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ABSTRACT

In this thesis, the hydrodynamics of massive star interiors are explored. Our
primary theoretical tool is multi-dimensional hydrodynamic simulation using
realistic initial conditions calculated with the one-dimensional stellar evolution
code, TYCHO. The convective shells accompanying oxygen and carbon burning
are examined, including models with single as well as multiple, simultaneously
burning shells. A convective core during hydrogen burning is also studied in or-
der to test the generality of the �ow characteristics. Two and three dimensional
models are calculated. We analyze the properties of turbulent convection, the
generation of internal waves in stably strati�ed layers, and the rate and character
of compositional mixing at convective boundaries.
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CHAPTER 1

INTRODUCTION

Thus the whole computing job we are contemplating turns out to be of such a magnitude

that, in spite of the speed and capacity of modern computers, I know of know institution

which could and would assign the necessary computer time to such an undertaking. No,

I feel we are once again forced to try to think.

Martin Schwarzschild (1969)1

Fields as diverse as stellar population synthesis modeling, galactic chemical
evolution, star formation, and even cosmology (via the stellar and supernova
distance ladder) all rely critically on our knowledge of how an individual star
lives and dies. Therefore astronomers are faced with the question: how well can
we model an individual star? Arriving at a satisfactory answer to this question is
not a trivial exercise.

The basic ingredients that go into a stellar model are of two distinct types,
including microphysical properties of the stellar plasma and a macroscopic �uid
dynamics problem. The microphysics needed include radiative opacities; ther-
modynamic properties, including the equation of state; and nuclear reaction rates.
These microphysical properties are then used as inputs to close the reactive-,
radiation-, magneto-, hydrodynamics problem which describes the overall stel-
lar structure and its time evolution. So, how well can we solve this problem?
To �rst order, the theory of stellar evolution is a success: the basic properties of

1George Darwin Lecture, Royal Astronomical Society, published in the Quarterly Journal of the
Royal Astronomical Society (1970) 11, 12-22.
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stars, including the radii and luminosities can be fairly well characterized, in-
cluding the time evolution of the star's structure as it moves through a variety of
distinct phases driven by radiation and mass loss at the surface, interior mixing
processes, and nuclear transmutation of composition.

Despite this success, the limitations in stellar theory are well known. Almost
every ingredient that goes into a stellar model is subject to some level of uncer-
tainty. For example, important nuclear reaction links, including the C12(α, γ)16O
link which determines the composition of stellar cores following helium burning
and subsequent stages, are subject to considerable uncertainty due to the dif�-
culty involved in both measuring the rates in the laboratory, and calculating them
theoretically (see e.g. Kunz et al., 2002; Arnett & Thielemann, 1985; Thielemann
& Arnett, 1985). The macrophysical problem is also the source of considerable
uncertainty. For instance, the magneto- part of the problem is almost always
ignored, and the hydrodynamic part of the problem has been so emasculated
that any respectable �uid mechanic would recognize it as a back of the enve-
lope calculation. Regardless of the simpli�cations made to the hydrodynamics,
stellar models are still very complex systems with a large number of physical
processes acting simultaneously with various types of feedback. Although only
one-dimensional, the computational challenge is complicated by the necessity of
an implicit solution method.

That the treatment of hydrodynamics in stellar evolution models is one of
the primary weaknesses of the theory is related to the history of the �eld, which
during its inception was limited by computational power. The earliest numer-
ical models described stars as static spheres (essentially polytropes)2. Thrown

2An informal account of the early history of stellar structure by Martin Schwarzschild, includ-
ing the contributions made by his uncle Robert Emden and his father Karl, is published in The
Astrophysical Journal (1961), 134, 1.
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out with the time evolution and multi-dimensionality were the non-radial modes
of motion, except for convection which was initially treated in a highly simpli-
�ed manner by assuming that convectively unstable regions obtain an adiabatic
temperature gradient. The increased availability of calculating machines eventu-
ally led to numerical models de�ned on a radial grid that could evolve in time,
although initially quasi-statically. This remains essentially the standard concern-
ing the treatment of stellar hydrodynamics today (Kippenhahn & Weigert, 1990;
Hansen & Kawaler, 1994).

What has been excised for practical purposes early in the history of the theory
is a complex hydrodynamic �ow which is superimposed over the background
hydrostatic structure of the star. This neglected �ow is hydrodynamically very
rich, consisting of wave motions, turbulent convection, differential rotation, and
large scale rotationally induced currents. The consequences of these hydrody-
namic motions are not well understood, but based on experiences with similar
�ows in the laboratory and geophysics they are known to be capable of producing
long-range transport of angular momentum and stellar matter (i.e., composition
mixing).

The de�ciencies in stellar modeling are resurfacing in light of increased obser-
vational scrutiny, and astronomers are now asking more of stellar evolution than
�rst order answers. A few developments of recent interest include:

• The Sun. The radial pro�le of sound speed within the Sun, inferred by helio-
seismic inversion studies, reveal discrepancies with standard solar models
at regions just beneath the convection zone (Bahcall et al., 2006) when new
chemical abundances are used (Asplund et al., 2005). This region is known
to be hydrodynamically active due to the presence of a shear layer called the
tachocline as well convective overshooting. A related, unsolved conundrum
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is the nearly solid body rotation of the core, also inferred from helioseismol-
ogy data (Basu, 1997).

• Surface abundance �anomalies� across the HR diagram. Lithium and CNO abun-
dances within the �Lithium dip�; He and N enrichment in massive O stars
(see, e.g. Charbonnel & Talon, 1999; Pasquini et al., 2004); and the products
of s-process nucleosynthesis (see, e.g. Lattanzio & Lugaro, 2005) all show
discrepancies with standard stellar evolution models.

• Wide eclipsing binaries. The properties of stars in wide-eclipsing binary sys-
tems provide another direct observational probe of individual star evolu-
tion. If ages and metallicities can be constrained, these systems provide
laboratories in which high precision stellar measurements can be made.
Fundamental properties, including the radii and masses, are found to be
in disagreement with theoretical models. For instance, theoretical radii for
low mass stars (0.4 - 0.8 M¯) are found to be 5 - 15% lower than observed
(Ribas, 2006). With observational errors on the order of only a few percent,
these are rigorous constraints for evolutionary models.

A variety of solutions have been proposed to these conundrums, which can be
succinctly summarized as: the discrepancies between theory and observation can
be resolved by adjusting the treatment of convection, and increasing the amount of

mixing that takes place beyond the edges of currently de�ned convective regions. The
degree of extra mixing required can almost certainly be accommodated by the
hydrodynamic processes which are neglected.

The approach most often used to describe stellar mixing beyond the formal
convective boundaries is to treat it as a diffusive process, with the mass fraction
of species i, written Xi, evolved in the Lagrangian frame according to,
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dXi
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∂Xi
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]
. (1.1)

The terms on the right include composition changes due to nuclear burning and
diffusive mixing. The physical model of mixing is then encapsulated in the La-
grangian diffusion coef�cient, D̂ = (∂mr/∂r)2D. The Eulerian diffusivity D is
frequently taken to be the product of a velocity and length scale D ∼ vl, or the
ratio of a length scale squared and a timescale D ∼ l2/τ . Here, the physics of
mixing is encapsulated in the calculations of the length, time, and velocity scales.
This analysis is almost exclusively based on order of magnitude estimates em-
ploying linear instability theory. Examples of mixing processes treated as diffu-
sion include convective overshooting (Herwig et al., 1997)3, semiconvective mix-
ing (Langer et al., 1983; Spruit, 1992), rotational instabilities (e.g. Pinsonneault et
al., 1989), and gravity wave induced mixing (Press, 1981; Garc�́a López & Spruit,
1991; Montalban, 1994; Denissenkov & Tout, 2003; Young et al., 2003).

Within convection zones, mixing is usually treated as instantaneous. Dur-
ing the late burning stages, however, the reduced nuclear exhaustion timescales
can approach the convective turnover time, and a time-dependent treatment is
needed (e.g. Woosley et al., 2002). Diffusive mixing is used, with a diffusivity
based on the mixing length velocity and length scale D ∼ vcΛ, where Λ = αHP is
the mixing length in terms of the pressure scale height HP .

The use of a diffusive description for these �mixing� processes has been mo-
tivated mostly by a lack of understanding and the simplicity with which it can
be implemented into existing stellar evolution codes, rather than a belief that it
is the correct description of the process. In fact, based on geophysical analogs, it
is known that hydrodynamic processes operating in a stellar interior can behave

3This is the one of the few examples of work which uses a fully nonlinear hydrodynamic model
to calibrate the diffusion coef�cient, rather than a linear model for mixing.
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very differently than diffusion. In some cases, �anti-diffusive� behavior can oc-
cur where gradients are steepened rather than smeared out; and in other cases
long distance transport processes can operate, such as internal wave transport of
angular momentum (Dunkerton & Fritts, 1984). In chapter 4 I present another
example of a mixing process which is not well described as diffusion: it is called
turbulent entrainment, and although it is a well studied mixing processes in the
geophysics and �uid mechanics literature, it has to date not been incorporated
into stellar evolution modeling.

The mechanisms which drive stellar mixing are in general inherently non-
linear, which means that their behavior is not readily derivable from the basic
equations of motion. Some attempts have been made to incorporate non-linear
turbulence models into stellar evolution codes (Grossman et al., 1993; Canuto &
Dubovikov, 1998). These models, however, require closure assumptions that de-
pend on characteristics of the �ow that are not yet well understood. Furthermore,
some commonly used closure assumptions, such as the down-gradient approxi-
mation (Kuhfuss, 1986), have been shown irrelevant for large regions of a stellar
convection zone (Chan & So�a, 1996). A formal analysis of the governing equa-
tions is therefore limited, and carefully designed numerical or laboratory exper-
iments are needed. The past twenty years has seen tremendous growth in the
accessibility of computing power, and numerical simulation is playing an ever
more central role in our understanding of turbulent �ow.

One of the most important, general results that has emerged from simulation
work is a basic characterization of the different modes of motion which the stel-
lar plasma can assume. Broadly, the following three types of motion occur: (1) In
convectively unstable regions, which generally have large Rayleigh and Reynolds
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numbers4, the �ow obtains a highly turbulent state. (2) The boundaries of con-
vection zones are highly dynamic. They host interfacial waves and instabilities
which mediate the motions within the convectively unstable and stable layers. (3)
The stably strati�ed layers are found to be dynamically active, and dominated by
internal wave motions incited by the adjacent turbulent layers. Each region is a
complex problem in itself, but equally important is how these different regions
interact.

A variety of numerical simulations have studied the basic properties of the
turbulent convective �ow (e.g. Chan & So�a, 1989, 1996; Kim et al., 1995, 1996;
Cattaneo et al., 1991; Porter & Woodward, 2000; Porter, Woodward, & Jacobs,
2000; Robinson et al., 2003, 2004), and have additionally confronted these simu-
lations with the mixing length theory of convection5. The results show that sig-
ni�cant non-local (i.e., long distance) effects are important which mixing length
theory fails to describe, and that mixing length scalings break down signi�cantly
near convective boundaries. In addition, the mixing length theory in inef�cient
convective6 regions is found to be replete with inconsistencies. Despite these set-

4The Reynolds number is a dimensionless measure of the relative strenght of inertial to viscous
forces in a �uid �ow. A transition from laminar to turbulent �ow occurs as the relative importance
of inertial forces surpasses a certain threshold, characterized by a critical Reynolds number (of
order a thousand). The Rayleigh number is a dimensionless number associated with the heat
transfer in a �uid system, and is formulated in terms of the timescales for buoyancy acceleration,
and thermal and momentum diffusion. The Rayleigh number is an indicator of the mode of heat
transport through a �uid system. Thermal conduction operates at low values, and a transition to
laminar convective �ow occurs once a critical value is reached. Increases in the Rayleigh number
signi�cantly above the critical value needed to initiate convective motions eventually leads to a
transition to turbulence.

5The mixing length theory (MLT) is the standard treatment of convection in stellar evolution
models. It is a heuristic model of convection which is based entirely on �local� properties of the
stellar background. In addition to a variety of assumptions about the character of the �ow, it
includes only one parameter called the mixing length which represents the distance over which
convective �eddies� remain coherent. MLT is described in more detail in §4.6.

6Ef�cient convection means that the energy lost by large eddies over the time it takes them to
traverses the unstable region is small. Convection in optically thin atmospheres is often inef�cient
due to substantial radiative losses during a convective turnover time.
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backs for using mixing length theory, a few robust features of the �ow were newly
discovered, including an up/down �ow asymmetry linked to coherent �plume�
structures which span the depth of the convection zones, even over multiple pres-
sure scale heights. These coherent structures which form in the turbulent �ow
are an example of how order can emerge within a seemingly chaotic non-linear
system. The bene�t of having identi�ed these �ow features is that they provide
useful guidance for constructing turbulence closure models. These �ow features
also shed light on the nature of the non-negligible kinetic energy �ux which ac-
companies the convection and which has heretofore been ignored in the mixing
length theory of convection.

Concerning convective boundary layers, a variety of idealized simulations
have been studied to assess the degree to which �overshooting� occurs (Hurl-
burt, Toomre, & Massaguer, 1996; Brummell, Clune, & Toomre, 2002; Rogers &
Glatzmaier, 2005). These simulations reveal that a convective boundary is best
described as an active, transition region of �nite width that separates the turbu-
lence from the stably strati�ed, �radiative-layers�. Distilling this information for
use in a one-dimensional stellar model is still in its infancy. Most emphasis has
been placed on extracting a single number to quantify the �overshoot� distance
beyond a formal convective boundary to which mixing will occur. A few models
have started to study convective boundaries under more realistic stellar interiors
conditions, including oxygen shell burning (Arnett, 1994; Bazan & Arnett, 1998;
Asida & Arnett, 2000); A-star and white dwarf convection (Freytag, Ludwig, &
Steffan, 1996); the base of the solar convection zone (Rogers & Glatzmaier, 2006);
the core He-�ash (Dearborn et al., 2006a); and He-shell burning (Herwig et al.,
2006). To date, the most sophisticated application of these multi-dimensional re-
sults to one-dimensional stellar evolution is probably that of Herwig et al. (1997),
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who parameterized the kinetic energy pro�les found in the stable layers outside
of the convection zones simulated by Freytag, Ludwig, & Steffan (1996). A diffu-
sive mixing coef�cient was then calculated using this stable layer velocity pro�le,
and progress was made in elucidating some of the features of the s-process nu-
cleosynthesis.

Finally, stable layer dynamics have been gaining increasingly more attention.
In all of the numerical simulations of penetrative convection mentioned, internal
waves were excited in the stably strati�ed layers7. The importance of internal
waves is that they can drive transport processes in stable layers, including both
angular momentum transport and compositional mixing. That mixing occurs in
stably strati�ed layers is implied by several observational tests, including those
mentioned previously. As an example, the rotational state of the radiative solar
interior appears to require �nonstandard� mixing. A proposed solution is angu-
lar momentum transport by internal waves in the stable layers which are excited
by the overlying turbulent convection zone (Kumar et al., 1999).

Obtaining a comprehensive theory of stellar hydrodynamics, which is tanta-
mount to a complete understanding of strati�ed turbulent �ows, is a distant goal.
Strides can be made, however, by studying the �ows in numerical experiments
and analogs in the geophysics literature, and confronting stellar models with ever
more stringent observational constraints. This knowledge is particularly relevant
to the progenitors of supernovae, for which a predictive stellar evolution model is

needed. This is so, because the advanced burning stages in massive stars are essen-
tially unobservable. Once carbon core burning commences, the highly energetic
burning that takes place in and around the core does not produce an observable
effect at the stellar surface: instead, the surface luminosity of the star is domi-

7By stably strati�ed layers I refer to those layers which are linearly stable to convective
instability.
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nated by the hydrogen and helium burning shells, because the energy released
by the heavy ion reactions in the deep core is radiated away locally by neutrino
emissions (Arnett, 1996). The observational challenge is exacerbated by the sig-
ni�cantly accelerated evolution that takes place during the late burning stages
due to the small available binding energies in the fuel and the copious neutrino
emissions. Therefore, apart from observing the neutrino emissions directly (see
e.g. Odrzywolek et al., 2004), these phases of evolution are effectively invisible to
astronomers on Earth.

The important role that supernovae play in cosmic evolution warrants a better
understanding of their physics.

1.1 The Aim and Structure of the Present Work

In this thesis I describe research which is part of a larger effort motivated by
David Arnett that strives to develop the next generation of stellar models. Im-
proved progenitor models, which are the inputs to supernovae and nucleosyn-
thetic yield calculations, are a primary goal. The approach is to develop a com-
prehensive enough understanding of multi-dimensional stellar hydrodynamics
through simulation to be able to accurately �project� this physics into a one-
dimensional prescription. The �1D prescription� would allow us to accurately
predict the modes of hydrodynamic motions which are active including their at-
tendant transport processes, given a one-dimensional stellar pro�le. In many
ways, this work is of an exploratory nature given our current understanding of
the hydrodynamics involved.

The primary tools for this work include the one-dimensional stellar evolution
code TYCHO (Young & Arnett, 2005), and the PROMPI code which I have de-
veloped to perform multi-dimensional hydrodynamic simulations of stellar in-
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teriors on parallel computing platforms. The TYCHO code is used both to test
one-dimensional hydrodynamic prescriptions informed by simulation, as well as
providing initial models for the simulations. Therefore, the research process is
fundamentally iterative.

Multi-dimensional hydrodynamics are studied with the PROMPI code, which
is based on the PROMETHEUS code, a direct Eulerian implementation of the
piecewise parabolic method of Colella & Woodward (1984) generalized to include
a multi-component �uid which uses a Riemann solver capable of non-ideal gases
(Colella & Glaz, 1985). Parallelism has been implemented through domain de-
composition using the MPI libraries for message passing. In addition to restruc-
turing the code for parallel processing, additional microphysics is implemented
as well as general subroutines to treat nuclear burning and radiative transport.
The microphysics has been ported directly from the TYCHO code, including com-
ponents of the equation of state and the opacities tables from the OPAL project,
to effect easier comparison between these theoretical tools. Radiative transfer has
been included in the diffusion limit, using both an implict (Crank-Nicholson) and
explicit solver. Nuclear burning is incorporated using the same subroutines as in
the TYCHO code, and allows for an arbitrary reaction network to be assembled
using the rate libraries of Rauscher & Thielemann (2000). Additional details are
provided in subsequent chapters where relevant.

With the ability to compute on multi-processor platforms, I have been able to
extend prior simulations of stellar interiors by our group (Arnett, 1994; Bazan &
Arnett, 1998; Asida & Arnett, 2000) to larger computational domains (e.g., mul-
tiple burning shells) and three-dimensional �ow8. In addition to extending the
oxygen shell burning models, I have extended our modeling efforts to include

8Some comments regarding the computational costs involved are provided in §D.
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both earlier (main sequence core convection) and later (silicon burning) evolu-
tionary stages.

In chapter 2, I present a hydrodynamic model of a supernova progenitor that
is actively burning hydrogen, helium, carbon, and oxygen in concentric shells.
The simulation grid encompasses both the carbon and oxygen burning shells,
making this the �rst simulation (that I know of) to model multiple convective
burning shells. The most prominent new result attributable to these simulations
is the strong in�uence that resonant internal waves, trapped between the oxygen
and carbon burning convection zones, have on the carbon burning shell. These
internal wave modes are found to be well described by the linearized wave equa-
tion, which I show through a direct comparison of eigenmode solutions to the
wave equation and the full non-linear simulation data. This result provides not
only support for using linear wave theory in future analysis, but also provides
a validation test for the hydrodynamics code. This validation test is particularly
interesting because the Mach numbers of the wave motions underlying the reso-
nant modes are very low M < 10−3, a regime in which compressible codes have
recently been challenged (which is discussed further in chapter 3). In connec-
tion with supernova physics, I point out that large asphericities are expected
at core collapse which are due to the wave motions at convective boundaries,
and not due directly to perturbations in the convection zone. This seems to be
a common misconception among supernova modelers who often seed instabili-
ties in progenitor models with some form of random perturbations in the depths

of the the convection zones rather than as low-order modes in the adjacent stable lay-

ers. Additionally, I discuss in this chapter the role that waves play in mediating
composition mixing at convective boundaries. In particular, I discuss a process
whereby trapped internal waves grow to non-linear amplitudes and are followed
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by a breakdown to turbulence through an advection instability: a mechanism
�rst implicated in the deepening of the ocean's thermocline by Phillips (1966)
and Orlanski & Bryan (1969), and later applied to atmospheric inversion layers
by Pellacani & Lupini (1975). I conclude with some preliminary remarks on the
differences seen in the 2D and 3D models. The velocity scales in 2D are greatly
exaggerated due to the arti�cially imposed geometry of the �ow.

In chapter 3 I compare our fully compressible 2D and 3D models of oxygen
shell burning convection to the 3D anelastic model of Kuhlen, Woosley, & Glatz-
maier (2003). I show that the solutions are in very good agreement in the convec-
tively unstable region, and that differences between the models can be explained
by physics which was not included in the simpler anelastic model. The de�cien-
cies in the anelastic model include using hard boundaries within the convection
zone instead of bounding stable layers, the use of only a single-component �uid,
and a restriction to zero mean background expansion. The good agreement be-
tween the models of the statistical properties of the convective �ow, however,
lends additional support to the use of our fully compressible solver for the low
Mach numbers simulated since the anelastic model is designed to perform well
in these regimes. An important analytic tool developed in this chapter allows us
to accurately calculate the amplitudes of the internal wave motions directly from
the one-dimensional models pro�le.

Chapter 4 provides a more extensive overview of the simulations performed,
and provides a broad range of diagnostics characterizing the resultant �ows. An
extensive comparison with mixing length theory is made for the 3D oxygen shell
burning model, which is our most physically complete system. Although rea-
sonable agreement is found between the mixing length theory assumptions and
the velocity and super-adiabatic temperature gradient in the model, the univer-
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sality of this mixing length is dubious, which comes to light when comparing
our results to related studies. One of the more interesting and novel results pre-
sented in this chapter concerns the rate and process by which material mixes at a
convective boundary layer, which is best described as turbulent entrainment. Tur-
bulent entrainment is the process by which material is drawn across a convective
boundary layer by turbulent velocity �uctuations and differs qualitatively from
the traditional �ballistic� picture of overshooting wherein large eddies are en-
visioned to penetrate into the stable layer (Zahn, 1991). What I �nd is that the
empirical entrainment rates are governed by the characteristics of the turbulent
�ow and the stability structure of the convective boundary in the same manner
as those found for geophysical �ows. In particular, the entrainment rate is found
to obey a power law dependence on a bulk Richardson number, RiB (eq. 4.1). The
parameter RiB can be calculated directly from the one-dimensional model pro�le
and provides an indicator of the qualitative nature of the hydrodynamic �ow that
takes place at the convective boundary, including the mixing rate.

In chapter 5, I reiterate some of the key results from this work and conclude by
discussing some avenues for future research which build directly on the efforts
laid down in this thesis.
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CHAPTER 2

ACTIVE CARBON AND OXYGEN SHELL BURNING

The material presented in this chapter was previously published in Meakin & Arnett

(2006a)

2.1 Introduction

Numerical simulations of stellar evolution are generally based upon restrictive
assumptions regarding dynamics (e.g., hydrostatic balance and mixing-length
convection), because the dynamic timescales are so much shorter than the nu-
clear burning timescale. Neutrino cooling accelerates the last burning stages so
that direct dynamic simulation is feasible (Bazan & Arnett, 1998; Asida & Arnett,
2000), at least for the oxygen burning shell. We are extending this work to longer
evolutionary times, larger computational domains, and three dimensional �ow
(3D). In this chapter, I summarize new results with a discussion of the hydro-
dynamics underlying important symmetry breaking and compositional mixing
processes which may signi�cantly affect progenitor and core-collapse supernova
models. A more detailed discussion of these results appears in subsequent chap-
ters; I indicate some of the broader implications here.

