mention that the technique of coalesced

interactions is well suited to both the SPH smoothing lengthcomputation (essentially

identical to our algorithm to obtain the softening lengths)and for the evaluation of SPH

dynamical quantities. As a first step toward the goal of creating a cosmological SPH-

Nbody code for the GPU, we implemented a non-cosmology “classic” SPH-Nbody code

and performed the Evrard collapse test ( a standard test for SPH codes including self-

gravity - the test follows the adiabatic collapse of an initial cold and static gas sphere with

an ideal gas equation of state). Disregarding the time to compute the smoothing lengths

we could compute the SPH fluid quantities for the gas particles at just over 4 million

particles per second on a GTX 295.

Clearly, as only the nearest interactions involve smoothing, it will not be necessary in

the remainder of this dissertation, devoted to the computation of the far field interactions,

to include the effects of smoothing.
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Algorithm CoalescedInteraction( float4 *g xi, float4 *g xj,
int ni, int nj, float4 *g accumulator ) {

const unsigned inttid = threadIdx.x;
const unsigned intbid = blockIdx.x;
const int nblocks = gridDim.x;
const int nthreadsperblock = blockDim.x;

unsigned int n jblock = nj/CACHESIZE;
unsigned int n iblock = ni/(nblocks × nthreadsperblock);

for(unsigned int iloop = 0;iloop < n iblock; iloop++) {
unsigned int gindex = (iloop×nblocks+bid)×nthreadsperblock+ tid;
g accumulator[gindex] = 0;

}
syncthreads();
shared float4 shared xj[CACHESIZE];

for(unsigned int jloop = 0;jloop < n jblock; jloop++) {
unsigned int j start = CACHESIZE timesjloop;

syncthreads();
for(unsigned intj = 0;j < CACHESIZE; j+=nthreadsperblock) {

unsigned int jj = j+ tid;
shared xj[jj] = g xj[j start+ jj];

}
syncthreads();

for(unsigned int iloop = 0;iloop < n iblock; iloop++) {
unsigned int i = (iloop×nblocks+bid)×nthreadsperblock+ tid;
float4 xi;

xi = g xi[i];
aprevious = g accumulator[i];
a.x = a.y = a.z = a.w = 0;
for(unsigned intj = 0;j < CACHESIZE; j++)

Accumulate(xi,shared xj[j],&a);
g accumulator[i] = a+aprevious

}
}

}

Figure 2.5: Pseudocode for Coalesced interactions
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CHAPTER 3

PERIODICITY via DIRECT SUMMATIONS

Historically, when solving the gravitational N-body problem, the change from isolated

to periodic boundary conditions has engendered a completely different effective local

interaction potential (Gadget-2, PkdGrav). Why should it be that simply changing the

distant boundary conditions should require one to modify the local interaction poten-

tial? This question is especially important given that the 1/r kernel can be computed so

efficiently. We are not the first to desire a representation based purely upon direct sum-

mations. Bouchet and Hernquist (1988) proposed a scheme which they dubbed Quasi-

Periodic (QP) boundaries; this was actually a variation of the minimum-image convention

of Alder and Wainwright (1959) used in molecular dynamics. Theansatzbehind the QP

method was that the acceleration on a mass can be computed as if it were embedded in

an infinite periodic system. Instead of computing the infinite sum over replicas, however,

the minimum-image convention includes only the contribution of those masses which lie

within a volume the size of the simulation volume, centered about each mass. Bouchet

and Hernquist (1988) concluded that this method was not sufficiently exact; for exam-

ple, it induced too-rapid growth of the fundamental mode in cosmological simulations.

They ascribed this behavior to the fact that the method did not take into account the force

contribution from more distant replicas. In a neutral plasma Debye screening suppresses

longer range interactions so the minimum-image conventionis intuitively sensible. For

gravity, with its long range forces, it is not surprising that a direct summation represen-

tation which only considered the nearest neighbouring replicas should underestimate the

total acceleration.



30

Hernquist et al. (1991) subsequently turned to tabulating the Ewald correction to

the open-boundary potential, already common practice in computational chemistry (e.g.

Sangster and Dixon, 1976). This table-lookup was later adopted by Dubinski (1996),

Davé et al. (1997), and Springel et al. (2001) (in Gadget-1). One of the distinct advan-

tages of a tabulated Ewald correction was that it permitted acomputational implementa-

tion of periodicity using direct interactions. Direct interactions enabled the incorporation

of GRAPE (GRAvity piPE) boards which were special-purpose ASIC (application spe-

cific integrated circuit) dedicated to the computation of a Newtonian 1/r2 gravitation

force between two point masses (Sugimoto et al., 1990; Fukushige et al., 2005). The

dominance the GRAPE enjoyed during the last decade has essentially been superseded

by the superior price-performance afforded by commodity CPU’s and Graphics Process-

ing Units (GPU’s) for direct interactions. Our implementation of a direct interaction a

quad-core Intel Q9950 processor can compute 2.4 billion direct accelerations with Plum-

mer smoothing per second, an effective rate of 4.4 clock cycles per acceleration. On the

NVIDIA GTX 295 GPU, we compute the same quantity at a sustained rate of 45 billion

direct interactions per second, at the same cost per part as the CPU. The new Intel i7

CPU’s and the next generation of GPU’s both deliver more thandouble these rates.

Whilst all modern cosmological simulations assume periodic boundary conditions,

this does not mean we expect that the universe is indeed periodic. Rather, when simulat-

ing a “typical” volume of the universe, the effect of the restof the universe on the com-

puted volume must be included. The simulation volume is the only sample of structure

available; a natural way to include its effects is by replicating it infinitely in all directions.

This notion of infinite replication is the physical picture behind what what is colloquially

referred to by “periodic boundary conditions,” regardlessof the mathematical language

in which the conditions are expressed.
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One might write the acceleration due to all masses and their periodic images as the

infinite sum1

Ψ(r) =
N

∑
j=1

mj(r j − r)
|r j − r |3 +

∞

∑
|n|2>0

N

∑
j=1

mj(r j −n− r)
|r j −n− r |3 (3.1)

Here we have explicitly expressed the acceleration as a sum of the contribution from the

unit cell (the volume being simulated) and from its infinite replicas. What are the conse-

quences of imposing periodic boundary conditions upon a finite set of masses by replicat-

ing the simulation volumead infinitumin this way? Is the problem even mathematically

well-posed?

As noted in the previous chapter, most modern cosmological simulations have re-

sorted to Fourier methods to represent periodicity. Proving the expected equivalence of

Fourier methods and infinite replication has been the sourceof much controversy for

decades. While one’s intuition suggests that infinite replicationshouldbe equivalent to

the construction of periodicity through Fourier methods, the precise formulation of this

equivalence is subtle. In this chapter we shall show how periodic boundary conditions

may efficiently be included in N-body computations using direct summation.

Ewald (1921) developed an alternate view of the infinite sum in (3.1) in which the den-

sity distribution is not represented on a lattice. The derivation of Ewald’s representation

proceeds directly from the Fourier space Green’s function,

G(r , r ′) = ∑
k 6=0

1
|2πk|2e2πik·(r−r ′) (3.2)

and the relation
1

|k|2 =
Z ∞

0
e−(k2)t dt (3.3)

1Since the effect of the cosmological terms solved by N-body simulations is merely to modify the scale
factor on distances, we shall henceforth, without loss of generality, examine the canonical N-body problem
in the context of periodic boundaries.
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Using this expression, the Fourier Green’s function can be written as

G(r , r ′) = ∑
k 6=0

e2πik·(r−r ′)

|2πk|2 = ∑
k 6=0

Z ∞

0
e−(2πk)2t+2πik·(r−r ′)dt (3.4)

Recalling the Poisson-Jacobi formula,

∞

∑
k=−∞

e−(2πk)2t+2πik(x−x′) =
1√
4πt

∞

∑
K=−∞

e−
(x−x′+K)2

4t (3.5)

we have an alternative expression for the Green’s function,

G(r , r ′) = ∑
K

Z ∞

0
(5πt)−

3
2e−

(r−r ′+K)2

4t dt (3.6)

These two representations ofG(r , r ′) are useful whent is large and whent is small re-

spectively. The familiar Ewald form can be recovered by splitting the integral overt in

G(r , r ′) into two domains which utilize these representations,

G(r , r ′) =

Z α2

0
∑
K

(4πt)−
−3
2 e−

r−r ′+K)2

4t dt

+

Z ∞

α2

[

∑
k 6=0

e−(2πk)2t+2πik·(r−r ′)

]
dt

=
1
4π ∑

k

erfc(|r − r ′ +k|/
√

2α)

|r − r ′+k| −α2

+ ∑
k 6=0

e−α2(2πk)2+2πik·(r−r ′)

(2πk)2 .

(3.7)

ForN particles with positionsr j and massesmj in a unit volume centered about the origin,
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the “Ewald acceleration” which is derived fromG(r , r ′) is usually written in the form

Ω(r) =
N

∑
j=1

mj

{

∑
n

r j ,n− r
|r j ,n− r |3

[
erfc(α|r j ,n− r |)

+
2α√

π
|r j ,n− r |e−α2|r j,n−r |2

]

+ ∑
k 6=0

2k
|k|2e−π2|k|2/α2

sin(2πk · (r j − r ))

}
(3.8)

wherer j ,n = r j + n. The Ewald acceleration is thus in some sense the discrete particle

analog of the Fourier acceleration defined for a smooth distribution. Having derived the

Ewald acceleration from the Fourier Green’s function we have shown the equivalence

between the Fourier and Ewald representations of the solution to Poisson’s equation un-

der periodic boundary conditions, we will now demonstrate the relationship between the

Ewald representation and one based upon infinite direct summation as in (3.1).

The principle difficulty which arises with such sums on an infinite lattice is that they

are, in general, not absolutely convergent; the asymptoticlimit of these sums is dependent

upon the order of summation. The study of the acceleration due to an infinite assembly

of point particles has roots going back at least to Gibbs and Wilson (1901), though its

mathematical nuance has only been completely settled within the last quarter-century. de

Leeuw et al. (1980) proved that the naı̈ve sum over replicas (3.1) is convergent if summed

over spherical shells surrounding the simulation volume. Certainly this nuance was ap-

preciated by Peebles (1980) who stated for infinite distributions: “the sum in general is

not well-defined; the answer depends on how the terms are ordered. The prescription . . . is

that the sum is in order of increasing|x j −x|. Under the assumption that the particle dis-

tribution is a spatially homogeneous and isotropic random process . . . this sum converges

to a definite value well within the relativistic horizon.” Whilst summation over spherical

shellscan indeed converge to a definite value, this isnot in general the same value given
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by Fourier methods; an additional term is required for the acceleration (3.1) to coincide

with the standard Fourier result.

The emphasis above oncan is seen in the nuance of the computation of Madelung’s

constant for the NaCl crystal, a simple and wide-studied lattice sum. Following (Borwein

et al., 1985), the computation of Madelung’s constant requires an evaluation of the sum

of the elements in the following set

B =

{
(−1)i+ j+k
√

i2 + j2+k2
: (i, j,k) ∈ Z3/(0,0,0)

}
(3.9)

LetC(n) denote the number of ways of writingn as a sum of three squares. If we consider

a sphere centered at the origin in three-space, add all elements that correspond to lattice

points within the sphere, and then let the radius go to infinity, one is led to the divergent

sum
∞

∑
n=1

(−1)nC(n)√
n

(3.10)

Remarkably, however, if we sum over expanding cubes,

S(n) = ∑
(i, j ,k)6=(0,0,0)

(−1)i+ j+k

(i2+ j2 +k2)1/2
−n≤ i, j, j ≤ n (3.11)

the limit lim
n→∞ S(n) exists, (Borwein et al., 1985).

In a particularly insightful paper, Redlack and Grindlay (1975) (hereafter RG75)

demonstrated the relation between the acceleration from aninfinitely-replicated simu-

lation volumeΨ(r i) and its representation via Ewald summation,Ω(r). Scaling the sim-
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ulation to unit volume and centering it about the origin, their result is

Ω(r) =
N

∑
j=1

mj(r j − r )
|r j − r |3 + ∑

|n|6=0

N

∑
j=1

mj(r j ,n− r )
|r j ,n− r |3

− 4π
3

[

∑
j

mj r j − r ∑
j

mj

]

= Ψ(r)−ζRG(r)

(3.12)

The last term,ζRG(r), is the additional term alluded to above which we shall call the

Redlack-Grindlay term. Hence, the naı̈ve summation over all replicas is identical to the

Ewald acceleration when a term related to the dipole moment of the unit cell is included,

provided that the lattice sum inΨ(r) is computed in increasing spherical shells. Since

an appreciation of the origin of theζRG term in the infinite replication of a simulation

volume of a finite number of particles is so pertinent to our presentation we provide here

aprécisof the proofs in de Leeuw et al. (1980) and in Smith (1981).

