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ABSTRACT

I use X-ray and optical data to investigate the structure of quasars, and its de-

pendence on luminosity, redshift, black hole mass, and Eddington ratio. In order

to facilitate my work, I develop new statistical methods of accounting for mea-

surement error, non-detections, and survey selection functions. The main results

of this thesis follow. (1) The statistical uncertainty in the broad line mass esti-

mates can lead to significant artificial broadening of the observed distribution of

black hole mass. (2) The z = 0.2 broad line quasar black hole mass function falls

off approximately as a power law with slope ∼ 2 for MBH ∼> 108M¯. (3) Radio-

quiet quasars become more X-ray quiet as their optical/UV luminosity, black hole

mass, or Eddington ratio increase, and more X-ray loud at higher redshift. These

correlations imply that quasars emit a larger fraction of their bolometric luminos-

ity through the accretion disk component, as compared to the corona component,

as black hole mass and Eddington ratio increase. (4) The X-ray spectral slopes of

radio-quiet quasars display a non-monotonic trend with Eddington ratio, where

the X-ray continuum softens with increasing Eddington ratio until L/LEdd ∼ 0.3,

and then begins to harden. This observed non-monotonic trend may be caused

by a change in the structure of the disk/corona system at L/LEdd ∼ 0.3, possibly

due to increased radiation pressure. (5) The characteristic time scales of quasar

optical flux variations increase with increasingMBH , and are consistent with disk

orbital or thermal time scales. In addition the amplitude of short time scale vari-

ability decreases with increasing MBH . I interpret quasar optical light curves as

being driven by thermal fluctuations, which in turn are driven by some other un-

derlying stochastic process with characteristic time scale long compared to the

disk thermal time scale. The stochastic model I use is able to explain both short



16

and long time scale optical fluctuations.
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CHAPTER 1

INTRODUCTION

Shortly after the discovery that quasars1 lie at extragalactic distances (Schmidt,

1963; Sandage, 1965), it was proposed that they are powered by accretion onto a

supermassive black hole (SMBH, Salpeter, 1964; Lynden-Bell, 1969; Rees, 1984).

A succesful model for the nature of the quasar accretion process involves the

UV/optical continuum arising from a geometrically thin, optically thick cold ac-

cretion disk (e.g., Shakura & Syunyaev, 1973), and the X-ray continuum arising

from a hot, optically thin corona that Compton upscatters the disk UV photons

(e.g., Haardt & Maraschi, 1991). In radio-loud active galactic nuclei (AGN) the ra-

dio continuum arises from synchrotron emission from a jet (e.g., see Krolik, 1999a,

and references therein), and recently there is evidence that even radio-quiet ob-

jects possess weak jets or outflows (Leipski et al., 2006).

While it appears that the basic ingredients of the quasar engine are currently

understood, a number of uncertainties remain. First, a considerable amount of

our interpretation and understanding of AGN accretion disks, and consequently

their optical/UV emission, is based on the so-called α-prescription (Shakura &

Syunyaev, 1973). Within the standard α model, the viscosity, thought to be the

source of the thermal disk emission and outward transfer of angular momen-

tum in the disk, is parameterized as being proportional to the total disk pressure.

However, when the disk is dominated by radiation pressure, as thought to be the

case in the regions emitting the optical and UV flux in quasars (Krolik, 1999a), an

α-disk is both thermally and viscously unstable (Shakura & Sunyaev, 1976; Light-
1Throughout this thesis I will refer to quasars and Active Galactic Nuclei interchangeably; no

luminosity difference between the two objects is assumed
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man & Eardley, 1974). In particular, for a radiation pressure dominated disk, the

thermal instability is expected to grow exponentially on a time scale similar to

the thermal time scale. For AGN, this is tth ∼ 5 yrs, assuming typical parameters.

It seems odd that nature would be forced to make inherently unstable accretion

disks in AGN, and indeed there is no evidence for instabilities in the optical light

curves of AGN with time span ∼ tth (Collier & Peterson, 2001, see also Chapter 8).

This fact is also played out in 3-dimensional magneto-hydrodynamic simulations

of radiation pressure-dominated AGN accretion disks, where no thermal insta-

bility is seen (e.g., Turner, 2004). Moreover, the most promising physical mecha-

nism behind the viscous torque is the magneto-rotational instability (MRI, Balbus

& Hawley, 1991, 1998), and recent numerical and analytical work has suggested

that the α prescription may be a poor representation for MRI-driven viscosity

(Pessah et al., 2008).

In addition, the standard disk model of Shakura & Syunyaev (1973) is unable

to explain the X-ray emission from AGN, as the accretion disk temperature is

too cold to produce the large amount of X-ray photons. Currently, the accepted

model involves Compton upscattering of UV disk photons by a hot, optically thin

corona, possibly heated by bouyant magnetic fields escaping the disk (Miller &

Stone, 2000). One of the current important uncertainties in the source of the X-ray

emission is its geometry, and possibilities include an accretion disk that evapo-

rates into a hot inner flow (e.g., Shapiro et al., 1976; Zdziarski et al., 1999), a hot

ionized ‘skin’ that sandwiches the cold disk (the ‘slab’ geometry, e.g., Bisnovatyi-

Kogan & Blinnikov, 1977; Liang & Price, 1977; Nayakshin, 2000), a combination of

a hot inner flow and a corona that sandwiches the disk (e.g., Poutanen et al., 1997;

Sobolewska et al., 2004a), or a patchy corona, consisting of a number of hot spots

above the accretion disk (e.g., Galeev et al., 1979; Malzac et al., 2001; Sobolewska
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et al., 2004b). In addition, radiation pressure from the UV photons may drive an

outflow from the disk into the corona (Proga, 2005), coupling the two processes.

In highly accreting objects, like quasars (0.01 ∼< Lbol/LEdd ∼< 1, e.g., Woo & Urry,

2002; Vestergaard, 2004; McLure & Dunlop, 2004; Kollmeier et al., 2006), the X-ray

plasma geometry is expected to be in the slab geometry, but the evidence for this

is by no means conclusive.

Another salient feature of AGN is variability. Aperiodic variability across all

wavebands is ubiquitous in AGN, with the most rapid variations occuring in the

X-rays (for a review, see Ulrich et al., 1997). However, the physical mechanism

that drives the variability is unclear. Recent results from reverberation mapping

have shown that the broad emission lines respond to variations in the contin-

uum emission after some time lag (e.g., Peterson et al., 2004), implying that the

optical/UV continuum variations are dominated by processes intrinsic to the ac-

cretion disk. In addition, a successful model for quasar X-ray variability describes

the X-ray variations as being the result of perturbations in the accretion rate that

occur outside of the X-ray emitting region and then travel inwards, modulating

the X-ray emission (e.g., Lyubarskii, 1997; Mayer & Pringle, 2006; Janiuk & Cz-

erny, 2007). If the optical/UV variations are intrinsic to the accretion disk, then

thermal fluctuations appear to be a natural choice for driving the optical/UV

variations, as the optical/UV emission is thought to be thermal emission from

the accretion disk. The fact that quasars become bluer as they brighten is consis-

tent with a thermal origin (e.g., Giveon et al., 1999; Trèvese et al., 2001; Geha et

al., 2003). However, as noted above, the standard α disks are unstable to ther-

mal fluctuations when they are dominated by radiation pressure. As such, the

variations in quasar optical flux are a powerful probe of accretion disk physics.