2.2 A Double Shell: Active Oxygen and Carbon Burning

Previously we have evolved a 23M¯ model with the one-dimensional TYCHO
code to a point where oxygen and carbon are burning in concentric convective
shells which overlay a silicon-rich core. The resultant stellar structure is pre-
sented in Figure 2.1. For subsequent hydrodynamic evolution we use the PROMPI
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code described in the introduction. We use a 25 nucleus reaction network in these
models, tuned to capture the oxygen and carbon burning energy generation rates
to within 1% of the 177 species version used to evolve the 1D model. The 25
nucleus network contains electrons, neutrons, protons, 4He, 12C, 16O, 20Ne, 23Na,
24Mg, 28Si, 31P, 32S, 34S, 35Cl, 36Ar, 38Ar, 39K, 40Ca, 42Ca, 44Ti, 46Ti, 48Cr, 50Cr, 52Fe,
54Fe, 56Ni, and all signi�cant strong and weak interaction links. The reaction rates,
including 12C(α, γ), are from Rauscher & Thielemann (2000).

A two dimensional model has been calculated on a 90◦ wedge which is em-
bedded in the equatorial plane of a spherical coordinate system and has radial
limits which encompass both the oxygen and carbon burning convective shells.
Table 2.1 lists some additional details of the simulated model. A three dimen-
sional model including just the oxygen shell and bounding stable layers has been
evolved to 800 seconds. (An extensive analysis of the 3D model is presented in
Chapter 4.).

2.3 Results

Flow Topology with Two Burning Shells. Following the readjustment of the outer
boundary due to small inconsistencies in the initial 1D model, a quasi-steady state
�ow develops, which is shown in Fig. 2.2. The top half of the �gure shows the
velocity magnitude; the lower shows energy generation. Velocities are signi�cant

even in the nonconvective regions, but have different morphology. The convective
regions have round patterns (vortices) with occasional plumes, while the non-
convective regions have �attened patterns (mostly g-modes). The �ow �uctuates
strongly. New fuel is ingested from above; the oxygen �ame shows �feathery�
features corresponding to such fuel-rich matter �ashing as it descends. This was
previously seen (Bazan & Arnett, 1998; Asida & Arnett, 2000). A new feature
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Figure 2.1: The 23M¯ TYCHO model used as initial conditions for the hydro-
dynamic simulation is shown here. (top) Density and temperature pro�les are
shown illustrating the large number of scale heights simulated as well as the
complex entropy structure due to the burning shells. (middle) The mixing length
velocities are shown and delineate the extents of the carbon and oxygen burning
convection zones. The dashed vertical lines mark the boundaries of the simu-
lation domain. (bottom) The onion skin compositional layering of the model is
shown here for the four most abundant species.
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Table 2.1. Model Parameters

Quantity Value

Stellar mass (M¯) . . . . . . . . . . . . . . . . . . . . . . 23
Stellar age (yr) . . . . . . . . . . . . . . . . . . . . . . . . . 2.3×106

Oxygen shell convective timescalea(s) . . . ∼102

Carbon shell convective timescalea(s) . . . ∼103

Hydro simulation time (s) . . . . . . . . . . . . . . 2.5×103

Inner, outer grid radius (109 cm) . . . . . . . . 0.3, 5.0
Pressure scale heights across domain . . . ∼ 9
Angular extent of grid (rad) . . . . . . . . . . . . π/2
Grid zoning, nr×nφ×nθ . . . . . . . . . . . . . . . . . 800×320×1
Numer of timesteps . . . . . . . . . . . . . . . . . . . . ∼1.5×106

aThese convective timescales are based on the mixing
length theory velocities.

appears in the movie version of Fig. 2.2, which shows a pronounced, low order
distortion of the comoving coordinate, squashing and expanding the apparent
circles on which carbon burning proceeds. This is due to the coupling of the two
shells by waves in the nonconvective region between them. This behavior seems
robust; we expect it to persist, so that at core collapse this part of the star (at least)
will have signi�cant nonspherical distortion.

Stiffness and the Source of Density Perturbations. Another asymmetry, nonspher-
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ical density perturbations, was found by Bazan & Arnett (1998); Asida & Arnett
(2000). The �uctuations in density and temperature, presented in the top panel of
Figure 2.3 as root mean square deviations from an angular mean, reach values as
large as ∼10% and are localized at the nonconvective region just beyond the con-
vective boundary (top panel). The �uctuations are coincident with regions where
the buoyancy frequency, N , is large, which can be seen in the bottom panel of Fig-
ure 2.3. Here, N2 is a measure of the �stiffness� of the strati�cation (Turner, 1973),
and is proportional to the restoring buoyancy force on perturbed stellar matter,

N2 = −g
(∂ ln ρ

∂r

∣∣∣
s
− d ln ρ

dr

)
, (2.1)

where g is the gravity, and the term in parentheses is the difference between
the fractional density gradient of the stellar structure and the fractional den-
sity change due to a radial (adiabatic) Lagrangian displacement. Regions where
N2 ∼< 0 are unstable to convective motions. The spikes in N in our model are
due to steep, stabilizing composition gradients which separate fuel from ash
and lead to sharp gradients in density. Convection excites wave motions in the
adjacent stable layers which give rise to the density perturbations. Similar in-
ternal wave phenomena can be observed in laboratory ice-water convection ex-
periments where the largest temperature �uctuations are measured immediately
above the convecting layer where the buoyancy frequency is large (Townsend,
1966), which highlights the generality of this phenomenon.

Resonant Modes. The underlying stellar structure determines the set of discrete
resonant modes that can be excited. The narrow stable layers which bound the
convective shells in our simulation, including the (truncated) core layer, are iso-
lated enough from other wave propagation regions to act as resonating cavities.
These modes are the deeper, interior counterparts to the modes observed in helio
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Figure 2.2: The magnitude of the �ow velocity (top) and the net energy generation
rate, εnet = εnuc + εν (bottom), is shown for a snapshot of the simulation which in-
cludes both an oxygen and carbon burning convection zone. The carbon burning
convective shell extends to a radius of ∼4.5×109 cm while the �gure is truncated
at a radius of ∼2.9×109 cm for clarity. A weak silicon-burning convection zone
develops at the inner edge of the grid due to a small boundary-zone entropy error
which accumulates during the course of the calculation.
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Figure 2.3: (top) Nonspherical density and temperature perturbations (root mean
square �uctuation about the angular mean divided by the angular mean) are
shown for the inner 1.2×109 cm of the simulation domain. (bottom) In this
propagation diagram (showing oscillation frequency versus stellar radius) the
gravity wave and (l=4) acoustic wave propagation zones are indicated by the
horizontal and cross-hatched shading, respectively. The gravity wave cavity is
bounded above by the buoyancy frequency (solid line), while the acoustic cavity
is bounded below by the Lamb frequency (dashed line).
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Figure 2.4: (left) The frequency power spectrum of the l=4 component of the radial
velocity (vx) is shown as a function of radius. The dashed horizontal lines indicate
the frequencies of two waves with signi�cant power that are compared to linear
theory in the adjacent panel. (right) Two l=4 wave forms are shown. The wave
forms extracted from the simulation data (dotted line) and calculated with linear
theory (solid line) are shown for comparison. For each mode the horizontal (vy)
and radial velocity (vx) components are presented in units of cm s−1. The shaded
areas correspond to stably strati�ed regions. Both of these modes have some p-
and g-mode character. The mode in the bottom panel is predominately of g-mode
character, while the mode in the top panel is more clearly of mixed type.
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and asteroseismology studies of milder evolutionary stages.
Each mode can be uniquely identi�ed by its horizontal wavenumber index,

l, and its oscillation frequency, ω. We identify excited modes in our simulation
by isolating spatial and time components of the motion through Fourier trans-
forms. In Figure 2.4 we present a power spectrum at each radius in the simu-
lation for motions with l = 4, the largest horizontal scale that can �t into the
90◦ wedge simulated. A direct comparison between modes identi�ed in the sim-
ulation and those calculated from the linearized (non-radial) wave equation of
stellar oscillations (see Appendix C) is presented in the right hand panel for two
modes with signi�cant power. Although the simulation data has additional fea-
tures, including �noise� in the convection zones, the mode shapes in both velocity
components are strikingly similar between simulation and the wave equation; the
identi�cation is unambiguous. Gravity waves evanesce (exponentially attenuate)
beyond the boundaries of the stable layers but still contain signi�cant power in
the convection zones. Acoustic waves are free to propagate in the acoustic cavity
which overlaps the carbon burning convection zone.

During the late evolutionary epoch simulated here, the g-mode and p-mode
propagation zones are not widely separated in radius, allowing wave modes of
mixed character to couple (Unno et al., 1989). The modes in the acoustic cavity are
trapped by the boundary conditions of the calculation but would otherwise prop-
agate into the stellar envelope where they would deposit their energy through
radiative damping, providing an additional channel for energy transport out of
the burning region.

The good agreement of the numerical modes with the analytic modes indi-
cates that our numerical procedures give an excellent representation of the hy-
drodynamics of waves, even of very low Mach number. We note that anelastic
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codes will not reproduce the p-mode and mixed mode waves properly, as we
have ascertained by direct integration of the anelastic wave equation.

Kinetic Energies and Wave Induced Mixing. During the simulations, convective
motions excite waves and build up signi�cant kinetic energy in nonconvective
regions. The integrated kinetic energies are 2.1× 1045ergs in the inner nonconvec-
tive region, 5.2× 1047ergs in the oxygen burning convective shell, 9.7× 1045ergs in
the intermediate nonconvective region, and 6.9 × 1046ergs in the carbon burning
shell. The kinetic energy is small in the outer stable region, but is still increasing
by the end of the simulation.

In our simulations, the importance of the excited g-modes in the stable layers
lies primarily in the role they play in mediating mixing at the convective bound-
aries and in the stably strati�ed layers. We identify a cycle in which kinetic energy
builds up in the stable layer until the underlying wave modes reach non-linear
amplitudes, breakdown and drive mixing. This process is analogous to the phys-
ical picture which underlies semiconvective mixing (Stevenson, 1979; Langer et
al., 1983; Spruit, 1992) but is driven on a hydrodynamic rather than a thermal
timescale. The growth time for the fastest growing modes in our simulation is
∼200 seconds and leads to an average migration speed of outer oxygen shell
boundary of∼4×104 cm s−1, entraining mass into the convection zone at a rate of
∼10−4 M¯ s−1, signi�cantly affecting the evolution. Identifying the spectrum of
excited modes in numerical simulations, including amplitudes and waveforms,
provides guidance for developing and testing a quantitative model of this mix-
ing mechanism. An important parameter controlling the boundary entrainment
rate is the Richardson number such that steeper density (and composition gradi-
ents) will lead to lower mixing rates so that sharp gradients are expected to form
and persist (Peltier, 2003; Alexakis et al., 2004). In addition to the mixing associ-
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ated with wave-breaking, enhanced compositional diffusion can be driven by the
presence of the oscillatory �ow setup by g-modes (Press, 1981; Knobloch & Mer-
ry�eld, 1992). It has been demonstrated that the structure of presupernova iron
cores is very sensitive to how mixing is handled at convective boundaries with
signi�cant implications for both the explosion mechanism and nucleosynthetic
yields (e.g. Woosley & Weaver, 1988). If the amplitudes of the wave motions
identi�ed in our simulations remain robust to the numerical limitations (e.g., res-
olution, domain size) then neglecting the mixing processes associated with these
waves constitutes a large source of error in progenitor models.

2.4 Discussion

Differences in 2D and 3D. While these 2D simulations allow us to see the inter-
action of carbon and oxygen shells, and show wave generation at convective
boundaries, they impose an unphysical symmetry on the problem. Our 3D sim-
ulations, however, show that the wave generation is a robust result. The �ow in
the convection zones, however, is qualitatively different between the 2D and 3D
models: the 2D �ow is dominated by vortices which span the convection zone,
while the 3D �ow is characterized by smaller scale plumes. Quantitatively, the
amplitude of the 2D convective motions is larger than the 3D by a factor of sev-
eral, while the 3D motions are in fairly good agreement with those predicted by
mixing length theory (see Chapter 4). Two-dimensional simulations of gravitational

collapse will be misleading at least to the extent that convective motions are important.

Presupernova Models. Perhaps the most important impact that internal waves
have on stellar structure in the late stages of massive star evolution is the de-
gree to which they drive compositional mixing. In our simulations internal wave
modes grow to non-linear amplitudes and mix material at convective boundaries
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on a hydrodynamical timescale. Given the strong dependence of presupernova
structure on the rate at which mixing occurs at convective boundaries we see the
incorporation of internal wave physics into stellar evolution codes as a neccesary
re�nement.

Symmetry Breaking. Spherical symmetry in presupernova models is broken by
(1) the density perturbations induced by turbulence within the convection zone,
(2) the wave interactions between burning shells, and (3) rotationally induced
distortions. The perturbations by waves which are trapped between the oxygen
and carbon burning shells are correlated on large angular scales, as is rotation,
while the turbulent perturbations have both a smaller scale and amplitude. Our
restricted simulation domain �lters out wave modes with l < 4, so it is likely that
even larger scale perturbations exist in real stars. Symmetry breaking will seed
instabilities in an outward propagating supernova shock (Kuranz et al., 2005),
and in the collapsing core. The converging case has been intensely studied for in-
ertial con�nement fusion (Lindl, J., 1998). The diverging case has implications for
the problem of 56Ni and56Co decay in SN1987A (Herant & Benz, 1991; Kifonidis
et al., 2003).

The conclusion that internal wave modes do not grow to large amplitudes
during core collapse through nuclear driven overstability (Murphy et al., 2004),
is based upon an analysis that ignores (1) the dynamics of convective motion and
(2) the shell-shell interactions, both of which are expected to become more vio-
lent as collapse is approached. Asymmetries in core collapse have implications
for pulsar birth kicks, explosion mechanisms, and for gravitational wave gener-
ation. Talon & Charbonnel (2005) have shown that internal gravity waves can
transport angular momentum at a rate suf�cient to be important in the evolution
of solar mass stars; we suggest that they are important for evolution of more mas-



44

sive stars to core collapse, and for plausible prediction of the angular momentum
distribution in that collapse.

To what extent are the hydrodynamic �ows discussed in this chapter a prod-
uct of the numerical scheme that we used? In the next chapter, we explore the
robustness of our simulation results by comparing them to those of a similar evo-
lutionary epoch (oxygen shell burning) which was calculated using an entirely
different hydrodynamics solver, using the anelastic approximation. As will be
shown, the comparison is encouraging.
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CHAPTER 3

ANELASTIC AND COMPRESSIBLE MODELS OF OXYGEN BURNING

It seems to me that the problem of wave emission by turbulent convection is getting ripe

for a more detailed attack.

Martin Schwarzschild (1960)1

3.1 Introduction

Oxygen burning (by 16O+16O fusion) occurs in the precollapse stages of the evo-
lution of massive stars. Neutrino cooling speeds these stages to the extent that
the evolutionary times scales are close enough to the sound travel time so that
direct compressible numerical hydrodynamics can be applied (Arnett, 1994). The
�rst detailed studies of this stage (Bazan & Arnett, 1998) were done in two-
dimensional symmetry (2D) with PROMETHEUS (Fryxell, Müller, & Arnett, 1989),
a multi-�uid multidimensional compressible hydrodynamics code based on the
Piecewise Parabolic Method (PPM) of Colella & Woodward (1984). They showed
vigorous convection, with signi�cant density �uctuations (up to 8%) at the convective-
nonconvective boundaries. These results were con�rmed in detail in 2D with
the VULCAN Arbitrary-Lagrangian-Eulerian (ALE) hydrodynamics code (Livne,
1993) by Asida & Arnett (2000). VULCAN is an entirely independent compress-
ible hydrodynamics code, so that these two sets of simulations only shared the
initial model, the sonic time step limitation, and the 2D geometry. A new version
of the PROMETHEUS code, PROMPI (which uses the Message Passing Interface

1Thirteenth Henry Norris Russell Lecture of the American Astronomical Society, published in
The Astrophysical Journal (1961), 134, 1.
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for parallelism), has extended the study to 3D. In all these compressible models
except the earliest (Arnett, 1994) the computational domain has included both the
convective oxygen burning shell as well as two bounding stably strati�ed layers.

Kuhlen, Woosley, & Glatzmaier (2003) investigated shell oxygen burning in
3D using an anelastic hydrodynamics code which �lters out sound waves (and
thus ameliorates the restrictive Courant condition2 on the time step) and lin-
earizes thermodynamic �uctuations around a background reference state (Glatz-
maier, 1984; Gough, 1969). In contrast to the fully compressible results above,
Kuhlen, Woosley, & Glatzmaier (2003) found only small density and pressure
contrasts, and subsonic �ows which were well within the anelastic approxima-
tion (all thermodynamic contrasts less than 1 percent). The boundary conditions
used were impermeable and stress-free and were placed within the convection
zone so that convective overshoot could not be studied. In particular, the dy-
namic consequences of the neighboring non-convective shells, and their elastic
response to convective �uctuations, were ignored. The formulation was single
�uid, so that effects depending upon composition, i.e., mixtures of fuel and ashes,
were not modeled.

The applicability of both fully compressible and anelastic hydrodynamic meth-
ods has recently been challenged by developers of low-Mach number solvers
(Almgren et al., 2006). The reliability of compressible codes has been questioned
for low velocity �ows due to possible violations of elliptic constraints that arise
in the evolution equations in the very small Mach number limit (e.g., Schneider
et al., 1999). The limits for which compressible solvers remain robust in the astro-
physical context, however, has not been rigorously studied. Anelastic methods,

2The Courant condition is a stability restriction on the time stepping used by an explicit com-
pressible hydrodynamics solver. The time step used must be smaller than the most restrictive
sound crossing time for all of the grid zones.
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on the other hand, enforce a divergence constraint on the mass �ux (∇ · ρv = 0)
which �lters out sound waves, but are formulated assuming that thermodynamic
�uctuations are small and only linear deviations from a background reference
state are retained. Therefore, this approximation is expected to fail for models
which include large gradients in the thermodynamic variables such as occur at
the boundaries of shell burning regions.

The correct identi�cation of the behavior in shell oxygen burning has wide
implications. This stage of massive star evolution is important for a variety of
topics of current research interest (e.g. Young, et al., 2005, 2006). In this chapter,
I discuss the quantitative similarities and differences between the models of oxy-
gen shell burning which were introduced above and show that the two models
are in good agreement with each other. In addition, the compressible models are
in agreement with scaling relations derived from the basic hydrodynamic equa-
tions as well as analytic solutions to the non-radial wave equation for motions
in the stable layers. These �ndings lend strong support to the validity of both
simulations. There are no signs that either the anelastic or the PPM method is
breaking down for the conditions simulated, even in regions of the �ow where
the Mach number does not exceed M ∼ 0.01.

3.2 Model Comparison

3.2.1 The Initial Models and Simulation Parameters

Table 3.1 summarizes the initial conditions, computational domains, zoning, and
properties of the developed �ow for the three models discussed in this paper.
These include a 2D and a 3D compressible model calculated with the PPM method
(see Chapters 2 & 4 for additional details) and the non-rotating anelastic model
described by Kuhlen, Woosley, & Glatzmaier (2003). The initial conditions for the
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compressible simulations are of a 23 M¯ star previously evolved with the TYCHO
stellar evolution code (Young & Arnett, 2005) which is directly mapped onto the
hydrodynamics grid. A 25 nuclei reaction network is used to track composition
and energy generation. The computational domains for the compressible models
are restricted to fractions of a sphere and use a spherical coordinate system. The
2D model is a 90o wedge embedded in the equatorial plane, and the 3D model is
a wedge of 30o×30o degrees centered on the equator. The radial limits for these
models enclose both the convectively unstable oxygen burning shell, as well as
two surrounding stably strati�ed layers. Boundary conditions, which are placed

in the stable layers, are impermeable and stress free. The net energy generation due
to nuclear burning and neutrino cooling, Lnet =

∫
(εnuc+ενν̄)dM ≈ 3.5×1046 erg/s,

is positive and goes into PdV work through a background expansion which de-
velops naturally in the compressible model in the same way it does in the initial
TYCHO model.

The anelastic model uses a reference state which is a polytropic �t to a 25 M¯

stellar model which was evolved with the KEPLER code (Weaver et al., 1978).
A multi-�uid model and reaction network are not used and nuclear energy gen-
eration is instead estimated using a power law �t for density and temperature
dependence. The anelastic model uses spherical harmonics for angular coverage,
ameliorating the pole singularity problem of a spherical coordinate system, and
covers a full 4π steradians. Chebyshev polynomials are used in the radial direc-
tion. The radial limits of the anelastic model enclose only the convection zone with

no regions of stable strati�cation. The boundary conditions, which are within the
unstable convective layer, are also impermeable and stress free. The net energy
generation is positive, Lnet ≈ 1.5×1045 erg/s. The anelastic model used is unable
to model background expansion so the excess energy is forced to escape from the
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outer boundary of the calculation. The lower net energy generation of this model
may be due to its being in a later evolutionary stage.

Both hydrodynamic models use the equation of state provided by Timmes &
Swesty (2000). The radial limits of the oxygen burning convection zone and en-
closed mass for the two initial models evolved with the KEPLER and TYCHO
codes are remarkably similar. The compressible model uses 400 logarithmically
spaced radial zones (to keep zone aspect ratio dr/rdθ ∼1) and an angular reso-
lution of ∼0.3o per zone. The anelastic model uses 145 zones for a comparable
radial extent, and spherical harmonics up to order l = 63 to cover the sphere
which is roughly equivalent to a Nyquist sampling of ∼1.5o per zone, approx-
imately a factor of �ve lower angular resolution than the compressible model.
The Rayleigh and Reynolds numbers quoted by Kuhlen, Woosley, & Glatzmaier
(2003) are Ra ∼ 5 × 107 and Re ∼ 3000. Since the compressible model is more
strongly driven (larger Lnet) and has �ner zoning (resulting in a lower effective
viscosity), both the effective Rayleigh and Reynolds numbers will be higher in
the compressible model.

3.2.2 Flow Properties: Anelastic Model

The anelastic simulation has been run for 6500 seconds. With an average �ow
velocity of vc ≈ 0.49×107 cm/s, and a radial extent for the convection zone ∆R ≈
0.39×109 cm the turnover time tc = 2∆R/vc ≈ 159 seconds and the simula-
tion spans approximately 41 convective turnovers. The peak velocity is given
as vpeak ≈ 1.8×107 cm/s which corresponds to a peak Mach number M ∼ 0.04 for
a sound speed cs ≈ 4.5×108 cm/s. The maximum density �uctuations within the
convection zone are found to be of the order ρ′/〈ρ〉 ∼ 2× 10−3 which is the same
order of magnitude as the peak Mach number squared, M2 ∼ 1.6 × 10−3 con-
sistent with the scaling arguments for the anelastic approximation for thermal
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Figure 3.1: Spatial distribution of density �uctuations are shown for (left) a slice
through the 3D compressible model and (right) the 2D compressible model. In
both models the �ow is composed of two distinct regimes, including the con-
vective �ow in the center which is bounded above and below by stably strati�ed
layers which are host to internal waves. The scale on the 2D model has been trun-
cated to same limits as the 3D model for comparison, but extreme values exceed
the scale limits by a factor of ∼2. The 3D model has been tiled twice in angle for
clarity.

convection (Gough, 1969).

3.2.3 Flow Properties: Compressible Models

The �ow in the compressible simulations consists of two distinct regimes: the
turbulent convection zone, and the wave-bearing stably-strati�ed layers. These
can be quite readily discerned in the density �uctuation �eld shown in Figure
3.1. In this section I discuss these two regimes in turn for the three dimensional
model, and then discuss the properties of the two dimensional model.

The three dimensional compressible model was run for ∼800 seconds of star
time. The average �ow velocity is found to be vc ≈ 0.8×107 cm/s. With a con-
vection zone width ∆R ≈ 0.41×109 cm the turnover time is tc ≈ 103 seconds
and the simulation spans approximately 8 convective turnovers. After an ad-
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justment in the initial size of the convection zone due to penetrative convection
(see Chapter 2 & 4), the �ow achieves a steady state within ∼200 seconds, or
two convective turnovers, after which the average �ow properties do not change
appreciably. Figure 3.2 shows the peak density �uctuation and the Mach num-
ber at each radius for the three dimensional model. Within the convection zone,
0.44 < r/109 cm < 0.85, the maximum density �uctuation and Mach number are
ρ′/〈ρ〉 ∼ 5 × 10−3 and M ∼ 0.09, respectively. Here also, the �uctuation scale is
the same order of magnitude as the peak Mach number squared, M2 ∼ 8× 10−3.
The rms Mach number in the convection zone is Mrms ∼0.01.