Recalling the equality
1
|r | =

1√
π

Z ∞

0
t−

1
2 e−tr2

dt. (3.13)

one can rewrite the sum of the potential over replicas as

∑
n∈PR

1
|r +n| = ∑

n∈PR

1√
π

Z ∞

0
t−

1
2e−t(r+n)2

dt

wherePR denotes the set of tuples{(a,b,c) : −R≤ a,b,c≤ R}. Now split the range of

integration as in the derivation of the Ewald representation

∑
n∈PR

1
|r +n| = ∑

n∈PR

1√
π

[
Z α2

0
t−

1
2e−t(r+n)2

dt +
Z ∞

α2
t−

1
2e−t(r+n)2

dt

]
(3.14)

Using the identity

e−ta2
= (πt)

1
2

Z ∞

−∞
e−u2/t+2iuadu (3.15)
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we have

e−t(r+n)2
= (πt)−

3
2

Z

V∞
e−u2/t+2ir ·u e2in·u du, (3.16)

whereV∞ denotes all of three dimensional space. The first term can be simplified as

1√
π

Z α2

0
t−

1
2

(

∑
n∈PR

e−t(r+n)2

)
dt

=
1√
π

Z α2

0
t−

1
2

(

∑
n∈PR

(πt)−
3
2

Z

V∞
e−u2/t+2ir ·ue2in·u du

)
dt

=
1
π2

Z

V∞
e2ir ·u

(
Z α2

0
t−2e−u2/tdt

)

∑
n∈PR

e2in·u du

=
1
π2

Z

V∞

1
u2e−u2/α2+2ir ·u ∑

n∈PR

e2in·u du

(3.17)

The second term in (3.14) can be simplified by recalling the definition of the error function

and the identity
1
π

Z ∞

α2
t−

1
2e−tr2

dt =
erfc(α|r |)

|r | (3.18)

so that the lattice sum of the potential becomes

∑
n∈PR

1
|r +n| =

[
1
π2

Z

V∞

1
u2e−u2/α2+2ir ·u ∑

n∈PR

e2in·u du

]

+

[
f (r ,α)+ ∑

n∈PR

n6=0

erfc(α|r +n|)
|r +n|

] (3.19)

where

f (r ,α) =






erfc(α|r |)/|r | r 6= 0,

−2α/
√

π r = 0.
(3.20)

There is a clear resemblance between this expression and thekernel of Ewald potential,

GEwald(x) = ∑
n

erfc(α|x−n|)
|x−n| − ∑

h 6=0

1
π|h|2 exp

(
−π2|h|2

α2

)
cos(2πh ·x) (3.21)
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Consider
1
π2

Z

V∞

1
u2e−u2/α2+2ir ·u ∑

n∈PN

e2in·u du (3.22)

whereu = πm wherem is on RR, the reciprocal lattice toBR. The reciprocal lattice

vectorm = (m1,m2,m3) is related to a lattice vectorn = (n1,n2,n3) asmi = 2π/ni. Upon

substitutingv+πm= u into (3.22) we have

1
π2

Z

V∞

1
u2e−u2/α2+2ir ·u ∑

n∈PN

e2in·u du

= I0(r ,PR)+ ∑
m∈RR
m6=0

e−π2m2/α2+2πim·r Im(r ,PR)
(3.23)

whereΩ0 = [−π/2,π/2]3, and we have defined

Im(r ,PR) =
1
π2

Z

Ω0

(
e−v2/α2−2πim·v/α2+2ir ·v

|πm+v|2 Q(v)

)
dv (3.24)

and

Q(v) = ∑
n∈PR

e2in·v =
3

∏
j=1

N

∑
n=−N

e2inv j =
3

∏
j=1

sin((2N+1)v j)

sinv j
(3.25)

Expression (3.24) may then be evaluated by introducing the functiongm(v, r) for m 6= 0,

gm(v, r) = |πm+v|−2e−v2/α2−2πim·v/α2+2ir ·v (3.26)

so that,

Im(r ,PN)

=
1
π2

Z

Ω0

gm(0, r) ∑
n∈PN

e2in·vdv+
1
π2

Z

Ω0

(gm(v, r)−gm(0, r)) ∑
n∈PN

e2in·vdv

=
1

π4m2

3

∏
j=1

Z
π
2

− π
2

sin((2N+1)v j)

sinv j

+π ∑
n∈PN

1
π

Z π
2

− π
2

dv1e2in1v1
1
π

Z π
2

− π
2

dv2e2in2v2
1
π

Z π
2

− π
2

dv3e2in3v3(gm(v, r)−gm(0, r))

(3.27)
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The first term in the expression above is(πm2)−1. The second term is the partial sum

of the three-dimensional Fourier series forgm(v, r)−gm(0, r), evaluated atv = 0. Since

the function is analytic at and around this point, the partial sum is equal to the function

evaluated at this point plus terms that areO((2N+1)−2). Hence,

Im(r ,PN) = (πm2)−1+O((2N+1)−2) (3.28)

Finally, the Redlack-Grindlay term,ζRG arises from the derivative of

I0(r ,PN) = I0(0,PN)+
1
π2

Z

T0

d3v
e−v2/β2

(e2ir ·v −1)

v2 Q(v) (3.29)

Rewriting the second factor in the integrand as

e2ir ·v −1 = −2sin2(r ·v)+ i sin(2r ·v) (3.30)

we see that, since the termi sin(2r · v) is odd in v, the integral of this term overd3v

vanishes. Thus,

Z

T0

d3v
e−v2/β2

(e2ir ·v −1)

v2 Q(v) = −
Z

T0

d3v
sin2(r ·v)

v2 Q(v)

+

Z

T0

d3vsin2(r ·v)
e−v2/β2 −1

v2 Q(v)

(3.31)

The second term in the sum above tends toO((2N+1)−2) for precisely the same reasons

as the integral in (3.27). In addition to this truncation order, we can approximate sin2(r ·v)

with (r ·v)2, the first term of its Taylor series aroundv = 0. We thus obtain,

I0(r ,PN) = I0(0,PN)− 2
π2

Z

T0

d3v
(r ·v)2

v2 Q(v)+O((2N+1)−2) (3.32)

If we expand(r ·v)2,

(r ·v)2 = (r1v1)
2+2r1v1r2v2+(r2v2)

2+2r1v1r3v3+2r2v2r3v3+(r3v3)
2 (3.33)
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we see that all odd terms (i.e. cross terms), when integrated over allv, will sum to zero,

and therefore the integral expression above evaluates to

2
π2

[
r2
1

Z

T0

d3v
v2

1

v2Q(v)+ r2
2

Z

T0

d3v
v2

2

v2Q(v)+ r2
3

Z

T0

d3v
v2

3

v2Q(v)

]
(3.34)

Now, clearly,
Z

T0

d3v
v2

1

v2Q(v) =
Z

T0

d3v
v2

2

v2Q(v) =
Z

T0

d3v
v2

3

v2Q(v) (3.35)

and therefore,

2
π2

Z

T0

d3v
v2

1

v2Q(v) =
1
3

2
π2

Z

T0

d3v
v2

1+v2
2 +v2

3

v2 Q(v) =
2

3π2

Z

T0

d3vQ(v) (3.36)

Hence, we have shown that

Z

T0

d3vQ(v) =

[
Z

T0

dv
sin((2N+1)v)

sinv

]3

= π3 (3.37)

With the previous relations, we have

2
π2

Z

T0

d3v
(r ·v)2

v2 Q(v) =
2π
3

r2 (3.38)

and so we have

I0(r ,PN) = I0(0,PN)− 2π
3

r2+O((2N+1)−2) (3.39)

Combining these results, we have that the potential at the origin due to a particle atr

is

∑
n∈PN

1
|r +n| = I0(0,PN)− 2π

3
r2+O((2N+1)−2)

+


 f (r ,α)+ ∑

m∈R
m6=0

1
πm2e−π2m2/α2+2πim·r + ∑

n∈PN

n 6=0

erfc(α|r +n|)
|r +n|


 .

(3.40)
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Normally, the charge neutrality condition is invoked to ensure thatI0(0,PN) vanishes

when summed over a net neutral set of particles; however, since this term is indepen-

dent ofr , when taking the derivative of the potential to obtain the acceleration this term

vanishes without appealing to charge neutrality. Summing this expression over the set of

particles and taking the gradient, we have the Redlack-Grindlay result that

Ω(r) = Ψ(r)− 4π
3

[

∑
j

mj r j − r ∑
j

mj

]
. (3.41)

This establishes the relationship between infinite direct summation,Ψ(r), and Ewald

summation,Ω(r); this is precisely what was needed to compute periodic accelerations via

direct summation. We now have a solution for periodic boundary conditions which does

not modify the local interaction potential. In a sense we have completed the programme

begun by Bouchet and Hernquist (1988) and Hernquist et al. (1991) by computing an

exact and analytic periodic correction to the equivalent isolated open boundary problem.

The only aspect of this theory which remains to be elucidatedcomputationally is that of

the infinite sum,

Ψ(r ) =
N

∑
j=1

mj(r j − r)
|r j − r |3 + ∑

0<|n|2≤1

N

∑
j=1

mj(r j −n− r )
|r j −n− r |3 (3.42)

We will show in the next chapter how this infinite sum may be computed at negligible

asymptotic cost, thereby explicitly demonstrating that periodicity requires no additional

work in comparison to it’s open boundary counterpart.



41

CHAPTER 4

MULTIPOLE THEORY OF INFINITE LATTICE SUMS

In the previous chapter, we established that the periodic gravitational acceleration could

be computed as a direct sum over replicas. In this chapter we present a simplification of

the Fast Multipole Method (FMM) that utilizes only a single grid, rather than the more

general hierarchy of grids. FMM is an example of afast-summationalgorithm, which

reduces the cost of the N-body problem fromO(N2) to O(N logN) operations. In this

chapter we show how the sum over the infinite replicas may be incorporated into an open

boundary solution technique in a straightforward manner atessentially no computational

cost.

The speedup exhibited byfast-summationalgorithms can be explained by considering

sums of the form (c.f. Beatson and Greengard 1997)

u(x) =
N

∑
i=1

miK(x,xi) (4.1)

where, for computing the gravitational potential,K(xi ,x j) = |xi −x j |−1.

The FMM relies on the notion of a multipole expansion, illustrated as follows. If the

kernelK(x,y) can be expressed as a finite series of orderp,

K(x,y) ≈
p

∑
k=1

φk(x)ψk(y) (4.2)

it is amenable to a multipole expansion. One first computes themoments

Ak =
N

∑
i=1

miψk(yi) (4.3)

With these, one can then evaluate the desired result as

u(x) ≈
p

∑
k=1

Akφk(x) (4.4)
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Figure 4.1: The arrangement of cells in the infinite lattice of replicas. This is a slice
through the center of the cubical simulation volume. The black square at the center rep-
resents the simulation volume itself; the other squares areits periodic replicas. The white
squares immediately adjacent to the center black square area cross section through the
(2L+1)3−1 nearest neighboring replicas (illustrated are the 26 nearest neighbors corre-
sponding toL = 1).

The computation is nowO(Np); sincep ≪ N (typically a number of order 10), this is a

dramatic increase in computational efficiency in comparison toO(N2).

In the previous chapter we established the relationship between the acceleration com-

puted by infinite direct summation,Ψ(r), and by Ewald summation,Ω(r). Denote the

partial lattice sums over spherical shells from radiusa to b by

π(r ,a,b) = ∑
C(n,a,b)

N

∑
j=1

mj(r j −n− r )
|r j −n− r |3 (4.5)
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where

C(n,a,b) = {n ·C1(n,a)∧C2(n,b)}, with

C1(n,a) = ((n1 ≥ a)∨ (n2 ≥ a)∨ (n3 ≥ a))

C2(n,b) = ((n1 ≤ b)∧ (n2 ≤ b)∧ (n3 ≤ b))

(4.6)

With the assumption that the simulation volume is unity and centered on the origin, the

sum over replicas in the periodic acceleration can be partitioned as follows (and illustrated

in Figure 4.1),

Ψ(r) =
N

∑
j=1

mj(r j − r)
|r j − r |3 +π(r ,1,L)+π(r ,L+1,∞) (4.7)

A closed-form analytic expression (to arbitrary accuracy)for the acceleration due to all

infinite replicas excluding the(2L+1)3−1 nearest neighbours and the simulation volume

itself, π(r ,L + 1,∞), can be derived with the machinery of the FMM. The notion of

well separatednessof a multipole expansion is equivalent to the concept of theradius

of convergenceof a power series (a closed domain in which the series will converge). A

mathematical criterion which is sufficient to ensure uniform convergence of the multipole

series is illustrated in Figure (4.2). The conditions for a multipole expansion can be stated

geometrically as follows: a set of source particles at positions r i , such that ther i may

be enclosed within a spherical volume of radiusrB, is well separated from a position

x within a spherical volume of radiusrA enclosing the origin with|r i | > |x|, provided

that the separationR between the centers of spheres is greater than the sum of radii, i.e

|R| > rA + rB (i.e. the spheres do not intersect). Under the proviso that these conditions

are satisfied, the acceleration atx = (x1,x2,x3) may be written using a Cartesian multipole
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expansion as

N

∑
j=1

mj(r j −x)

|r j −x|3 =
∞

∑
p=0

p

∑
α=0

p−α

∑
β=0

p−α−β

∑
γ=0

xα
1xβ

2xγ
3×




(α+1) T(α+1),β,γ

(β+1) Tα,(β+1),γ

(γ+1) Tα,β,(γ+1)


 (4.8)

In writing this expression, we have used a Cartesian multipole expansion based upon the

formulation of Hinsen and Felderhof (1992), where, for|r | < |r ′|,

1
|r − r ′| =

∞

∑
p=0

p

∑
α=0

p−α

∑
β=0

p−α−β

∑
γ=0

M αβγ(r)Dαβγ(r ′) =
∞

∑
αβγ
p=0

M αβγ(r) Dαβγ(r ′) (4.9)

where the second equality introduces a more compact notation for summing over the

multipole orders; for each value ofp, the sum is taken over all values ofα, β, andγ such

thatα + β + γ = p. When the sum overp is truncated atp = P, this is referred to as an

“orderP multipole expansion.” The expressions forD andM are defined as

Dαβγ(r) =
∂α+β+γ

∂rα
x ∂rβ

y ∂rγ
z

(
1
|r |

)

M αβγ(r) =
|r |2(α+β+γ)+1

(2(α+β+δ)−1)!!α!β!γ!
Dαβγ(r)

(4.10)

Using this formalism, the Taylor coefficients,T are represented as

Tαβγ =
(−1)(α+β+γ)

α!β!γ!