The correlation between SMBH mass and both host galaxy luminosity (e.g.,
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Kormendy & Richstone, 1995; Magorrian et al., 1998; McLure & Dunlop, 2001;

Marconi & Hunt, 2003) and stellar velocity dispersion (MBH–σ relationship, e.g.,

Gebhardt et al., 2000a; Merritt & Ferrarese, 2001; Tremaine et al., 2002), together

with the fact that quasars have been observed to reside in early-type galaxies

(McLure et al., 1999; Kukula et al., 2001; McLeod & McLeod, 2001; Nolan et

al., 2001; Percival et al., 2001; Dunlop et al., 2003), implies that the evolution of

spheroidal galaxies and quasars is intricately tied together (e.g., Silk & Rees, 1998;

Haehnelt & Kauffmann, 2000; Merritt & Poon, 2004; Di Matteo et al., 2005; Hop-

kins et al., 2006a). Recently, there have been attempts to link the evolution of

SMBHs to analytic and semi-analytic models of structure formation (e.g., Kauff-

mann & Haehnelt, 2000; Hatziminaoglou et al., 2003; Bromley et al., 2004), where

black holes grow by accreting gas funneled toward the center during a galaxy

merger until feedback energy from the SMBH expels gas and shuts off the accre-

tion process (e.g., Silk & Rees, 1998; Fabian, 1999; Wyithe & Loeb, 2003; Begelman

& Nath, 2005). This ‘self-regulated’ growth of black holes has recently been suc-

cessfully applied in smoothed particle hydrodynamics simulations (Di Matteo et

al., 2005; Springel et al., 2005). Within this framework, the AGN or quasar phase

occurs during the episode of significant accretion that follows the galaxy merger,

persisting until feedback from the black hole ‘blows’ the gas away (e.g., Hop-

kins et al., 2006b). Alternatively, mergers alone do not appear to be enough to

reproduce the number of faint AGN (e.g., Marulli et al., 2007), and accretion of

ambient gas (e.g., Ciotti & Ostriker, 2001; Hopkins & Hernquist, 2006), may fuel

these fainter, lower MBH AGN at lower z, resulting in a different growth mecha-

nism for these SMBHs.

Quasar feedback has also been invoked in areas outside of black hole growth

(for example, see the discussion by Elvis, 2006). Quasar feedback may quench
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star-formation in mergers of gas-rich galaxies by reheating the cold gas and form-

ing winds (e.g., Silk & Rees, 1998; Di Matteo et al., 2005). As noted by Elvis (2006),

powerful winds generated by AGN feedback may contribute to the enrichment

of the intergalactic medium (IGM) seen in both the Lyman-α forest (e.g., Pettini,

2004) and the ‘X-ray forest’ (e.g., Nicastro et al., 2005). Recent observational work

has found evidence for both the quenching of star formation (e.g., Bundy et al.,

2006) and the existence of high velocity (∼ 1000 km s−1) winds in post-starburst

galaxies (Tremonti et al., 2007). In addition, quasar winds may provide a source

of dust (Elvis et al., 2002a). This is especially important at high redshift, where

dust is expected to be important for enhanced star formation (Hirashita & Fer-

rara, 2002). Indeed, large amounts of dust are seen in high-z quasars (e.g., Omont

et al., 2001; Jiang et al., 2006b; Wang et al., 2008), and how dust can form this early

is a significant problem (Edmunds & Eales, 1998). Formation of dust through a

quasar wind provides a possible explanation. Finally, mechanical feedback via a

quasar jet has been invoked to simultaneously explain the lack of massive ellipti-

cal galaxies and the halting of cooling flows (e.g., Croton et al., 2006).

Feedback from the central quasar can be injected through both radiative pro-

cesses and mechanical processes, such as a jet or wind. Figure 1.1 illustrates the

effects of quasar feedback. Considering the potential importance of AGN feed-

back in regulating the growth and evolution of the SMBH and host galaxy, as well

as the evolution and enrichment of the surrounding IGM, it is of significant inter-

est to understand how the quasar SED depends on the structure of the accretion

disk system, black hole mass, and accretion rate. Hydrodynamic calculations of

accretion flows have shown that the efficiency of the quasar in driving an out-

flow depends on the fraction of energy emitted through he UV/disk component

as compared to the X-ray/corona component (Proga, 2007). The disk component
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produces luminosity in the UV, which is responsible for driving an outflow via

radiation pressure on lines, whereas the corona component produces luminosity

in the X-rays, which is responsible for driving an outflow via thermal expan-

sion. Calculations by Proga (2007) have shown that radiation driving produces

an outflow that carries more mass and energy than thermal driving. If the effi-

ciency of black hole feedback depends on the quasar SED, any dependence of the

quasar SED on MBH and the accretion rate relative to Eddington, ṁ, has poten-

tially important consequences for models of quasar feedback, black hole growth,

and galaxy evolution. In particular, if quasars become more X-ray quiet at high

ṁ or MBH , then it may become more difficult to grow the most massive SMBHs.

Unfortunately, as is often the case in astronomy, there is a large gap between

what we can do theoretically, and what is possible observationally. Quasars are

certainly no exception to this, and indeed, in many ways the situation is more dif-

ficult for these objects. It is often cynically noted by those outside of the field of

AGN research that although we have known of these objects for over 50 years, we

still don’t really understand how they work. Considering that all of our knowl-

edge of quasars is derived from the photons we detect, and that it is often difficult

to obtain these photons, especially for the most interesting bands (i.e., the ultra-

violet and X-ray), it is not surprising that it has been difficult for observations

to shed light on the physics governing these complex objects. In spite of this,

progress has been made in understanding the quasar engine, and intensive stud-

ies of some individual bright objects at low-z have been possible. Unfortunately,

intensive studies are significantly more difficult for the fainter, higher redshift

AGN with larger MBH . Instead, progress has often been made through the anal-

ysis of the distribution of quasar luminosities, or through correlations involving

various summaries of quasar emission, such as the ratio of flux in two different
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Figure 1.1 Diagram illustrating quasar feedback. First, matter is funneled toward

the black hole and accreted by it (left). The accreted material then generates ra-

diative feedback via the conversion of gravitational potential energy to radiation,

and mechanical feedback via the formation of an outflow, such as a jet or wind

(middle). The radiative feedback injects energy into the surrounding ISM, which

heats and expels the accreting gas, halting the black hole’s growth (right). In

addition, radiative feedback heats the ambient ISM, quenching star formation,

and mechanical feedback from a jet increases the temperature of the ICM, halting

cooling flows and the accretion of gas onto massive elliptical galaxies.
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bands.

Numerous correlations involving quasar properties have been found in pre-

vious work, and here I only summarize the most salient of those relevant to this

thesis. Further information on previous work can be found in the introductions

to each chapter. First, it has been noted by numerous authors that radio-quiet

quasars become more X-ray quiet as their optical/UV luminosity increases (e.g.,

Avni & Tananbaum, 1986; Wilkes et al., 1994; Bechtold et al., 2003; Strateva et al.,

2005; Just et al., 2007, and references therein). In addition, a number of previous

studies have found evidence that quasars become less variable as their luminos-

ity increases (e.g., Hook et al., 1994; Giveon et al., 1999; Vanden Berk et al., 2004;

de Vries et al., 2005, and references therein), and more variable at increasing rest

frame wavelength (e.g., Cutri et al., 1985; di Clemente et al., 1996; Helfand et al.,

2001; Vanden Berk et al., 2004). While correlations among luminosity measures

are important, ideally one would like to investigate how quasar emission de-

pends on more fundamental parameters, such as black hole mass and Eddington

ratio.

Perhaps one of the most important advances in observational quasar research

over the past decade has been the development of reverberation mapping of

quasar broad emission lines. Reverberation mapping (Blandford & McKee, 1982;

Peterson, 1993) is often used to estimate SMBH mass, MBH , in Type 1 AGN (e.g.,

Wandel et al., 1999; Peterson et al., 2004). The basic idea behind this technique

is measure the time lag between variations in the emission line flux and in the

continuum flux. This time lag is then used to estimate the distance between the

gas emitting the broad emission lines, and the central continuum source (i.e., the

accretion disk). Under the assumption that the broad line region (BLR) is in Ke-

plerian motion, the time lag is combined with the line width to give an estimate
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of SMBH mass. This, in principal, makes it immediately applicable for both faint

and distant quasars. Although there are many potential systematic uncertainties

in the technique (Krolik, 2001), there has been good agreement between SMBH

masses inferred from reverberation mapping and those inferred from the stellar

velocity dispersion (Gebhardt et al., 2000b; Ferrarese et al., 2001; Nelson et al.,

2004; Onken et al., 2004).