These velocity and �uctuation scales are comparable to those of the 3D anelas-
tic model and are listed in Table 1 for both simulations for comparison. The point
we want to emphasize here is that the character of the convective �ow is quantita-

tively in agreement between the anelastic and compressible models. We also �nd, from
the comparison presented in Chapter 4, that the 3D compressible model com-
pares well with the stellar mixing length theory (Kippenhahn & Weigert, 1990),
including the velocity scale (vc ∼ 107 cm/s) and the superadiabatic strati�cation
(∆∇ ∼ 5 × 10−4). The slightly larger velocity scale in the compressible model
compared to the anelastic can be attributed to the higher Rayleigh number due
to the larger luminosity needed to be transported by the convective �ow.

3.2.3.1 Additional Sources of Fluctuations

In this section I discuss the origins of thermodynamic �uctuations which are due
to physics not included in the anelastic model of Kuhlen, Woosley, & Glatzmaier
(2003), including stably strati�ed layers and composition effects. I begin with a
discussion of the internal wave dynamics occurring near the convective bound-
aries.

Signi�cant density �uctuations occur at the convective boundaries in the com-
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Figure 3.2: (left) Density �uctuations for 3D compressible model: The time
average of the maximum density �uctuation is shown as the thick line, with
the extreme values for the averaging period (two convective turnovers) shown
as the shaded region. Within the body of the convection zone the average
�uctuations are quite low ∼0.25%. The largest �uctuation (the spike at r ≈
0.43× 109 cm) is ∼11% (exceding the plot limits), while the secondary maximum
(r ≈ 0.85 × 109 cm) reaches ∼3.5%. These �uctuations occur in the radiative
regions that enclose the convection zone (outside the computational domain of
Kuhlen, Woosley, & Glatzmaier (2003)). (right) Mach number for the 3D com-
pressible model: shown is the instantaneous value of the maximum Mach num-
ber at a given radius (thick line), and the rms Mach number (thin line).

pressible model, reaching values as large as 11×10−2, over twenty times larger
than in the body of the convection zone (Figure 3.2 and Table 3.1). Examining the
spatial distribution of the density �uctuations presented in Figure 3.1 reveals that
the largest �uctuations occur at the interface between the convection zone and
the stably-strati�ed, wave-bearing layers. The morphology of the largest density
�uctuations in the domain (i.e., those at the convective boundary) are periodic
in angle and harmonic in time, identifying them with internal wave dynamics.
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In the following discussion I present analytic estimates for the amplitudes of the
density �uctuations at the convective boundary and show that they are in good
agreement with the simulation data.

For small amplitude waves the Eulerian density �uctuations and pressure
�uctuations are related by (Unno et al., 1989, p.93):

ρ′

〈ρ〉 =
p′

〈p〉
1

γad

+ ξr
N2

g
+ (nonadiabatic terms) (3.1)

with buoyancy frequency N , and Lagrangian displacement ξr. I defer a discus-
sion of nonadiabatic and composition effects to the end of this section. In the con-
vection zone, material is nearly neutrally strati�ed and the buoyancy frequency
is very close to zero so the second term on the right hand side is not very impor-
tant. At convective boundaries the stellar structure assumes a stable strati�cation
with a positive buoyancy frequency, and this term can become dominant. This
term represents the component of the Eulerian density �uctuation due to g-mode
oscillations and is the projection of the Lagrangian displacements of the wave, ξr,
onto spherical shells. In the presence of steep density gradients, waves can lead
to large Eulerian �uctuations even when compressibility is not important. To be
as clear as possible on this key point, we give an analogy to well known physics:
consider waves on a lake. The Lagrangian surface is the surface of the water. The
Eulerian surface is the average level of the water and Eulerian density �uctua-
tions occur as the waves (water) and troughs (air) move by the observer. The
large variation in density is not due to compression, but the choice of coordinates
(Eulerian in this case).

In order to estimate the amplitude of the density �uctuations using equation
3.1 we need to know the size of the pressure �uctuation and the maximum radial
displacement amplitude, ξmax

r , for wave motions at the boundary. Both quantities
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can be estimated by assuming that the ram pressure of the convective turbulence
is balanced by wave induced pressure �uctuations at the convective/stable layer
interface:

ρv2
c ≈ p′w. (3.2)

The validity of this approximation is demonstrated in Figure 3.3, which shows
that the RMS horizontal pressure �uctuations and the turbulent ram pressure are
comparable in the convection zone and do indeed balance at the locations of the
convective boundaries.

The relationship between the pressure �uctuation of an internal wave, p′w, and
the maximum radial displacement, ξmax

r , depends on the wave frequency σ and
horizontal wavenumber kh. Perhaps the simplest approximation is to assume
that internal waves generated at the convective boundary are directly related to
the convection through the convective velocity vc and eddy scale, lc ∼ Hp, by
vc ∼ σ/kh and kh ∼ 2π/lc in the spirit of stellar mixing length theory (Press,
1981). Adopting these values we can then use the linearized momentum equation
(Unno et al., 1989, p.96),

ξmax
h ∼ [l(l + 1)]1/2

rσ2

p′w
ρ
≈ kh

σ2
v2

c (3.3)

and the dispersion relation (for waves in which σ ¿ N < Ll),

kh/kr ∼ σ

N
(3.4)

to estimate the radial displacement:

ξmax
r = ξmax

h × kh/kr ∼ khv
2
c

σ2

σ

N
∼ vc/N. (3.5)
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The dispersion relation used to connect the horizontal and radial displacement
amplitudes is valid when the wave frequency is much smaller than both the
buoyancy frequency and the Lamb frequency Ll = khcs, with sound speed cs,
and is a reasonable approximation for the wave properties adopted above (where
σ/Ll ≈ Mc).

Here, our main result is the last expression in equation 3.5 for the radial dis-
placement amplitude of the interfacial wave which is in pressure balance with
the ram pressure of the convection. This expression is equivalent to the statement
that the kinetic energy of the turbulent motion exciting the wave is balanced by
the potential energy of the wave, which follows naturally from the basic energetic
properties of waves in �uids (Lighthill, 1978).

Finally, we use the displacement given by equation 3.5 and the pressure �uc-
tuation in equation 3.2 with equation 3.1 to arrive at our estimate for the interfa-
cial density �uctuation amplitude,

ρ′

〈ρ〉 ∼ M2
c +

vcN

g
(3.6)

in terms of the Mach number Mc, gravity g, and buoyancy frequency N. Adopting
�ow parameters from the simulation (vc ∼ 107, g ∼ 109 in cgs units) we �nd
ρ′/〈ρ〉 ∼ (10−3 + N × 10−2) with N in rad/s. The validity of this expression is
apparent when comparing the buoyancy frequency in Figure 3.3 with the density
�uctuations at the convective boundaries in Figure 3.2.

It can also be seen that the density �uctuations throughout the stable regions,
not just at the convective boundaries, are in rough agreement with the scaling
given by equation 3.6, though the amplitudes in the stable layers drop off with
distance from the convective boundary. This is due to a spectrum of internal wave
modes excited at the convective boundaries, rather than the single mode assumed
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in the above analysis. Each modal component contributes to the pressure balance
at the convective boundary and is composed of wave packets that travel back and
forth within the resonating cavity of the stable layer (Unno et al., 1989) causing
�uctuations throughout the region. A more detailed analysis is possible in which
the entire spectrum of internal waves is estimated by matching the wave motions
to those of the spectrum of turbulent convection (e.g. Carruthers & Hunt, 1986).
Our single mode approach, however, works very well in describing the ampli-
tudes of the �uctuations at the convective boundaries and provides a reasonable
upper limit to the �uctuations throughout the entire stable layer.

I conclude this section with a discussion of the role that entropy �uctuations
play in setting the scale of density �uctuations and hence buoyancy of material
in the convection zone. The non-adiabatic term in equation 3.1 takes the form,

ρ′

〈ρ〉 =
vT

cp

δS (3.7)

with thermodynamic derivative vT = −(∂ ln ρ/∂ ln T )p, speci�c heat at constant
pressure cp, and Lagrangian entropy �uctuation δS. In the present model the
largest non-adiabaticity is the net effect of nuclear burning and neutrino cooling.
The entropy �uctuation can then be written δSnuc = δQnet/T ≈ εnetδt/T where
the time material dwells in the burning region is δt ≈ ∆r/vc ∼ lc/vc ∼ 10s. For
the nuclear energy release in the current model, with a peak burning rate of εnet ∼
1014 erg/g/s, the maximum entropy �uctuation will be of order δSmax

nuc ∼ 0.01 in
units of NAkB. The corresponding maximum density �uctuation will be approxi-
mately ρ′/〈ρ〉|nuc ∼ 2.5× 10−3, which is of order the amplitude of the �uctuations
due to the weak compressibility effects in the convective �ow. These values com-
pare well to the perturbations estimated using mixing length theory, consistent
with the convective �ow being driven by the nuclear burning luminosity in the
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Figure 3.3: (left) Pressure �uctuations in 3D compressible model: The time av-
eraged horizontal RMS pressure �uctuations are shown as the thick line, with
the envelope of extreme values over two convective turnovers indicated by the
shaded region. The radial ram pressure of the turbulent convection, ρv2

r , is shown
as the thin line. The curves cross at the convective boundaries where the turbu-
lent pressure is balance by the pressure �uctuation induced by internal waves
in the adjoining stably strati�ed layers. (right) The magnitude of the buoyancy
frequency is shown in units of rad/s. Also shown by the dashed line is the buoy-
ancy frequency normalized by the gravity which, through Equation 3.6, sets the
scale of the density �uctuations at the convective boundaries (compare with Fig-
ure 3.2(left)).

shell.
Entropy �uctuations also occur within the convection zone due to composi-

tion inhomogeneities. The radial entropy pro�le and the RMS entropy �uctua-
tions are presented in Figure 3.4. The �uctuations are due to: (1) interfacial wave
motions which cause Eulerian �uctuations in the same manner as for the density
�uctuations discussed above; and (2) the entrainment of high and low entropy
material at the convective boundaries which is mixed into the nearly adiabatic
convection zone. The wave induced �uctuations appear as spikes near the con-
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vective boundaries and are present in both the curve of minimum and maximum
�uctuation. The regions affected by compositional inhomogeneities are labeled
in Figure 3.4, with low entropy material entrained from below and high entropy
material entrained from above. The entropy �uctuations associated with this ma-
terial are another source of density �uctuations and explains the larger values
that occur just within the boundaries of the convection zone in Figure 3.2. The
entropy �uctuations associated with the entrained material are much larger than
those due to nuclear burning (the entropy perturbation in the region of greatest
nuclear energy deposition, r ∼ 0.45 × 109 cm, is primarily negative). The entrain-
ment of material from stable layers by a turbulent convective �ow is an essential
addition to stellar evolution modeling with signi�cant consequences for the evo-
lution of burning shells in presupernova models. An analysis of the entrainment
properties is included in Chapter 4.

3.2.3.2 Dimensionality

It has long been known that 2D simulations were informative only to the extent
that care is used in their interpretation. In 2D the vorticity is restricted to the
direction normal to the computational domain, while in 3D instabilities cause its
orientation to wander. Thus 2D is useful in situations in which there are physical
reasons to enforce the symmetry (e.g., terrestrial cyclonic storms), but has nev-
ertheless been used widely in more general applications because of computer re-
source limitations. The increasing availability of computing clusters and software
parallelization tools is now making 3D hydrodynamic simulation more common,
and we are starting to assess the adequacy and limitations of earlier 2D work.

We have calculated a 2D compressible model for 2400 seconds of star time.
We �nd an average �ow velocity of vc ≈ 2.0×107 cm/s and a convective turnover
time of tc ≈ 40 seconds, so our simulation spans approximately 60 turnover times.
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The peak velocity during the course of the simulation is ∼5.5×107 cm/s, corre-
sponding to a peak Mach number of M ∼ 0.163. The density �uctuations within
the convection zone reach a maximum value of ρ′c/〈ρ〉 ∼ 6×10−2. At the convec-
tive boundaries the density �uctuations attain a peak value of ρ′b/〈ρ〉 ∼ 12×10−2.

We �nd two signi�cant differences between the 2D and 3D models. First, we
�nd a signi�cantly decreased turbulent mixing rate in the 2D simulation. Mate-
rial entrained into the convection zone at the boundaries is pulled into the large
cyclonic �ow patterns in the 2D simulation where large composition inhomo-
geneities persists for several convective turnovers. In contrast, material entrained
into the convection zone in the 3D models is homogenized within a single convec-
tive turnover time. This effect is illustrated in Figure 3.5, which shows the spatial
distribution of oxygen abundance, as well as RMS �uctuations for both the 2D
and 3D simulations. The 2D simulation retains high level �uctuations through-
out the convective zone, while inhomogeneities in the 3D model are mixed to low
levels by the time material completes a single crossing. Figures 3.5 and 3.1, which
are snapshots at the same time, reveal that the high entropy oxygen entrained at
the top boundary corresponds to a negative density perturbation.

The second major discrepancy between the 2D and 3D models is the convec-
tive velocity scale. We �nd that both the mass averaged convective velocity and
the peak velocity �uctuation are ∼ 2 times larger in the 2D model. This veloc-
ity scale difference may be connected to the lower turbulent mixing ef�ciency in
the 2D �ow. We �nd that the net enthalpy �ux, which consists of upward and
downward directed components, Fnet = Fup − Fdown, is the same between the 2D
and 3D models. In the 2D model, however, the relative value of the individual
�ux components relative to the net �ux, e.g., Fup/Fnet, is much larger than in the
3D model. Therefore, the 2D model requires a larger velocity scale to move the
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same net �ux due to the inef�ciency of depositing the advected enthalpy across
the convection zone.

We �nd that 2D and 3D models compare well in the wave region, but differ
in the convection zone. The 3D convection is more similar to that of the anelas-
tic model of Kuhlen, Woosley, & Glatzmaier (2003) and the values predicted by
mixing length theory. While waves behave similarly in 2D and 3D, turbulent
convection does not, particularly with regards to turbulent mixing ef�ciency. Al-
though the spatial resolution of the 2D and 3D models isthe same, the number
of degrees of freedom in the angular direction is much larger in the 3D model,
N3D/N2D = (100)2/320 ∼31. If the number of degrees of freedom were the only
important parameter determining the degree to which the �ow becomes turbu-
lent, one might wonder if 2D can provide a more ef�cient surrogate to 3D. It turns
out that 2D is actually more expensive than 3D because the same degrees of free-
dom in 2D requires a higher spatial resolution and hence a more severe time step
constraint, and computational cost is Ncost ∝ Nspace ×Ntime.

3.3 Conclusions

A comparison between the �ow properties in fully compressible and anelastic
simulations of stellar oxygen shell burning indicates that the two methods pro-
duce quantitatively similar results. Both methods produce convective �ows in 3D
models which are compatible with the results expected for the mixing length the-
ory of convection for this phase. The compressible models have been extended
to include additional physics not included in the anelastic model, namely sta-
bly strati�ed boundary layers and a multi-�uid �ow (Nspecies = 25). The interac-
tion between the convection and the stable layers excites internal waves which
produce larger thermodynamic �uctuations (up to 11% in 3D). Composition in-
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homogeneities due to ongoing entrainment events at the convective boundaries
also cause density �uctuations on the several percent level, though material is
homogenized rapidly in the 3D model through turbulent mixing.

The relatively large �uctuations which arise at the convective boundaries ∼
11% may stress the reliability of the anelastic approximation if this region is to be
included in future simulations of oxygen burning, or later epochs where entropy
and density gradients are large. A variety of convection studies have shown that
boundary condition type (e.g., hard wall compared to stable layer) alters the over-
all �ow pattern within a convection zone (Hossain & Mullan, 1993; Rogers &
Glatzmaier, 2005) and therefore the astrophysically correct conditions should be
used. Low Mach number solvers (e.g. Lin et al., 2006) may be the most ef�cient
tools for extending studies of oxygen and silicon shell burning to full spherical
domains in 3D while retaining the crucial density gradients at the convective
boundaries where convective penetration and entrainment operate, and asym-
metric �uctuations arise which may have important implications for the evolu-
tion of pre-supernova models. Earlier stages such as carbon and neon burning
have both milder �ows and shallower density gradients and should be better
suited for anelastic methods, even at convective boundaries. However, back-
ground expansion and multi-�uid effects should be included. The large time
step advantage of the anelastic and low Mach number simulations allows for
much larger domains or better resolution.

Although the ef�ciency of fully compressible hydrodynamics may be low for
the Mach numbers modeled, there are no signs that the solver used is breaking
down in the oxygen shell burning simulations presented here. This conclusion is
supported on several grounds, including: (1) The compressible model is in good
agreement quantitatively with the anelastic methods for the convection zone re-
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gion, including the velocity scales, and thermodynamic �uctuation amplitudes,
a region in which the anelastic method is expected to perform well. (2) The com-
pressible simulation of the convection zone is also in good agreement with the
results of the one-dimensional TYCHO model, including the velocity scale and
background strati�cation estimated using mixing length theory. (3) The dynam-
ics in the stably strati�ed layers in the simulation agree well with the analytic
solutions to the non-radial wave equation, including the decomposition of the
�ow into speci�c, unambiguous modes (Chapter 2). (4) The �uctuation ampli-
tudes at the convective boundaries which are due to wave motions are found to
be in good agreement with analytic estimates for their scale.

Contrary to the assertion made by Almgren et al. (2006) that compressible
codes should generally fail for M < 10−2, we �nd a robust solution that agrees
with an anelastic method for the same region simulated. Additionally, recent
compressible simulations of He shell �ash convection by Herwig et al. (2006) us-
ing the �nite-volume Godunov code RAGE (Baltrusaitis et al., 1996) �nd a �ow
with M ∼ 10−3, with apparently robust results, including well behaved g-modes.
Almgren et al. (2006) present an example simulation illustrating the failure of
PPM to track temperature for a simple �ow with Mach number M ∼ 0.05. This
calculation, however, uses a compressible PPM code (FLASH) with two major dif-
ferences from ours (PROMPI): they used the hydrodynamic procedure described
in Zingale, et al. (2002) to remove the hydrostatic pressure from the Riemann
solver, and their stellar model was much more degenerate than ours (the equa-
tion of state tends to become independent of temperature under their conditions,
and care must be taken with cancellation of terms).

In the next chapter, a more extensive analysis of the convective �ow and the
mixing rates at convective boundaries is presented. In addition, a model of core
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convection during hydrogen burning is introduced in order to test the degree to
which the properties of the �ow observed in the oxygen shell burning model are
of more general applicability.
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Figure 3.4: (top) Entropy pro�le of 3D compressible model. (bottom) Entropy
�uctuations for 3D compressible model: The two solid lines indicate the maxi-
mum and minimum �uctuation for a given radius over the course of two convec-
tive turnovers. The annotations indicate �uctuations due to low entropy material
entrained at the lower boundary and high entropy material entrained at the up-
per boundary.
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Figure 3.5: Spatial distribution of the oxygen mass fraction is shown for (left pan-
els) the 3D compressible model and (right panels) the 2D compressible model.
The spatial distribution is shown in the top row, and the time averaged RMS
horizontal �uctuations are shown in the bottom row wih the shaded region indi-
cating extreme values of the �uctuations over two convective turnovers.
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Table 3.1. Comparison of Oxygen Burning Models

Variable Units 2D-PPM 3D-PPM 3D-Anelastic1

M∗a (M¯ ) 23 23 25
Min,Mout

b (M¯ ) 1.0(1.5), 2.7(2.4) 1.0(1.5), 2.7(2.4) 1.2, 2.3
rin,rout

b (109 cm) 0.3(0.44), 1.0(0.85) 0.3(0.44), 1.0(0.85) 0.45, 0.84
Lnet

c (erg/s) 3.2×1046 3.5×1046 1.5×1045

∆θ,∆φ (deg.) 90 30, 30 360, 180
Zones/Modes (nr×nφ×nθ) 400×320×1 400×100×100 145×63(l)×31(m)
vmax (107 cm/s) 7.2 3.8 1.8
〈vconv〉 (107 cm/s) 2.0 0.8 0.49
Mpeak - 0.163 0.09 ∼0.04
Mrms - 0.03 0.01 ∼0.01
tconv (s) 40 103 159
tmax (s) 2400 800 6500
max{ ρ′c/〈ρ〉 }d 10−2 1.0(6.0)e 0.5 0.2
max{ T ′c/〈T 〉 } 10−2 0.25 0.05 0.06
max{ ρ′b/〈ρ〉 } 10−2 12.0 11.0 -
max{ T ′b/〈T 〉 } 10−2 2.7 1.0 -

1The values quoted for the 3D anelastic model are from Kuhlen, Woosley, & Glatzmaier (2003).

aZero age main sequence mass.
bValues in parentheses indicate the extents of the convection zone for the compressible models

and the other values indicate the extents of the entire computation domain including the stable
layers.

cThe net luminosity for the compressible models, Lnet =
R
(εnuc+ενν̄)dM , is estimated at t∼400

s and is slowly decreasing with time due to an overall background expansion occuring within the
burning region.

dThe c and b subscripts indicate thermodynamic �uctuation amplitudes that are estimated in the
convection zone and in the region of the convective boundary, respectively.

eThe value in parentheses is the maximum density �uctuation estimated over two convective
turnovers while the other value represents the time averaged maximum �uctuation. The signi�-
cantly larger �uctuations seen in the 2D model compared with those in the 3D model occur near
the center of large vortices which persist for several convective turnover times in the 2D model but
are absent in the 3D convective �ow.
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CHAPTER 4

TURBULENT CONVECTION IN STELLAR INTERIORS

4.1 Introduction

We have simulated three-dimensional (3D), turbulent, thermally-relaxed, nearly
adiabatic convection (high Péclet number). Such �ow is relevant to deep con-
vective regions in stars (i.e., to most stellar mass which is convective, but not
mildly sub-photospheric and surface regions). We simulate oxygen shell burning
on its natural time scale, and core hydrogen burning driven at 10 times its natu-
ral rate. The simulations develop a robust quasi-steady behavior in a statistical
sense, with signi�cant intermittency. We analyze this statistical behavior quan-
titatively, and compare it to predictions of astrophysical mixing length theory
(Böhm-Vitense, 1958). Mixing length theory (MLT) gives a good representation
of many aspects of convection, but omits others (especially wave generation and
mass entrainment) which are related to the dynamical behavior of stably strati-
�ed layers adjacent to the convection.

Section 4.2 brie�y summarizes some results of the study of turbulent entrain-
ment in geophysics, to prepare the reader for its appearance in our astrophysical
simulations. This process is not included in the standard approach to stellar evo-
lution (Cox & Guili, 1968; Clayton, 1983; Kippenhahn & Weigert, 1990; Hansen
& Kawaler, 1994). In Section 4.3 I discuss our numerical and theoretical tools. In
Section 4.4 I present our simulations of oxygen shell burning, which attain a ther-
mal steady state (this is possible because of the rapidity of nuclear heating and
neutrino cooling). In Section 4.5 I discuss a less advanced burning stage, core
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hydrogen burning, which we are able to examine with the use of an arti�cially
enhanced hydrogen burning rate (by a factor of ten). We �nd that the behav-
ior is similar to the oxygen burning shell, suggesting that our results may have
broad application for stellar evolution. In Section 4.6 I compare our results to
the assumptions of MLT, and in Section 4.7 show that our results lead to a sim-
ple model of turbulent entrainment, an effect not in MLT nor in standard stellar
evolutionary calculations.

This work is part of a larger project. Subsequent projects are planned in which
the �empirical� convection model developed in this chapter will be integrated
into the TYCHO stellar evolution code in order to assess its in�uence on stellar
evolution, on nucleosynthetic yields, and on the structure of supernova progeni-
tors.