∞

∑
δεζ
p=0

∆δεζ D(α+δ)(β+ε)(γ+ζ)(R) (4.11)

with the multipole moments

∆δεζ =
N

∑
j=1

miM
δεζ(r i −R) (4.12)
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Figure 4.2: Geometry of a well-separated multipole interaction: the acceleration at~x due
to particles~r i may be obtained provided|~r i| > |~x| and rA + rB < R where|~x| < rA and
|~δi | = |~r i −~R| < rB; the origin is denoted by the shaded gray circle.

This formalism permits us to express the acceleration at position r = (r1, r2, r3), due

to all replicas except for the simulation volume itself and it’s (2L+1)3−1 nearest neigh-

bours as

π(r ,L+1,∞) =
∞

∑
αβγ
p=0

rα
1 rβ

2rγ
3×




(α+1) Γ(α+1),β,γ

(β+1) Γα,(β+1),γ

(γ+1) Γα,β,(γ+1)


 (4.13)

where

Γi jk =
−1i+ j+k

i! j!k!

∞

∑
δεζ
p=0

∆δ,ε,ζ

δ!ε!ζ!
Θi+δ, j+ε,k+ζ (4.14)

with

Θi jk = ∑
C1(n,L+1)

Di jk(n) (4.15)

and it is understood that these sums inΘi jk are accumulated over spherical shells. This

representation illustrates the crucial aspect of our formalism; namely that any reference to

the mass distribution can be removed from the lattice summation, and onlyΘi, j ,k contains

any dependence on the lattice. Because of this, theΘi, j ,k may be precomputed once and

for all.
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In spite of the Cartesian appearance of the tensors in the derivation above,Θαβγ, ∆αβγ

andTαβγ are all trace-free; that is, they satisfy the following relation, for γ > 1,

ζαβγ = −ζ(α+2)β(γ−2) −ζα(β+2)(γ−2) (4.16)

The computation of the derivatives,Θαβγ, proceeds directly from repeated application of

the chain-rule; one obtains the relations

D(0,0,0)φ(x) = |x|−1

D(1,0,0)φ(x) = −x1|x|−3 D(0,1,0)φ(x) = −x2|x|−3 D(0,0,1)φ(x) = −x3|x|−3

D(1,1,0)φ(x) = 3x1x2|x|−5 D(1,0,1)φ(x) = 3x1x3|x|−5 D(0,1,1)φ(x) = 3x2x3|x|−5

D(1,1,1)φ(x) = −15x1x2x3|x|−7

(4.17)

and forn1 ≥ 2,

D(n1,0,0) = −|x|2
(
(2n1−1)x1D

(n1−1,0,0) +(n1−1)2D(n1−2,0,0)
)

D(n1,1,0) = −|x|2
(
(2n1−1)x1D

(n1−1,1,0) +(n1−1)2D(n1−2,1,0) +2x2D
(n1,0,0)

)

D(n1,0,1) = −|x|2
(
(2n1−1)x1D

(n1−1,0,1) +(n1−1)2D(n1−2,0,1) +2x3D
(n1,0,0)

)

D(n1,1,1) = −|x|2
(
(2n1−1)x1D

(n1−1,1,1) +(n1−1)2D(n1−2,1,1)

+2x2D
(n1,0,1) +2x3D

(n1,1,0)
)

(4.18)

and similarly forD(0,n2,0),D(1,n2,0),D(0,n2,1),D(1,n2,1). Now to use the simplified recur-
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sion which exploits the traceless nature of the tensor, we require two last expressions,

D(n1,n2,0) = −|x|2
[
(2n1−1)x1D

(n1−1,n2,0) +(n1−1)2D(n1−2,n2,0)

+ 2n2x2D
(n1,n2−1,0) +n2(n2−1)D(n1,n2−2,0)

] (4.19)

and

D(n1,n2,1) =−|x|2
(
(2n1−1)x1D

(n1−1,n2,1) +(n1−1)2D(n1−2,n2,1)

+ 2n2x2D
(n1,n2−1,1) +n2(n2−1)D(n1,n2−2,1) +2x3D

(n1,n2,0)
) (4.20)

Θi jk will be identically zero if any if any one of theα,β,γ is an odd number; this can be

seen by considering the algebraic structure of the derivatives (notably the odd powers of

the variablesxi) and the set

{{a,b,c} ,{a,b,−c} ,{a,−b,c} ,{a,−b,−c} ,{−a,b,c} ,

{−a,b,−c} ,{−a,−b,c} ,{−a,−b,−c}}
(4.21)

Exploiting the cubic symmetry of the lattice sum, it is, further, only necessary to consider

values of the lattice vectorn in the first octant, as

∑
C1(n,R+1)

Dαβγ(n) = ∑
C1(n,R+1)

n1>0,n2>0,n3>0

δ(n1,n2,n3) D
αβγ(n) (4.22)

whereδ(n1,n2,n3) = (8,4,2,1) if three, two, one, or none ofn1,n2,n3 are non-zero,

respectively. Together with the trace-tree relation, thisimplies that one need only evaluate

Θ2α,2β,0 for α,β ≤ p/2; the rest of the components may be computed by recursion. In

practice, of course, one must truncate the infinite sums inΘ2α,2β,0, i.e. the sum over

periodic replicas inΘ is truncated at a radius|n| = Lmax from the simulation volume. In

order to perform this expansion, we use quad-double precision arithmetic (64 significant
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digits) 1. The upper bound for the sum was truncated at|n|2 < 3×2002, where all the

D2α,2β,0(n) underflow quad double precision. We emphasize that theseΘ2α,2β,0 need be

computed once and for all (irrespective of the distributionof the particles) and saved to

disk. Remarkably, even for an order 16 expansion, there are only 64 scalars required to

represent the effect of the infinite lattice.

The expression forM αβγ(r i) contains the factors|r i |2(α+β+γ)+1Dαβγ(r i). Clearly, if

one had to form multipoles from every point in the simulationusing this explicit ex-

pression, the cost of computing a derivative for every particle in the system would be

staggeringly expensive. Instead, we use a result from Cipriani (1982),

∂α

∂xα

(
1
|r |

)
=

⌊α/2⌋
∑
s=0

aα
s xα−2s |r |2s−2α−1 (4.23)

where

aα
s =

−1α+s (2α−2s−1)!! α!
2s s! (α−2s)!

(4.24)

Using this result, we can write a much simpler polynomial expression forM̃αβγ(r). With

r = (x,y,z),

|r |2(α+β+γ)+1Dαβγ(r) =
⌊α/2⌋
∑
s=0

⌊β/2⌋
∑
t=0

⌊γ/2⌋
∑
u=0

aαβγ
stu xα−2s yβ−2t zγ−2u (4.25)

where

aαβγ
stu =

−1s+t+u (2(α+β+ γ)−2s−2t−2u)!
s!t!u! (α−2s)! (β−2t)! (γ−2u)! (α+β+ γ−s− t−u)!

(4.26)

Since this is a polynomial inxaybzc, we can form the full Cartesian multipoles,

Q αβγ(r l) = ml rα
l ,1 rβ

l ,2 rγ
l ,3 (4.27)

1The quad-double package by Hida, Li, and Bailey is availablefrom
http://crd.lbl.gov/ ˜ dhbailey/mpdist/

http://crd.lbl.gov/~dhbailey/mpdist/
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and then express the reduced multipoles in terms of the full Cartesian multipoles as the

linear sum,

ml |r l |2(α+β+γ)+1Dαβγ(r l ) = ∑
δ+ε+ζ=l

qδεζQ
δεζ(r l ) (4.28)

The coefficientsqδεζ are pre-computed using the Mathematica script in Appendix (A).

Again, the trace-free relation reduces the space required to store these trace-free tensors;

only (P+1)2 elements need be stored and computed explicitly rather thanthe full Carte-

sian set of(P+ 1)(P+ 2)(P+ 3)/6 elements. The remaining Cartesian elements may

rapidly be determined, as needed, by recursion. This obviates what has traditionally been

the main objection to using Cartesian tensors over their spherical counterparts, namely

that Cartesian tensors require more memory to store them. Recall that the spherical har-

monic representation of the potential atr , Φ(r), due to a set ofN source particles with

masses{mi} and positions{(r i,θi ,φi)} is

Φ(r) =
∞

∑
l=0

l

∑
m=−1

αm
l

r l+1 Ym
l (θ,φ) (4.29)

where the spherical harmonics are expressed in terms of the Legendre polynomialsPm
l (x),

Ym
l (θ,φ) =

√
2l +1

4π
(l −m)!
(l +m)!

Pm
l (cosθ)eimφ, (4.30)

and the spherical harmonic multipole moments are

αm
l =

4π
2l +1

N

∑
i=1

mi r l
i Ym∗

l (θi,φi) (4.31)

The asterisk (*) denotes complex conjugation. In addition to using the same storage space

as spherical multipoles, working in the reduced Cartesian representation is computation-

ally much faster; it does not require the evaluation of special functions.

The only question which remains in our formulation concernsthe determination ofL ,

with the obvious requirement thatL ≥1; i.e. at least the 26 adjacent neighbouring replicas
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in the lattice must be in the simulation volume’s near field. Our intention is to compute

π(r,L+1,∞) to machine precision, with the constraint that we have only amodest range

in p, sayp ≤ 16, at our disposal. Consider Figure 4.2, the absolute errorbound for the

acceleration derived by Salmon and Warren (1994) for a Barnes-Hut multipole expansion,

δa(p)(~x) =

(
1

d−b

)2(
(p+2)

(⌈B(p+1)⌉
dp+1

)
− (p+1)

(⌊B(p+2)⌋
dp+2

))
(4.32)

whered = |~x−~R| and without loss of generality we assume~R is the center of gravity of

~r i and

b = max
i
|~r i −~R|, B(n) = ∑

i
mi |~r i −~R|n, (4.33)

This analytic bound for the error in the acceleration is, unfortunately, too weak to be of

practical guidance. An illustration of the actual expectedmaximum relative errors in the

acceleration for the Barnes-Hut expansion,

φ(~x) =
∞

∑
αβγ
p=0

∆αβγ(δ) Dαβγ(~R−~x) (4.34)

can examined by Monte Carlo sampling. We consider two sourcedistributions within a

unit volume; a single particle located at(0.5,0.5,0.5), and a quasi-uniformly distributed

set of 1024 particles. Naturally a large number of source particles distributed over the

region will produce a smoother acceleration field, and therefore lead to smaller relative

errors, than a single particle. The results are illustratedin Figures 4.3 and 4.4. Note

that for the fiducial selection of a separation of|~R| = 2 and p = 16, the relative error

distribution for the single particle test is tightly clustered for both slices atx = 1.5 and

x = 2.5.