Unfortunately, reverberation mapping requires long-term intensive monitor-

ing, which is not practical for large samples. Fortunately, a correlation has been

found that relates the BLR size and monochromatic continuum luminosity (the

R–L relationship, Kaspi et al., 2000; Bentz et al., 2006), making it possible to

estimate virial masses from single-epoch spectra (e.g., Wandel et al., 1999; Vester-

gaard, 2002; McLure & Jarvis, 2002; Vestergaard & Peterson, 2006). This there-

fore opens up the possibility of not only investigating how quasar emission fea-

tures depend on fundamental parameters, such as MBH , but also of mapping the

growth of SMBHs in the quasar phase. However, broad line estimates of MBH

based on single-epoch spectra can have significant statistical uncertainties (∼ 0.4

dex, e.g., Vestergaard & Peterson, 2006), a fact which must be kept in mind when

attempting to derive information from these estimates.

Motivated by the potential in recent advances in estimating MBH for helping

to further our understanding of various outstanding issues in quasar research,

I have attempted in this thesis to place some observational constraints on the

structure and physics of the quasar accretion disk, the distribution and growth of

SMBHs in AGN, and how quasar structure is important within the larger context

of AGN feedback and galaxy evolution. Specifically, I have attempted to answer,

at least partially, the following questions:

• How does the statistical uncertainty in estimates ofMBH derived from the
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broad emission lines affect conclusions based on these estimates? Are

mass estimates derived from the Hβ and C IV emission lines consistent?

In Chapter 2 I describe a formalism that describes how to calculate virial

estimates of MBH from single-epoch spectra of broad line AGN, with an

emphasis on the role that uncertainty in MBH plays in drawing conclusions

from these estimates. I also show that mass estimates derived from the Hβ

and C IV emission lines are consistent.

• How does one correct for the significant measurement errors that can bias

the analysis of correlations, especially in the presence of non-detections?

In Chapter 3 I describe the effects that measurement error can have on ob-

served correlations, and the biases that can result from improperly correct-

ing for measurement error. I also derive a Bayesian approach to linear re-

gression that is able to correct for measurement error in both the dependent

and independent variable, even when some of the values of the dependent

variable are only upper or lower limits.

• How does one estimate the distribution of luminosities for a population

of astronomical objects in the presence of a selection function? Similarly,

how does one derive the distribution of MBH from a set of estimates of

MBH derived from the broad emission lines, when one’s sample is se-

lected based on flux densities? In Chapter 4 I describe a flexible Bayesian

approach to estimating luminosity functions, and in Chapter 5 I extend this

approach to also estimate the broad line quasar black hole mass function.

The approach is able to correct for a selection function and the large intrinsic

uncertainties in the broad line estimates of MBH . I conclude these Chapters

by applying the technique to sources from the Bright Quasar Survey (BQS,
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Schmidt & Green, 1983) in order to estimate the local mass function of broad

line AGN.

• How does the quasar optical–UV–X-ray SED correlate with luminosity?

Does the quasar SED evolve? How does the quasar SED depend on MBH

and ṁ, and what does this imply about the disk/corona system and quasar

feedback? In Chapter 6 I use new Chandra observations of faint high-z

radio-quiet quasars, in combination with a z < 4 comparison sample drawn

from the Sloan Digital Sky Survey (SDSS), to investigate the dependence of

X-ray loudness on UV luminosity and redshift. In addition, I also investi-

gate the dependence of the spectral slope of the X-ray continuum, ΓX , on

luminosity and redshift. In Chapter 7 I investigate the dependence of X-

ray loudness and ΓX on MBH and Eddington ratio, and discuss the impli-

cations for quasar feedback and the structure of the disk/corona system. I

also argue that the observed evolution in the optical–UV–X-ray SED is likely

driven by the SED’s dependence on MBH .

• What is the nature of quasar optical flux variations? Is there any evidence

for a characteristic time scale of the optical variations, and do the prop-

erties of quasar variability depend on MBH or Eddington ratio? What

does this tell us about the physical properties of the accretion disk? In

Chapter 8 I model the optical light curves of quasars as a stochastic process,

parameterized with a characteristic time scale and amplitude of short time

scale variability. I compare the characteristic time scale and magnitude of

AGN optical variations with luminosity, redshift, MBH , and Eddington ra-

tio. I interpret the quasar optical variations as being the result of thermal

fluctuations in the accretion disk, which are in turn driven by a different
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stochastic process with characteristic time scale much longer than the ther-

mal time scale. I also argue that this stochastic model is able to explain both

short and long time scale optical flux variations.

Although I summarize the conclusions for each chapter at the end of that chapter,

in Chapter 9 I also summarize some of most important points from this thesis. In

addition, in Chapter 9 I describe directions for my current and planned future

work, which builds on my work described in this thesis.
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CHAPTER 2

VIRIAL MASSES OF BLACK HOLES FROM SINGLE EPOCH SPECTRA OF AGN

2.1 CHAPTER ABSTRACT

We describe the general problem of estimating black hole masses of AGN by

calculating the conditional probability distribution of MBH given some set of ob-

servables. Special attention is given to the case where one uses the AGN con-

tinuum luminosity and emission line widths to estimate MBH , and we outline

how to set up the conditional probability distribution of MBH given the observed

luminosity, line width, and redshift. We show how to combine the broad line

estimates of MBH with information from an intrinsic correlation between MBH

and L, and from the intrinsic distribution of MBH , in a manner that improves

the estimates of MBH . Simulation was used to assess how the distribution of

MBH inferred from the broad line mass estimates differs from the intrinsic dis-

tribution, and we find that this can lead to an inferred distribution that is too

broad. We use these results and a sample of 25 sources that have recent re-

verberation mapping estimates of AGN black hole masses to investigate the ef-

fectiveness of using the C IV emission line to estimate MBH and to indirectly

probe the C IV region size–luminosity (R–L) relationship. A linear regression of

logLλ(1549Å) on logMBH found that L1549 ∝ M1.17±0.22
BH . A linear regression also

found that MBH ∝ L0.41±0.07
1549 FWHM 2

CIV , implying a C IV R–L relationship of the

form RCIV ∝ L0.41±0.07
1549 . Including the C IV line FWHM resulted in a reduction of

a factor of ∼ 1/3 in the error in the estimates of MBH over simply using the con-

tinuum luminosity, statistically justifying its use. We estimated MBH from both C

IV and Hβ for a sample of 100 sources, including new spectra of 29 quasars. We

find that the two emission lines give consistent estimates if one assumesR ∝ L
1/2
UV
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for both lines.

2.2 CHAPTER INTRODUCTION

It is widely accepted that the extraordinary activity associated with quasars in-

volves accretion onto a supermassive black hole (SMBH). Furthermore, the evi-

dence that almost all massive galaxies host SMBHs has become quite convincing.

It has been found that SMBH mass is correlated with the host galaxy’s bulge lu-

minosity (e.g., Kormendy & Richstone, 1995; Magorrian et al., 1998; McLure &

Dunlop, 2001; Marconi & Hunt, 2003) as well as the stellar velocity dispersion

(e.g., Gebhardt et al., 2000a; Merritt & Ferrarese, 2001; McLure & Dunlop, 2002;

Tremaine et al., 2002). Because luminous quasars have been observed to reside

in massive early-type galaxies (McLure et al., 1999; Kukula et al., 2001; McLeod

& McLeod, 2001; Nolan et al., 2001; Percival et al., 2001; Dunlop et al., 2003), this

implies that the evolution of spheroidal galaxies and quasars is intricately tied to-

gether (e.g., Silk & Rees, 1998; Haehnelt & Kauffmann, 2000; Adams et al., 2001;

Merritt & Poon, 2004; Di Matteo et al., 2005). Therefore, understanding the cosmic

evolution of SMBHs is an important task of modern astronomy.

Reverberation mapping (Blandford & McKee, 1982; Peterson, 1993) is often

used to estimate SMBH mass, MBH , in Type 1 active galaxies (Wandel et al., 1999;

Kaspi et al., 2000; Peterson et al., 2004). One of the principal advantages of this

method is that it does not require high spatial resolution, but rather relies on

the time lag between the continuum and emission line variability. Under the as-

sumption that the broad line region (BLR) is in Keplerian motion, the time lag is

combined with the line width to give an estimate of SMBH mass. This, in princi-

pal, makes it immediately applicable for both faint and distant quasars. Although

there are many potential systematic uncertainties in the technique (Krolik, 2001),
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there has been good agreement between SMBH masses inferred from reverbera-

tion mapping and those inferred from the stellar velocity dispersion (Gebhardt et

al., 2000b; Ferrarese et al., 2001; Nelson et al., 2004; Onken et al., 2004).