4.2 Turbulent Entrainment

The presence of a turbulent layer contiguous with a stably strati�ed layer is com-
mon in both astrophysical and geophysical �ows. Turbulence in a strati�ed me-
dia is often sustained by strong shear �ows or thermal convection and bound
by a stabilizing density interface. Over time, the turbulent layer �diffuses� into
the stable layer and the density interface recedes, thus increasing the size of the
mixed, turbulent region. The basic features of this turbulent entrainment problem

are illustrated in Figure 4.1. The rate at which the density interface recedes into
the stable layer uE = ∂ri/∂t is called the entrainment rate, and its dependance
on the parameters characterizing the turbulent and the stable layers has been the
subject of numerous experimental and theoretical studies. It is generally ignored
in stellar evolutionary studies.

Experimental studies have mostly been of �mixing box� type which involves
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a tank of �uid with a turbulent layer and a density strati�ed layer. The turbu-
lence is generated by thermal convection or an oscillating wire mesh, and den-
sity strati�cation imposed by either a solute or thermal gradient (Turner, 1980).
Complementary to these shear-free mixing box models are shear driven-models.
Shear-driven turbulence experiments involve either a recirculation track which
propels one layer of �uid above a stationary layer, or a rotating plate in contact
with the �uid that drives a circulation in the upper layer. Shear instabilities sus-
tain a turbulent mixed layer in the overlying �uid which then entrains �uid from
the lower, stationary layer (Kantha et al., 1977; Strang & Fernando, 2001). In all
of these laboratory experiments, a variety of �ow visualization techniques are
used to study both the overall entrainment rate uE and the physical mechanisms
which underly the entrainment process.

One of the primary conclusions of these studies is that the entrainment rate
depends on a Richardson number, which is a dimensionless measure of the �stiff-
ness� of the boundary relative to the strength of the turbulence. In shear-free
turbulent entrainment the bulk Richardson number,

RiB =
∆bL

σ2
, (4.1)

is most commonly studied. Here, ∆b is the buoyancy jump across the interface,
σ is the r.m.s. turbulence velocity adjacent the interface, and L is a length scale
for the turbulent motions often taken to be the horizontal integral scale of the
turbulence at the interface. The relative buoyancy is de�ned by the integral,

b(r) =

r∫

ri

N2dr (4.2)

where N is the buoyancy frequency de�ned by,
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N2 = −g
(∂ ln ρ

∂r
− ∂ ln ρ

∂r

∣∣∣
s

)
. (4.3)

The entrainment coef�cient E is the interface migration speed ue normalized by
the r.m.s. turbulent velocity at the interface E = uE/σ, and is generally found to
obey a power law dependence on RiB,

E = ARi−n
B . (4.4)

The exponent is usually found to lie in the range 1 ∼< n ∼< 1.75 and has been
the subject of many theoretical studies of the entrainment process. Dimensional
analysis suggests that RiB should be the controlling parameter, so long as mi-
croscopic diffusion plays a minor role (Phillips, 1966). Basic energetic arguments
in which the rate of change of potential energy due to mixing is assumed to be
proportional to the turbulent kinetic energy available at the interface leads to an
exponent of n = 1 (e.g. Linden, 1975). This same power law exponent has also
been derived for models of the growth of the planetary boundary layer due to tur-
bulent entrainment by penetrative convection (Stull, 1973; Tennekes, 1974; Stull,
1976a; Sorbjan, 1996).

The normalization of the entrainment coef�cient A has been found to vary
signi�cantly between the various laboratory and �eld studies conducted, with
recent values found in the range 0.1 < A < 0.5 (e.g. Stevens & Bretherton,
1999). The discrepancy among the normalization constants has been called the
'A-dilema' (Bretherton et al., 1999). Experimental measures of the parameters in
the entrainment law of equation 4.4 are tabulated in Fernando (1991) and a recent
review of entrainment models used in the atmospheric sciences is discussed by
Stevens (2002).

The experimental and theoretical models discussed above are generally moti-
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vated by geophysical problems, but are directly relevant to the conditions found
in stellar interiors. The bulk Richardson numbers which characterize stellar con-
vective boundaries fall within the same parameter range (10 < RiB < 500), and
the background strati�cations possess a similar buoyancy structure, so that it is
interesting to learn from the geophysical models and compare to the stellar case.

4.3 The Numerical Tools

4.3.1 1D Stellar Evolution

The hydrodynamic simulations which we studied in this chapter are of two dis-
tinct phases in the evolution of a 23 M¯ supernova progenitor: main sequence
core convection, and convective oxygen shell burning. The initial conditions for
the multi-dimensional simulations are taken from one-dimensional stellar mod-
els evolved with the TYCHO stellar evolution code. TYCHO (Young & Arnett,
2005) is an an open source code1. A choice of standard 1D stellar evolution
procedures is used. The mixing length theory as described in Kippenhahn &
Weigert (1990) is used with instantaneous mixing of composition in the convec-
tively unstable regions. The limits of the convection zones are determined using
the Ledoux criterion, which incorporates the stabilizing effects of composition
gradients. Semiconvective mixing has been turned off. Nuclear evolution is fol-
lowed with a 177 element network using the rates of (Rauscher & Thielemann,
2000). Opacities are from Iglesias & Rogers (1996) and Alexander & Ferguson
(1994) for high and low temperature regimes, respectively. The solar abundances
of Grevesse & Sauval (1998) are used. Although more recent abundance determi-
nations have been made (Asplund et al., 2005) the impact on the stellar structure
of the models presented here is small, and minor variations in the abundances

1http://chandra.as.arizona.edu/ �dave/tycho-intro.html
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have a negligible in�uence on the development of the hydrodynamic �ow.

4.3.2 Multi-Dimensional Reactive Hydrodynamics with PROMPI

The core of our multi-dimensional hydrodynamics code is the solver written by
Fryxell, Müller, & Arnett (1989) which is based on the direct Eulerian implemen-
tation of PPM (Colella & Woodward, 1984) with generalization to non-ideal gas
equation of state (Colella & Glaz, 1985). This code solves the Euler equations, to
which I have added energy deposition by nuclear reactions and radiative diffu-
sion through an operator-split formulation. The complete set of combustive Eu-
ler equations, including diffusive radiative transfer, can be written in state-vector
form,

∂Q

∂t
+∇·Φ = S, (4.5)

with the state vector

Q ≡




ρ

ρu

ρE

ρXl




, (4.6)

the �ux vector

Φ ≡




ρu

ρuu + p

(ρE + p)u + Fr

ρXlu




, (4.7)

and the source vector
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S ≡




0

ρg

ρu · g + ρεnet

Rl




, (4.8)

where E = EI + EK is the total energy per gram consisting of internal and ki-
netic energy components, and ρ, p, u, g, and T are the density, pressure, velocity,
gravitational force �eld and temperature. The net energy source term due to nu-
clear reactions and neutrino cooling is εnet = εburn + εcool, and the time rate of
change of composition Xl due to nuclear reactions is denoted Rl. The radiative
�ux is Fr = −kr∇T , with radiative �conductivity� kr = 4acT 3/(3κRρ) and Rosse-
land mean opacity, κR. Self-gravity is implemented assuming the interior mass
at each radius is distributed with spherical symmetry. The mass interior to the
inner boundary of the hydrodynamics grid is adopted from the TYCHO stellar
model.

The stellar models, which are calculated on a �nely meshed Lagrangian grid,
are linearly interpolated onto the Eulerian hydrodynamics grid taking into ac-
count the sub-grid representation of mass used in the PPM scheme. Mapping
the models leads to small discrepancies in hydrostatic equilibrium. An equilibra-
tion to hydrostatic balance occurs through the excitation and then damping of
low amplitude, standing, predominantly radial pressure waves within the com-
putational domain. These low amplitude waves, which are well described by the
linearized wave equation, have a negligible affect on the convective �ow.

To save computational resources, I simulate carefully chosen subregions of
the star. Thus, these calculations are local models of convection in the box in a

star tradition. The advantage of local convection models is that higher effective
resolution can be used than is currently possible in global circulation models.
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This approach, however, precludes investigation of the lowest order modes of
�ow, and we do not yet include rotation or magnetic �elds which are best studied
using global domains. The boundary conditions used are periodic in angular
directions, and stress-free re�ecting in the radial direction.

The simulation code, which I have dubbed PROMPI, has been adapted to
parallel computing platforms using domain decomposition and the sharing of a
three zone layer of boundary values and uses the MPI message passing library to
manage interprocess communication.

4.4 Oxygen Shell Burning

We have evolved a 23 M¯ stellar model with the TYCHO code to a point where
oxygen is burning in a shell which overlies a silicon-sulfur rich core. Approxi-
mately 60% of the oxygen fuel available for fusion has been depleted at the time
we begin the hydrodynamic simulation, when the star is ∼ 2 × 107 yrs from the
zero age main sequence. Carbon, helium, and hydrogen burning shells are also
present contemporaneously at larger radii in the classic �onion skin� structure
(Hoyle, 1946). In one of the models presented here (ob.2d.e), which was �rst
introduced in chapter 2, an outer radius was used that encompasses both the
oxygen and carbon burning shells. In this paper, however, I focus my analysis on
the oxygen shell burning convection zone and the stable layers which bound it.

The oxygen shell burning model affords us the opportunity to study a ther-
mally relaxed model because the thermal balance is determined by the very large
neutrino cooling rates rather than the much lower radiative diffusion timescale
(Arnett, 1996, ch.11). Neutrinos dominate the energy balance in the stable layers
so that the stellar structure and the nature of convection are determined by the
interplay between nuclear burning and neutrino emission (Aufderheide, 1993;
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Arnett, 1972). The effects of radiative diffusion are both unresolved and energeti-
cally unimportant during these evolutionary phases, and have not been included
in the oxygen shell calculations for computational ef�ciency.

The radial pro�le of the simulated region is presented in Figure 4.2. The
temperature and density pro�les betray the complex structure of the model, in-
cluding the narrow burning shell that resides at the very base of the convec-
tion zone which is coincident with the temperature peak. The initial extent of
the convection zone can be identi�ed by the plateau in oxygen mass fraction at
0.43 < r9 < 0.72 (where r9 = r/109cm). Characteristic of shell burning regions,
the entropy gradient is quite steep at the boundaries of the convection zone and
gives rise to peaks in the buoyancy frequency at those locations. The initial loca-
tion of the upper convective boundary is coincident with a small stable layer at
r ∼ 0.72 × 109cm, which is overwhelmed by the convective �ow that develops
in the simulation (see §4.4.1). A new boundary forms where the buoyancy fre-
quency again becomes stabilizing at r ∼> 0.8× 109cm. This mixing is shown in the
change in 16O abundance (Figure 4.2, top right) after 400s.

In Table 4.1 I list the 25 nuclei used in the network. This network reproduces
to within 1% the energy generation of the full 177 element network used to evolve
the one-dimensional TYCHO model for the simulated conditions, including oxy-
gen and carbon burning shells. During carbon burning the dominant reactions
are 12C(12C, α)20Ne and 12C(12C, p)23Na, leaving an ash of 20Ne, 23Na, protons
and alpha-particles. 20Ne is photodisintegrated through the 20Ne(γ, α)16O reac-
tion. The dominant reactions during oxygen burning are 16O(16O, α)28Si, 16O(16O,
p)31P, and 16O(16O, n)31S, leaving an ash of predominantly 28Si and 32S. Neglecting
the non-alpha chain species 23Na, 31P and 31S can affect the net energy generation
rate during carbon and oxygen burning by a factor of a few under the conditions
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studied here. The reaction rates, including 12C(α, γ)16O, are from Rauscher &
Thielemann (2000).

Nuclear evolution is time advanced using the same reaction network subrou-
tines as the TYCHO code and uses implicit differencing (Arnett, 1996). I include
cooling by neutrino-antineutrino pair emission, denoted εcool, which results from
photo, pair, plasma, bremstrahlung, and recombination processes (Beaudet et al.,
1967; Itoh et al., 1996).

The Helmholtz equation of state code of Timmes & Swesty (2000) is used to
represent the ion and electron pressure with an arbitrary degree of electron de-
generacy. With our 25 nuclei network, the initial conditions are thermodynami-
cally consistent with the initial TYCHO model to better than a few percent at all
radii after mapping to the hydrodynamics grid.

I have calculated oxygen shell burning models in two and three dimensions.
My baseline model, labeled ob.2d.c, is a 90◦ wedge embedded in the equatorial
plane with radii encompassing the oxygen burning convective shell and two sta-
ble bounding layers. The effects of dimensionality on the oxygen burning con-
vective shell are explored with a three-dimensional model ob.3d.B which has an
angular extents of (27◦ × 27◦). The in�uence of the upper boundary was stud-
ied with model ob.2d.e, which includes the overlying carbon burning convective
shell as well (additional details concerning this model are presented in chapter 2).
A preliminary resolution study is undertaken with model ob.2d.C which uses the
same domain limits but twice the linear resolution of the baseline model. Proper-
ties of the oxygen shell burning models presented in this chapter are summarized
in Table 4.2.
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4.4.1 The Correct Mixing Boundary

Convection is initiated through random low-amplitude (0.1%) perturbations in
density and temperature applied to a region in the center of the convectively un-
stable layer on a zone by zone basis. (Two additional simulation models with the
same characteristics as ob.2d.c were calculated which used perturbations with
larger amplitudes (1%), and a low order mode distribution. The development
of the convective �ow was found to be insensitive to these differences.) The role
played by the perturbations is to break the angular symmetry of the initial model,
and seed rising and sinking plumes whose growth is driven by nuclear burning,
neutrino cooling, and the slightly superadiabatic background gradient imprinted
in the initial TYCHO model. As the plumes rise they penetrate the original con-
vective boundary which was determined in the TYCHO code using the Ledoux
criterion. The initial evolution of the �ow is presented in a time series of snap-
shots in Figure 4.3; the light yellow contour shows the initial outer convective
boundary.

The location of the initial outer boundary can be seen as a small bump in
the initial pro�le of the buoyancy frequency presented in Figure 4.2 at radius
r ∼ .72 × 109cm. The reason the boundary is stable in the 1D model but did
not survive in the multi-D simulation is because of the local nature of the Ledoux
criterion used. This can be appreciated by the fact that although the buoyancy fre-
quency at this location is positive, and hence locally stable to convective turnover,
the buoyancy jump across this region is very small ∆b ∼ 3 × 106 cm/s2 compared
to the turbulent kinetic energy in the adjacent �ow, by which it is easily over-
whelmed. This type of inconsistency can be relatively easily removed from 1D
simulations by using a parameter akin to the bulk Richardson number (eq. [4.1])
to characterize convective boundaries in place of the Ledoux or Schwarzchild
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criteria. For the original outer boundary RiB ∼< 1, a condition under which a
boundary is expected to mix on an advection timescale, akin to the expansion of
turbulence into a homogenous medium.

The relationship between RiB and the traditional Schwarzschild and Ledoux
criteria can be appreciated by writing the buoyancy frequency in terms of the
well known �nablas� used in stellar evolution,

N2 =
gδ

HP

(
∇ad −∇s +

ϕ

δ
∇µ

)
(4.9)

where ∇ = (d ln T/d ln p), ∇s is the gradient of the stellar background, ∇ad is the
gradient due to an adiabatic displacement,∇µ = (d ln µ/d ln p) is the mean molec-
ular weight gradient, and the thermodynamic derivatives are δ = −(d ln ρ/d ln T )

and ϕ = (d ln ρ/d ln µ). Therefore, the Ledoux criteria is simply,

N2 > 0. (4.10)

The Schwarzschild criteria is the same, but with the stabilizing effect of the mean
molecular weight gradient ∇µ neglected. For comparison, the bulk Richardson
number can be written RiB ∼ N2hL/σ2, where h is some measure of the bound-
ary width. A convective boundary will start to become stabilizing when,

N2 ∼> σ2/(hL). (4.11)

This criteria is based on a �nite threshold for stability which takes into account the
strength of the convective turbulence. Additionally, the bulk Richardson number
is more than a simple stability criteria; it is also an indicator of the rate at which
boundary erosion will proceed. I conclude that the correct criterion for determin-
ing the extent of a convective zone is neither the Ledoux nor the Schwarzschild
criterion, which are both static, linear, and local criteria, but a dynamic boundary
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condition, based on the bulk Richardson number, which I discuss in more detail
in §4.7.

4.4.2 Time Evolution

The rich dynamics taking place at the convective boundary are apparent in the
time evolution of the 3D �ow presented in Figure 4.4, which provides a global
view of the evolution. The upper panel shows the evolution in time and radius
of the oxygen abundance gradient, represented by a colormap in which light is
large and dark is small. At the beginning of the simulation (far left) the col-
ors are smooth as the turbulence has not yet developed. The light line near the
bottom of the panel is the lower boundary of the convective shell, where oxy-
gen is separated from the silicon-sulfur core below. The short horizontal band at
r ∼ 0.72×109cm is the initial weakly stable convective boundary discussed above;
it is overwhelmed in the �rst 100 seconds by convection. After ∼300 seconds the
abundance distribution has approached a quasi-steady state, with slow growth
of the convective region. The bottom of the convection zone moves downward,
but at a much slower rate than the upper boundary moves outward. The mottled
apearance in the convection zone is due to the ingestion of new oxygen entrained
from above, followed by turbulent mixing. At the top boundary of the convec-
tion zone an oscillatory behavior can be seen, and in the overlying stable region
wave motions are apparent.

The lower panel in Figure 4.4 shows the radial pro�le of the kinetic energy,
which illustrates a major feature of the convection: intermittency. While these
simulations are well described by a statistical steady state over a few convec-
tive turnover times, at any instant the �uctuations are signi�cant. The �ow is
episodic, with bursts of activity followed by lulls. The bursts in kinetic energy in
the convection zone are seen to induce wave trains in both the upper and lower
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stable layers. Characteristic of g-modes, the phase velocity (orientation of the
wave crests) is orthogonal to the group velocity (direction of energy transport) in
these wave trains, which can be seen by comparing the composition and kinetic
energy pro�les.

4.4.3 Quasi-Steady Oxygen Shell Burning Convection

Following the transient readjustment of the outer convective boundary, the oxy-
gen burning convective shell attains a quasi-steady character. In Figure 4.5 I
present the time evolution of the integrated internal, gravitational, and kinetic
energy. The energy is calculated by forming horizontal averages of the �ow prop-
erties and then assuming a full spherical geometry. The gravitational energy con-
tribution from material on the computational grid is calculated according to,

EG ≡
∫

GM(r)dM

r
dr, (4.12)

where the mass increment is dM = 4πr2〈ρ〉, and the integral is taken over the
radial limits of the grid.

The total kinetic energy levels off in all of the models by t ∼ 300s. The 2D
models are characterized by a much larger overall kinetic energy. The total kinetic
energy settles down to a slow increase as the oxygen shell evolves; this is true for
both 2D and 3D.

The radial pro�le of the r.m.s. velocity �uctuations is presented in Figure 4.6
for the 2D and 3D models. The velocity �uctuation amplitudes in all of the 2D
models are higher than the 3D model by a factor of ∼2. The 2D models also as-
sume a signi�cantly different radial pro�le than the 3D model, with a �ow struc-
ture that is dominated by large convective vortices which span the depth of the
convection zone. The signature of these large eddies is apparent in the horizontal
velocity components, as well as the fairly symmetric shape of the radial velocity
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pro�le within the convection zone. The velocity components in the 3D model re-
veal an up and down �owing circulation with horizontal de�ection taking place
in a fairly narrow layer at the convective boundaries.

Although signi�cant differences exist between 2D and 3D models, the 2D
models are found to be in good agreement with each other to the extent that
the statistics have converged, which are calculated over the time period t ∈
[300, 450]s. The time period for calculating statistics was limited by the model
ob.2d.C, which was only run as far as t ∼ 450s. The agreement among the 2D
models shows that the outer boundary condition (tested by model ob.2d.e) and
the grid resolution (tested by model ob.2d.C) are not playing a decisive role in
determining the overall structure of the �ow, at least in these preliminary tests.
The agreement in overall velocity amplitude in the upper stable layer in model
ob.2d.e indicates that the stable layer velocity amplitudes are not strongly af-
fected by the details of the modes that are excited in that region. This gives
credence to the analysis in chapter 3 which assumes that the stable layer veloc-
ity amplitudes are determined by the dynamical balance between the convective
ram pressure and the wave induced �uctuations.

The convective turnover times tc = 2∆R/vconv for the 2D models are all of
order tc ∼ 40s, and they span between 10 and 55 convective turnovers. The
turnover time for the 3D model is tc ∼ 103s, and the model spans approximately
8 convective turnovers.

4.4.4 Stable Layer Dynamics During Shell Burning

In both the 2D and 3D models, the stably strati�ed layers are characterized by
velocity �uctuations throughout their extents (Figure 4.6). These �uctuations are
the signature of g-modes excited by the convective motions. In the 2D model,
the amplitudes of the stable layer velocity �uctuations are higher. In the lower
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stable layer, the 2D models also have a much smaller ratio of horizontal to radial
velocity amplitude. The velocity amplitude ratio is roughly proportional to the
ratio of the mode frequency and buoyancy frequency, vr/v⊥ ≈ ω/N (Press, 1981),
so that the waves excited in the 2D model are of lower frequency. The velocity
ratios in the upper stable layer are comparable between the 2D and 3D models,
though the 2D amplitudes are higher by a factor of ∼ 2.

During late burning stages, multiple concentric convective shells form which
are separated by stably strati�ed layers. These intervening stable layers act as
resonating cavities for g-modes that are excited by the turbulent convection. In
chapter 2 it was shown that the stable layer motions in model ob.2d.e can be
decomposed into individual g-modes that are well described by the linearized
non-radial wave equation (§C). In chapter 3, I showed that a good estimate for
the amplitudes of the wave motions (and the associated thermodynamic �uctua-
tions) in both the 2D and 3D models can be made by assuming that the pressure
�uctuations associated with the g-modes balance the ram pressure of the tur-
bulent convection. In chapter 3, a single mode (frequency and horizontal scale)
was assumed, based on integral properties of the turbulence (convective turnover
time, and mixing length scale). Here, I present the spectrum of motions present
in the stable layers and turbulent regions for the more realistic 3D model.

For a given background structure, a spectrum of eigenmodes exists which is
a solution to the non-radial wave equation and boundary conditions. Individual
modes can be uniquely identi�ed by a horizontal wavenumber index l and oscil-
lation frequency ω. In Figure 4.7, l− ω diagrams are presented for the convection
zone, and the two bounding stable layers. The individual l−ω components have
been isolated through Fourier transforms of a time sequence of the simulation
data.
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Several modal components or �branches� can be identi�ed in the stable layer
diagrams (left and right panels). These include: (1) p-modes, seen as a series of
points at the lowest l values that extend to high frequencies; (2) g-modes, which
appear as ridges that are bound above by the buoyancy frequency; and (3) f-
modes, which appears as a ridge separating the g- and p-modes. The f -modes are
interfacial waves, and are most prominently seen in the lower-boundary diagram
at a radius r = 0.4 × 109 cm. The f-mode signature is due to interfacial waves
running along the convective boundary at r ∼ 0.43 × 109cm, where there is a
spike in buoyancy frequency.

In the convection zone, the spectrum is dominated by power at low tempo-
ral and spatial frequencies. This strong non-modal convection signature is also
present, though at lower amplitude, in the stable layers. This �turbulence� spec-
trum can be seen extending from the lower left corner of the diagrams. This same
feature was also present in the simulations of He-shell burning by Herwig et al.
(2006).