In contrast, consider the distribution of errors in the FastMultipole Method expansion,

φ(~x) =
∞

∑
αβγ
p=0

−1α+β+γ

α!β!γ!
xα

1 xβ
2 xγ

3

∞

∑
δεζ
p=0

∆αβγ(δ) Dα+δ,β+ε,γ+ζ(~R) (4.35)
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This is illustrated in Figures 4.5 and 4.6. Not unexpectedly, one observes that the double

multipole expansion (FMM) incurs a greater penalty in relative error than it’s single mul-

tipole expansion counterpart (BH). A particularly curiousartifact of the FMM expansion

is that its range in relative error is much larger than the quite narrow range of the BH

expansion. The BH relative error distribution exhibits a property which is reminiscent

of Chebyshev economization; the maximum error is reduced atthe expense of increas-

ing the error in certain other parts of the domain. The upper bound error estimate in the

acceleration for the FMM interaction derived by (Dehnen, 2002),

Ap < (p+1)

(
rA+ rB

R

)p[ 1
R− (rA+ rB)

]2

(4.36)

is plagued by the same malady as the BH analytic estimate of Salmon and Warren (1994);

it is too weak.

The intricacies of error bounds aside, we note that the maximum relative errors in

Figures 4.5 and 4.6 should not be construed as the relative error in the total acceleration.

These are merely the relative errors in the particle accelerations due only to the source

particles considered. In practice, the total accelerationwill be dominated by the contri-

bution from the acceleration due to nearby particles and will be much larger than any far

field partial acceleration. This results in a total relativeerror in the acceleration which is

much smaller than that of the acceleration due to the far fieldalone.

Having outlined the evaluation ofπ(r ,L+1,∞), the remaining sum,

π(r ,0,0)+π(r,1,L) (4.37)

can be evaluated in any manner one desires,

Acceleration(r ,T)+ ∑
C(n,1,L)

Acceleration(r +n,T) (4.38)
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Figure 4.3: The left and right plots illustrate respectively the maximum relative errors in
a Barnes Hut expansion for single source particle at(0.5,0.5,0.5) and a uniform distribu-
tion of 1024 source particles at varying separations of|~R| and ordersp = 2,4,8,16 (from
the top of the graph) as computed by Monte Carlo sampling.
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Figure 4.4: The left and right panels show the distribution of relative errors in the accel-
eration for a BH expansion at a separation of~R= 2 and orderp= 16 for the single source
particle in twoy−z planes,z= 1.5 andz= 2.5 respectively.
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Figure 4.5: The left and right plots illustrate respectively the maximum relative errors in
a FMM expansion for single source particle at(0.5,0.5,0.5) and a uniform distribution
of 1024 source particles at varying separations of|~R| and ordersp = 2,4,8,16 (from the
top of the graph) as computed by Monte Carlo sampling.
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Figure 4.6: The left and right panels show, respectively, the distribution of relative errors
in the acceleration for a FMM expansion at a separation of~R= 2 and orderp= 16 for the
single source particle in twoy−z planes,z= 1.5 andz= 2.5 respectively.
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whereAcceleration(x,T) denotes the evaluation of the acceleration at positionx using

methodT. T could be the ubiquitous monopole Barnes Hut tree, a high-order FMM

tree, or even a direct calculation if the number of particlesis not prohibitively large. The

monopole BH tree typically yields a 99% percentile in the relative error in the acceleration

of a few percent. As our goal is to obtain accelerations accurate to machine precision, the

monopole BH tree would require an excessive number of interactions; instead, we use

high-order (order 8 or 16) trees which we discuss in the next chapter.

We conclude this chapter with an illustration of the accuracy this representation can

achieve. Using our direct summation over replicas formalism, the periodic acceleration

due to 323 particles was computed and compared with the actual Ewald acceleration for-

mula; naturally, in order to compute the Ewald accelerationfrom it’s canonical represen-

tation, even for 323 particles this was computationally very expensive. The distribution

was obtained from the initial conditions code described in Sirko (2005) from standard

LCDM parameters. The initial separations of particles in this distribution is such that the

use of force softening may be omitted. The reference “exact”computation was performed

using (1.6), the analytic Ewald acceleration formula, with|n| ≤ 4 and|h| ≤ 4, using quad-

double precision. Choosing a multipole orderP = 16 and a separation distanceL of one

cell yields a maximum relative error in the acceleration of 5× 10−6. Choosing multi-

pole orderP = 16 and a separationL = 2, giving 124 adjacent neighboring cells, our

computation agrees with the reference values to 16 significant digits. Using a fast direct

summation implementation (using only a 32 bit representation of floating point numbers),

the maximum relative error increases, but only to 5×10−5.

In summary, we have demonstrated that the effect of the infinite lattice sum may be

precisely represented (to machine precision) by a tensor product of the multipole coeffi-

cients and 64 scalar coefficients (for order 16) whilst retaining a 1/r kernel for the near
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field representation. In contrast the method of Hernquist etal. (1991) required tabulating

an Ewald correction to the open boundary problem which by itsvery construction was

only very approximate (at best a 99% relative error in the acceleration of 1%). In the next

chapter we will outline our method for implementing a high order (order 8 and 16) FMM

scheme which will be used to evaluate the near field replicas.
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CHAPTER 5

A PSEUDO-PARTICLE FAST MULTIPOLE METHOD

In the previous chapter we introduced the mathematical and computational machinery

of multipole expansions and its application to infinite lattice sums. However, recently

it has been recognized that a purely algebraic implementation of the FMM formulæfor

the Taylor series coefficients presented in the previous chapter can be made more com-

putationally efficient; in particular we mention the fast linear algebra implementations of

FMM explicitly coded for the GPU by Gumerov and Duraiswami (2008). Instead in this

chapter, we develop a new variation of the FMM that uses pseudo-particles (Anderson,

1992; Makino, 1999).

We begin with a qualitative presentation of our method. The standard monopole

Barnes Hut (BH) tree algorithm replaces the interaction between a sink particle and a

well separated group of sources by a single interaction between the center-of-mass of

the sources and the sink; this is illustrated in Figure (5.1). In this monopole represen-

tation, as the desired accuracy of the approximation is increased, the separation radius

which must be enforced increases rapidly. All interactionswith particles within this ra-

dius must be computed as direct, particle-particle interactions, and so the number of par-

ticles with which the sink particle must interact becomes unacceptably large. One can

ameliorate this situation by resorting to higher order multipoles. Recalling electrostat-

ics, one can always replace a set of charges within a volume with another set of charges

on the surface surrounding that volume such that the multipole moments are equivalent.

This is the idea behind the “pseudo-particle” method and is illustrated schematically in

Figure (5.2). Our desire for computational efficiency dictates two requirements. First, the

number of pseudo-particles on the surface of the sphere mustbe significantly less than
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Figure 5.1: A monopole Barnes-Hut interaction. A set of source particles (black) well-
separated from a sink particle (blue) are collapsed to a single pseudo-particle at their
center of mass (red). The effect of the sources on the sink is then computed as a single
interaction from the center of mass.

the number within the sphere; otherwise, one might as well have computed the interac-

tions directly. Second, the effort required to determine the positions and masses of these

pseudo-particles should not exceed that of doing the directinteractions they replace. A

greater economy of direct interactions is achieved by employing FMM instead of Barnes-

Hut. The main contribution of this chapter is to show how to determine asingleset ofK

pseudo-particles surrounding a set of sink particles whichrepresent the effect of theentire

far field multipoles of the rest of the well separated sources, as illustrated in Figure (5.3).

Instead of trying to obtain theK (black) pseudo particles directly fromM sets of pseudo-

particles, we first compute the potential atK positions around the sink particles due to the

QM source sets and then analytically derive a set of pseudo-particles which would induce

this same potential. This is the key operation in this pseudo-particle FMM scheme, and

to the best of our knowledge it is the first time it has been derived analytically.

Partitioning space as usual using a tree structure, we represent the multipole moments

of the particles in each cell of the tree by a much smaller number of pseudo-particles at

a set of fixed positions on a sphere surrounding the cell. The masses of these particles
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Figure 5.2: A higher order multipole Barnes-Hut interaction. Instead of replacing the
well-separated set ofM sink particles with a single pseudo-particle, the set is replaced by
K pseudo-particles on the surface of a sphere surrounding theset wheneverK << M.

are determined by a simple matrix multiplication. In order to construct a representation

of the acceleration in each cell due to distant cells, we start by computing the Newto-

nian 1/r potential at a set of points on a sphere surrounding the cell due to the distant

pseudo-particles.An intriguing aspect of this calculation is that the potential is a purely

additive scalar; hence concerns normally arising relatingto the accurate summation of

partial accelerations whose magnitudes vary by several orders and posses differing signs

are largely obviated; moreover the potential between two particles is typically twice as

fast to compute as the corresponding acceleration.The computation of the potential is

itself a simple N-body calculation, well-adapted to the GPU. By Laplace’s theorem, if we

know the potential on this surface, we know it throughout theenclosed volume. We then

form another set of pseudo-particles just outside the potential sphere. The acceleration of

particles within the sphere can then be computed by yet another small N-body calculation.

Figure (5.4) illustrates all of the machinery needed to implement the FMM scheme using a

purely particle interaction. We first compute, for each cell, the equivalent pseudo-particles

to generate the multipoles in the interior of the cell. Then,for each sink cell which is well
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Figure 5.3: WithQ nodes surrounded byK pseudo-particles, the Barnes-Hut scheme
requiresKQ interactions to obtain the acceleration each blue filled circle. Instead in the
FMM scheme one desires to find a single set ofK pseudo-particles (black filled circles
) which represents the sum of these interactions thereby increasing the efficiency of the
scheme by a factor ofQ.

separated, we compute the potential due to all of the source pseudo-particles on the sur-

face of the cell. Once this has been done for all cells which need to interact with one

another, we can now compute for every cell the equivalent pseudo-particles to generate

that potential for each cell.

All previously-published techniques (e.g. Ying et al., 2004; Chau et al., 2008) to

determine the set of pseudo-particle masses from a set of potentials have resorted to

techniques from linear algebra (such as Tikhonov regularization) to solve an extremely

ill-conditioned linear system. These methods are expensive as well as inaccurate for

expansions of high order.In contrast, we have a developed a completely analytic for-

malism, and can therefore determine the pseudo-particle masses corresponding to a set

of potentials to arbitrary accuracy, and with much less computational effort. Using this
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Figure 5.4: Particle-based FMM. A set of pseudo-particles is found that matches the
high-order multipoles of a set of source particles (1). We then calculate the potentialΦ
induced by this set of pseudo-particles at a set of points on asphere surrounding the sink
particles (2). We then find a new set of pseudo-particles on a sphere of larger radius that
match the potential on this ring (3). Finally, the interaction betweenall well-separated
source particles and the sink particles is computed from this single set of pseudo-particles
(4). The position of all pseudo-particles is known in advance; only the masses vary. Our
breakthrough is to be able to use an analytic inversion to compute these masses as a
simple multiplication by a fixed matrix. Note that the computation of the potential can be
summed from many rings and involves only a simple 1/r calculation.

pseudo-particle technology, we have an FMM where the large majority of the computa-

tional work takes the form of direct N-body interactions andthus naturally lends itself to

the GPU. Our current implementation of pseudo-particle FMMachieves speeds in excess

of 10 times the fast linear algebra implementations of FMM explicitly coded for the GPU

by Gumerov and Duraiswami (2008).

The analytic representations we need to develop require theformulation of the multi-

pole expansion in spherical harmonics. We express the potential at r , Φ(r), due to a set

of N source particles with masses{mi} and positions{(r i,θi,φi)} as

Φ(r) =
∞

∑
l=0

l

∑
m=−1

αm
l

r l+1 Ym
l (θ,φ) (5.1)
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where the spherical harmonics are expressed in terms of the Legendre polynomialsPm
l (x),

Ym
l (θ,φ) =

√
2l +1

4π
(l −m)!
(l +m)!

Pm
l (cosθ)eimφ, (5.2)

and the spherical harmonic multipole moments are

αm
l =

4π
2l +1

N

∑
i=1

mir
l
i Ym∗

l (θi ,φi) (5.3)

The asterisk (*) denotes complex conjugate.

We wish to replace this set of particles withK pseudo-particles with massesM j and

positionsR j = (a,θ j ,φ j), wherea is the radius of the sphere. Equating theαm
l of the

pseudo-particles and the original set, the pseudo-particle masses must satisfy the relations

N

∑
i=1

mi r
l
i Ym∗

l (θi,φi) =
K

∑
j=1

al M j Ym∗
l (θ j ,φ j) (5.4)

for 0≤ l ≤ p and−l ≤ m≤ l . Makino’s approach is to fix the positions{R j} and solve

the resulting linear system for the massesM j .

The question arises: How many pointsK are necessary to represent a given multipole

order, and what is a good distribution of the{R j}? It turns out that an excellent distribu-

tion for the{R j} is a three dimensionalspherical t-design(Makino, 1999). A set ofK

pointsXK = {x1, · · · ,xK} on the unit sphereS2 is a three dimensionalspherical t-design

if the identity
Z

S2
f (x)dµ(x) =

1
K

K

∑
i=1

f (xi) (5.5)

holds for all polynomialsf of degree≤ t. Hardin and Sloane (1996) provide a set of three

dimensional t-designs to orderp = 10. For an exploration of the properties of t-designs

and a discussion of methods for creating higher-order designs, see Sloan and Womersley

(2008).
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With this distribution of points, the acceleration at the sink position,r , can be com-

puted from Gauss’ law as

Ψ(r) =
K

∑
j=1

M j

|r −R j |3
r̂ (5.6)

Makino (1999) and Kawai et al. (2004) exploited this pseudo-particle scheme to develop

a high-order Barnes-Hut tree code suited to the GRAPE processor, in which each sink

particle interacts with a multiplicity of clusters of pseudo-particles as well as its near

field.