Unfortunately, reverberation mapping requires long-term intensive monitor-

ing, which is not practical for large samples. In addition, the long time scales

for variability in bright high redshift sources make reverberation mapping for

these sources unfeasable. Fortunately, a correlation has been found that relates

the BLR size and monochromatic continuum luminosity (the R–L relationship,

Kaspi et al., 2000, 2005), making it possible to estimate virial masses from single-

epoch spectra using the Hβ width (Wandel et al., 1999). In addition, Wu et al.

(2004) find a relationship between BLR size and the luminosity of Hβ, but Woo

& Urry (2002) do not find any correlation between SMBH mass and bolometric

luminosity. Hβ is redshifted into the near-infrared at z ∼ 0.9, making it difficult

to observe from the ground for large samples. Vestergaard (2002) and McLure &

Jarvis (2002) have argued for the use of C IV and Mg II, respectively, to estimate

virial masses from single-epoch spectra, allowing quasar SMBH masses to be es-

timated at high z from the ground. Many studies have exploited these results

and estimated SMBH masses for large samples of quasars (e.g., Bechtold et al.,

2003; Corbett et al., 2003; Warner et al., 2003; Vestergaard, 2004; McLure & Dun-

lop, 2004; McLure & Jarvis, 2004). Dietrich & Hamann (2004) have found that

the estimates based on Hβ and C IV agree well for high z quasars, whereas Mg

II-based estimates are typically a factor of ∼ 5 times lower. In constrast to this,

Shemmer et al. (2004) and Baskin & Laor (2005) argue that C IV does not give as

accurate of an estimate of SMBH mass as Hβ.

Previous methods that utilize single-epoch spectra have relied on empirical

linear relationships that estimate the BLR size for a given source luminosity, and
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then use this estimate of R in the virial relationship. Although this will give

good estimates for R, this may give less efficient estimates for SMBH mass. The

reason for this is that the luminosity may also be correlated withMBH in a manner

independent of the R–L relationship, such as through the accretion process. By

only using the luminosity as a proxy for R when estimating MBH , one is ignoring

the additional information of MBH that is contained within L. In other words,

the standard broad line estimates are based on the distribution of velocities at

a given luminosity and MBH , as folded through the R–L correlation and under

the assumption of Keplerian motion. However, the distribution of black hole

masses at a given luminosity and line width is not simply obtained by inverting

the distribution of velocities at a given luminosity and black hole mass, unless L

and MBH are statistically independent.

Recent studies have found evidence for a correlation between luminosity and

black hole mass (e.g., Corbett et al., 2003; Netzer, 2003; Peterson et al., 2004), sug-

gesting that black hole mass and luminosity are not statistically independent.

However, in contrast to other studies, Woo & Urry (2002) have argued that there

is no significant correlation between bolometric luminosity and MBH . If a corre-

lation between MBH and L exists, then we can combine the MBH–L correlation

with the broad line mass estimates to obtain, on average, more accurate estimates

of MBH for a given luminosity and line width.

In this work, we outline a formalism that allows one to estimate the probabil-

ity distribution of an AGN’s black hole mass, given some set of observables. We

focus on the special case of estimatingMBH given some monochromatic luminos-

ity, Lλ, and the width of an emission line. We also search for other parameters of

the C IV line that may contribute additional information of MBH , thus decreasing

the uncertainty in the estimated MBH . Although it is possible to include other



33

quasar properties, such as radio loudness, X-ray loudness, or variability (e.g., Xie

et al., 2005; O’Neill et al., 2005; Pessah et al., 2006), for simplicity we have cho-

sen to only include parameters that may be measured from a single spectrum

containing C IV. This allows MBH to be estimated using only one spectrum, and

it is thus not necessary to compile observations from several different spectral

regions.

We use the formalism developed here to justify using the C IV line width in

estimating MBH , and attempt to indirectly infer the C IV R–L relationship. We

have chosen the C IV line because it is readily observable from the ground over

a wide range in redshift (1.5 ∼< z ∼< 4.5), is less effected by blends with iron and

other lines, has shown to give consistent mass estimates with Hβ (Vestergaard,

2002), is commonly employed to estimate SMBH mass, and archival UV spectra

are available for most of the sources with reverberation-based masses (Peterson

et al., 2004). Despite its common usage, the R–L relationship for C IV is mostly

unexplored, as there are only seven data points with reliable C IV reverberation

mapping data (Peterson et al., 2005). Often it is assumed that C IV BLR size

has the same dependence on luminosity as Hβ (e.g., Vestergaard, 2002; Netzer,

2003; Vestergaard & Peterson, 2006). Another possibility is to assume R ∝ L1/2,

as predicted from simple photoionization theory or if the BLR size is set by the

dust sublimation radius (Netzer & Laor, 1993); this was done by Wandel et al.

(1999) and Shields et al. (2003) for the Hβ line. Peterson et al. (2005) performed

a linear regression using five AGN with a total of seven data points and find

R ∝ L0.61±0.05
UV , similar to that for the Balmer lines1. Unfortunately, this result

is almost entirely dependent on the inclusion of NGC 4395, the least luminous

known Seyfert 1 galaxy, since the data points for the other AGN are clustered
1This value appears in an erratum to this paper
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around λLλ(1350Å) ≈ 1043.75 ergs s−1. Vestergaard & Peterson (2006) found that

using the C IV line to calculate black hole masses assumingR ∝ L0.53
UV gave results

consistent with masses obtained by reverberation mapping.

The layout of the paper is as follows. In § 2.3 we describe the general problem

of estimating SMBH mass from single-epoch spectra, and in § 2.4 we describe

our two samples. The first sample is a set of 25 quasars with black holes from

reverberation mapping and archival UV spectra, and the second sample is a set of

100 quasars for which we have spectra containing both the Hβ and C IV emission

lines. In § 2.5 we describe the method we employ to estimate the emission line

parameters. In § 2.6 we test if any other UV or C IV parameters contribute useful

information aboutMBH . In § 2.7.1 we use the sample with reverberation mapping

data to investigate the MBH–L relationship, and in § 2.7.2 we test if including the

C IV line FWHM is preferred by this sample and investigate the nature of the C

IV R–L relationship. In § 2.8 we use our larger sample to compare estimates of

MBH obtained from both single-epoch Hβ and C IV. We summarize our results in

§ 2.9.

In this work we adopt the WMAP best-fit cosmological parameters (h = 0.71,Ωm =

0.27,ΩΛ = 0.73, Spergel et al., 2003). We will use the common statistical notation

where a point estimate of a quantity is denoted by placing aˆabove it, e.g., M̂BH

would be an estimate of MBH . We will also commonly refer to the bias of an

estimate, where the bias of M̂BH is Bias = E(M̂BH) − MBH . Here, E(M̂BH) is

the expectation value of M̂BH . An unbiased estimate of MBH is one such that

E(M̂BH) = MBH .
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2.3 ESTIMATING BLACK HOLE VIRIAL MASSES

If one assumes that the BLR gas is in Keplerian motion, then the mass of the

central black hole, MBH , may be estimated from the virial theorem :

MBH = f
RV 2

G
. (2.1)

Here R is the distance between the BLR that is emitting a particular line and the

central continuum source, V is the velocity dispersion of the line-emitting gas,

and G is the gravitational constant. The velocity dispersion is inferred from the

width of the line, quantified using either the FWHM or line dispersion, σ∗. The

factor f is a scaling factor that converts the virial product, RV 2/G, to a mass.

Typically, f has been set to the value appropriate for an isotropic velocity field,

where f = 3/4 if one uses the broad line FWHM to estimate V (e.g., Netzer,

1990a); however, there may be systematic effects that can significantly effect the

value of f (Krolik, 2001). Onken et al. (2004) used the correlation between MBH

and stellar velocity dispersion to estimate an average scale factor of 〈f〉 = 5.5

when the line dispersion is used to estimate V . For simplicity, in the rest of this

work we will assume f = 1, so that what is really being estimated is the virial

product. After estimating the virial product, we can convert it to a mass using

any adopted value of f .