4.5 Core Convection

Are the hydrodynamic features of oxygen shell burning of more general appli-
cability? To investigate this, I examine core convection during hydrogen burn-
ing. Because of the long thermal time scale for radiative diffusion in such stars,
I focus on the hydrodynamic behavior of a model in which the inner boundary
provides a driving luminosity about ten times larger than natural. This allows
us to simulate the convection with our compressible hydrodynamics code; an
anelastic method (if multi-�uid) would allow this to be done in the star's natural
time scale. While our calculation is not thermally relaxed on a Helmholtz-Kelvin
time scale, it does relax dynamically, and provides some clue as to the convective
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behavior.
We have previously evolved a 23 M¯ star onto the main sequence with TY-

CHO, to an age of 2.4×105 yrs, at which point hydrogen is burning in a convective
core. I then map this model onto the PROMPI hydrodynamics grid for simula-
tion. This model represents an early point in main sequence evolution, in which
the core hydrogen content has been depleted by only 1.7% (Xcore = 0.689, Xinit =
0.701, ∆X = 0.012). The inner radius of the simulation was chosen such that the
convectively unstable region covers ∼1 pressure scale height (convective cores
are usually only of order a pressure scale height because of the divergence of the
scale height towards the stellar center). The entire domain covers ∼5 pressure
scale heights and∼3.3 density scale heights. The density contrast across the com-
putational domain is ∼30 with a contrast of ∼2 across the convectively unstable
region.

The radial pro�le of the simulated region is presented in Figure 4.8 including
the run of temperature, density, composition, buoyancy frequency, and relative
buoyancy. The entropy jump at the edge of the convective core, due to the fuel-
ash separation, gives rise to a buoyancy jump (spike in buoyancy frequency).

The equation of state for the main sequence model is well described by an
ideal gas with radiation pressure component. The ratio of gas to total pressure
lies in the range 0.85 < β < 0.95, with an increasing contribution from radiation
pressure as the stellar center is approached. A single composition representing
hydrogen has been evolved to keep track of nuclear transmutation and the mean
molecular weight of the plasma. A metallicity of Z = 0.01879 has been used to
represent the additional 175 species in the initial TYCHO model and helium is
calculated according to Y = 1− (X +Z), where X is the self-consistently evolved
hydrogen mass fraction.
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The luminosity due to nuclear burning in the computational domain is a small
fraction of the total stellar luminosity (2.4%) which is dominated by burning in
the inner regions of the core and Ltot = 7.8×104L¯. Core burning is incorporated
into the simulation as an input luminosity at the inner boundary of the computa-
tional domain.

The Kelvin-Helmholtz timescale for this model is tKH ∼ 105 years, which is
many orders of magnitude longer than the dynamical timescales that are feasible
to simulate. Additionally, the small luminosity of the star produces a convective
velocity scale that is very subsonic (M ∼ 10−3). Since we are not interested in
the thermal relaxation of the model, we have boosted the input luminosity by a
factor of 10 to increase the velocity scale of the �ow. This was necessary because
our fully compressible code is limited by the sound crossing time. (An anelastic
or low-Mach number method would be ideal for simulating this core convection
�ow at the natural velocity scale.)

Radiation transport is treated in the diffusion limit. Opacities are approxi-
mated by Thompson scattering, which agrees well with the OPAL opacities (Igle-
sias & Rogers, 1996) used in the 1D TYCHO model for the region simulated. The
effects of radiative diffusion, however, are found to be unresolved in the current
simulation (with the diffusion time across a single zone τrad = ∆2/krad À tconv,
with grid zone size ∆) and therefore energy transport in the convection zone oc-
curs primarily on the subgrid level due to numerical diffusion. This is a high
Péclet number simulation.

I have calculated a 2D and a 3D model. The simulated wedges have angular
extents of ∼30◦ in both the polar and azimuthal directions and are centered on
the equator to avoid zone convergence problems near the poles. This minimal
angular domain size was chosen by calculating models of increasing angular size
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in 2D domains until the �ow pattern converged. The angular domain size used
in the present simulations encompasses a large convective roll in 2D. Smaller 2D
domains were found to distort the convective roll while domains larger by integer
multiples contained proportionally more rolls of the same �ow amplitude and
morphology. The boundary conditions in the radial direction are re�ecting and
stress free, and periodic conditions are used in both angular directions. The grid
zoning, domain limits, and simulation run times are summarized in Table 4.3 for
the 2D and 3D models.

4.5.1 Quasi-Steady Core Convection

Convection is initiated through random low-amplitude (0.1%) perturbations in
density and temperature applied as in the oxygen shell simulation. In order to
save computing time, the 3D model was initiated on a domain one-quarter as
large in azimuthal angle which was then tiled four times in angle once convec-
tive plumes began to form. The initial development of the �ow in the 3D model is
presented in Figure 4.9 as a time sequence of velocity isosurfaces. The turbulent
structure of the convective �ow, as well as the excitation of internal waves which
radiate into the overlying stably strati�ed layer, are clearly illustrated. A com-
parison of the �ow morphology between the 2D and 3D models is presented in
Figure 4.10. The 2D convective �ow is much more organized and laminar, and is
dominated by a single large convective cell while the 3D convection is composed
of many smaller scale plume-like structures and is more obviously turbulent. In
both models the stably strati�ed regions are rife with internal waves excited by
the convection.

The 3D convective �ow attains a quasi-steady character after approximately
6×105 s, or approximately two convective turnovers. The evolution of the inter-
nal, gravitational, and total kinetic energy components on the computational grid
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for the 2D and 3D models, are presented in Figure 4.11 and are calculated in the
same way as for the oxygen burning model.

In both the 2D and 3D models, the total kinetic energy �uctuates in times with
excursions from the mean as larger δEK/EK ∼ 0.4 in 3D and δEK/EK ∼ 0.6 in
2D. The kinetic energy in the 2D model grows on a slightly longer timescale, and
achieves a steady character after ∼ 106 s, at which time the kinetic energy growth
rate tapers off. The total energy is conserved to better than∼0.2% for both the 2D
and 3D �ows by the end of the calculation.

The r.m.s. velocity �uctuations are presented in Figure 4.12 for the 2D and
3D models. The resultant �ows in both the 2D and 3D models are similar to
those found for the oxygen shell burning model. The velocity amplitudes are
higher in 2D by a factor of ∼5 (see axis scale in Figure 4.12), and the �ows are
dominated by large eddies spanning the depth of the convective region. The
horizontal de�ection of matter is also found to occur in a much narrower region
in the 3D model. The hard-wall lower boundary of the 3D model is characterized
by an even narrower horizontal �ow, probably due to the absence of a stable layer
which is host to g-modes.

The time averaged convective �ow velocity for the 3D model is vc ≈ 2.8× 105

cm/s. The turnover time is tc = 2∆R/vc ≈ 3.2 × 105 s, and the simulation spans
approximately 5 convective turnovers. The peak velocity �uctuation is vpeak ∼ 2×
106 cm/s, corresponding to a peak Mach number of M ∼ 0.03, and the maximum
density �uctuations within the convective �ow are∼ 0.02%, which is of order M2

as expected for low Mach number thermal convection (Gough, 1969). The time
averaged convective �ow velocity in the 2D model is vc ≈ 1.3×106 cm/s, and the
convective turnover time for this model is tc ≈ 7 × 104 s. The simulation spans
1.5 × 106 s which is ∼21 convective turnovers. The peak velocity �uctuation in
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the 2D model is comparable to that in the 3D simulation, with vpeak ∼ 2 × 106

cm/s and the peak density �uctuations is a little more than twice that found in
the 3D model, ∼0.05%. The turnover times and convective velocity scales are
summarized in Table 4.3.

4.5.2 The Stable Layer Dynamics Overlying the Convective Core

As in the oxygen shell burning model, the stably strati�ed layers in the core con-
vection models are characterized by velocity �uctuations throughout. Similar
to shell burning, the 2D stable layer velocity amplitudes are larger and have a
smaller radial to horizontal component ratio vr/v⊥ ≈ ω/N compared to the 3D
�ow.

The stable layer motions in the core convection simulation are predominantly
resonant modes, which compare well to the analytic eigenmodes of the linearized
wave equation, and are analogous to those discussed for the oxygen shell burn-
ing model. The region outside the convective core will act as a resonant cavity,
with the outer boundary at the location where the buoyancy frequency and Lamb
frequency cross.

The amplitudes of the internal waves are determined by the ram pressure of
the turbulence at the convective boundary. In Figure 4.13 the ram pressure and
horizontal r.m.s. pressure �uctuations are presented for the 3D model, and can
be seen to balance at the interface between the convective core and the stably
strati�ed layer. Using this condition of pressure balance, we estimated the am-
plitudes of the excited internal wave velocities and the induced thermodynamic
�uctuations and �nd this to be in good agreement with the oxygen shell burning
simulations in chapter 3. The relationship between the density �uctuations, the
convective velocity scale, and the stellar structure (i.e., N and g) was found to be,
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ρ′

〈ρ〉 ∼ M2
c +

vcN

g
. (4.13)

That this proportionality holds in the core convection model as well, where �uc-
tuation amplitudes are lower than those in the oxygen shell burning model by an
order of magnitude, is illustrated in Figure 4.14, which presents the buoyancy fre-
quency and density �uctuation pro�les for the boundary region. The measured
density �uctuation and the value calculated according to equation 4.13 compare
remarkably well, with ρ′/〈ρ〉 ∼ 0.12%.

4.6 Simulations and Mixing Length Theory

In this section I compare our 3D oxygen shell burning simulation results to the
mixing length theory of convection. I chose to compare this particular simulation
since it represents the most physically complete model in our suite of calcula-
tions, both in terms of dimensionality and thermal evolution. Unless otherwise
speci�ed, the time period over which averaging is performed on the simulation
data is t ∈ [400, 800]s, which is approximately 4 convective turnovers. I �nd that
this period is suf�ciently long compared to the time evolution of the �ow that
average values are not affected appreciably by increases in the averaging time
period.

4.6.1 Mixing Length Theory Picture

The basic picture underlying the mixing length theory, which is the standard
treatment of convection used in one-dimensional stellar evolution modeling (see
Cox & Guili, 1968; Clayton, 1983; Kippenhahn & Weigert, 1990; Hansen & Kawaler,
1994), is one in which large eddies are accelerated by an unstable temperature
gradient and advect across a certain distance until they suddenly lose their iden-
tity by turbulently mixing with the background. Energy is transported through
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this process because the envisioned turbulent blobs which are moving radially
outward have a higher entropy at their formation location than the location in
which they dissolve. The vertical extent over which large eddies retain their iden-
tity as they advect through a convection zone is a fundamental parameter in the
mixing length theory. This mixing length Λ is generally taken to be a multiple of
the local pressure scale height Λ = αΛHp.

Within this physical picture, the mixing length theory develops a relationship
between the convective �ux, the temperature gradient, the velocity scale, and
the geometrical factors which describe the large scale eddies. The starting point
in mixing length theory is the radial enthalpy �ux, which is written in terms of
�uctuations in the �ow properties, and is taken to be (assuming a horizontally
isobaric �ow),

Fc = vcρcP T ′. (4.14)

The temperature �uctuations in mixing length theory are related to the tempera-
ture gradient and the distance traveled,

T ′/T =
(∂ ln Te

∂r
− d ln T0

dr

)Λ

2
= (∆∇)

1

Hp

Λ

2
(4.15)

where the subscript �e� indicates properties of the large convective eddies, the
dimensionless temperature gradient ∇ is used (see §4.4.1), and the difference be-
tween the gradient in the eddy as it moves and the averaged stellar background
is written,

∆∇ = (∇−∇e).

The factor of 1/2 in equation 4.15 represents the idea that on average the large
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convective eddies have traversed about half a mixing length before reaching the
current position. The velocity obtained by the convective eddy is computed by
calculating the work done by the buoyancy force over a mixing length,

v2
c = gβ(∆∇)

Λ2

8Hp

. (4.16)

Here again, the eddy is assumed to have been accelerated over half of a mixing
length and an additional factor of 1/2 is incorporated on the right hand side to
account for energy lost driving other �ows, such as small scale turbulence and
horizontal motions (e.g., note that the r.m.s. horizontal velocity is of the same
order as the r.m.s. radial velocity in the simulation). The average convective �ux
can then be written,

Fc = ρcpT
√

gβ
Λ2

4
√

2H
3/2
p

(∆∇)3/2. (4.17)

The temperature gradient for the convecting material is found by assuming
that eddies follow isentropic trajectories ∇e = ∇ad. Deviations from isentropic
motion have been considered in the mixing length theory. In the case of strong
radiative diffusion losses, the eddy geometry (in terms of the surface area to vol-
ume ratio) is an important additional parameter since the eddies are envisioned
to leak a fraction of their thermal energy over a mixing length distance. When
local cooling dominates, either through radiative losses (in optically thin regions)
or neutrino losses (such as in the present model), the geometry of the eddies is
not important since energy escapes everywhere from the large eddies, not just at
eddy �surfaces�.

During the oxygen shell burning simulations being considered here, non-
adiabatic losses are small over a convective turnover time and the convection is
expected to be �ef�cient�. A quantitative measure of convective ef�ciency is the



92

Péclet number, which is the ratio of the energy loss timescale to the convective
turnover timescale for the large eddies. In the current model, energy losses are
dominated by neutrino cooling εν . I calculate an effective Péclet number using
the following convective and neutrino-cooling timescales:

τc ∼ Hp

vc

(4.18)

τν ∼ cpT
′

T ′∂εν/∂T
=

cpT

εν

(∂ ln εν

∂ ln T

)−1

(4.19)

Pe =
τν

τc

∼ vccpT

Hpε̇ν

(∂ ln εν

∂ ln T

)−1

∼ 104
(∂ ln εν

∂ ln T

)−1

(4.20)

where characteristic values from the simulation have been used in equation 4.20,
and the temperature dependence of the neutrino loss rates is (∂ ln εν/∂ ln T ) ∼< 9.
Therefore, the Péclet number for the convection is Pé∼> 103, and we should expect
the convection zone to be very nearly isentropic.

4.6.2 The Enthalpy Flux, Background Strati�cation, and Temperature and Ve-
locity Fluctuations

The convective enthalpy �ux measured in the simulation is presented in Figure
4.15. The spike at the bottom of the convection region and the slight dip at the top
re�ect the braking of convective motion at these boundaries. The enthalpy �ux
is calculated by performing time and horizontal averages on the �ow. Mixing
length theory, however, makes the assumption that the velocity and temperature
�uctuations are perfectly correlated, so that horizontal averaging of �uctuations
is comparable to products of the averages. This is not necessarily true. To test
the degree to which the velocity and temperature �uctuations are correlated I
calculate the correlation coef�cient, αE , which is de�ned in the following way:
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Fc = 〈ρcpT
′v′c〉 = αE〈ρcp〉〈T ′〉〈v′c〉. (4.21)

The �uctuations, T ′ and v′c in equation 4.21 are taken to the be the r.m.s. �uctu-
ations in the simulation. The radial pro�le of αE is shown in Figure 4.15. We
�nd 〈αE〉 = 0.7 ± 0.03 averaged over the radial interval r ∈ [0.5, 0.75] × 109 cm
within the convection zone. A value smaller than unity indicates that the hori-
zontal distribution of temperature and velocity �uctuations in the �ow are not
perfectly correlated. The degree of correlation, however, is found to be fairly
uniform throughout the convection zone.

I consider next how well the velocity and temperature �uctuations are corre-
lated with the local temperature gradient. In Figure 4.16 the temperature gradient
of the horizontally averaged hydrodynamic model pro�le ∇s as well as the adia-
batic ∇ad and the composition-corrected (Ledoux) gradient ∇Led = ∇ad + ϕ/β ×
∇µ, are presented. The super-adiabatic temperature pro�le of the stellar back-
ground ∆∇ = ∇s −∇ad is presented in the right panel of Figure 4.16. While the
convection zone is found to have a super-adiabatic pro�le throughout, it is very
small (∆∇ ∼< 10−3). This con�rms the ef�ciency of the convection, in accord with
our estimate for Pé. Stability is maintained in the upper boundary layer by the
composition gradient, ∇ad < ∇s < ∇Led.

In order to assess the validity of the mixing length theory temperature and
velocity �uctuation amplitudes given by equations 4.15 and 4.16 I calculate the
correlation coef�cients αT and αv which are de�ned by,

T ′/T = (∆∇)αT (4.22)

and



94

vc =
αv

2

√
gβ(∆∇)Hp. (4.23)

An important question concerns how to interpret and measure the tempera-
ture and velocity �uctuations T ′ and vc in the simulations for comparison to mix-
ing length theory. In the mixing length theory, these �uctuations are identi�ed
with the properties of large eddies. Therefore, a direct comparison would entail
isolating the large eddies from the rest of the �ow, and measuring their proper-
ties. In lieu of this complicated procedure I identify the �uctuations in the large
eddies with two distinct quantities for comparison: (1) the r.m.s. �uctuations in
the �ow; (2) the difference between the horizontally averaged background value
and the mean values in the up and down �owing material.

The temperature �uctuations calculated using these two methods are pre-
sented in Figure 4.17. The temperature �uctuations in the convection zone follow
a trend similar to the super-adiabatic gradient, i.e., decreasing with increasing
radius. In the right panel of Figure 4.17 the radial pro�le of αT is shown us-
ing both de�nitions of the �uctuations. The nonzero temperature �uctuations
outside the convective region are due to distortions in stable layers due to con-
vective buoyancy braking (chapter 3); the use of separate up and down �ows
is cleaner, eliminating these. The slope in the temperature �uctuation pro�les
are slightly overcompensated for by the super-adiabatic gradient when forming
the ratio αT . Within the scatter, however, αT is fairly well represented by a con-
stant value. The mean value within the body of the convection zone (taken to be
r ∈ [0.5, 0.75]× 109 cm) is larger for the r.m.s. �uctuations 〈αT (rms)〉 = 0.73 com-
pared to 〈αT (up)〉 = 0.45 and 〈αT (down)〉 = 0.40. The largest departures from
the mean, within the convective region, occur at the base of the convection zone,
r ∼< 0.52 × 109 cm, where the nuclear �ame is driving the convective �ow. The
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departures are also large at the top, in the region of buoyancy braking.
The corresponding analysis for the velocity �uctuations is presented in Fig-

ure 4.18. The overall trends are similar for αT and αv. The mean values of αv

within the body of the convection zone are 〈αv(rms)〉 = 1.22,〈αv(up)〉 = 1.08, and
〈αv(down)〉 = 0.96. The largest departure from constancy is again found to be at
the base of the convection zone (the �ame region).

The sharp decrease in the effective mixing length near the lower boundary
is not entirely surprising. The distance to the convective boundary provides an
upper limit to the mixing length, while further away from the boundaries the
mixing length is limited by the distance over which eddies can maintain their
coherence. This effect is possibly more exaggerated at the lower boundary be-
cause of the steep gradient in velocity which is needed to move the energy out
of the burning zone. In contrast, the upper boundary is characterized by a more
gentle deceleration of material and a �softer� boundary (i.e., lower N2). Ignoring
this boundary effect and using the same mixing length parameter throughout
the convection zone would result in a shallower temperature gradient near the
boundary. The stiff temperature dependance of the nuclear reaction rates may
therefore be affected.

The absolute calibration of αT and αv are somewhat arbitrary, and are scaled
by factors of order unity for a particular implementation of the mixing length the-
ory based on the heuristic arguments discussed above. According to equations
4.15, 4.16, 4.22, and 4.23 the equivalencies are αΛ,T = 2 × αT and αΛ,v =

√
2 × αv

where the values subscripted by Λ indicate the mixing length theory values de-
�ned by Kippenhahn & Weigert (1990). The corresponding values measured in
the simulation are 〈αΛ,v(rms)〉 = 1.73, 〈αΛ,v(up)〉 = 1.53, and 〈αΛ,v(down)〉 =

1.35, for velocity �uctuations; and 〈αΛ,T (rms)〉 = 1.46, 〈αΛ,T (up)〉 = 0.9, and
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〈αΛ,T (down)〉 = 0.8 for temperature �uctuations.
The ratios αΛ,T /αΛ,v are 0.84, 0.59, and 0.60 for the r.m.s., up-�ow, and down-

�ow values, respectively. In relation to the present simulation, a higher degree of
consistency (i.e., αΛ,v = αΛ,T ) can be brought to this implementation of the mixing
length theory by scaling the velocity �uctuation in equation 4.16 by the inverse of
the ratio αΛ,T /αΛ,v. Physically, this translates into a higher ef�ciency (by a factor
∼1.2 - 1.7) for the buoyancy work to accelerate the large eddies over the value of
1/2 adopted above, which is reasonable considering the heuristic argument used.
Alternatively, agreement can be made by scaling the temperature �uctuations in
equation 4.15 by the same ratio, which amounts to decreasing the distance over
which eddies remain coherent and adiabatic as they move across the convection
zone. Both of the these effects are plausible, as well as a combination of the two
so long as the ratio is maintained. Which is operating in the present simulation?
Unfortunately, the degeneracy between these two parameters cannot be broken
because they combine linearly when calculating the enthalpy �ux, which there-
fore does not provide a further constraint. Finally, it is possible that the effective

mixing lengths for temperature and velocity �uctuations are different, a notion that is
supported by the correlation lengths which we discuss next.

4.6.3 Correlation Length Scales

In the top two panels of Figure 4.19 the vertical correlation length scales, calcu-
lated according to equation B.1, are presented for the velocity and temperature
�uctuations. The vertical scale height is de�ned as the full width at half maxi-
mum of the correlation function, and can be written in terms of the correlation
length in the positive and negative directions, LV = L+

V − L−V . The relative val-
ues of L+

V and L−V give an indication of asymmetries in the eddies (Figure 4.19,
lower-left): L+

V /L−V = 1 is a symmetric eddy; L+
V /L−V > 1 is an eddy �attened on
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the bottom; and L+
V /L−V < 1 is an eddy �attened at the top. Based on this simple

diagnostic both the temperature and velocity correlations indicate that the ed-
dies near the lower boundary are �attened on the bottom, and those at the upper
boundary are �attened on the top. The �overshooting� distance (h ∼ 107 cm at
the upper boundary and h ∼< 106 cm at the lower boundary), which is best de-
scribed as an elastic response to the incoming turbulent elements, is very small
compared to the correlation lengths measured here. Therefore, these eddies are
effectively hitting a �hard wall� upon reaching the boundaries.

The signature of this eddy ��attening� is also present in the radial pro�le of
the full width length scale, LV . In the case of velocity, which has larger correla-
tion length scales, signi�cant asymmetries are present throughout the convection
zone. The smaller length scales associated with the temperature �uctuations per-
mit a broad region throughout the convection zone where the eddies are roughly
symmetric (L+

V /L−V ≈ 1) and appear to be unin�uenced by the boundaries. In
this intermediate region, away from the boundaries, the temperature �uctuation
length scales are relatively constant in size, even decreasing with radius, in con-
trast to the pressure and density scale heights which are increasing with radius.

In the standard mixing length theory, the sizes of convective eddies are as-
sumed to be comparable to the size of the mixing length. How do the correla-
tion length scales compare to the mixing length parameters found above? The
lower left panel of Figure 4.19 shows the ratios of LV to the pressure and density
scale heights. None of these curves are particularly constant within the convec-
tion zone, and boundary effects are particularly strong throughout the convection
zone in the case of the velocity correlations. Interestingly, the velocity correlation
parameter αv(vr, Hp) = LV (vr)/Hp is larger than the temperature correlation pa-
rameter αv(T

′, Hp) = LV (T ′)/Hp. This is in accord with the ratio αΛ,T /αΛ,v < 1
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found in the mixing length analysis above. Concerning the absolute calibration,
however, the correlation length scales are smaller than the mixing length values by as

much as a factor of a few. In an analogous comparison by Robinson et al. (2004)
for subgiant atmosphere models, the vertical correlation lengths were also found
to be smaller than the mixing length used to construct the initial model, and the
ratio varied signi�cantly throughout the convection zone.

The horizontal correlation lengths LH are shown in Figure 4.20 together with
the vertical scales for comparison. For the velocity, the horizontal scale is much
smaller than the vertical, indicative of eddies which are signi�cantly elongated
in the vertical direction. The temperature �uctuations appear to be much more
symmetric, with only a small degree of elongation in the vertical direction which
is slightly more pronounced near the top of the convection zone. In the stable
layers, the horizontal scales are larger than the vertical, which is a characteristic
of the horizontal �sloshing� motions associated with g-modes.