Mathematically, the solution of Laplace’s equation∇2φ = 0 within a sphere in three

dimensions is uniquely determined by Dirichlet boundary conditions on the surface of the

sphere;i.e. φ|S2 = Φ(R). Poisson’s formula for a function in three dimensions whichis

harmonic in the interior and on the boundary of the unit sphere has the following solution,

φ(r) =
1

4π

Z

S2
Φ(R)

1− r2

(1+ r2−2r cosγ)3/2
dS (5.7)

wherer = (r,θ,φ) with r < 1, R is on the surface of the unit sphereS2, i.e. R = (1, θ̂, φ̂),

andγ is the angle betweenR andr . If we know Φ(Ri) at the t-design locations on the

surface ofS2, then by the definition of a t-design,Φ(R) can be represented as a polynomial

of ordert at any point on the surface.

In the limit of an infinite number of particles, the sphericalharmonic multipole,

αm
l =

4π
2l +1

N

∑
i=1

mi r
l
i Y

m∗
l (θi ,φi) (5.8)

becomes

αm
l =

4πal+2

2l +1

Z

S2
ρ(a,θ,φ)Ym∗

l (θ,φ)ds (5.9)

whereρ is the continuous pseudo-particle density. Writing a spherical harmonic expan-

sion as

f (θ,φ) =
∞

∑
n=0

n

∑
m=−n

amnY
m
n (θ,φ) (5.10)



63

with coefficients

amn =
Z 2π

0

Z π

0
dφdθsin(θ) f (θ,φ)Ym∗

n (θ,φ) (5.11)

one can immediately see that, after truncating the infinite sum to finite orderp, the pseudo-

particle density is

ρ(a,θ,φ) =
p

∑
l=0

l

∑
m=−l

2l +1
4πal+2 αm

l Ym
l (θ,φ) (5.12)

Using the fact that the sphericalt-design is a set ofK points such that
Z

S2
f (s)ds=

Z 2π

0

Z π

0
dφdθsin(θ) f (θ,φ)

=
4π
K

K

∑
j=1

f (θ j ,φ j)

=
4π
K

K

∑
j=1

f (R j)

(5.13)

we have that the total mass is

M =
4π
K

K

∑
j=1

ρ(a,θ j ,φ j)a2

=
4π
K

K

∑
j=1

p

∑
l=0

l

∑
m=−l

2l +1
4π

al+1αm
l Ym

l (θ j ,φ j)

(5.14)

and sinceM = ∑K
j=1M j one immediately has that theK pseudo-particle masses are given

by

M j =
4π
K

p

∑
l=0

l

∑
m=−l

2l +1
4π

al+1αm
l Ym

l (θ j ,φ j) (5.15)

The quantity pre-multiplyingαm
l ,

Plm, j =
p

∑
l=0

l

∑
m=−l

2l +1
4π

al+1Ym
l (θ j ,φ j) (5.16)

can be precomputed once and for all and the masses can now be found with a matrix

multiplication, M = Pα; this is particularly efficient on the GPU. The only object that

remains is the efficient computation ofαm
l for a cell.
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The identity

r lYm
l (θ,φ) =

√
(2l +1)(l +m)!(l −m)!

4π

l

∑
h, j ,k=0

δh+ j+k,l δh− j ,m

h! j!k!2h+ j (−x− iy)h(x− iy) jzk

(5.17)

wherex,y,zare derived from the relationsθ = accros(z/r),φ = arctan(x,y) andr2 = x2+

y2 + z2, demonstrates that thatr lYm
l (θ,φ) is merely the sum of polynomials of the form

xhy jzk. Using the Mathematica code in Appendix B, we obtain the coefficientsc jkh which

satisfy

αm
l =

4π
2l +1∑

q
mq r l

qYm
l (θq,φq) =

4π
2l +1 ∑

j+h+k==p

c jkh

[

∑
q

mqx j
qyh

qzk
q

]
(5.18)

The quantity in brackets is, of course, the Cartesian multipole, and nowαm
l can be repre-

sented as a matrix multiplication,α = C×M, whereC is the matrix of coefficientsc jkh

andM are the Cartesian multipoles. Both the Cartesian multipoles and the matrix mul-

tiplication to formα are naturally very quickly computed on the GPU. Thus in practice,

despite the compact representation of Makino’s expressionfor theM j ,

M j =
N

∑
i=1

mi

p

∑
l=0

2l +1
K

( r i

a

)l
Pl(cosγi j ) (5.19)

(whereγi j is the angle betweenr i andR j , andPl is the l th Legendre polynomial), our

expression (5.15) is at least an order of magnitude faster tocompute.

We now turn to determining a set ofK massesMi , on the surface of a sphere of radius

b, at positionsRi = (b, θ̂i, φ̂i), such that the induced potential on the surface of sphere of

radiusa, wherea < b, at positionsSi = (a, θ̂i, φ̂i),

φ̂(Si) = ∑
j

Mi

|R j −Si |
(5.20)

coincides with a given potentialφ(Si).
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Recalling Poisson’s formula, (5.7), and by differentiating the expression for the gen-

erating function ofPn(µ) for |r| < 1

1√
1−2µr+ r2

=
∞

∑
n=0

Pn(µ)rn (5.21)

with respect tor, multiplying the result by 2r, and adding this expression to the equation

just shown, one obtains, for|r| < 1,

1− r2

(1+ r2−2r cosθ)3/2
=

∞

∑
n=0

(2n+1) rnPn(cosθ) (5.22)

Therefore, Poisson’s formula, (5.7), can now be written in the form,

φ(r) =
1
4π

Z

S
Φ(R)

(
∞

∑
n=0

(2n+1) rnPn(cosγ)

)
dS

=
1
4π

Z

S
Φ(R)

(
∞

∑
n=0

(2n+1) rnPn

(
r ·R

r

))
dS

(5.23)

Using the definition of the t-design permits us to rewrite theexpression foru(r), above

as,

φ(r) =
1
K

K

∑
j=1

Φ(R j)

(
∞

∑
n=0

(2n+1) rnPn

(
r ·R j

r

))
(5.24)

whereR j are the positions of thet-design on the unit sphereS2.

Now, with the assumption that the boundary conditions are given at the surface of a

sphere of radiusa, the above equation becomes, forr < a,

φ(r) =
1
K

K

∑
j=1

Φ(aR j)

(
∞

∑
n=0

(2n+1)
( r

a

)n
Pn

(
r ·R j

r

))
(5.25)

Using the addition theorem for spherical harmonics

Pn(cosγ) =
4π

2n+1

n

∑
m=−n

Ym
n (θ,φ)Y∗m

n (θ̂, φ̂) (5.26)



66

whereγ is the angle between two vectors with spherical angles(θ,φ) and (θ̂, φ̂), one

obtains, forr < a

φ(r) =
4π
K

K

∑
j=1

Φ(aR j)

(
∞

∑
n=0

( r
a

)n n

∑
m=−n

Ym
n (θ,φ)Y∗m

n (θ̂ j , φ̂ j)

)
(5.27)

or equivalently,

φ(r) =
∞

∑
n=0

n

∑
m=−n

αm
n rnYm

n (θ,φ) (5.28)

where

αm
n =

4π
K

K

∑
j=1

Φ(aR j)a−nY∗m
n (θ̂ j , φ̂ j) (5.29)

Theαm
n are the multipole representations of the potentialΦ(aR j).

We now need an expression for the multipoles of the pseudo-particles,βm
n . By con-

sidering two vectorsr andR with |r | < |R|, one then has

1
|r −R| =

1√
r2−2rRcosγ+R2

=
1
R

∞

∑
n=0

Pn(cosγ)
( r

R

)n
(5.30)

whereγ is the angle betweenr andR. Using the Addition Theorem for Spherical Har-

monics, forr < R,

1
|r −R| =

4π
R

∞

∑
n=0

1
2n+1

( r
R

)n n

∑
m=−n

Ym
n (θ,φ)Y∗m

n (θ̂, φ̂) (5.31)

Therefore,

K

∑
i=1

Mi

|r −bRi |
=

K

∑
i=1

Mi
4π
b

∞

∑
n=0

1
2n+1

( r
b

)n n

∑
m=−n

Ym
n (θ,φ)Y∗m

n (θ̂i , φ̂i)

=
∞

∑
n=0

n

∑
m=−n

rn βm
n Ym

n (θ,φ)

(5.32)

where

βm
n =

4π
2n+1

K

∑
i=1

Mi b
−n−1Y∗m

n (θ̂i, φ̂i) (5.33)
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In order to satisfy 5.20 we requireαm
n = βm

n , or equivalently,

αm
n =

4π
2n+1

b−n−1
K

∑
i=1

Mi Y
m
n

∗(θ̂i , φ̂i) (5.34)

As before, if we consider the limit of infiniteK, and introduceρ, the continuous mass

representation for the pseudo-particles (the pseudo-particle density), then we can write

αm
n =

4π
2n+1

b−n−1
Z

S2
ρ(b,θ,φ)b2Ym

n
∗(θ,φ)ds (5.35)

We can immediately invert this equation; after truncating the infinite sum to finite order

p, we have the density

ρ(b,θ,φ) =
p

∑
l=0

l

∑
m=−l

2l +1
4π

bl−1αm
l Ym

l (θ,φ) (5.36)

By definition, the total massM is the integral of the surface density,ρ(b,θ,φ), times the

surface area of a the sphere,b2. In other words,

M =

Z 2π

0

Z π

0
dφdθ sin(θ)ρ(b,θ,φ)b2 (5.37)

Using the definition of a sphericalt-design, (5.13),

M =
4π
K

K

∑
j=1

ρ(b, θ̂ j , φ̂ j)b2

=
4π
K

K

∑
j=1

p

∑
l=0

l

∑
m=−l

2l +1
4π

bl+1αm
l Ym

l (θ̂ j , φ̂ j)

(5.38)

and since

M =
K

∑
j=1

M j (5.39)

one has the pseudo-particle masses

M j =
4π
K

p

∑
l=0

l

∑
m=−l

2l +1
4π

bl+1αm
l Ym

l (θ̂ j , φ̂ j) (5.40)
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Using the relation

αm
l =

4π
K

K

∑
i=1

Φ(aRi)a−l Ym
l

∗(θ̂i, φ̂i) (5.41)

one has

M j =
4π
K

p

∑
l=0

l

∑
m=−l

2l +1
4π

bl+1

[
4π
K

K

∑
i=1

Φ(aRi)a−l Ym
l

∗(θ̂i , φ̂i)

]
Ym

l (θ̂ j , φ̂ j) (5.42)

Since

Pl(cosγi j ) =
4π

2l +1

l

∑
m=−l

Ym
l (θ̂ j , φ̂ j)Ym

l
∗(θ̂i, φ̂i) (5.43)

we finally have

M j =
K

∑
i=1

Φ(aRi)
p

∑
l=0

(2l +1)2

K2

bl+1

al Pl (cosγi j ) (5.44)

Once again, we can pre-compute the matrixQi j for a specific t-design

Qi j =
p

∑
l=0

(2l +1)2

K2

bl+1

al Pl(cosγi j ) (5.45)

once and for all and simply findMi = Qi j Φ j by matrix multiplication on the GPU. This

is the crucial and last step of our formulation of a pseudo-particle FMM scheme.

An important aspect of the formulation is that the error distribution for a particular

order is typically much better than the corresponding orderin an FMM expansion. The

reasons for this amount to the fact that the number of pseudo-particles for a given order

is typically overestimated by a significant fraction - therefore viewed in terms of a poly-

nomial expansion we are effectively working at a higher order. The error distributions

are shown in Figure (5.5). As a typical example, for an orderp = 8 expansion, the best

attempt at a t-design isK = 144 particles, and we can evaluate on the order of 3.22 mil-

lion cell-cell pseudo-particle interactions per second onan NVIDIA GTX 295, and 1.16

million per second forp = 10 with K = 240. This rate is directly proportional toK−2

with the constant of proportionality being rate of direct potential evaluations - about 60

billion per second.
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Figure 5.5: The two top panels illustrate the maximum relative errors in a pseudo-particle
expansion for a single source particle at(0.5,0.5,0.5) and a uniform distribution of 1024
source particles at varying separations of|~R| and ordersp = 2,4,6,8,10 (from the top
of the graph) as computed by Monte Carlo sampling. The bottomtwo panels show the
distribution of relative errors in the acceleration for thepseudo-particle expansion at a
separation of~R= 2 and orderp = 16 for the single source particle in twoy− z planes,
x = 1.5 andx = 2.5 respectively.
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In conclusion, we have constructed a key element of our totalprogramme, namely to

use create a tree-code method which can obtain machine precision accelerations and use

the GPU effectively. When the degree of clustering in our cosmological samples is high

we will need to use this formulation; this is precisely what we will now discuss in the next

chapter.
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CHAPTER 6

ABACUS: AN N-BODY CODE FORCOMPUTATIONAL COSMOLOGY

Having introduced in previous chapters the mathematics of both infinite lattice sums and

higher order multipole expansions in the context of the FastMultipole Method (FMM),

in this chapter we discuss the implementation of our code,ABACUS. We begin by parti-

tioning the simulation volume into into aK ×K ×K cubic lattice, whereK > 1 is an odd

integer. Denoting each of the cells by a triple(i, j,k) wherei, j,k = 0..K−1, the centers

of these cells is denoted byci jk , and the set of particles within these cells by{Gi jk}, we

induce a partitioning of the cells into those which are, and are not, well-separated from

the center cell. This induces the far and near fields, respectively (see Figure 6.1).K is

chosen so as to balance as best as possible the computationaleffort devoted to the near

and far fields.