2.3.1 Estimating MBH from Reverberation Mapping

For the case of reverberation mapping, estimating MBH is straightforward. The

BLR size, R, can be estimated as cτ , where c is the speed of light and τ is either

the peak or the centroid of the line–continuum cross-correlation function. The

velocity dispersion of the line-emitting gas, V , is estimated from the width of the

broad emission line as measured in the variable part of the spectrum. Measuring

V from the variable (RMS) spectrum ensures that one is probing the line emission
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that is actually varying, i.e., the BLR gas that is at the distance cτ . One then uses

cτ and V in Equation (2.1) to estimate MBH . See Peterson et al. (2004) for recent

reverberation mapping results.

2.3.2 Estimating MBH from Single-Epoch Spectra

Estimating MBH from a single-epoch spectrum (SES) is a somewhat different

problem for several reasons. In this section we illustrate why the SES case is

different, and provide a general formalism for calculating the conditional proba-

bility distribution of MBH , given a set of observables.

In the single-epoch case, one cannot directly observed the BLR size, but in-

stead employs a correlation between R and continuum luminosity. However,

there is considerable scatter in theR–L relationship, which is propogated through

when using L instead ofR to estimateMBH . In this case, the conditional probabil-

ity distribution of MBH , given the broad line estimate, is broad, typically a factor

of a few (Vestergaard, 2002; Kaspi et al., 2005). This scatter can be reduced by

incorporating information about MBH from other observables. In the more gen-

eral case, one may have several parameters that contain information about MBH ,

such as emission line width, variability, luminosity, etc. For example, Merloni

et al. (2003) have found evidence that black hole mass is correlated with X-ray

and radio luminosity. In this case, one could combine the information from the

line width, UV luminosity, X-ray luminosity, and radio luminosity to obtain an

estimate of MBH that is more accurate than would have be obtained solely from

some subset of these parameters.

To be more specific, suppose that one has a set of observables, denoted by X .

Then, given the observables, X , the conditional probability of MBH given X is
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given by Bayes’ Formula

p(MBH |X) =
p(X|MBH)p(MBH)

p(X)
, (2.2)

where p(MBH) is the intrinsic probability distribution of MBH for a sample, and

p(X) is the distribution of the observables; p(X) is just a normalizing constant

and may be ignored.

In this work we are concerned with the distribution ofMBH given L, the emis-

sion line width, and redshift. For this case, Equation (2.2) becomes

p(m|l, v, z) ∝ p(v|l,m, z)p(l|m, z)p(m|z). (2.3)

Here, we are using the notation, m ≡ logMBH , l ≡ log λLλ, and v ≡ log V . The

first term, p(v|l,m, z), is the distribution of line widths at a given l, m, and z. The

second term, p(l|m, z), is the distribution of luminosities at a given m and z. The

last term, p(m|z), is the distribution ofm at a given redshift. As we will show later

in this section, p(v|l,m, z) is obtained by plugging the R–L relationship into the

Virial theorem (Eq.[2.1]). This is the standard method of estimatingMBH from the

broad lines, but it implicitly assumes p(m|l, v, z) ∝ p(v|l,m, z), and therefore that

p(m|z) and p(l|m, z) are uniform. Taking p(m|z) and p(l|m, z) to be uniform results

in a broader distribution ofMBH , given L, V, and z, and thus a less efficient, albeit

still unbiased, estimate of MBH . However, by incorporating information on both

the distribution of luminosities at a given black hole mass and redshift, and the

distribution of MBH at a given redshift, one can obtain a better estimate of MBH .

To estimate a functional form for p(l|m) and p(v|l,m, z), suppose we observe

some quasar with SMBH mass MBH at a redshift z, where m is drawn from some

probability density p(m|z), m|z ∼ p(m|z). We assume that the accretion process

for this source generates a luminosity, Lλ ∝M
αm(z)
BH , by

l|m, z = α0 + αm(z)m+ εl(z,m). (2.4)
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Here, α0 is some constant of proportionality, and εl(z,m) is the random error term

representing the scatter about this relationship. We will refer to Equation (2.4) as

the MBH–L relationship. The stochastic term, εl(z,m), encompasses variations at

a given MBH in the accretion rate (Ṁ ), radiative efficiency (ε), source inclination,

bolometric correction (Cbol), etc.; since we do not observe these quantities we

model them as being random. For now, we allow the logarithmic slope, αm, to

depend on z, and the random error to depend on z and MBH .

The parameter αm can be predicted from accretion physics. The radiated bolo-

metric luminosity from an accretion flow can be written as

L = (1.26 × 1031)εṁ
MBH

M¯

W, (2.5)

where ṁ = Ṁ/Ṁedd is the accretion rate normalized to Eddington. If one assumes

Lλ = CbolL, then from Equation (2.5) it follows that for this case αm = 1 and

εl = log ε+ log ṁ+ logCbol. A more careful analysis of the thin disk case suggests

λLλ ∝ (MBHṀ)αm , αm = 2/3, after employing some simplifying approximations

(e.g., Collin et al., 2002).

Given this luminosity, the BLR distance R is assumed to be set by the lumi-

nosity according to the R–L relationship, R ∝ Lθl :

r|l, z = θ0 + θll + εr(z). (2.6)

Similar to above, r ≡ logR and εr(z) is the stochastic component. In Equation

(2.6) we assume that given L, R is independent of MBH . In addition, we have not

assumed any redshift dependence for θl because it is likely that the form of the

R–L relationship is independent of z (Vestergaard, 2004). However, in Equation

(2.6) we have allowed for the possibility of a redshift dependence for εr as the the

intrinsic scatter in the R–L relationship may depend on z.
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Simple photoionization theory predicts that R ∝ L
1/2
ion , where Lion is the lu-

minosity of the ionizing continuum (e.g., Wandel et al., 1999; Kaspi et al., 2000).

From the definition of the ionization parameter, U , it follows that

2r = logLion − log(4πc) − logU − log ne − log Ē, (2.7)

where Ē is the average energy of an ionizing photon and ne is the BLR gas density.

If we make the simplifying assumptions that r is set by Equation (2.7), Lλ ∝ Lion,

and the means of the distributions of U, ne, and Ē are independent of Lλ, then

comparison with Equation (2.6) shows that θl = 1/2 and εr = − logU − log ne −

log Ē. If this is not the case, but rather the means of the distributions of U, ne, and

Ē have a power-law dependence on Lion, then Equation (2.7) is still valid, but in

general θl 6= 1/2. Either way, in this model the scatter about the R–L relationship

is partly the result of variations in U, ne, and Ē. Other sources of scatter may

include variations in the conversion between Lλ and Lion, source inclination, and

the non-instantaneous response of the BLR to continuum variations.

If R is set by the dust sublimation radius, then we also expect θl = 1/2 (Netzer

& Laor, 1993), but in this case R ∝ L1/2. A relationship of the form R ∝ L
1/2
λ is

consistent with the results of Peterson et al. (2004) for the Balmer lines if one uses

the UV continuum luminosity.

Finally, from Equation (2.1) the observed SES line width depends on R and

MBH as

v|r,m = v0 −
1

2
r +

1

2
m+ εv, (2.8)

where, v0 = log(
√
G/fSES), and εv is the stochastic term. The term fSES converts

the SES line width measurement into a velocity dispersion, and εv describes ran-

dom deviations of single-epoch v from that for the RMS spectrum. Vestergaard

(2002) has found that the single-epoch Hβ FWHM and the RMS Hβ FWHM
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are consistent with a scatter of ∼ 20%, if one does not subtract the SES Hβ nar-

row component. When the FWHM is used, fSES ≈ 1/2. Through the stochastic

terms εl, εr, and εv, Equations (2.4), (2.6), and (2.8) define the conditional proba-

bility densities that describe how L and V depend on MBH , and how R depends

on L.