4.6.4 The Kinetic Energy Flux, Flow Asymmetry, and Moving Beyond the Mix-
ing Length Theory

The kinetic energy �ux associated with convection is ignored in the mixing length
theory since it arises from the asymmetries in the �ow and MLT assumes that the
�ow is symmetric. An order of magnitude estimate for the kinetic energy �ux,
however, can be made:

FK

Fc

∼ ρv2
c/2

ρcpT ′
vc

vc

∼ αΛ

8

βP

Tρcp

=
αΛ

8
∇ad ∼ 0.03 (4.24)

where mixing length relationships have been used to calculate vc and T ′, αΛ is as-
sumed to be of order unity, and∇ad ∼ 0.25 has been adopted from the simulation.
This result tells us that the kinetic energy �ux will be a few percent of the convec-
tive enthalpy �ux. This estimate is an upper limit since up-�ows and down-�ows
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will cancel to some degree (Böhm-Vitense, 1992, §6.1). In the simulation, the ratio
of kinetic to enthalpy �ux is found to be FK,max/Fc,max ∼ 0.01, which is of order
the simple MLT scaling, but down by a factor of a few as expected.

We can directly relate the kinetic energy �ux to the �ow asymmetry in the
following way. The up�ow area covering fraction fu = Aup/Atot is shown in
Figure 4.21. We can then write an estimate for the kinetic energy �ux as,

FK,net =
1

2
ρ0(fuv

3
u − fdv

3
d) (4.25)

which can be written in terms of just the �ow velocities,

FK,net =
1

2
ρ0

[ v3
u + v3

d

vu/vd + 1
− v3

d

]
(4.26)

where we have used the mass conservation equation, fuvu + fdvd = 0 assuming
ρu ≈ ρd which is a good approximation in these simulations. The kinetic energy
�ux in the simulation is shown in Figure 4.22. Shown by the thin line is FK

calculated according to equation 4.26, which is in good agreement. Here, I have
used the horizontal and time averaged values for 〈v〉 and 〈v3〉. The mixing length
theory, however, does not provide information about 〈v3〉, but only 〈v〉. I overplot
with the dashed line FK calculated using 〈v〉3 in place of 〈v3〉; it has to be scaled
by a factor of 5 to �t the simulation data.

The scaling factor needed to calculate the kinetic energy �ux is required to ac-
count for the skewness in the radial velocity �eld. More precisely, the correlation
coef�cient χ = 〈v3

u〉/〈vu〉3 is needed, which is related to the skewness γ = 〈v3〉/σ3
v .

Both χ and γ are presented in Figure 4.22. Note, that the skewness is a good proxy
for the down-�ow covering fraction (fd = 1 − fu; see Figure 4.21), and therefore
its sign is indicative of the direction of the kinetic energy �ux.

Convective regions which are spanned by several pressure scale heights are
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found to have kinetic energy to enthalpy �ux ratios larger than a few percent
as found in this study. For instance, the simulations of Cattaneo et al. (1991) and
Chan & So�a (1989) which each span∼5 pressure scale heights achieve |FK/Fc| ∼
35%, and the domain in Chan & So�a (1996) spanning ∼ 7 pressure scale heights
achieves |FK/Fc| ∼ 50%. A key result in the analysis of Cattaneo et al. (1991) is
that the kinetic energy �ux is dominated by coherent, downward-directed �ows
which are correlated over distances comparable to the simulation domain. Addi-
tionally, the enthalpy �ux and kinetic energy �uxes associated with these down-
�ows essentially cancel with cpT

′ ∼ v2
c , which was shown to follow if the down-

�ows can be described as Bernoulli streamlines.
The long range correlations just described, together with the boundary effects

which dominate our shell burning model, undermine the basic mixing length
theory picture of convection. The large coherence of the �ows seen in these simu-
lations, however, and present even in turbulent parameter regimes, suggest that
modeling these coherent structures is a viable approach. Already, models incorpo-
rating multiple streams or �plumes� as closure models (e.g. Rempel, 2004; Lesaf-
fre et al., 2005; Belkacem et al., 2006) are providing enticing alternatives to the
mixing length theory.

4.6.5 Related Studies

Although the mixing length parameters calculated above deviate from constancy
near the convective boundaries, a mean value is a good approximation for most
of the convection zone. It would be interesting if these parameters αE , αT , and
αv were universal, as assumed by mixing-length theory. If we restrict considera-
tion to 3D compressible convection simulations for simplicity and homogeneity,
there are several previous studies which have confronted mixing length theory
to which we can compare our results. These studies investigate convection un-
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der diverse conditions, including slab convection (Chan & So�a, 1987, 1989, 1996;
Porter & Woodward, 2000), a red giant envelope (Porter, Woodward, & Jacobs,
2000), and solar and sub-giant surface layers (Kim et al., 1995, 1996; Robinson et
al., 2003, 2004, 2005). The number of zones used range from 1.9 × 104 (Chan &
So�a, 1989) to 6.7 × 107 (Porter & Woodward, 2000). The equations of state used
include a gamma-law (Chan & So�a, 1989; Porter & Woodward, 2000), ionized
gas (Kim et al., 1996; Robinson et al., 2004), and a combined relativistic electron
plus ion gas (Timmes & Swesty, 2000) in this paper. Subgrid scale physics was
treated by a Smagorinsky model (Smagorinsky, 1963) or by ignoring it. We note
that Styne, et al. (2000) have shown that PPM methods solving the Euler equa-
tions converge to the same limit as solutions to the Navier-Stokes equations, as
resolution is increased and viscosity reduced. Additionally, the subgrid scale tur-
bulence �model� implicit in the numerical algorithm of PPM is known to be well
behaved (Fernando Grinstein, personal communication). Given this already in-
homogeneous set of simulations, determining consistent convection parameters
is dif�cult. My attempt is given in Table 4.4, in which I summarize the convection
parameters found in these studies for comparison to our own.

How well do these compare? In some respects the agreement is striking. The
parameter αE is in the range ∼0.7 - 0.8 for all groups. Further, all agree that for
their case, the mixing-length theory gives a fairly reasonable representation of
the simulations in the sense that the alphas are roughly constant throughout the
body of the convection zone. The dif�culty is that the speci�c values of these al-
phas depend upon the case considered. The two best-resolved simulations, ours
and (Porter & Woodward, 2000), use the same solution method, PPM, yet have
the most differing alphas. This suggests to us that the differences are due to the
physical parameters of the respective convection zones. Porter, Woodward, &
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Jacobs (2000) have already shown that slab and spherical geometry give quali-
tatively different behavior for the alphas. Our shell is only two pressure scale
heights in depth, and is relatively slab-like; Porter & Woodward (2000) have a
convection zone which is more than twice as deep by this measure. There is a
suggestion in Table 4.4 that the alphas increase with the depth of the convection
zone. This would be reasonable if a convective plume were accelerated through
the whole convection region before it is decelerated at the nonconvective bound-
ary. However, the other differences mentioned above probably contribute to the
scatter in the alpha parameters in 4.4.

Further efforts on this issue are needed. If convection does depend upon the
nonlocal, physical structure of the star, calibration of the mixing length to �t the
sun, as is traditionally done, is not wise. Furthermore, it is well known that the
mixing length theory is particularly prone to problems in the surface layers where
convection becomes inef�cient. Therefore, the empirical agreement of mixing
length calibration to the sun and to Population II giants (Ferraro, et al., 2006) may
be a fortuitous coincidence.

4.7 Mixing At Convective Boundaries

The boundaries which separate the convective regions from the stably strati�ed
layers in our 3D simulations span a range of relative stability, with 1 ∼< RiB ∼< 420.
At the lowest values of RiB, the boundary is quickly overwhelmed by turbulence,
as described in §4.4.1. Once RiB becomes large enough, the boundary becomes
stabilizing and evolves over a much longer timescale. Snapshots of the quasi-
steady shell burning and the core convection boundaries are presented in Figure
4.23, ordered by RiB with spans the range 36 ∼< RiB ∼< 420. The anatomy of
the convective interfaces includes the turbulent convection zone, the distorted
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boundary layer of thickness h, and the stably strati�ed layer with internal wave
motions (compare to Figure 4.1).

The boundary becomes more resilient to thickening, and distortion by the tur-
bulence as RiB increases. A region of partial mixing exists primarily on the tur-
bulent side of the interface, where material is being drawn into the convection
zone. The �ballistic� picture of penetrative overshooting (Zahn, 1991) in which
convective eddies are envisioned to pierce the stable layer does not obtain. In-
stead, material mixing proceeds through instabilities at the interface, including
shear instabilities and �wave breaking� events, which break the boundary up
into wisps of material that are then drawn into the turbulent region and mixed.
The convective interface remains fairly sharp in all cases, and the effective width
is well described by the elastic response of the boundary layer to incoming ed-
dies, h ∼ vc/N . The convective interfaces seen in our simulations bear a striking
resemblance to those observed in laboratory studies of turbulent entrainment of
comparable RiB (see e.g. McGrath et al., 1997, Figs. 2-5).

The mixing that occurs due to the instabilities and eddy scouring events at
the interface leads to a steady increase in the size of the convection zone. In this
section I quantify the entrainment rates at the convective boundaries, I discuss
these results in terms of the the buoyancy evolution of the interface, and I de-
scribe how the �turbulent entrainment� process can be incorporated into a stellar
evolution code as a dynamic boundary condition to be used in addition to the
traditional static Ledoux and Schwarzschild criteria. I conclude the section with
some comments on numerical resolution.

4.7.1 Quantifying the Boundary Layer Mixing Rates

As evident in Figure 4.23, the convective boundary layers are signi�cantly dis-
torted from spherical shells. To estimate the radial location of the interface we
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�rst map out its shape in angle ri = ri(θ, φ). At each angular position the surface
is taken to be coincident with the radial position where the composition gradient
is the steepest (this is comparable to the location of minimum density scale height
Hρ = [∂ ln ρ/∂r]−1). The interface thickness h is taken to be the r.m.s. variation of
the surface ri with angle, h = σ[ri(θ, φ)], which provides a quantitative measure
of the amplitudes of the distortions imparted to the interface. The mass interior
to the interface is calculated according to,

Mi =

〈ri〉∫

r0

4πr2〈ρ〉dr (4.27)

where r0 is the inner boundary of the computational domain, 〈ρ〉 is the horizon-
tally averaged density, and the mean interface radius is used for the upper limit
on the integral. The time derivative Ṁi is the rate at which mass is entrained into
the convection zone.

In Figure 4.24 the time histories of the averaged interface location 〈ri〉 and in-
terfacial thickness h are shown for the convective boundaries in our simulations.
A 3D model and a representative 2D model are shown for each boundary. The
outer shell boundary layer adjusts rapidly in the �rst 100s to a new position, due
to the penetration event discussed in §4.4.1, after which a slow outward migra-
tion ensues. For the 3D model, the outward migration proceeds in distinct stages,
labeled (a - c) in Figure 4.24. Each stage is well described by a linear increase of
radius with time, and ends with a rapid adjustment to a new entrainment rate.
This behavior can also be seen in Figure 4.4, where the change in entrainment rate
is coincident with changes in the background composition gradient and stability
(compare to the initial buoyancy frequency pro�le in Figure 4.2).

The downward migration of the lower shell boundary is more uniform and
proceeds at a signi�cantly reduced rate compared to the upper boundary. The
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core convection boundary evolution departs most signi�cantly from a linear trend,
but Monotonic growth is clearly established very soon after the simulation begins
t ∼> 2× 105s.

The interfacial thickness h in the oxygen burning models are initially large,
re�ecting the strong mixing event during the initial transient, but settle down to
relatively constant values for t ∼> 300s. In contrast, the boundary thickness in the
core convection model increases gradually with time until a steady state value
is achieved, re�ecting the milder initial development. In all cases, the time av-
eraged values of h during the quasi-steady states compare well to the boundary
displacement expected for eddies impacting the stable layer with the characteris-
tic convective velocities of the model, h ∼ vc/N .

The entrainment rate and the interfacial thickness is larger in all of the 2D
models as a consequence of the larger velocity scales in those simulations. The
interface migration rates and averaged interfacial layer thicknesses are tabulated
for all of the models in Tables 4.5 and 4.6, and are broken down into various time
intervals over which linear growth of the boundary is a good approximation.
Time averaged mass entrainment rates are also included in Tables 4.2 and 4.3.

4.7.2 The Entrainment Energetics

In order for entrainment to take place at a convective boundary the buoyancy in-
crement of the stable layer material over that of the mixed layer material must be
overcome. This can happen in two distinct ways. First, non-adiabatic processes
can change the relative stability of the stable layer. For example, heating the
convective region will cause an increase in its entropy, and the buoyancy jump
separating the overlying layer will decrease. The rate at which the convective
boundary will grow due to heating is us = ṡ/(∂rs), where ∂rs is the radial gradi-
ent of entropy at the boundary and ṡ is the time rate of change of entropy in the
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shell. This process will cause both the upper and lower boundaries to migrate to
larger radii � the upper boundary will be weakened, while the lower boundary
will become stiffer. Non-adiabatic processes in the boundary layers will affect
their stability in the same way: cooling in the upper and heating in the lower
boundaries will weaken their strati�cation.

A related, but distinct process is �turbulent entrainment� whereby turbulent
kinetic energy does work against gravity to draw material into the turbulent re-
gion. In this process, the strati�cation is weakened at a convective boundary by
the turbulent velocity �uctuations. This is quanti�ed in terms of the buoyancy
�ux q = gρ′v′/ρ0. In the absence of heating and cooling sources the buoyancy in
the interfacial layers will evolve according to the buoyancy conservation equa-
tion,

∂tb = −div(q) (4.28)

and a positive �ux divergence at the boundary will lead to a weakening of the
strati�cation. The relationship between turbulent entrainment and the weaken-
ing of a boundary through heating and cooling can be understood in terms of
the enthalpy �ux which attends the buoyancy �ux. In fact, the buoyancy �ux is
directly related to the enthalpy �ux across the interface,

Fc = ρ0cp〈T ′v′r〉 =
cpT0

β
〈ρ′v′r〉 = ρ0cp

T0

βg
× q (4.29)

and is equivalent to heating and cooling processes operating in the boundary
layer (note the downward directed enthalpy �ux within the boundary layers in
Figure 4.15).

What drives the entrainment seen in the present simulations? Can the entrain-
ment in the outer shell boundary be explained by the heating of the convection
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zone by nuclear burning? Comparing the entropy growth rate of the shell to
the entropy gradient at the boundary I �nd us ∼ 0.8 × 104 cm/s, which is at
most 17% of the measured growth rate for this boundary, and typically of order
a few percent. Shell heating will reduce the growth rate of the lower boundary
by us ∼ 0.04 × 104 cm/s, which is of order a few percent of the rate measured.
Therefore, the overall heating and cooling of the shell contributes very modestly
to the growth of the shell over the course of the simulation. The long thermal
timescale in the core convection model reduces this effect even more, where it is
lower by several orders of magnitude. Therefore, I turn to the turbulent hydro-
dynamic processes operating in the boundary layer to understand the growth of
the convection zones.

In Figure 4.25 I present the buoyancy �ux pro�les for our 3D simulation mod-
els, including both time-series diagrams and time averaged radial pro�les. The
properties of the buoyancy �ux can be divided into three distinct �ow regimes:
(1) the body of the buoyant convecting layer, which is dominated by positive q;
(2) the convective boundary layers, with negative q; (3) the stably strati�ed lay-
ers, where q is oscillatory, but has a nearly zero mean (in both a horizontal and
time average sense).

The buoyancy driving of the convective �ow in regime (1) can be appreciated
by comparing the �ow velocity to the commonly used buoyant convection veloc-
ity scale v3

∗ = 2.5
∫ 〈q〉dr, where integration is taken over the radial extent of the

convection zone (see e.g. Deardorff, 1980). v∗ for the 3D shell burning and core
convection models are v∗ ∼ 107cm/s and v∗ ∼ 3× 105 cm/s, which compare well
to the radial r.m.s. turbulent velocities measured in the simulation (Figures 4.6
and 4.12).

In regime (2), which occurs in the convective boundaries, the buoyancy �ux
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is negative. A negative value of q signi�es that the turbulent kinetic energy is be-
ing converted into potential energy. The mixing that attends this negative buoy-
ancy �ux underlies the entrainment that is taking place at the boundaries through
equation 4.28. We demonstrate this by showing that the entrainment speeds mea-
sured in the simulation are consistent with the measured buoyancy �uxes. The
interface migration speed is incorporated into the conservation equation by writ-
ing the time derivative as an advective derivative,

∂tb ∼ ue∂rb = ueN
2 (4.30)

where I have used the relationship ∂rb = N2. Using this time derivative in equa-
tion 4.28 and solving for ue I �nd,

ũe =
∆q

hN2
(4.31)

where I have approximated the divergence of the buoyancy �ux with the differ-
ence ∆q/h. I use the symbol ũe to distinguish the estimated rate from the values
measured in the simulation.

If I adopt the buoyancy �ux at the interface for ∆q (Figure 4.25), the measured
interface thickness h, and the buoyancy frequency at the boundary, I �nd the
following entrainment rates. For the upper shell boundary, lower shell boundary,
and the core convection boundary I have: ũe ∼ 5.1 × 104 cm/s; ũe ∼ 1.1 × 104

cm/s; and ũe ∼ 2.2 × 103 cm/s, respectively. These are to be compared with
ue = |ṙi − vexp| measured in section §4.7.1 and presented in Tables 4.5 and 4.6.
The values corresponding to the same time period are: ue = 4.6 × 104 cm/s;
ue = 1.2 × 104 cm/s; and ue = 2 × 103 cm/s. Although these estimates are only
order of magnitude (e.g., using the crude approximation for the time derivative
in eq. [4.30]) they compare well to the values measured in the simulations and
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the buoyancy �ux due to �turbulent entrainment� can account for the growth of
the convective layers seen here.

4.7.3 Whence q?

The buoyancy �ux q appears as a term in the turbulent kinetic energy (TKE) equa-
tion, which we present in §A.1 (eq. [A.12]). In our notation, the buoyancy �ux is
related to the buoyancy work term by q = 〈WB〉/ρ0. The buoyancy �ux, therefore,
is related to the rate at which turbulent kinetic energy is advected into the stable
layer FK , the rate at which it dissipates through viscous forces εK , and the rate
at which energy is transported through the boundary layer by pressure-velocity
correlations Fp. In essence, entrainment is the process by which the turbulent
kinetic energy in the boundary layer does work against gravity to increase the
potential energy of the overall strati�cation.

Two theoretical approaches have been taken to study entrainment. The �rst
approach ignores the TKE equation and instead posits an �entrainment law�. The
entrainment law is merely a functional form for the rate at which stable layer
mass will �ow into the turbulent region, and is therefore a dynamic boundary
condition. These laws are usually parameterized by the stability properties of
the interface and the strength of the turbulence through RiB (see e.g. Fedorovich,
Conzemius & Mironov, 2004). Once an entrainment law is adopted, the enthalpy
�ux can be calculated and the evolution of the boundary can be self-consistently
solved for. The advantage of such an entrainment law is the simplicity with
which it can be incorporated into global circulation models of the atmosphere,
for instance.

An alternative approach to adopting an entrainment law is an explicit phys-
ical model for the terms in the TKE equation (eq. [A.12]). For example, general
forms for the buoyancy �ux pro�le within the stable layer have been applied
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with some success in reproducing the growth of the atmospheric boundary layer
and the deepening of the oceanic thermocline (Stull, 1976b; Deardorff, 1979; Fe-
dorovich & Mironov, 1995). In some respects, however, these models are glori�ed
entrainment laws since the buoyancy �ux is prescribed in a simpli�ed, param-
eterized way. Moving beyond assumptions concerning the turbulence pro�les
within the interfacial layer, are theoretical models which take into account the
interactions of waves and turbulence and incorporate non-linear models for the
evolution of instabilities (e.g. Carruthers & Hunt, 1986; Fernando & Hunt, 1997).
The approach adopted in these theoretical studies is general enough that any ad-
justable parameters may turn out to be universal and a predictive model can be
developed. In addition, the framework employed is general enough that the pro-
duction of turbulence by mean �ows (i.e., stellar rotation) can be incorporated,
as well as long-range effects due to internal waves. The internal waves are incor-
porated through the pressure-correlation �ux, Fp, and plays a central role in the
evolution of the buoyancy �ux when wave breaking is important.

4.7.4 An �Empirical� Entrainment Law

The development of a sophisticated turbulence model to explain entrainment is
beyond the scope of the present work. Instead, we ask to what extent do the en-
trainment laws used in geophysical models apply to our simulations and stellar
interiors? Guided by laboratory study and geophysical large eddy simulation I
study the dependance of the entrainment rate on the bulk Richardson number.

RiB is calculated according to equation 4.1, where I use the horizontal corre-
lation length scale L = LH de�ned in §B. The buoyancy jump is calculated by
performing the integration in equation 4.2 over the width of the interface which
we take to be the interval r ∈ [ri − h, ri + h]. The normalized entrainment rates
E = ue/σ, the buoyancy jumps ∆b, and RiB are presented in Tables 4.5 and 4.6.
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The dependance of the entrainment coef�cient E on RiB is presented in Figure
4.26.

The 2D and 3D data are found to obey similar trends (lower E for higher RiB),
but occupy signifanctly different regions of the diagram. This can be explained
by the much higher r.m.s. velocities in the 2D simulation. The velocity scale in 2D
is apparently an artifact of the reduced dimensionality of the problem which sig-
ni�cantly in�uences the �ow morphology. Although the velocity scale is higher
in the 2D models, it is much more laminar and accompanied by less turbulent
mixing. The arrow in Figure 4.26 indicates the direction that the 2D data points
would move if a lower effective r.m.s. velocity were assumed. In what follows I
focus the analysis exclusively on the entrainment data found for the more realistic
3D models.

What I �nd is that the entrainment coef�cient E is well described by a power
law dependance on RiB of the form in equation 4.4. The best �t values for the
parameters are log A = 0.027 ± 0.38 and n = 1.05 ± 0.21. This entrainment law
is shown by a dashed line in Figure 4.26. Remarkably, the power law is of order
unity, in agreement with geophysical and laboratory studies. The fact that the
entrainment in our simulations are governed by the same, fairly universal de-
pendance on RiB as these other studies may have been anticipated, considering
the striking degree of similarity between the buoyancy pro�les and the character
of the developed �ow in the vicinity of the boundary (Figure 4.23).

4.7.5 A Dynamic Convection Zone Boundary Condition

Mass entrainment is a fundamentally different phenomena from diffusion, which
is the typical route used to incorporate new mixing phenomena into a stellar evo-
lution code. Therefore, how might we incorporate this new process? Schemati-
cally, the idea is very simple. For each convective boundary, initially found with



112

the traditional stability criteria (∂s/∂r = 0, ∂2s/∂r2 6= 0), we can calculate the
associated bulk Richardson number based on the background strati�cation and
an approximation of the turbulence characteristics (e.g., from MLT). With RiB in
hand we can then input this into our entrainment law, E = E(RiB) which re-
turns to us the entrainment rate. The entrainment rate, therefore, is the boundary
growth rate as a function of RiB and possibly other parameters of the system. The
function E(RiB) can be broken up into at least three regimes for convenience.

Low stability: RiB < Rimin
B . For low RiB it is observed that mass entrainment

happens very quickly, on an advection timescale (§4.4.1). Therefore, we can de-
�ne a minimum Rimin

B at which the expansion of the convection zone will proceed
very quickly, eliminating convective boundaries which are too weak to support
the adjacent turbulence.

Intermediate Stability: Rimin
B < RiB < Rimax

B . For an intermediate range of
stability, we can use the fairly universal entrainment law which matches our sim-
ulation data, de�ned by the two parameters A and n. Although scatter in mixing
rates were found to be as large as a factor of a few relative to the best �t law, the
general monotonic, power-law dependance was found to be robust. We can in-
corporate this physics into the stellar evolution code as a mass entrainment rate,

ṀE =
∂M

∂r
uE = (4πr2

i ρi)σH × fA × 10(−n log RiB) (4.32)

where the normalization factor is written fA = 10(log A) and represents the tur-
bulent entrainment mixing ef�ciency. More sophistication can subsequently be
incorporated as our understanding of the entrainment process improves.