Without loss of generality, the following derivation is concerned only with computing

the acceleration in the central cell of the simulation volume; periodicity, and the assump-

tion thatK is odd, allows any cell to be rotated to the center. Naturally, following such

a rotation, the infinite replicas of this lattice then rearrange themselves in an identical

fashion. Under the assumption that the simulation volume isunity and centered on the

origin, to obtain the far field potential at positionr in the center cell, one can write the

contribution from all cells in periodic replicas and from the well-separated cells within

the simulation volume as

φFar(r) = ∑
i jk

∑′

n
∑

l∈{Gi jk}

ml

|r l +n− r |

= ∑
i jk

∑′

n
∑

l∈{Gi jk}

ml

|(r l −ci jk)− (r −ci jk −n)|

(6.1)

The primed summation symbol denotes that cells in the simulation volume, i.e. with
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Figure 6.1: The arrangement of cells contributing to the farfield potentialφFar. This
is a slice through the center of the cubical simulation volume. The large square at the
center is the simulation volume itself; the other large squares are its periodic replicas.
The smaller squares are the partition of the simulation volume, here a 7×7×7 lattice,
and their own periodic replicas. The cells in grey contribute to the far-field acceleration.
The cross-hatched cells in the simulation volume are well-separated from the center cell
(solid black), as are all cells in the periodic replicas.φFar thus contains the contribution
from all but the ring of white squares, the 26 nearest neighbors of the central cell. Our
method allows us to computeφFar to very high accuracy with no contribution from the
central 27 cells.

n = (0,0,0), are excluded if they are not well-separated from the centercell; i.e. the sum

includes all cells in gray in Figure (4.1). The summation oni jk is over all cells in the

partition, and that onl is over the particles in each set{Gi jk}. ThusφFar accounts for the

contribution from particles in all cells which are well-separated from the center cell in the

simulation volume, and in all cells of all periodic images ofthe volume.
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Using the expansion (4.9), we have

φFar(r) = ∑
i jk

∞

∑
αβγ
p=0

Mαβγ
i jk (ci jk) ∑′

n
Dαβγ(ci jk −n− r ) (6.2)

where theM αβγ
i jk are the reduced multipole moments of celli jk with respect to its center

ci jk :

Mαβγ
i jk = ∑

l∈{Gi jk}
ml M

αβγ(r l −ci jk) (6.3)

The multipoles in any cell are the same for all replicas of that cell; hence one can factor

theMαβγ
i jk out of the sum over replicas in 6.2. Expanding the expressionfor the derivative

in a Taylor series for|r | < |r ′|

Dαβγ(r ′− r ) = ∑
δεζ

−1δ+ε+ζ

δ!ε!ζ!
rδ
x rε

y rζ
z D

(α+δ)(β+ε)(γ+ζ)(r ′) (6.4)

we now have

φFar(r) = ∑
i jk

∞

∑
αβγ
p=0

Mαβγ
i jk

∞

∑
δεζ
p=0

−1δ+ε+ζ

δ!ε!ζ!
rδ
x rε

y rζ
z Θ(α+δ)(β+ε)(γ+ζ)

i jk (6.5)

where

Θαβγ
i jk = ∑′

n
Dαβγ(ci jk +n) (6.6)

This is an important simplification; the quantityΘαβγ
i jk is now the only one which contains

a sum over the infinite lattice of replicas. Since these derivatives depend only on the size

of the partitionK, they can be computed once and for all for eachK. For any positionr

in any celli jk, the expression

ΨFar(r) =
∞

∑
αβγ
p=0

(rx−ci jk,x)
α(ry−ci jk,y)

β(rz−ci jk,z)
γ

×




(α+1) T(α+1),β,γ
i jk

(β+1) Tα,(β+1),γ
i jk

(γ+1) Tα,β,(γ+1)
i jk




(6.7)
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is the contribution to the acceleration from all particles in cells which are well-separated

from the cell containingr and in all of the cells in the simulation volume’s periodic im-

ages. The infinite lattice sum has been transformed into a Taylor series whose coefficients

are a cyclic convolution of the multipole moments with the summed derivativesΘ. The

Taylor coefficients are expressed as

Tαβγ
i jk =

(−1)(α+β+γ)

α!β!γ!

∞

∑
δεζ
p=0

∑
i′ j ′k′

Mδεζ
i′ j ′k′ Θ(α+δ)(β+ε)(γ+ζ)

[i−i′]K [ j− j ′]K [k−k′]K
(6.8)

where the symbols[i− i′]K denote moduloK and embody the wrapping-around of the cell

indices under periodic boundary conditions. These Taylor coefficients, comprise a cyclic

convolution in space (overi jk), and a linear convolution in multipole index (overαβγ).

Denoting byx andy two arbitrary vectors ofn components, thelinear convolutionof x

andy, denoted byw = x⋆y, is a vector of 2n−1 components such that, for 0≤ i ≤ 2n−1,

wi =
min{i,n−1}

∑
j=max{0,i−n+1}

x jyi− j (6.9)

where the upper and lower bounds in the summation are chosen in such a way that the

indices j andi − j always range between 0 andn−1. Thecyclic convolutiondenoted by

x⊗y as a vectorz of n components, such that for 0≤ i ≤ n−1,

zi =
n−1

∑
j=0

x jy(i− j)mod n (6.10)

The conventional scheme for evaluating a linear convolution employs the result that

w = FFT−1
2n (FFT2n(x|0n)⊙FFT2n(θ|0n)) (6.11)

where⊙ denotes component-wise product, and(x|0k) denotes the vector obtained by

padding vectorx with k zeros. The number of pairwise products of reduced multipoles and

derivatives for an orderP expansion is(1+P)(2+P)(3+P)(4+P)(5+2P)/120∝ P5;
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for orders 4, 8,12, and 16, this is 182, 2079, 10556, and 35853, respectively. SinceP is

of modest size, typicallyP≤ 16, we evaluate the linear convolution as a direct sum.

A cyclic convolution is evaluated via

z = FFT−1
n (FFTn(x)⊙FFTn(y)) (6.12)

Therefore, simply computing the FFT ofx andy with no padding, multiplying their com-

ponents, and then taking the inverse FFT gives us the cyclic convolution ofx andy.

The spatial cyclic convolution may thus be computed as

T̂αβγ =
∞

∑
δεζ
p=0

M̂δεζ⊙
(

Θ̂(α+δ)(β+ε)(γ+ζ)
)∗

(6.13)

whereX̂ denotes the Fourier transform of the quantityX, andX∗ its complex conjugate.

The symbol⊙ denotes element-wise multiplication of the vectors of length K2(K +1)/2

(recall that the inherent symmetry in the Fourier transformof a real sequence can be

exploited so that one is only required to evaluate the pairwise complex multiplications for

approximately half the elements). The cyclic convolution implicitly computes the Taylor

coefficients in each cell as if the cell were rotated to the center, applying the periodic

boundary condition and wrapping coördinates correctly back into the simulation volume.

This transforms an otherwiseO(K6) operation into one ofO(K3 logK). One need only

form the inverse Fourier transform of the(P+ 1)2 independent quantitieŝTαβγ, for γ =

0,1; once again, the remainingTαβγ may be obtained via the trace-free recursion relation.

The implicit rotation of cells to the center of the simulation volume introduces a slight

complication to the Redlack-Grindlay term,ζRG(r); as each cell is rotated to the center,

the dipole moment of the simulation volume changes. Letr be the position of any particle

within the simulation volume. Under the coördinate rotation which brings the cell center

ci jk to the origin, denote the new position ofr asWi jk(r). Assume thatr ′ is a particle
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position in cellCi jk and that we have rotated this cell to the center. The new coördinates

of r ′ arer = Wi jk(r ′), and we have

ζRG
i jk (r) =

4π
3

(
N

∑
l=1

mlWi jk(r l )− rM

)

=
4π
3

(

∑
abc

∑
l∈{Gabc}

miWi jk(r l)− rM

) (6.14)

Using the result that for any particle with positionr , in cell abc, Wi jk(r) = r +Wi jk(ci jk −

cabc),

ζRG
i jk (r) =

4π
3

(

∑
abc

∑
l∈{Gabc}

ml
(
r l +Wi jk(ci jk −cabc)

)
− rM

)

=
4π
3

(

∑
l

ml r l +∑
abc

MabcWi jk(ci jk −cabc)− rM

) (6.15)

whereMi jk is the mass in cell(i, j,k) andM is the total mass of the simulation volume.

The first and third terms above are straightforward to compute. The only term which

varies as cells are rotated to the center is the second term. This term can be written as

∑
abc

MabcWi jk(ci jk −cabc) = ∑
abc

Mabcc[i−a]K [ j−b]K [k−c]K (6.16)

from which it is clearly seen that this term is again a circular convolution and can be

evaluated using the Fourier convolution theorem.

In the previous section we have presented the mathematics ofthe far field compu-

tation. A naive implementation would dictate that one requires 3(p+ 1)2K2(K + 1)/2

elements for the three arraysΘ̂,M̂,T̂ at an orderp expansion of the far field. Instead, we

demonstrate that only approximately 2K2(K +1) elements are required for the computa-

tion to proceed, irrespective ofp.

We first show that for any fixed order on anL3 grid, one only needs space for(p+

1)2L2(L + 1)/2 elements plus a small amount of temporary storage which canbe made
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arbitrarily small. Recall that the Fourier transformed quantity, T̂, is a sum of pairwise

products in Fourier space of the multipoles,M̂, and derivatives,̂Θ, over all cells. We can

constructT̂ for any subset of the cells,B, which we will denote ablock, by

∀x,y,z∈ B T̂αβγ(B) =
∞

∑
δεζ
p=0

M̂δεζ(B)⊙
(

Θ̂(α+δ)(β+ε)(γ+ζ)
)∗

(B) (6.17)

This expression reveals that once theT̂(B) for block B are accumulated, thêM(B) are

no longer required for any other block̂T(B′), and hence we can store theT̂ in the space

previously occupied bŷM; this is illustrated in figure (6.2).

This method requires temporary space to expand the reduced representation into the

complete set (only quantities with indices whereα+β+γ = p∧γ ∈ 0,1 are stored) using

the recurrence relation satisfied bŷM andΘ̂. This requires||B||(p+1)(p+2)(p+3)/6

elements (where||B|| denotes the cardinality ofB ) for each of the expanded̂M and

Θ̂ arrays, denoted bŷMtemp and Θ̂temp respectively, and||B||(p+ 1)2 elements forT̂

temporary storage. The multipoles,M, and their Fourier transform,̂M are therefore only

computed once. The Fourier transform of the derivatives,Θ̂, must be computed for each

reduced order as usual, however we are now discardingL2(L + 1)/2−B elements and

storing the remaining quantities in̂Θtemp; thus in this scheme the Fourier transform of the

derivatives must be computedL2(L + 1)/(2B) times. This cost of theseL2(L + 1)/(2B)

FFT’s is negligible compared to cost of the convolution provided thatB is not too small.

In fact, the block sizeB should be chosen so that the temporary arraysM̂temp,Θ̂temp,T̂temp

all fit into cache on the processor (12 MB for the Q9550).

There is an additional computational device to aid us in computing the far field for

largeK - a multipole hierarchy. Consider our problem of convolvingon aK3 grid with

an order 16 expansion, denoted byCK3,16. Assume that this does not quite fit in mem-

ory, even using the factor of three savings in space of the computational device just de-
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M̂

M̂1

M̂2

M̂3

T̂ = M̂4

T̂temp

Θ̂temp

M̂temp

Figure 6.2: Memory layout for the convolution. We have schematically illustrated
a blocking factor,||B|| = (L2(L + 1)/2)/4. Each of the vertical lines represents all
L2(L + 1)/2 cells at a given multipole order. ThêMtemp andΘ̂temp require more multi-
pole orders as they have been expanded into their Cartesian representations.̂M originally
contains the Fourier transform of the reduced multipoles. As we accumulate each Taylor
series for a block of size||B|| in T̂temp we overwrite the corresponding multipoles in̂M.
After 4 such iterations the entirêT has replaced̂M.

scribed. Assume further, however, thatCK3,8 does fit into memory, and that we perform

this convolution. One can now performF3 convolutions, whereF ≥ 2,CL3,16, and where

L = K/F +2×4. The extra 4 cells on each side of the[K/2]3 sub-volume is the kernel

width surrounding a cell that was not included during the order 8 convolution.