It is useful to examine the special case of Gaussian error terms, εl, εr, and εv,

and Gaussian p(m|z). In this case, the distribution of m at a given l and v is

also normal. If we assume that εl, εr, and εv are uncorrelated, have zero mean,

and variances σ2
l , σ

2
r , and σ2

v , respectively, then the optimal estimate of m is the

mean of p(m|l, v, z), µ. If we make the further assumption that εl, εr, and εv are

independent of m and z, and that αm does not depend on z, then p(m|l, v, z) takes

a particularly simple form. The mean of p(m|l, v, z) may be calculated from the

properties of the normal distribution (e.g., Gelman et al., 2004) as

µ =
m̂BL/σ

2
BL + m̂ML/σ

2
ML + m̄(z)/σ2(z)

1/σ2
BL + 1/σ2

ML + 1/σ2(z)
. (2.9)

Here, m̂BL = mBL
0 + θll + 2v is the standard broad line mass estimate, found by

plugging Equation (2.6) into Equation (2.8), mBL
0 = θ0 − 2v0, σ2

BL = σ2
r + 4σ2

v is the

variance in m̂BL, m̂ML = (l − α0)/αm is the estimate of m based on the MBH–L

relationship, σ2
ML = σ2

l /α
2
m is the variance in m̂ML, m̄(z) is the mean m at a given

z, and σ2(z) is the variance in m at a given z.

The variance in µ as an estimate for m, σ2
µ, is

σ2
µ =

(

1

σ2
BL

+
1

σ2
ML

+
1

σ2(z)

)−1

. (2.10)

As is apparent from Equation (2.10), the variance in µ as an estimate for m is

always less than that for the standard broad line estimate, m̂BL. In fact, in the

limit (σ2
ML, σ

2(z)) → ∞, p(m|l) and p(m|z) supply no information on the black

hole mass and µ converges to the broad line estimate. However, by combining the
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broad line mass estimate with the information on MBH that is contained within

the luminosity and redshift we can obtained a better estimate of m.

In reality, the distribution of ṁ is unlikely to be Gaussian, and since ṁ is a

component of εl, this would violate the assumption that εl is Gaussian. Instead,

the distribution of ṁ is likely bimodal (Ho, 2002; Marchesini et al., 2004; Hop-

kins et al., 2006b; Cao & Xu, 2007) as a result of a transition from a radiatively

inefficient flow to an efficient one at ṁ ∼ 0.01 (e.g., Jester, 2005). However, be-

cause of the flux limits of modern surveys, most observed broad line quasars will

have ṁ ∼> 0.01 (McLure & Dunlop, 2004; Vestergaard, 2004). This results in a uni-

modal, relatively smooth and symmetric distribution of ṁ for observed quasars

(Hopkins et al., 2006a). It may also be that BLRs do not form in sources with

ṁ ∼< 10−3 (Nicastro et al., 2003; Czerny et al., 2004), and therefore the distribution

of ṁ for broad line AGN would have a lower limit at ṁ ∼ 0.001. If true, then

unimodality in the distribution of ṁ for broad line AGN is ensured.

The stochastic scatter about the MBH–L relationship, εl, is the sum of ran-

dom deviations in ṁ, bolometric correction, radiative efficiency, etc. We assume

that the distributions of most, if not all, of the constituent components of εl are

not too different from a Gaussian distribution, i.e., unimodal, smooth, and fairly

symmetric. Then, by the central limit theorem, the distribution of the sum of

these components, εl, will tend toward a normal density. Therefore, without any

evidence to the contrary, the normal density should provide an accurate approx-

imation to the true form of p(l|m). A similar argument may be used to justify the

assumption of normality for εr and εv.

To illustrate the improvement that Equation (2.9) offers over the broad line

mass estimate, we simulate values of m, l, and v. The simulations were per-

formed as follows. First, we simulated values of m from a smoothly-connected
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double power-law, with a mean of m̄ ≈ 7.87 and a dispersion of σ ≈ 0.45 dex.

Values of l were then generated according to Equation (2.4), with α0 = 37, αm = 1.

The gaussian scatter about this relationship had a dispersion of 0.7 dex. Then, we

generated values of v as v = 11 − l/4 + m/2 + ε, where ε was a gaussian ran-

dom variable with dispersion 0.2 dex. This form for v assumes R ∝ L1/2, and

corresponds to a intrinsic scatter in the broad line mass estimates of 0.4 dex. The

parameters for simulating l and v were chosen to be similar to the results found

in § 2.7. Finally, we calculated broad line mass estimates from the simulated lu-

minosities and line widths, m̂BL = −22+l/2+2v, and mass estimates µ according

to Equation (2.9).

The results are shown in Figure 2.1. As can be seen from the distribution of

residuals, the mass estimates that combine all available information on the black

hole mass, µ, are more accurate on average than the broad line estimates, m̂BL.

In addition, the distribution of µ provides a more accurate estimate of the true

distribution of m than does m̂BL, with the distribution of m inferred from m̂BL

being too broad. It is interesting to note that both of these results are in spite of

the fact that the intrinsic distribution of m is not Gaussian, which was assumed

when deriving Equation (2.9). This suggests that if the intrinsic distribution of m

for a sample is not too different from a normal density, Equation (2.9) will still

give more efficient estimates than the broad line estimates. This is reasonable,

considering that Equation (2.9) ‘shrinks’ the black hole mass estimates towards

the sample mean by an amount inversely proportional to the intrinsic variance in

m of a sample.

2.3.3 Cautions for Using Quantities Calculated from the SES Mass Estimates

The intrinsic uncertainty in MBH inferred from Lλ and the line width may be

thought of as the ‘measurement’ error in MBH . This intrinsic uncertainty can
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Figure 2.1 Results of the simulations described in § 2.3.2, illustrating the effective-

ness of the mass estimate, µ, that combines the broad line mass estimates with the

distribution of luminosities at a given black hole mass and the intrinsic distribu-

tion of MBH . The upper panel shows the distribution of the residuals when using

µ (dashed line) and the broad line mass estimate, m̂BL (solid line). The bottom

panel compares the intrinsic distribution of m (thick solid line) with that inferred

from the distribution of µ (dashed line) and m̂BL (thin solid line).
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cause problems when using the black hole mass estimates, m̂, to calculate addi-

tional quantities. In particular, quantities based on the square of the estimated

m̂, such as correlation coefficients and linear regressions, can be significantly ef-

fected (e.g., see Akritas & Bershady, 1996; Fox, 1997).

Suppose we are interested in calculating the correlation between MBH and

some other parameter X . To estimate this correlation, we would obtain a sam-

ple of quasars with black hole masses estimated from some assumed form of

p(m|l, v, z), m̂. Typically, these are the standard broad line estimates. We then cal-

culate the correlation coefficient between X and m̂. However, because we do not

have the actual black hole masses for our sample, but instead obtained estimates

from the continuum luminosities and widths of the broad lines, this is not the

true correlation coefficient between X and m. Because our estimated black hole

masses have been ‘measured’ with error, this broadens the observed distribution

of black hole masses, and thus biases the observed correlation coefficient towards

zero. Therefore, the correlation coefficient obtained from the estimated black hole

masses will be, on average, less in magnitude than the correlation coefficient that

would have been obtained using the actual black hole masses.

To prove this point, we note that the logarithmic black hole mass estimates

are related to the actual black hole masses as m̂ = m + εm, where εm is the

random error between m̂ and m. The linear correlation between the parame-

ter of interest X and m is ρ = Covar(X,m)/[V ar(X)V ar(m)]1/2, where Covar

and V ar are the sample covariance and variance, respectively. Since we don’t

actually observe m, we can’t calculate the true correlation coefficent, but instead

we calculate the correlation between X and m̂, ρ̂. While the covariance between

X and m is unaffected by using m̂ instead of m, the sample variance of m̂ is

V ar(m̂) = V ar(m) + σ2
m̂, where σ2

m̂ is the intrinsic uncertainty in m̂ as an estimate
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for m, σ2
m̂ = E(ε2m). The observed correlation is then given by

ρ̂ =

[

V ar(m)

V ar(m) + σ2
m̂

.

]1/2

ρ (2.11)

Therefore, correlation coefficients calculated using the estimated black hole masses

will be reduced in magnitude from the true correlation by a factor of [1 + σ2
m̂/V ar(m)]

−1/2.