High Stability: RiB > Rimax
B . The entrainment process will cease to operate at

some upper limit Rimax
B , above which the boundary evolution will be controlled

by diffusive processes on the molecular scale. Following (Phillips, 1966), we have,
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Rimax
B '

(uE

σ

)(σL

κ

)
(4.33)

which is based on the condition that the kinetic energy in the turbulence is suf-
�cient to lift the material from the interface, ρσ2 ∼> ρN2∆2. Here, the interface
thickness is taken to be that due to molecular diffusion with ∆ ∼> κ/uE . The rel-
atively small diffusion rates in stellar interiors imply that turbulent entrainment
will continue to operate to very high Richardson numbers. For comparison, the
entrainment process in the ocean is estimated to operate up to RiB ∼ 105−6.

Additional details concerning the implementation of this type of boundary
condition into TYCHO will be presented in subsequent work on this subject, and
is outside the scope of the present thesis.

4.7.6 Spatial Scales, Numerical Resolution, and Entrainment

I conclude this section with a few comments on how well simulation can be
trusted in elucidating the process of entrainment, which is not very well under-
stood. The spatial scales which limit the entrainment rate at a convective bound-
ary are also not well understood, and depend on the interplay between large
eddy and small scale turbulent transport processes. As discussed by Lewellen
& Lewellen (1998), there is feedback between the transport rate away from the
turbulent boundary layer which is controlled by large eddies, and the transport
rate of material in the immediate vicinity of the interface by small scale turbu-
lence. A full understanding of this problem hinges on being able to resolve the
entrainment zone in the presence of the large scale eddies.

A code comparison and resolution study of the entrainment problem in the
planetary boundary layer context was conducted by Bretherton et al. (1999) and
Stevens & Bretherton (1999). In these studies, it was suggested that the appro-
priate criteria for resolving boundary layer entrainment is that the grid zoning is
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smaller than the �uctuations induced in the inversion layer by the large eddies
so that shear instabilities (e.g., Kelvin-Helmholtz) would not be suppressed. It
was suggested that a �nested grid� of re�nement within the boundary layer was
comparable to using �ne resolution throughout the simulation domain. The sug-
gested resolution criterion in these papers, however, fail to account for the non-
linear turbulent evolution which proceeds the onset of instabilities. In addition,
no simulations were conducted with enough resolution that the boundary layers
were turbulent, and the simulations presented were even marginally resolved by
the author's suggested criteria.

A related study by Alexakis (2004) investigates the entrainment and mixing
at a boundary due to internal gravity wave breaking driven by a shear �ow. This
process may be operating in the shear mixing layers that form when large eddies
impact the boundary layer. In this study, the mass entrainment rate was found
to depend on the numerical resolution in a non-monotonic way, �rst decreasing
and then increasing with �ner resolution. The author concludes that low reso-
lution models are dominated by numerical diffusion until the resolution is �ne
enough to resolve turbulence near the boundary, at which point the entrainment
rate begins to increase and is controlled by turbulent transport. Although the
asymptotic mixing rate was inconclusive and no resolution criteria was proposed,
resolving the turbulence ensuing from the instability was shown to be important.

Much more work needs to be done to address the role played by both the
small scale processes and the interplay with large eddies. Two complimentary
numerical approaches can be taken. First, the feedback between large and small
scale mixing and transport processes can be studied using large eddy simulation
with a range of subgrid scale mixing ef�ciencies. Such a study can help develop
insight into which scales control the mixing rate. Second, direct numerical sim-
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ulations (DNS) which resolve the turbulent processes operating at the interface
can be undertaken when suf�cient computational resources are available. These
studies would provide more de�nitive conclusions concerning the interplay be-
tween eddy scales and would provide guidance for a more general framework
for future theoretical analysis. Finally, it is important to keep in mind that labora-
tory studies of high Reynolds number turbulent entrainment continue to provide
useful constraints, and improved �ow visualization techniques are allowing a
more direct comparison to theory and simulation.

The �empirical� entrainment law which we discuss in this paper is constrained
by only a few data points (the six 3D data points in Figure 4.26). Extending sim-
ulations to include an ever more diverse suite of stellar structures would provide
an even stronger mandate, and better constrained model for incorporating this
physics into stellar evolution codes.

4.8 Summary And Conclusions

In this paper, I have presented the results of three-dimensional, reactive, com-
pressible, hydrodynamic simulations of deep, ef�cient stellar convection zones
in massive stars. Our models are unique in terms of the degree to which non-
idealized physics have been used, and the evolutionary stages simulated, with
fuel and ash clearly distinguished.

I �nd several general results regarding the basic properties of the convective
�ow:

• the �ow is highly intermittent, but has robust statistical properties,

• the 2D vs 3D velocity scales differ by almost a factor of several, and the �ow
morphologies are completely different,
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• stable layers interact with convection to decelerate plumes, and consequently
distort these layers, which then generate waves,

• mixing is found to occur at convective boundaries in manner best described
as turbulent entrainment, rather than the traditional picture of convective
overshooting wherein turbulent eddies ballistically penetrate the stable lay-
ers.

I have compared our oxygen shell burning model to mixing length theory as-
sumptions. I show that, while a reasonable representation of the super-adiabatic
temperature gradient and velocity scale can be �t with a single mixing length, the
values of the inferred mixing-length �constants� differ from other simulations.
This was already implied in Porter, Woodward, & Jacobs (2000), who found dif-
ference for slab and spherical geometries. There may be a dependence upon the
depth of the convection zone as well, and possibly upon the nature of the stable
boundary regions and/or the nature of the driving process (burning or radiative
loss).

Why do we care about MLT in regions of ef�cient convection? (1) the tem-
perature pro�le can affect the burning rates, which have a stiff temperature de-
pendence; (2) the velocity scale can affect the nucleosynthesis (such as s-process
branching ratios in double shell burning AGB stars) by dictating the exposure
time of the plasma to varying conditions throughout the burning region; (3) the
velocity scale and the kinetic energy �ux is an important input needed for calcu-
lating the mixing at convective boundaries.

I have found that the extent of mixing is better represented by an integrated
Richardson number rather than the convectional Schwarzschild or Ledoux crite-
ria alone. This incorporates the addition physics related to the resistance of stiff
boundaries to mixing. Related to the de�nition of boundary stiffness, we have
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identi�ed an important physical process which is missing from the standard the-
ory of stellar evolution: turbulent entrainment. This process is well known in the
meteorology and oceanographic communities, and has been extensively studied
experimentally. It was shown that the rate of entrainment is well represented as
a simple function of the buoyancy jump, in a manner similar to that determined
experimentally.

The long term consequences of convective boundary inconsistencies such as
the one illustrated by the initial transient in our simulation, and for which the
conditions are common in 1D stellar models, can signi�cantly alter the size of
convective cores, and thus the subsequent explosion and nucleosynthetic yields
of the resultant supernova. In subsequent work, case studies will be presented
which incorporate the physical insight gained through these simulations into
the TYCHO stellar evolution code. We expect to see effects in solar models, s-
processing in AGB stars, stellar core formation (white dwarfs, neutron stars, and
black holes), stellar nucleosynthesis yields, stellar ages, and HR diagrams.
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Figure 4.1: Diagram illustrating the salient features of the density and velocity
�eld for the turbulent entrainment problem. Three layers are present: a turbu-
lent convection zone is separated from an overlying stably strati�ed region by a
boundary layer of thickness h and buoyancy jump ∆b ∼ N2h. The turblence near
the interface is characterized by integral scale and RMS velocity LH and σH , re-
spectively. The stably strati�ed layer with buoyancy frequency N(r) propagates
internal waves which are excited by the adjacent turbulence. A shear velocity
�eld v⊥(r), associated with differential rotation, may also be present. After Strang
& Fernando (2001).
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Figure 4.2: Radial pro�le of the simulated region for the oxygen shell burning
models. The thin lines indicate the initial conditions and the thick lines indicate
the 3D model at t = 400 s. (top left) Temperature and density. (top right) Mass
fraction of 16O. (bottom left) Squared buoyancy frequency. (bottom right) Buoy-
ancy.
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Figure 4.3: This time sequence shows the onset of convection in the oxygen shell
burning model. The �rst 200 s of the 2D model (ob.2d.c) is shown, including
the initial transient and the settling down to a new quasi-steady state. The light
yellow line indicates the location of the convective boundary as de�ned in the
1D TYCHO stellar evolution model (Ledoux criterion), which was used as initial
conditions for the simulation.
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Figure 4.4: The time evolution of the 3D oxygen shell burning model. (top)
The magnitude of the oxygen abundance gradient is shown and illustrates the
migration of the convective boundaries into the surrounding stable layers. In-
terfacial oscillations are also apparent in the upper convective boundary layer
(r ∼ 0.85 × 109 cm), and internal wave motions can be seen quite clearly in the
upper stable layer. (bottom) The kinetic energy density is shown, and illustrates
the intermittent nature of the convective motions. The upwelling chimney-like
features in the convective region are seen to excite internal wave trains in the sta-
ble layers, which propagate away from the boundaries of the convection zones.
See also Fig. 4.25.



122

Figure 4.5: The time evolution of the energy budgets for the oxygen shell burning
models: the (thick line) 3D model, and (thin lines) the three 2D models are shown,
including: (thin-solid) ob.2d.c; (thin-dashed) ob.2d.e; and (thin dotted) ob.2d.C.
The energy budget includes the internal energy EI , the gravitational energy EG,
and the kinetic energy EK . Note that the energy scale is logarithmic, so that the
3D kinetic energy is much smaller than the 2D values.
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Figure 4.6: The r.m.s. velocity �uctuations for oxygen shell burning: (left)
3D model, with velocity components (thick-solid) vr, (thin-solid) vθ, and (thin-
dashed) vφ. (right) The 2D models, with velocity components (thick) vr and (thin)
vφ for simulations (solid) ob.2d.e, (dashed) ob.2d.c, and (dash-dot) ob.2d.C.

Figure 4.7: Mode diagrams for several radial positions in the oxygen shell burn-
ing model show the dominant spatial and time scales on which motions occur.
The abscissa measures k which is related to the wavenumber index l of the mode
by l = 12 × k. The three locations shown here include: (left) Lower stable layer,
just beneath the convective shell r = 0.4× 109 cm. (middle) Middle of convective
shell, r = 0.6 × 109. (right) Upper stable layer, just above the convective shell
r = 0.9× 109 cm.
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Figure 4.8: Radial pro�le of the simulated region for the main sequence core con-
vection model. The thin lines show the initial conditions and the thick lines show
the state of the 3D model at t = 106 s. (top left) Temperature and density. (top
right) Hydrogen abundance. (bottom left) Squared buoyancy frequency. (bottom
right) Buoyancy.
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Figure 4.9: Velocity isocontours show the development of the �ow in the 3D core
convection model. The turbulent convective �ow excites internal waves which
radiate into the overlying stably strati�ed layer. By the end of the time sequence
shown the stable layer cavity is �lled with resonant modes.

Figure 4.10: The velocity magnitude for the core convection model at t=106 s:
(left) a slice through the 3D model; and (right) the 2D model. The topology of the
convective �ow is signi�cantly different between 2D and 3D models: the 3D con-
vective �ow is dominated by small plumes and eddies while the 2D �ow is much
more laminar, and dominated by a large vortical eddies which span the depth of
the layer. The wave motions in the stable layer have similar morphology in 2D
and 3D, but the velocity amplitudes are much larger in 2D. The computational
domains have been tiled once in angle for presentation.
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Figure 4.11: The time evolution of the energy budget for the main sequence core
convection models: the (thick line) 3D model; and (thin line) the 2D model are
shown. The energy budget includes the total internal energy EI , gravitational
energy EG, and kinetic energy EK on the computational grid.
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Figure 4.12: The r.m.s. velocity �uctuations for the core convection model: (left)
the 3D model, and (right) the 2D model. In each plot, the thick line indicates
the radial velocity component and thin line is used to indicate horizontal velocity
components, with the dashed line used to show the polar angle component in the
3D model.
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Figure 4.13: Pressure �uctuations in core convection model: The time averaged
horizontal r.m.s. pressure �uctuations are shown as the thick line, with extreme
values over two convective turnovers indicated by the shaded region. The thin
line shows the radial component of the turbulent ram pressure ρv2

r averaged over
a convective turnover. At the upper boundary, the curves cross at a point where
the turbulent pressure is balanced by the wave induced pressure �uctuations in
the stable layer. This crossing point is coincident with the location of the convec-
tive boundary. The pressure perturbations at the lower boundary are due to the
input luminosity which drives the convective �ow.
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Figure 4.14: (left) Density �uctuations in the 3D core convection model: The time
averaged maximum density �uctuation is shown as the thick line, with extreme
values for the averaging period (two convective turnovers) shown by the shaded
region. The largest �uctuations occur at the interface between the turbulent con-
vective region and the stably strati�ed layer. The maximum �uctuation at the
interface is ρ′/〈ρ〉 ∼0.12%. (right) The buoyancy frequency is shown in units
of (10−4 rad/sec). Also shown by the dashed line is the buoyancy frequency
normalized by the gravity which sets the scale of the density �uctuations at the
convective boundary through equation 4.13. The expected density �uctuation is
ρ′/〈ρ〉 ∼ vc|N |/g ∼ 0.12%, where a velocity scale of vc ∼ 2 × 105 cm/s has been
used (see Figure 4.12).
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Figure 4.15: (left) Convective enthalpy �ux, Fc = 〈ρcpvrT ′〉. (right) Temperature-
velocity correlation function αE calculated according to equation 4.21, with mean
value 〈αE〉 = 0.7 shown by the dashed line.

Figure 4.16: (left) Dimensionless temperature gradients: the stellar interior ∇s;
adiabatic∇ad; and Ledoux∇led gradients are shown. (right) Super-adiabatic tem-
perature gradient horizontally and time averaged.
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Figure 4.17: (left) Time averaged r.m.s. temperature �uctuations: (thick solid)
line shows the r.m.s. �uctuations; the (thin solid) and (thin dotted) lines show
the �uctuations in the upward and downward directed �ow components, respec-
tively. (right) The radial dependence of the �thermal mixing length� parameters
αT de�ned by equation 4.22 are shown the temperature �uctuations presented
in the left panel, using the same line types. The mean values, averaged over
r ∈ [0.5, 0.75]× 109cm are shown by the thin dotted lines.



132

Figure 4.18: (left) Radial velocity amplitudes: (thick solid) r.m.s. value; the (thin
solid) and (thin dashed) show the mean up- and down-�ow velocities, respec-
tively. (right) The radial dependance of the �velocity mixing length� parame-
ters αv de�ned by equation 4.23 are shown for the velocity amplitudes presented
in the left panel, using the same line types. The mean values, averaged over
r ∈ [0.5, 0.75]× 109cm are shown by the thin dotted lines.
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Figure 4.19: The vertical correlation length scales LV as de�ned in §B. (top left)
LV for velocity �uctuations, v′r; (top right) LV for temperature �uctuations, T ′.
The pressure scale height Hp and density scale height Hρ are shown for compar-
ison. (bottom left) Illustration of the relationship between eddy shape and the
correlation length scales, L+

V and L−V . The grey patches represent the shapes of
the eddies and the L

+/−
V values are measured in the radial direction, away from

the horizontal line. (bottom right) Correlations lengths LV scaled to pressure and
density scale heights, e.g., αV (vr, Hp) = LV (vr)/Hp
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Figure 4.20: The horizontal and vertical correlation length scales, LH (thick line)
and LV (thin line) are shown for temperature (dashed) and velocity (solid) �uc-
tuations.
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Figure 4.21: The fractional area occupied by the upward �owing material fu is
shown as a function of radial position. The downward �owing area is fd = (1−fu)

and the dashed line at 1/2 indicates up-down symmetry.
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Figure 4.22: (left) Kinetic energy �ux: (thick) line shows the value measured in the
simulation averaged over two convective turnovers; the (thin solid) line shows
FK calculated according to equation 4.26; the (thin dashed) line shows FK calcu-
lated according to equation 4.26 but uses c〈v〉3 in place of 〈v3〉, and a correlation
constant of c = 5. (right) Asymmetries in radial velocity: the (thick) line show
the skewness in the velocity �eld, γ = 〈v3〉/σ3

v ; the (thin solid) and (thin dashed)
lines show the correlations χ = 〈v3〉/〈v〉3 where the subscripts u and d indicate
up- and down-�ows,respectively.
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Figure 4.23: Equatorial slices showing the �ow in the vicinity of the convec-
tive boundaries in the 3D simulations, ordered by relative stability: (row a) up-
per shell convection boundary, RiB ∼ 36; (row b) core convection boundary,
RiB ∼ 48; (row c) lower shell convection boundary, RiB ∼ 419. The colormap
indicates composition abundance, where the darker tones trace stable layer mate-
rial entrained across the interface. The velocity vectors have been sampled every
third zone in each dimension.
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Figure 4.24: The time history of (top row) the convective boundary location, and
(bottom row) the thickness of the convective interface for: (left) upper shell burn-
ing boundary; (middle) lower shell burning boundary; and (right) core convec-
tion boundary. The (thick line) identi�es the 3D models, ob.3d.B and msc.3d.B;
and the (thin line) identi�es the 2D models, ob.2d.e and msc.2d.b. The (dashed
lines) show the averaged interface thickness for t > 300 s for oxygen burning,
and t > 6.0 × 105 s for core convection. The letters (a-c) in the upper left panel
mark times when the outward migration rate of the convective boundary rapidly
adjusts to a new value in the 3D model.
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Figure 4.25: Buoyancy �ux. Time-series diagrams and time-averaged radial pro-
�les are shown for: (top-row) the 3D oxygen shell burning model; and (bottom-
row) the 3D core convection model.
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Figure 4.26: Normalized entrainment rate plotted against bulk Richardson num-
ber RiB. The 3D models are marked with squares, and the 2D data by plus signs.
The best �t power-law to the 3D model data is shown by the dashed line. The
2D entrainment rates fall everywhere below the 3D trend. The arrow indicates
the direction in the diagram that the 2D data points would move if the effective
r.m.s. turbulence velocity were lower.
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Table 4.1. Nuclei Included in Reduced Nuclear Reaction Network

Element Charge Atomic
Weight

Helium . . . . . . . 2 4
Carbon . . . . . . . 6 12
Oxygen . . . . . . . 8 16
Neon . . . . . . . . . 10 20
Sodium . . . . . . . 11 23
Magnesium . . . 12 24
Silicon . . . . . . . . 14 28
Phosphorus . . . 15 31
Sulfur . . . . . . . . 16 32, 34
Chlorine . . . . . . 17 35
Argon . . . . . . . . 18 36, 38
Potassium . . . . 19 39
Calcium . . . . . . 20 40, 42
Titanium . . . . . 22 44, 46
Chromium . . . 24 48, 50
Iron . . . . . . . . . . 26 52, 54
Nickel . . . . . . . . 28 56

Note. � Network also includes elec-
trons, protons, and neutrons.
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Table 4.2. Summary of Oxygen Shell Burning Models

Parameter Units ob.3d.B ob.2d.c ob.2d.C ob.2d.e

rin, rout (109 cm) 0.3, 1.0 0.3, 1.0 0.3, 1.0 0.3, 5.0
∆θ,∆φ (deg.) 30, 30 90, 0 90, 0 90, 0
Grid Zoning - 400×(100)2 400×320 800×640 800×320
tmax (s) 800 574 450 2,400
vconv (107 cm/s) 0.8 2.0 1.8 1.8
tconv (s) 103 40 44 44
Ṁi|u1 (10−4M¯/s) 1.1 1.33
Ṁi|l (10−4M¯/s) -0.23 -0.52 -0.5

1The subscripts u and l refer to the upper and lower convective shell boundary.

Table 4.3. Summary of �Core Convection� Models

Parameter Units msc.3d.B msc.2d.b

rin, rout (1011 cm) 0.9, 2.5 0.9, 2.5
∆θ,∆φ (deg.) 30, 30 30,0
Grid Zoning - 400×(100)2 400×100
tmax (s) 2.0×106 2.0×106

vconv (105 cm/s) 2.5 13
tconv (s) 3.6×105 6×104

Ṁi (10−7M¯/s) 2.72 4.73
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Table 4.4. Assumed and Measured Convection Parametersa

Study Péb αE αΛ,T αΛ,v αΛ L/Hp
c Grid Zoning

MLT À1 1 α α α . . . . . .
This Study1

∼> 103 0.70±0.03 0.8 - 1.4 1.35 - 1.73 0.87 - 1.31 ∼2(3.7)d 1002 × 223(400)c

Chan-So�a2 . . . 0.81±0.03 1.32 - 3.75 3.39 - 6.4 1.90 - 4.4 7 202 × (∼< 50)

Kim3 . . . 0.80±0.01 2.96 - 4.2 1.5 - 3.4 1.4 - 3.2 6 323

Robinson4 . . . 0.65-0.85 . . . . . . . . . 8.5 1142 × 170

Porter-Woodward5a 10− 8× 104 0.7-0.9 4.08 3.82 2.68(3.53)5b 5 5122 × 256

aSee §4.6.2 for parameter de�nitions: αΛ,T = 2× αT and αΛ,v =
√

2× αv where αT and αv are de�ned by equations
4.22 and 4.23, and αΛ =

p
αE × αΛ,v × αΛ,T .

bThe Péclet number is shown when provided by the author. In all cases the regions in the simulations for which param-
eter values are quoted were ef�cient convection, with ∆∇ ∼< 10−2, and excluded the super-adiabatic layers in the surface
convection models where parameters deviate signi�cantly from those quoted here.

cThe number of pressure scale heights spanned by the convectively unstable region.
dThe value in parentheses is for region spanning the entire computational domain, including the stable bounding layers

with the other value referring to the convective region.
1Model ob.3d.B: additional details in Table 4.2.
2Chan & So�a (1989): The range in αT and αΛ,v is calculated according to their Table 1 for the nearly adiabatic portion

of the simulation where 10−3 < ∆∇ < 10−2.
3Kim et al. (1996): The coef�cient αT is based on their Fig. 6. The coef�cients αΛ,v and αΛ are plotted in their Fig. 9 and

the range quoted in the table above is for values at least one pressure scale height from the boundaries.
4Robinson et al. (2004): only the correlation between radial velocity and temperature �uctuation is provided, which is a

good surrogate for αE . For the solar and subgiant cases see their Figs. 7 - 9.
5(a)Porter & Woodward (2000): In this paper the values for αv , αT , and αΛ are quoted using the same de�nitions as in

this study. (b) The lower value quoted by these authors for αΛ is a results of subtracting the kinetic energy �ux from the
enthalpy �ux. The value in the parentheses is the mixing length αΛ according to the de�nition in note aabove.
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CHAPTER 5

CONCLUDING REMARKS

In this thesis a wide range of hydrodynamic behavior has been studied in the
context of massive star interiors. The simulations presented are unique in terms
of the epochs we have simulated, and the degree to which non-idealized physics
have been used. Instead of simulating the �ows for idealized problems, we have
used initial conditions that are based on realistic stellar evolution models. A few
of the most important results obtained during the course of this thesis research
are listed here.

• The turbulent �ow associated with thermal convection is found to be quan-
titatively and qualitatively different in 2D and 3D, with larger velocity am-
plitudes and larger scale �ow structures in 2D. The turbulence-wave cou-
pling is also found to be affected by the dimensionality, probably as a result
of the differences in the convective �ow morphology. In particular, the sta-
ble layer motions have a higher amplitude and lower temporal frequency
in 2D, compared to 3D.

• Mixing length theory scaling provides a reasonable representation of the ve-
locity scale and temperature gradient in a convective burning shell, though
signi�cant deviations are found near the convective boundaries. The mix-
ing length which best �ts our simulation data ∼ 1.1Hp is not found to agree
with the mixing lengths found for other 3D simulations in the literature.
This strongly suggests that the mixing length is not a universal parameter,
and depends on the background structure of the convection zone even for
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deep ef�cient convection.

• We �nd for both our shell burning and core convection model that con-
vective �overshooting� is not well described by the traditional �ballistic�
model, wherein turbulent eddies are envisioned to penetrate into the stable
layers. Instead, we �nd that boundary-turbulence interaction is better de-
scribed as an elastic response by the boundary to impinging plumes. Dur-
ing this process, signi�cant internal and interfacial wave motion is excited.