Naturally this is a recursive procedure; ifCK3,8 had not fit we would have triedCK3,4

and performed a 3-level recursive hierarchy. This scheme isextremely effective in ex-

ploiting the idea that for any cell, outside a certain radius, rp (the kernel width), an order

p expansion can be replaced with an orderp′ expansion, wherep′ < p. Typically for
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orders 16,8,4,2 we choose kernel widthsrp of 2,4,16,64 respectively. The only penalty

which we incur is a loss of efficiency in comparison to directly evaluatingCK3,p. The

efficiency is asymptotically(L/(L+2×R(p′)))3, wherep′ is the order employed in the

level immediately preceding levelp in the hierarchy.

Finally, we consider the extension of this algorithm to a distributed memory com-

puting cluster: the “Beowulf” architecture. This is arguably the most common form of

commodity supercomputing today. The essential criterion for parallel scalability is lo-

cality of communication between processors. In the currentcontext, one would wish to

avoid broadcasting all of the multipole information on every processor to all other proces-

sors. A naive implementation of the algorithm described above would do just that, as the

convolution would require using a distributed FFT. Massively parallel cosmological sim-

ulations commonly use distributed FFT’s, despite their notoriously high communication

overhead. (As discussed previously, many of the codes used are based upon a PM-style

algorithm.)

Assume we haveP3 processors (cores) whereP is odd and we desire the Taylor coef-

ficients in each cell due to all other cells (except for near neighbors) on aG3 distributed

grid whereG = FP with G odd ( we can generalize this algorithm to aP×Q×Rproces-

sors going to aF1P×F2Q×F3R grid, however the details are tedious and would obscure

an understanding of the underlying algorithm we present below.) For ease of illustration

let us assume we are working at order 16 with a kernel width of 1around ourselves. By

performing aP×P×P convolution as described in this chapter reduces the processor’s

remaining interactions to those of it’s 27 nearest processors (including itself). (We as-

sume that each processor has computed the multipoles for allcells in it’s entire volume

(on anF3 grid) and propagated this information up the hierarchy of cells until we reach

the single cell representing the entire volume).
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To obtain the Taylor coefficients for theF3 grid on our current processor we could

perform a 27F3 open convolution (recall that only the initial convolutionwas required to

take into account periodicity). The open convolution incurs an additional factor of 64/9

for any grid size in comparison to the periodic problem. Additionally, we would need to

receive 26F3(p+1)2 numbers; the multipoles in all the cells in our neighbors. One can

do significantly better with a hierarchical method, which weillustrate (all the partitions

are drawn in cross section) in Figure (6.3) and now describe.We begin by considering an

open convolution of size 93 where we form the Taylor series for all 27 cells in our volume

by assuming all multipoles in the 33 cells in our partition and those immediately adjacent

to our volume are zero (so as not to double count their contribution upon repartitioning).

We then partition each these cells where we have assumed the multipoles are zero by a

factor of 27; again assuming all multipoles in our volume andthose immediately adjacent

to us are zero. This process is repeated until the targetF3 grid is reached. This will

requireF/3 applications of this algorithm. In the figure we have partitioned our volume

4 times so that there are 813 cells in our volume. Assuming each machine holds on the

order of 1 billion particles we need one more partitioning (however this is too fine a grid

to illustrate in the figure).

In Figure (6.4) we show the rate of computation on an Intel Q9950 processor for the

far field convolution; starting with already-computed multipole moments and summed

derivatives, this is the total time to produce the set of Taylor coefficients which describe

the far field throughout the computational volume.

The only aspect of the discussion which remains concerns thechoice ofK, which

is completely determined by thedegree of clusteringof the particular distribution. One

measure of the degree of clustering atz= 0 is to consider the ratio of the cube root of the

number of particles to the size of the simulation volume’s linear dimension. We quantify
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the degree of clustering by considering the number of particles per cell in ourK3 lattice.

In Figure 6.5 we illustrate the cell population distribution for K = 32,64,128 atz= 0

of two cosmological test problems from Heitmann et al. (2005), ΛCDM simulations using

2563 particles in a 256 Mpc/h box and 64 Mpc/h respectively, withΩtot = 0.314,ΩΛ =

0.686, andH0 = 71 km s−1 Mpc−1. Consider the statistic,WK, which is a measure of the

total number of direct interactions,

WK =
K−1

∑
a=0

K−1

∑
b=0

K−1

∑
c=0

∑
l∈Ca,b,c

1

∑
i=−1

1

∑
j=−1

1

∑
k=−1

∑
j∈C[i+a]K ,[ j+b]K ,[k+c]K

mj
r j − r l

|r j − r l |3
(6.18)

where the symbols[a+b]K denote moduloK arithmetic and embody the notion of wrapping-

around of the cell indices under periodic boundary conditions, andCi jk refers to the cell

with index i jk, 0≤ i, j,k < K within the simulation volume. The statistics for the 256

Mpc/h box areW32 = 3.15×1011,W64 = 6.428×1010,W128= 1.99×1010, and for the 64

Mpc/h boxW32 = 8.84×1011,W64 = 5.03×1011,W128= 2.66×1011. Theoretically (one

can typically achieve only a fraction of peak speed of a GPU; say 70%) the statisticWK

translates into a computational rate for obtaining accelerations of 4.5×1010/WK particles

per second for a single GTX 295 GPU. Naturally, asWK is a monotonically decreasing

function ofK, it’s dual FK (which is the computational cost of obtaining the far field on

a grid of sizeK) is a monotonically increasing function ofK. Whereas one would con-

sider the case of 2563 particles in a 256Mpc/h box (a similar degree of clustering to the

Horizon problem) to bemodest clusteringand amenable to direct interactions for the near

field, the 64Mpc/h simulation exhibits a higher degree of clustering and therefore (WK)

would become prohibitively expensive as the mass resolution increases thus necessitating

the use of the FMM tree scheme of the previous chapter for the near field.

The culmination of this formalism can be seen in the results of the cosmological pan-

cake collapse (Zel’Dovich, 1970; Shandarin and Zeldovich,1989). This is of particular
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interest because it is a sensitive test of accuracy, and especially as Heitmann et al. (2005)

use this problem to compare several current cosmological simulation codes. The param-

eters for this problem wereΩ0 = 1, H0 = 50 km/s/Mpc, in a
√

3 ·10 Mpc box with 643

particles. The initial conditions were chosen so that the redshift at which the first collapse

occurs iszc = 5, and the pancake normal is aligned with the box diagonal,i.e. inclined

at 54.7 degrees with respect to the faces of the simulation volume. The smoothing length

chosen was 15 kpc. These results are shown in Figure 2, and were computed using pa-

rametersK = 33, P = 16, R= 1. This test problem demonstrates that even with modest

parameters excellent accuracy can be obtained in comparison with any of the codes used

by Heitmann et al. (2005).

We next computed one of the cosmological test problems from Heitmann et al. (2005),

a ΛCDM simulation using 2563 particles in a 256 Mpc/h box withΩtot = 0.314,ΩΛ =

0.686, andH0 = 71 km s−1 Mpc−1. The parameters for our algorithm wereP = 12,

R= 1 andK = 63. The co-moving smoothing length was 64 kpc. Atz= 50, the com-

putation proceeded at approximately 106 particles/second. Byz= 1, the rate was 8×105

particles/second, and atz= 0 the rate was 6×105 particles/second. The formation of clus-

tering is the culprit for the decrease in rate of computationas the simulation proceeds, as

the number of direct interactions required for the near fieldclearly increases with cluster-

ing. This computation was performed on a single Intel Q9950 (quad core) processor with

8GB of RAM. The output was compared with that from the codeMC2, and the agreement

is excellent. A slice through both simulations is shown in Figures (6.7) and (6.8).

The code has been used to perform numerous run of 10243 particles in a(1024Mpc)3

box on a computer with 128 GB of memory and four quad-core Intel Xeon E5540 proces-

sors. The typical computational rate was 2×106 particles per second down toz= 3; by

z= 0, the rate had decreased to 5×105 particles per second due to the onset of clustering.
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These simulations are now being used to study systematic effects in baryon acoustic os-

cillations surveys of large-scale structure using JDEM. For a single timestep atz= 0 the

time to perform the force evaluation using a GTX 280 was approximate 250 seconds, for

a rate of about 4 million particles per second. This rate is tobe compared to an inferred

rate of computation of the Horizon simulation (Teyssier et al., 2008) (40963 particles in

2Gpc/h box) of approximately 25,000 particles per second per node. We derived this

quantity by assuming that the forces for all 70 billion particles were calculated at the

finest time step (the authors stated that there were effectively approximately 10,000 time

steps at the finest level) on 6144 processors for 2 months. Whilst we acknowledge that

there is inefficiency due to the massive parallelism in this calculation we still have a factor

of approximately 200 increase in performance.

An important aspect of our method is dramatically reduced memory requirements;

whilst the Millennium-II simulation reported requiring 8TB for 21703 particles (10 billion

particles; effectively 800 bytes per particle), a conservative estimate for our adaptively

gridded scheme is 100 bytes per particle or 1TB. 1TB of memorycan be acquired today

with 16 machines each with 64GB of memory for a total cost of $60,000. The situation

for large scale structure simulations such as Kim et al. (2008) (70 billion particles in a 6.5

Gpc box) is even more amenable to commodity computation; we only require 44 bytes per

particle (as no tree information is required), and current hardware pricing for 16 machines

each with 256 GB should cost a total of $300,000. The direct implication of using asmall

number of machines is that we should be able to avoid the difficulties associated with load

balancing that PKDGRAV and GADGET must entertain.
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Figure 6.3: Parallel algorithm for the far field as describedin the text.
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Figure 6.4: Computational Rate of the far field convolution as a function ofK and order
on a single Intel Q9950 processor. From the top of the graph the lines represent orders
16,12,8, and 4 respectively.
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Figure 6.5: Cell populations as a function of the number of cells used to grid the simulation volume from left to right
323,643,1283 cells; the two simulations arez= 0 for Heitmann 2563 particles in 360Mpc and 90Mpc respectively.
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Figure 6.6: Zeldovich pancake collapse test problem computed with N = 643 parti-
cles. The black points are all of the particles in the simulation. The red line is a one-
dimensional particle-mesh solution computed with 217 points. (cf. Heitmann et al. (2005)
figure 3)
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Figure 6.7: A slice from thez= 0 simulation of the Heitmann et al. (2005) 2563 particle
in 256 Mpch−1 LCDM test problem, computed from the code described in the text.
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Figure 6.8: The same slice from the output from the MC2 code aspresented in Heitmann
et al. (2005).
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CHAPTER 7

CONCLUSIONS AND DISCUSSION

Large sets of high-accuracy, high-resolution cosmological simulations are a critical com-

ponent of the “precision cosmology” program as well as to thestudy of the evolution

of galaxies, clusters, and the intergalactic medium. WhileN-body simulations do not in-

clude baryonic physics, using a statistical model of the relation between galaxy properties

and their dark matter halos, environments, and merger histories (Ma and Fry, 2000; Sel-

jak, 2000; Peacock and Smith, 2000; Scoccimarro et al., 2001; Cooray and Sheth, 2002;

Bullock et al., 2002; van den Bosch et al., 2003; Berlind et al., 2003, and many others),

one can use these simulations to make large catalogs of mock galaxies. In addition, N-

body simulations increasingly are the basis for semi-analytic models of galaxy formation

(Kauffmann et al., 1993; Cole et al., 1994; Somerville and Primack, 1999; Hatton et al.,

2003; Baugh, 2006; Croton et al., 2006; De Lucia et al., 2006).

From an experimental point of view, the use of large N-body simulations to produce

mock catalogs is an essential component in the experimentaldesign of cosmological sur-

veys. As surveys become larger and more sensitive, simulations must keep up, modeling

larger volumes of the universe and providing more detailed predictions of smaller struc-

tures. Simulations are also a critical element of the observational program, as they provide

the connection between fundamental model parameters and statistical measures from ob-

servations, as well as the ability to characterize systematic biases and estimate errors and

covariances for data analysis. Large suites of high-accuracy, high-resolution cosmolog-

ical simulations are a critical component of the ”precisioncosmology” program, rather

than one single heroic run to quantify cosmic variance and toestablish dependencies on

cosmological parameters. One typically needs dozens of runs to study parameter de-
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pendencies (e.g. Heitmann et al., 2009) and hundreds to thousands of runs to establish

high-quality covariance matrices (e.g. Takahashi et al., 2009).