For broad line mass estimates based on Hβ, Vestergaard & Peterson (2006) find

σm̂ = 0.43 dex. In this work we find that σm̂ ≈ 0.40 dex for C IV-based broad line

estimates . For a sample with an intrinsic dispersion inm of 0.75 dex, these values

of σm̂ correspond to a decrease in the magnitude of any observed correlation by

≈ 12%. If the sample has an intrinsic dispersion of 0.4 dex, similar to the intrinsic

uncertainties in the broad line estimates, then the magnitude of the observed cor-

relation coefficient is reduced by ≈ 30%. These effects is not negligible, and can

be more serious for linear regression (e.g., Fox, 1997). In light of these issues, care

must be taken when calculating quantities from black hole mass estimates based

on single-epoch spectra.

Another problem arises when one is using a flux limited sample to estimate

the intrinsic distribution of the black hole mass, i.e., the active black hole mass

function (Wang et al., 2006), based on broad line estimates. There is currently

significant interest in this problem, as the active black hole mass function is an

important tool in understanding SMBH formation and evolution. Unfortunately,

the limiting flux of a survey causes incompleteness in black hole mass, the degree

of which depends on the distribution of l at a givenm and z, p(l|m, z). In addition,

because the broad line mass estimates are measured with error, the distribution

of m inferred from the broad lines can be significantly broader than the intrinsic

distribution (cf., Fig.2.1). Because of these issues, estimates of the active black

hole mass function obtained from broad line estimates should be interpreted with

caution.
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In order to estimate the degree of incompleteness in m, it is necessary to re-

express the survey selection function as a function of m. Following Gelman et

al. (2004), we introduce an indicator variable, I , denoting whether a source is

included in the survey, where I = 1 if a is source included and I = 0 if a source is

missed. Then the selection function of the survey is the probability that a source

is included in the survey for a given luminosity and redshift, p(I = 1|l, z). The

selection function for black hole mass is then

p(I = 1|m, z) =
∫ ∞

−∞
p(I = 1|l, z)p(l|m, z)dl. (2.12)

As can be seen, estimating the completeness in m for a survey depends on the

form of p(l|m, z). Therefore, it is important to understand p(l|m, z), even if such

an understanding does not result in significantly better estimates of m.

2.4 THE SAMPLE

We employ two samples in our analysis. The first sample consists of a set of 25

low-z sources that have reverberation mapping data from Peterson et al. (2004).

We use this sample to investigate the MBH–L relationship and the C IV R–L re-

lationship, and to justify using the C IV line to estimate AGN black hole masses.

The second sample is a set of 100 quasars for which we have seperate spectra

containing the Hβ and C IV emission lines. We use this sample to compare the

broad line estimates of MBH obtained from the two lines.

Peterson et al. (2004) calculated virial products for 35 AGNs based on the re-

verberation mapping method. Of those 35 sources, we selected ones with archival

UV spectra. We did not include those sources which Peterson et al. (2004) listed

as having unreliable virial products (PG 0844+349, PG 1211+143, PG 1229+204,

and NGC 4593). We also did not include NGC 3227 or NGC 4151, as the C IV

line for these sources had significant absorption. In addition, we removed NGC
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4051 from the analysis because this source is an outlier in the BLR R-L relation-

ship (Vestergaard, 2002; Kaspi et al., 2005), and thus probably does not follow the

linear relationship assumed in Equation (2.6). Our sample consists of 25 AGN:

14 sources with HST FOS spectra, 9 sources with IUE spectra, 1 source with HST

GHRS spectra, and 1 source with HST STIS spectra. Of the 14 sources with FOS

spectra, 13 were taken from Bechtold et al. (2002), and the other (NGC 5548) from

Evans & Koratkar (2004). For archival sources with more than one observation,

we took the source with the longest exposure time. All spectra are single-epoch,

except for NGC 5548, which is averaged over approximately a month of HST

observations. The sample is summarized in Table 2.1.

The luminosities were calculated from the predicted continuum flux at 1549Å,

assuming a power law continuum (see § 2.5.1). We corrected luminosities for

galactic absorption using the E(B−V ) values taken from Schlegel et al. (1998), as

listed in the NASA/IPAC Extragalactic Database (NED), and the extinction curve

of Cardelli et al. (1989), assuming a value of AV /E(B − V ) = 3.1. We did not do

this for the Bechtold et al. (2002) sources as they have already been corrected

for galactic absorption. The C IV line widths for the IUE sources were corrected

by subtracting an assumed instrumental resolution of 1000 km s−1 in quadrature

from the measured line widths; the resolution for the other instruments is negli-

gible compared to the emission line widths, so no correction was performed.

We compiled UV and optical spectra for a sample of 100 sources for the pur-

pose of comparing the C IV-based estimates derived here with the estimates

based on Hβ and the empirical R–L relationship. Of these sources, 89 have

z < 0.8, 6 have z ∼ 2.3, and 2 have z ∼ 3.3. The UV spectra for the z < 0.8

sources are FOS spectra from Bechtold et al. (2002), the optical spectra for 51 of

these sources are from Marziani et al. (2003), and the optical spectra for 9 of these
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Table 2.1. Object List

Object RA (J2000) DEC (J2000) Redshift log(MBH/M¯)a Rad. Typeb Instrument

MRK 335 00 06 19.5 +20 12 10.5 0.025 6.41 ± 0.11 Quiet FOS

PG 0026+129 00 29 13.7 +13 16 03.8 0.142 7.85 ± 0.10 Quiet FOS

PG 0052+251 00 54 52.1 +25 25 39.3 0.155 7.82 ± 0.08 Quiet FOS

FAIRALL9 01 23 45.7 -58 48 21.8 0.046 7.66 ± 0.09 Quiet FOS

MRK 590 02 14 33.6 -00 46 00.1 0.027 6.93 ± 0.06 Quiet IUE

3C 120 04 33 11.1 +05 21 15.6 0.033 7.00 ± 0.21c Loud IUE

ARK 120 05 16 11.4 -00 08 59.4 0.033 7.43 ± 0.05 Quiet FOS

MRK 79 07 42 32.8 +49 48 34.7 0.0221 6.97 ± 0.11 Quiet IUE

PG 0804+761 08 10 58.6 +76 02 42.0 0.1000 8.10 ± 0.05 Quiet IUE

MRK 110 09 25 12.9 +52 17 10.5 0.0352 6.65 ± 0.10 Quiet IUE

PG 0953+414 09 56 52.4 +41 15 23.0 0.2341 7.69 ± 0.09 Quiet FOS

NGC 3516 11 06 47.5 +72 34 06.9 0.0088 6.88 ± 0.14 Quiet FOS

NGC 3783 11 39 01.7 -37 44 18.9 0.009 6.73 ± 0.07 Quiet FOS

3C 273.0 12 29 06.7 +02 03 09.0 0.1583 8.20 ± 0.09 Loud FOS

PG 1307+085 13 09 47.0 +08 19 49.8 0.1550 7.90 ± 0.12 Quiet FOS

MRK 279 13 53 03.4 +69 18 29.6 0.0304 6.80 ± 0.26 Quiet STIS

NGC 5548 14 17 59.5 +25 08 12.4 0.0171 7.08 ± 0.01 Quiet FOS

PG 1426+015 14 29 06.6 +01 17 06.5 0.0864 8.37 ± 0.12 Quiet IUE

MRK 817 14 36 22.1 +58 47 39.4 0.0314 6.95 ± 0.06 Quiet IUE

PG 1613+658 16 13 57.2 +65 43 09.6 0.1290 7.70 ± 0.20c Quiet IUE

PG 1617+175 16 20 11.3 +17 24 27.7 0.1124 8.03 ± 0.10 Quiet IUE

3C 390.3 18 42 08.8 +79 46 17.0 0.0560 7.71 ± 0.09 Loud FOS

MRK 509 20 44 09.8 -10 43 24.5 0.0350 7.41 ± 0.03 Quiet FOS

PG 2130+099 21 32 27.8 +10 08 19.5 0.0629 7.91 ± 0.05 Quiet GHRS

NGC 7469 23 03 15.6 +08 52 26.4 0.0163 6.34 ± 0.04 Quiet FOS

aBlack hole masses are from Peterson et al. (2004), assuming f = 1.

bThe radio type is either radio loud or radio quiet.
cThe standard errors in MBH for 3C 120 and PG 1613+658 were estimated by averaging the upper and

lower uncertainties listed by Peterson et al. (2004).
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sources are from the SDSS DR2 (Abazajian et al., 2004). Optical spectra for the