• The convective boundaries are found to be rife with internal and interfa-
cial wave motions, and a variety of instabilities arise which induce mix-
ing through a process best described as turbulent entrainment. The mixing
that takes place at convective boundaries is found to depend on the bulk
Richard number RiB, which characterizes the �stiffness� of the boundary.
The mixing is found to proceed in a manner and at a rate which is sim-
ilar to that found in analogous geophysical and laboratory studies of en-
trainment. In particular, the normalized entrainment rate E=uE/σH , is well
described by a power law dependance on the bulk Richardson number
RiB = ∆bL/σ2

H with E = ARi−n
B . The best �t values for the parameters are

log A = 0.027± 0.38 and n = 1.05± 0.21. Based on this physical picture, we
propose the use of a dynamic boundary condition for one-dimensional stel-
lar evolution codes based on RiB which will predict the extents of a con-
vection zone better than purely local, static criteria like that of Ledoux or
Schwarzschild.

• We �nd that the thermodynamic perturbations at convective boundaries
can attain very large values (r.m.s. �uctuations as large as 10%), and are
due to internal wave motions excited by the convective turbulence. These
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perturbations may play a role in both the core-collapse explosion mecha-
nism as well material mixing in the ejecta.

5.1 Related Efforts

The main motivation for the simulations carried out and studied in this thesis
is improving stellar evolution models. Therefore, work is already underway to
incorporate several of the main results from this thesis work into the TYCHO
code, including the process of turbulent entrainment and the dynamic boundary
condition described in chapter 4. In particular, it will be interesting to see what
the integrated effects of these processes are on supernova progenitor models, as
well as many other phases of evolution.

In addition to informing one-dimensional stellar evolution modeling, our mod-
els of the very last stages of evolution can be used as inputs to core collapse
simulations. The current procedure is to use one-dimensional model pro�les in
core-collapse calculations. An interesting advancement would involve using a
multi-D model, with a self-consistently calculated convective �ow and pertur-
bations as initial conditions. In order to do this, we need to push our modeling
capabilities to the very last moments before core collapse, when silicon is burning
in a convective shell around an iron core. Some progress has already been made
in this direction in 2D (see Figure 5.1). Plans are being made to use these models
in the core-collapse simulation efforts being led by Chris Fryer (Fryer et al., 2006)
and Adam Burrows (Burrows et al., 2006).

Another unsolved problem of interest in the supernova community, on which
our simulations have some bearing, is the degree to which mixing occurs in
the ejected material of the supernova due to instabilities in the outgoing shock
(see e.g. Arnett, Fryxell & Müller, 1989; Kifonidis et al., 2003, 2006). Some re-
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cent work on Richmeyer-Meshkov and Rayleigh-Taylor instabilities suggest that
multi-mode seed perturbations lead to instability growth that is signi�cantly more
ef�cient at mixing material than single mode growth (Miles, 2004). A novel ap-
proach taken to study this problem is the experimental effort being led by Paul
Drake which uses high power lasers to create blast waves that are dynamically
similar1 to supernova blasts moving through stellar envelopes (Ryutov et al.,
1999; Kuranz et al., 2005). An interesting advancement in this �eld is the inclu-
sion of multi-mode surface perturbations at the density interfaces in the targets,
which represent the composition interfaces in stellar interiors. In order to make
closer contact with stellar hydrodynamic models, Paul Drake will be using a tar-
get with perturbations based on the convective boundary distortions measured
in our convection simulations.

The hydrodynamics of stellar interiors studied in this thesis, although state of
the art by today's standards, represent historically only a only crude beginning,
and many advancements need to be made. Examples include: higher Reynolds
number �ow (i.e., higher resolution); larger computational domains in order to
study low order modes in the �ow, and rotation; the inclusion of magnetic �elds;
and a more diverse set of stellar interior conditions. Clearly a lifetimes worth
of work remains to be done, which includes both considerable computing and

thinking.

1Here, dynamical similarity is used in a technical sense, and means that the two problems
being compared are described by the same dimensionless parameters, and therefore the evolution
should proceed in the same way, only scaled in time and space.
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Figure 5.1: Presupernova silicon burning hydrodynamics: (left) The radial de-
pendance of the convective velocity is shown as a function of time for a one-
dimensional 23 M¯stellar model as it approaches core collapse, which com-
mences at the very end of the time-sequence shown. The innermost convection
zone is due to silicon burning, and a transition from core to shell burning can
be seen. The overlying convection zones are driven by oxygen, neon, and car-
bon burning shells. This model was evolved with the TYCHO stellar evolution
code. (right) This snapshot shows the distribution of 28Si and net energy gen-
eration for a two dimensional hydrodynamic simulation of the TYCHO model
∼1000 s before core collapse. Silicon, oxygen, neon, and carbon are burning in
concentric shells progressively further away from the iron-rich core which will
soon undergo gravitational collapse. The outer boundary of the oxygen burning
convection zone is strongly perturbed by the convective motions which even-
tually mixes the carbon, neon and oxygen burning shells together prior to core
collapse.
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APPENDIX A

TURBULENT ENERGY EQUATION

A.1 Total Energy

The primitive energy equation solved by PROMPI is,

∂t(ρE) +∇ · [(ρE + p)u + Fr

]
= ρu · g + ρεnet (A.1)

where the total energy is composed of the internal and kinetic components, E =

EI + EK . We decompose the velocity, density, and pressure �elds into mean and
�uctuating components according to,

ϕ = ϕ0 + ϕ′ (A.2)

where 〈ϕ〉 = ϕ0 and 〈ϕ′〉 = 0. The pressure-velocity correlation term is,

∇ · 〈pu〉 = ∇ · 〈p0u0〉+∇ · 〈p0u′〉+∇ · 〈p′u0〉+∇ · 〈p′u′〉. (A.3)

The gravity term is,

〈ρg · u〉 = 〈ρ0u0g〉+ 〈ρ0u′g〉+ 〈ρ′u0g〉+ 〈ρ′u′g〉. (A.4)

The averaging operator eliminates terms which are �rst order in �uctuations (by
de�nition) and we have,

∂t〈ρE〉+∇·
[
〈ρEu0〉+ 〈ρEu′〉+ 〈p0u0〉+ 〈p′u′〉+Fr

]
= 〈ρ0u0g〉+ 〈ρ′u′g〉+ 〈ρεnet〉.

(A.5)
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We can further simplify this expression using the condition of hydrostatic equi-
librium, which holds to a high degree of accuracy in the simulation (∇p0 = ρ0g).
The background velocity in this case, u0, is a slow, highly subsonic, expansion
or contraction that is driven on a thermal timescale. The background velocity
�eld has only a radial component (i.e., there is no rotation in the current model),
u0 = (u0,(r), 0, 0). The energy equation can be then simpli�ed to read,

∂t〈ρE〉+∇·〈ρEu0〉 = −∇·〈Fp + FI + FK + Fr〉−〈p0∇ · u0〉+〈Wb〉+〈ρεnet〉. (A.6)

where we have used the following de�nitions,

FI = ρEIu
′ (A.7)

FK = ρEKu′ (A.8)

Fp = p′u′ (A.9)

Wb = ρ′g · u′. (A.10)

A.2 Kinetic Energy

The kinetic energy equation is derived by forming the scalar product of the ve-
locity with the equation of motion (e.g., Shu, 1992, Ch.2). The kinetic energy
equation can be written in vector form as,

∂t(ρEK) +∇ · (ρEKu) = −u · ∇p + ρu · g (A.11)

Again, we decompose the �elds into mean and �uctuating components, employ
the hydrostatic equilibrium condition, and perform averages. The result is,

∂t〈ρEK〉+∇ · 〈ρEKu0〉 = −∇ · 〈Fp + FK〉+ 〈p′∇ · u′〉+ 〈Wb〉 − εK . (A.12)
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Here, εK is the viscous dissipation of kinetic energy. In our simulations, this
term is not modeled explicitly and arises due to numerical dissipation. The term
p′∇ · u′ represents the compressional work done by turbulent �uctuations, and
the other terms are as de�ned above.
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APPENDIX B

CORRELATION LENGTH SCALES

In this section, several correlation lengths in the horizontal and vertical direction,
denoted by LH, LH , LV , L+

V , and L−V are de�ned.
The vertical correlation of the horizontal distribution of �uctuations in a quan-

tity X ′ = X − 〈X〉 at radial position r and offset position r + δr is calculated
according to,

CV (δr; r) =
1

∆Ω

∫
X ′(r, θ, φ)X ′(r + δr, θ, φ)dΩ

σX(r)σX(r + δr)
(B.1)

where the integral is taken over the angular direction with dΩ = sin(θ)dθdφ and
∆Ω =

∫
dΩ. The correlation is normalized by the product of the horizontal r.m.s.

value of the quantity at the two levels being compared σX .
The horizontal correlation of �uctuations at radial position r is calculated us-

ing the autocorrelation function,

CH(δs; r) =
〈X ′(r, s)X ′(r, s + δs)〉

σX(r)2
(B.2)

where the brackets 〈·〉 denote averaging over all horizontal locations s and �xed
offset δs. The horizontal correlation is normalized by the variance of the quantity
σ2

X .
Two characteristic length scales are de�ned in the horizontal direction, LH ,

and LH = 2 × LH . The length scale LH is de�ned as the offset position where
the horizontal correlation function drops to a value of 0.5. (LH provides a good
approximation to the horizontal integral scale,

∫
CH(δs; r)dδs.) Twice this length
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is denoted by LH , which is the full width at half maximum of the horizontal
correlation function.

In the vertical direction, three length scales are de�ned, L−V , L+
V , and LV =

L+
V − L−V . The sign of the radial offset δr in the correlation function is retained,

and separate length scales are de�ned for positive and negative offsets for which
the correlation function drops to 0.5. These are denoted L+

V and L−V . The full
width is denoted LV and is de�ned by LV = L+

V − L−V .



156

APPENDIX C

NON-RADIAL WAVE EQUATION

In addition to the turbulence sustained in a stellar interior by e.g., thermal con-
vection and shear instabilities, the stellar plasma can also host internal wave mo-
tions. The linear wave equation is a useful tool for analyzing stable layer motion,
even when amplitudes are approaching non-linear values or the waves are prop-
agating through turbulent regions. This is so because wave interactions occur at
second or higher order in the wave equation (see e.g. Phillips, 1966, sec. 3.8), and
the interactions among the lowest order internal wave modes occurs at third or-
der (Phillips, 1966, sec. 5.4). Therefore, the general properties of waves derived
from a linear wave equation are found to be quite robust, even in the presence of
turbulence.

An elementary introduction to linear internal waves is presented by Turner
(1980, ch.2). A more exhaustive treatment in the stellar interiors context is pro-
vided by Unno et al. (1989) and Ledoux & Walraven (1958). In this appendix, I
present a brief introduction to the linear-, adiabatic-, non-radial wave equation
appropriate to the geometry of the computational domains used in our hydrody-
namic simulations, and I described the method used to calculate the eigenmodes
which are compared to the stable layer motions observed in our simulations.

C.1 Non-Radial Wave Equation

The starting point for deriving the linear wave equation are the fully nonlinear
Euler equations (eq. [4.5]). The developed hydrodynamic �ow in our calculations
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consists of turbulent convection as well as propagating internal waves. Here, we
are interested in the nature of the wave modes so we decompose the velocity �eld
into two parts u → uc + uo which represent the turbulent convection and the os-
cillatory modes, respectively. We write the oscillatory component of the velocity
uo as v and consider only the wave contribution from here on. (The interaction
of turbulence and waves is a subject outside the scope of this appendix. Some
aspects of this process are touched on in chapter 3, and a variety of diverse ap-
proaches to the problem can be found in the literature (Lighthill, 1952; Townsend,
1966; Press, 1981; Goldreich & Kumar, 1990)).

The internal waves are considered to produce small thermodynamic �uctu-
ations relative to the background equilibrium state, which we take to be the
non-rotating, non-magnetic star model calculated with the TYCHO code, or the
horizontally averaged background pro�le of the hydrodynamic simulation. The
small overall contraction or expansion of the star is ignored in our analysis since
this occurs on a timescale much larger than the wave periods, and also occurs on
a time scale that is much larger than the hydrostatic equilibration timescale (the
exception is the few minutes leading up to core-collapse, where the contraction
velocity reaches the sound speed).

The equations of motion for the oscillations are found by considering pertur-
bations superimposed on the background which are small enough (f ′/f0 ¿ 1)
that second and higher order terms describing them can be neglected without
introducing signi�cant errors. The perturbations can be expressed in either Eule-
rian or Lagrangian form which are denoted in the following way,

f(r, t) = f0(r) + f ′(r, t), (C.1)

and
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f(r, t) = f0(r) + δf(r, t), (C.2)

respectively. The Lagrangian and Eulerian perturbations are related to each other
to �rst order through the Lagrangian displacement vector, ξ, by,

δf = f ′ + ξ · ∇fo, (C.3)

with,

ξ ≡ r− ro, (C.4)

where r represents the new location of a parcel of material originally located at
position r0 in the equilibrium state. Using these relations, the equations of mo-
tion (eq. [4.5]) are reduced to a set of linear, homogeneous, partial differential
equations with respect to time t and space coordinates r for the perturbed quan-
tities. The coef�cients of the linear perturbation equations are functions solely
of the equilibrium state, and hence the radial coordinate alone, which allows us
to separate the time variable and take the perturbations as proportional to eiσt.
In addition to the time and space separation, we can further separate the spatial
dependance into radial and angular parts because the coef�cients of these differ-
ential equations depend only on the radius, r. The adiabatic oscillation equations
are reduced to the following set of ODEs,

1

ρ

(
∂

∂r
+

ρg

Γ1p

)
p′ − (σ2 − ν2

B)ξr = 0 (C.5)

1

r2

∂

∂r
(r2ξ) +

1

Γ1

d ln p

dr
ξr +

(
ρ

Γ1p
+
∇2
⊥

σ2

)
p′

ρ
= 0, (C.6)
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where,
∇2
⊥ =

1

r2

1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ
+

∂2

∂φ2

)]
. (C.7)

Additional equations and terms describing the perturbation to the gravitational
potential Φ′ have been dropped and Φ′ ≈ 0 is assumed. This is a good approxima-
tion for the high degree g-modes that we are interested in here because the angu-
lar perturbations in the density will add incoherently, and result in a very small
Φ′. (The Φ′ needs to be retained for very low order, and purely radial modes.)

The angular dependence, denoted Y(θ, ϕ), must satisfy,

[r2∇2
⊥ + λ2]Y(θ, ϕ) = 0. (C.8)

When full spherical domains are considered the spherical harmonics satisfy this
equation and provide a complete set of orthogonal functions, and we haveY(θ, ϕ) =

Y m
l (θ, ϕ) and λ2 = l(l +1). If we use the thermodynamic relation, c2 = Γ1p/ρ, and

de�ne the Lamb frequency,

L2
l =

l(l + 1)

r2
c2, (C.9)

we now rewrite the oscillation equations (C.5) - (C.6) as the following two cou-
pled �rst order ODEs for the unknown functions ξr(r) and p′(r) (which are func-
tions of radius only),

1

r2

d

dr
(r2ξr)− g

c2
ξr +

(
1− L2

l

σ2

)
p′

ρc2
= 0, (C.10)

1

ρ

dp′

dr
+

g

ρc2
p′ + (ν2

B − σ2)ξr = 0. (C.11)
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C.1.1 Dependence on Computational Domain

Our 3D computational domains are not full spheres but are wedges. Therefore,
we must �nd a complete set of basis functions which satisfy equation (C.8) and
are orthogonal over the angular extents of our computational wedge. We are able
to �nd such a set by simplifying the angular operator ∇2

⊥. Our 3D simulation
wedges cover only a small angle in co-lattitude and are centered on the equato-
rial plane, so sin(π/2 + ε) = cos(ε) ≈ 1. For the largest wedge which we have
simulated εmax = 15o and cos εmax = 1.01, which introduces an error on the per-
cent level. Making this approximation, the angular operator ∇2

⊥ reduces to,

∇̃2
⊥ =

1

r2

(
∂2

∂θ2
+

∂2

∂ϕ2

)
, (C.12)

and the following function satis�es our needs,

Yl,m(θ, ϕ) = clmei(κlθ+κmϕ), (C.13)

with,

κl =
2π

δθ
l, and κm =

2π

δϕ
m, (C.14)

where l and m are integers between -∞,∞ and δθ and δϕ are the extents of the
azimuthal and co-lattidue angle in the computational wedge.

Using the basis function in equation (C.13) instead of the spherical harmonics
for the angular pro�le of the modes changes the oscillation equations (C.10) -
(C.11) only through a new de�nition of the Lamb frequency,

L2
l → L2

lm =
κ2

l + κ2
m

r2
c2. (C.15)
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C.2 Eigenmode Solutions

The oscillation equations (C.10) - (C.11) and boundary conditions pose an eigen-
mode problem. A nice discussion of the general properties of the eigenmodes
(which consist of an eigenvalue σ and eigenfunction {ξ(r), p′(r)}) is presented in
Kippenhahn & Weigert (1990, ch. 40).

For �nding eigenmode solutions, I use the same boundary conditions which
are imposed on the numerical simulation, i.e., I enforce the radial component of
the velocity to go to zero at the boundaries. These two boundary conditions (one
at either end of the domain) fully describe the problem. The eignvalue and the
eigenfunction are calculated using the shooting method in an iterative procedure,
starting the integration from the inner boundary. If the outer boundary condition
is not satis�ed, the eigenvalue (i.e., the modal frequency σ) is adjusted and the
integration is performed again. This procedure is iterated until a desired accuracy
in the eigenvalue is achieved.
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APPENDIX D

COMPUTATIONAL COSTS

The computational requirements and available computing resources play a cen-
tral role in planning multi-dimensional astrophysical simulation, especially those
in 3D. In this appendix I describe the main computational resources used for the
calculations presented in this thesis for posterity (and perhaps to humor our fu-
ture readers, who will surely note that our efforts have been eclipsed by the re-
lentless progress known as Moore's law1).

The calculations presented in this thesis were undertaken on three computing
clusters that were available on campus. The astronomy department's GRENDEL

cluster is out�tted with 50 nodes, each with 2 AMD Operton Processors @ 2GHz
clock speeds and 4GB system ram. Of these 50 nodes we ran most of our calcula-
tions on as many as 32 processors. On the MENDELEYEV Beowulf cluster, a sec-
ond cluster maintained by the Astronomy department, we have full time access to
32 AMD Athlon Processors @ 1.5 GHz clock speeds and 1GB ram/processor. In
addition to these two Astronomy department clusters we used the AURA cluster,
maintained by the University of Arizona's High Performance Computing (HPC)
division. AURA is an HP/Compaq Alpha GS1280 system with 256 EV7 proces-
sors @ 1.15 GHz clock speeds and 320GB of system memory. We have access to a
64 processor queue on AURA, on which we were able to secure about 50% of the
wall clock time.

The total wall clock time used for the largest three-dimensional simulation
1Some of the implications of Moore's law for large scale computations have been worked out

in Gottbrath et al. (1999)
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model that we have undertaken (Ntot = Ntime×Nspace ∼ 106× (4×106) ∼ 4×1012

space-time zones) is equivalent to 219 days on 32 processors using the GRENDEL

cluster (19.2 processor years). This calculation was spread out over the course of
about 2 years. The MENDELEYEV and AURA clusters are approximately 75% as
ef�cient as GRENDEL, although the slower network speed on the MENDELEYEV

cluster decreases its ef�ciency when using more than ∼20 processors. Moderate
resolution (Nzones = 4002) two-dimensional models of advanced burning stages
can be calculated for a good fraction of the nuclear evolutionary time in a week
using only 16 processors.

I have developed software to manage restarting, re-gridding, and tiling of
smaller domains into larger domains, allowing us to more ef�ciently relax models
and restart them for more expensive, higher resolution simulation after any initial
transients. Having access to multiple parallel computers, in addition to a variety
of single processor workstations, has allowed us to explore a variety of models
simultaneously.

In addition to the cluster-computing resources, three additional workstations
were used for data storage and analysis, each with dual 2GHz clock speed pro-
cessors and a total of 3+ TB of storage space. We also employ a DVD writer
for archiving simulation restart �les, reduced simulation data, and snapshots of
the most recent version of our codes. Data processing and analysis were under-
taken using a combination of the open source visualization program OpenDX (see
opendx.org for more information) and the proprietary package IDL (developed
by RSI), in addition to a variety of Fortran and C-language post-processing and
analysis software. The total raw data output from the simulations calculated dur-
ing the course of this thesis work is of order 2+ TB.
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Schwarzschild, M., Härm, R. 1958, ApJ, 128, 348

Smagorinsky, J. S., 1963, Mon. Weather Rev., 91, 99

Sorbjan, Z. 1996, Journal of Atmospheric Sciences, 53, 101

Spruit, H. C. 1992, A&A, 253, 131

Spruit, H. C. 2002, A&A, 381, 923

Staquet, C., & Sommeria, J. 2002, Annual Review of Fluid Mechanics, 34, 559

Stein, R.F. 1967, Solar Physics, 2, 385

Stein, R. F., & Nordlund, A. 1989, ApJL, 342, L95



174

Stevens, B. 2002, Quarterly Journal of the Royal Meteorological Society, 128, 2663

Stevens, D. E., & Bretherton, C. S. 1999, Quarterly Journal of the Royal Meteoro-
logical Society, 125, 425

Stevenson, D. J. 1979, MNRAS, 187, 129

Strang, E. J., & Fernando, H. J. S. 2001, Journal of Fluid Mechanics, 428, 349

Straniero, O., Chief�, A., Limongi, M., Busso, M., Gallino, R., Arlandini, C. 1997,
ApJ, 478, 332

Straniero, O., 2005, astro-ph/0501405

Stull, R. B. 1973, Journal of Atmospheric Sciences, 30, 1092

Stull, R. B. 1976, Journal of Atmospheric Sciences, 33, 1260

Stull, R. B. 1976, Journal of Atmospheric Sciences, 33, 1268

Styne, I., Porter, D. H., Woodward, P. R., Hodson, S. H., Winkler, K. H., 2000,
J. Chem. Phys.158, 225

Talon, S., & Charbonnel, C. 2003, A&A, 405, 1025

Talon, S., & Charbonnel, C., 2005, A&A, 440, 981.

Tennekes, H. 1974, Journal of Atmospheric Sciences, 30, 558

Thielemann, F. K., & Arnett, W. D. 1985, ApJ, 295, 604

Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501

Townsend, A. A. 1966, Journal of Fluid Mechanics, 24, 307



175

Turner, J. S., 1973, Buoyancy Effects in Fluids (Cambridge University, Cambridge,
England).

Turner, J. S. 1980, Buoyancy Effects in Fluids, by J. S. Turner, pp. 382. ISBN
0521297265. Cambridge, UK: Cambridge University Press, January 1980

Umezu, M., Saio, H. 2000, MNRAS, 316, 307

Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial oscilla-
tions of stars, Tokyo: University of Tokyo Press, 1989, 2nd ed.,

van den Hoek, L. B., & Groenewegen, M. A. T. 1997, A&AS, 123, 305

Walker, G., et al. 2003, PASP, 115, 1023

Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978, ApJ, 225, 1021

Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Reviews of Modern Physics, 74,
1015

Woosley, S. E., & Weaver, T. A. 1988, Phys. Rep., 163, 79

Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181

Yi, S. K. 2003, ApJ, 582, 202

Young, P. A. & Arnett, D. 2005, ApJ, 618, 908

Young, P. A., Knierman, K. A., Rigby, J. R., & Arnett, D. 2003, ApJ, 595, 1114

Young, P. A., Meakin, C., Arnett, D., Fryer, C., 2006, ApJ, 629, L101

Young, P. A., Fryer, C., Hungerford, A., Arnett, D., Rockefeller, G., Timmes, F. X.,
Voit, B., Meakin, C., Eriksen, K. A., 2006, ApJ, 640, 891



176

Zahn, J.-P. 1991, A&A, 252, 179

Zingale, M., et al., 2002, ApJS, 143, 539