Most current cosmological simulation codes have abandonedattempts at computing

the periodic acceleration directly from the particle positions and instead employ methods

which are variants of the traditional Particle Mesh (PM) scheme. This choice has been

based, in large measure, on the assumption that PM schemes are faster than the equivalent

tree representations.

In this dissertation we have computed the periodic acceleration as a sum of direct in-

teractions. We can compute an Ewald-equivalent acceleration to arbitrary accuracy far

more rapidly than any other scheme. The computational efficiency of the method comes

from the fact that the|r |−1 kernel is very much simpler than the kernel for direct interac-

tions employed by codes like PKDGRAV or GADGET-2. The main virtue of our direct

interaction representation is that N-body problems with periodic boundary conditions can

be trivially reformulated as an equivalent problem with open (or isolated) boundary con-

ditions.

Recognizing that these direct interactions can be implemented very efficiently on the

GPU, we introduced an analytic representation of the FMM using only direct interac-

tions. In addition, we implemented a fast algorithm for the GPU to obtain adaptive soft-

ening lengths for collisionless N-body simulations. Beyond pure N-body simulations,

the ability to obtain softening lengths, and therefore smoothing lengths for SPH, together

with the fact that SPH is based purely upon kernel evaluations between two particles, has

permitted a particularly straightforward implementationof SPH on the GPU. With the

techniques implemented in this dissertation, in the near future we would like to construct

a coupled SPH N-body with cooling which completely runs on the GPU, in particular to

test predictions of the detectability of the effects of baryonic cooling on dark matter halo
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profiles (which lead to percent level changes in the convergence angular power spectrum

at wavenumbers of several thousand) in future weak lensing surveys.

Finally, whereas state-of-the-art “heroic” simulations such as the Via-Lactea and Aquar-

ius simulations (as implemented via PKDGRAV-2 and Gadget-3respectively) require su-

percomputer centers with 1000’s of processors for the equivalent of several million CPU

hours, GPUs computing|r |−1 kernel evaluations are three orders of magnitude less ex-

pensive for equivalent rates of force evaluations per second. It is our opinion that in

the future one should never need massively parallel systemssuch as Blue Gene or even

massive supercomputers such as Roadrunner to perform cosmological simulations. The

smaller-scale commodity hardware we advocate (GPUs) is notonly faster but constitutes

only a modest investment at the scale of a department or university.
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APPENDIX A

CARTESIAN-TO-REDUCED MULTIPOLE TRANSFORMATION

(∗ The potential functionφ(r) ∗ )

Phi [ x , y , z ] := 1 / Sqrt [ x ˆ2+y ˆ2+ z ˆ 2 ]

(∗ Make all(a,b,c) with a+b+c = k, c∈ (0,1) ∗ )

ReducedTup les [ k] :=

S e l e c t[ P a r t i t i o n [ F l a t t en [ Table [ {a , b , c} ,{ a , 0 , k} ,{b , 0 , k} ,{ c , 0 , 1} ] ] ,

3 ] , ( # [ [ 1 ] ] + # [ [ 2 ] ] + # [ [ 3 ] ] == k ) &]

(∗ Make all tuples(a,b,c) with a+b+c= k ∗ )

C a r t e s i a n T u p l e s [ k] :=

S e l e c t[ P a r t i t i o n [ F l a t t en [ Table [ {a , b , c} ,{ a , 0 , k} ,{b , 0 , k} ,{ c , 0 , k} ] ] ,

3 ] , ( # [ [ 1 ] ] + # [ [ 2 ] ] + # [ [ 3 ] ] \ [ Equal ] k )&]

(∗ Make reduced multipolesMabc by repeated differentiation ofφ(r) ∗ )

ReducedMul t ipo le [ a , b , c ] :=

Expand [ Factor [

Sqrt [ x ˆ2+y ˆ2+ z ˆ 2 ] ˆ ( 2∗ ( a+b+c )+1)∗ D er i v a t i v e [ a , b , c ] [ Ph i ] [ x , y , z ] ] ]

(∗ Solve forMa,b,c as linear combinations of Cartesian multipolesQabc ∗ )

Car tes ianToReduced [ n] := Module [

{ l , R ,C , eq , v a r s} ,

R = ReducedTup les [ n ] ;

C = C a r t e s i a n T u p l e s [ n ] ;

eq = R / . {a , b , c } → ReducedMul t ipo le [ a , b , c ] ;

v a r s = C / . {a , b , c } → x ˆ a∗y ˆ b∗z ˆ c ;

l = Outer [ C o e f f i c i en t , eq , v a r s ]

]

KC[ n ] := ( ( n +1)∗ ( n + 2 ) ) / 2 (∗ number ofQabc with a+b+c= n ∗ )

KR[ n ] := (2∗n +1) (∗ number ofMabc with a+b+c= n, c∈ (0,1) ∗ )

(∗ print table of coefficients ∗ )

CF[ n ] := Module [

{ l , v } ,

l = Car tes ianToReduced [ n ] ;

v = Table [ Subscr ip t [ a , i ] ,{ i , 0 ,KC[ n ] −1} ] ;

CForm [ l . v ]

]

(∗ write code to evaluate the linear combinations with these coefficients ∗ )

CreateCar tes ianTo ReducedCode [ n] :=

Module [

{ st rm} ,

s t rm = OpenWrite [ ” Ca r t es i an 2 Red u ced . c ” ] ;

Wri teS t r ing [ st rm , ” vo id Reduced0 ( doub le∗a , doub le ∗ r ) { r [ 0 ] = a [ 0 ] ; } \n” ] ;
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Wri teS t r ing [ st rm , ” vo id Reduced1 ( doub le∗a , doub le ∗ r )

{\n” , ” r [ 0 ] = −a [ 0 ] ; r [ 1 ] = −a [ 1 ] ; r [ 2 ] = −a [ 2 ] ; } \n ” ] ;

Do[ Wri teS t r ing [ st rm , ” vo id Reduced ” , l , ” ( doub le ∗a , doub le ∗ r )

{\n” , ” i n t i ; \n ” , ” doub le v” , l , ” [ ] = {\n” ] ;

Wri teS t r ing [ st rm ,

St r ingRep lace[ St r ingRep lace[ ToStr ing [CF[ l ] ] , ” L i s t ( ” −>” ” ] , ” ) ) ” −>” ) ” ] ] ;

Wri teS t r ing [ st rm , ”\n} ;\n ” , ” f o r ( i =0 ; i <” , KR[ l ] , ” ; i ++) r [ i ] = v ” , l ,

” [ i ] ; ” , ” \n}\n\n ” ] , { l , 2 , n} ] ;

Close[ s t rm ]

]
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APPENDIX B

CARTESIAN-TO-SPHERICAL HARMONIC TRANSFORMATION

Mathematica code to produce C code to perform the Cartesian-to-SphericalHarmonic

multipole transformation:

C a r t e s i a n T u p l e s [ k] :=

S e l e c t[ P a r t i t i o n [ F l a t t en [ Table [ {a , b , c} , {a , 0 , k} , {b , 0 , k} , {c , 0 , k} ] ] ,

3 ] , ( # [ [ 1 ] ] + # [ [ 2 ] ] + # [ [ 3 ] ] == k ) &]

KC[ n ] := ( ( n + 1 )∗ ( n + 2 ) ) / 2

KY[ n ] := (2∗n + 1)

R e a l P a r t [ z ] := ComplexExpand[ Re[ z ] ]

ComplexPart [ z ] := ComplexExpand[ Im [ z ] ]

Ca r t es i an S p h e r i ca l H a r m o n i cY [{ l , m } , {x , y , z } ] :=

Factor [ Together [ Tr igExpand [ ExpToTr ig [

SphericalHarmonicY [ l , m, ArcCos [ z / Sqrt [ x ˆ2 + y ˆ2 + z ˆ 2 ] ] , ArcTan [ y / x ] ] ] ] ] ] / .

Sqrt [ 1 − z ˆ 2 / ( x ˆ2 + y ˆ2 + z ˆ 2 ) ] /Sqrt [ 1 + y ˆ 2 / x ˆ 2 ] −>

Sqrt [ ( x ˆ2 + y ˆ 2 ) / ( x ˆ2 + y ˆ2 + z ˆ 2 ) ] /Sqrt [ ( x ˆ2 + y ˆ 2 ) / x ˆ 2 ] / .

Sqrt [ ( x ˆ2 + y ˆ 2 ) / ( x ˆ2 + y ˆ2 + z ˆ 2 ) ] /Sqrt [ ( x ˆ2 + y ˆ 2 ) / x ˆ 2 ] −>

x / Sqrt [ x ˆ2 + y ˆ2 + z ˆ 2 ]

RY[ n ] := N[

Table [ ComplexExpand[

Expand [ Ca r t es i an S p h e r i ca l H a r m o n i cY [{n , m} , {x , y , z} ] ∗ ( x ˆ2 + y ˆ2 + z ˆ 2 ) ˆ ( n / 2 ) ] ] , {m, −n , n} ] ]

C2RealY [ n ] :=

Module [ { l , R , C , v a r s} , R = F l a t t en [ R e a l P a r t [RY[ n ] ] ] ;

C = C a r t e s i a n T u p l e s [ n ] ; eq = R; v a r s =C / . {a , b , c } :> x ˆ a y ˆ b z ˆ c ;

l = Outer [ C o e f f i c i en t , eq , v a r s ] ]

SubC2RealY [ n ] :=

Module [ { l , v } , l = C2RealY [ n ] ;

v = Table [ Subscr ip t [ c , i ] , { i , 0 , KC[ n ] − 1} ] ; CForm [ l . v ] ]

O u t p u t Ca r t es i an 2 Rea l Y [ n] :=

Module [ { st rm} , s t rm = OpenWrite [ ”C: \ Car t es i an 2 Rea l Y . c ” ] ;

Wri teS t r ing [ st rm , ”# d e f i n e S u b s c r i p t ( c , i ) c [ i ] \n” ] ;

Wri teS t r ing [ st rm ,

” vo id RealY0 ( doub le ∗c , doub le ∗y ) { y [ 0 ] = 0 . 5 / s q r t ( M PI ) ; } \n” ] ;

Do[ Wri teS t r ing [ st rm , ” vo id RealY ” , l , ” ( doub le ∗c , doub le ∗y ) {\n” ,

” i n t i ; \n ” , ” doub le v” , l , ” [ ] = {\n ” ] ;

Wri teS t r ing [ st rm ,

St r ingRep lace[ St r ingRep lace[ ToStr ing [ SubC2RealY [ l ] ] , ” L i s t ( ” −> ” ” ] ,
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” ) ) ” −> ” ) ” ] ] ;

Wri teS t r ing [ st rm , ”\n} ;\n” , ” f o r ( i =0 ; i <” , KY[ l ] , ” ; i ++) y [ i ] = v ” ,

l , ” [ i ] ; ” , ” \n}\n\n” ] , { l , 1 , n} ] ; Close[ s t rm ] ]

C2ComplexY [ n ] :=

Module [ { l , R , C , v a r s} , R = F l a t t en [ ComplexPart [RY[ n ] ] ] ;

C = C a r t e s i a n T u p l e s [ n ] ; eq = R; v a r s =C / . {a , b , c } :> x ˆ a y ˆ b z ˆ c ;

l = Outer [ C o e f f i c i en t , eq , v a r s ] ]

SubC2ComplexY [ n ] :=

Module [ { l , v } , l = C2ComplexY [ n ] ;

v = Table [ Subscr ip t [ c , i ] , { i , 0 , KC[ n ] − 1} ] ; CForm [ l . v ] ] C

Outpu tCar tes ian2ComplexY [ n] :=

Module [ { st rm} , s t rm = OpenWrite [ ”C: \ Car tes ian2ComplexY . c ” ] ;

Wri teS t r ing [ st rm , ”# d e f i n e S u b s c r i p t ( c , i ) c [ i ] \n” ] ;

Wri teS t r ing [ st rm ,

” vo id ComplexY0( doub le ∗c , doub le ∗y ) { y [ 0 ] = 0 ; } \n” ] ;

Do[ Wri teS t r ing [ st rm , ” vo id ComplexY ” , l , ” ( doub le ∗c , doub le ∗y ) {\n ” ,

” i n t i ; \n ” , ” doub le v” , l , ” [ ] = {\n ” ] ;

Wri teS t r ing [ st rm ,

St r ingRep lace[

St r ingRep lace[ ToStr ing [ SubC2ComplexY [ l ] ] , ” L i s t ( ” −> ” ” ] ,

” ) ) ” −> ” ) ” ] ] ;

Wri teS t r ing [ st rm , ”\n} ;\n” , ” f o r ( i =0 ; i <” , KY[ l ] , ” ; i ++) y [ i ] = v ” ,

l , ” [ i ] ; ” , ” \n}\n\n” ] , { l , 1 , n} ] ; Close[ s t rm ] ]
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