29 remaining z < 0.8 sources were obtained by us. Twenty-seven of the sources

were observed at the Steward Observatory 2.3m Bok Telescope on Kitt Peak using

the 600 lines mm−1 grating of the B&C Spectrograph; these sources had moderate

spectral resolution (∼ 5 Å). The other two sources were observed at the Magel-

lan Baade Telescope using the Inamori Magellan Areal Camera and Spectrograph

(IMACS); long-slit spectra were obtained for these sources using a slit width of

0.9” in long camera mode. We used the 600 lines mm−1 grating for PKS 1451-

375 and the 300 lines mm−1 grating for PKS 2352-342, giving spectral resolutions

of ∼ 2 Å and ∼ 5 Å, respectively. The log of new spectra is displayed in Table

2.2, and they are shown in Figures 2.2–2.4. The spectra were reduced using the

standard IRAF routines.
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Table 2.2. Log of New Observations

Object RA (J2000) DEC (J2000) Redshift Date Instrument Exp. Time (s)

Q 0003+0146 00 05 47.6 +02 03 02.2 0.234 Oct 06, 2002 Bok B&C 1800

Q 0017+0209 00 20 25.1 +02 26 25.3 0.401 Oct 06, 2002 Bok B&C 2700

PKS 0044+030 00 47 05.9 +03 19 54.9 0.624 Oct 06, 2002 Bok B&C 1800

Q 0100+0205 01 03 13.0 +02 21 10.4 0.394 Oct 06, 2002 Bok B&C 2700

Q 0115+027 01 18 18.5 +02 58 05.9 0.672 Oct 06, 2002 Bok B&C 3600

3C 57 02 01 57.2 -11 32 33.7 0.669 Oct 06, 2002 Bok B&C 1800

PKS 0214+10 02 17 07.7 +11 04 09.6 0.408 Oct 06, 2002 Bok B&C 2700

IR 0450-2958 04 52 30.0 -29 53 35.0 0.286 Oct 06, 2002 Bok B&C 207

3C 232 09 58 21.0 +32 24 02.2 0.533 May 15, 2002 Bok B&C 1800

4C 41.21 10 10 27.5 +41 32 39.1 0.611 May 15, 2002 Bok B&C 1800

B2 1028+313 10 30 59.1 +31 02 56.0 0.178 May 15, 2002 Bok B&C 1800

MC 1104+167 11 07 15.0 +16 28 02.4 0.632 May 15, 2002 Bok B&C 1800

Q 1132-0302 11 35 04.9 -03 18 52.5 0.237 May 14, 2002 Bok B&C 1800

Q 1150+497 11 53 24.5 +49 31 08.6 0.334 May 14, 2002 Bok B&C 1200

TEX 1156+213 11 59 26.2 +21 06 56.2 0.349 May 15, 2002 Bok B&C 2100

MRK 205 12 21 44.0 +75 18 38.1 0.070 May 15, 2002 Bok B&C 1800

Q 1230+0947 12 33 25.8 +09 31 23.0 0.420 Mar 20, 2004 Bok B&C 1800

Q 1317-0142 13 19 50.3 -01 58 04.6 0.225 May 14, 2002 Bok B&C 900

PG 1333+176 13 36 02.0 +17 25 13.0 0.554 May 15, 2002 Bok B&C 2100

Q 1340-0038 13 42 51.6 -00 53 46.0 0.326 May 14, 2002 Bok B&C 1200

Q 1401+0951 14 04 10.6 +09 37 45.5 0.441 May 15, 2002 Bok B&C 1800

Q 1425+2003 14 27 25.0 +19 49 52.3 0.111 May 14, 2002 Bok B&C 900

PKS 1451-375 14 54 27.4 -37 47 34.2 0.314 Jul 17, 2004 IMACS 2700

PG 1538+477 15 39 34.8 +47 35 31.6 0.770 May 14, 2002 Bok B&C 1500

PKS 2128-12 21 31 35.4 -12 07 05.5 0.501 Oct. 06, 2002 Bok B&C 1800

PKS 2135-147 21 37 45.2 -14 32 55.8 0.200 May 15, 2002 Bok B&C 900

Q 2141+175 21 43 35.6 +17 43 49.1 0.213 May 15, 2002 Bok B&C 1200

PKS 2243-123 22 46 18.2 -12 06 51.2 0.630 Oct 06, 2002 Bok B&C 1800

PKS 2352-342 23 55 25.6 -33 57 55.8 0.706 Jul 17, 2004 IMACS 1800
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Figure 2.2 New optical spectra, shown in the observed frame. The fluxes are

in units of 10−15 ergs cm−2 sec−1 Å−1. The absorption features at ∼ 6875Å and

∼ 7600Å are the A- and B-band atmospheric absorption lines. Note the strong

iron emission in Q1340-0038.
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Rest-frame UV spectra for the eight sources with z > 2 are from Scott et al.

(2000) and the SDSS. The continuum luminosities and Hβ FWHM for the z ∼

2.3 sources were taken from McIntosh et al. (1999) and corrected to our adopted

cosmology. The continuum fluxes for the two z ∼ 3.3 sources were measured

directly off the published spectra of Dietrich et al. (2002), and the values of Hβ

FWHM for them are from Dietrich & Hamann (2004).

2.5 LINE PROFILE PARAMETERS

2.5.1 Extracting The Line Profile

In order to extract the C IV emission line, it is necessary to subtract the contin-

uum, Fe emission, and the He II λ1640 and O III] λ1665 emission lines. To remove

the continuum and iron emission, we use a variation of the method outlined in

Boroson & Green (1992). We model the continuum as a power law of the form

fν ∝ να. The Fe emission was modeled as a scaled and broadened form of the

Fe emission template extracted from I Zw I by Vestergaard & Wilkes (2001). In

constrast to most previous studies, we simultaneously fit the continuum and Fe

emission parameters using the Levenberg-Marquardt method for nonlinear χ2-

minimization; this is similar to the method used by McIntosh et al. (1999). Per-

forming the fits in this manner has the advantage of providing an estimate of the

uncertainties in these parameters, given by the inverse of the curvature matrix

of the χ2 space. The set of possible windows used to fit the continuum and Fe

emission are shown in Table 2.3. The actual continuum windows used to fit the

continuum and Fe emission for any particular source depended on that source’s

available spectral range.

Having obtained an estimate of the continuum and Fe emission, we subracted

these components from each spectrum. We then extracted the region within −2×
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Table 2.3. Continuum and Fe Emission Fitting Windows

1 2 3 4 5 6

UV λλ1350–1365 λλ1427–1500 λλ1760–1860 λλ1950–2300 λλ2470–2755 λλ2855–3010

Optical λλ3535–3700 λλ4100–4200 λλ4400–4700 λλ5100–6200 λλ6800–7534 · · ·

104 km s−1 and 3 × 104 km s−1 of 1549Å. Here, and throughout this work, we will

use the convention that negative velocities are blueward of a given wavelength.

Narrow absorption lines were removed and interpolated over. We then removed

the He II λ1640 and O III] λ1665 emission lines from the wings of the C IV profile.

This was done by modelling the C IV, He II, and O III] lines as a sum of Gaussians.

In general, C IV was modelled as a sum of three Gaussians, He II two Gaussians,

and O III] a single Gaussian, however this varied from source to source. The

C IV extraction was done interactively in order to ensure accuracy of the fits.

After obtaining estimates of the He II and O III] profiles, we subtracted these

components. We did not fit the N IV] λ1486 emission line as this line is typically

weak and lost in the C IV wings.

Extraction of the Hβ profile was done in a similar manner. For the opti-

cal Fe emission we used the I Zw I template of Véron-Cetty et al. (2004). Af-

ter subtracting the continuum and Fe emission, we extracted the region within

±2 × 104 km s−1 of 4861Å. The Hβ profile was modeled as a sum of 2–3 Gaus-

sians. The [O III] λ4959Å and [O III] λ5007Å lines were modeled as a sum of 1–2

Gaussians, depending on the signal-to-noise of the lines. A sum of two Gaus-

sians was used for the higher S/N lines because the [O III] lines are not exactly

Gaussian, and not because the seperate Gaussians are considered to be physically

distinct components. The widths of the narrow Gaussians for [O III] were fixed to
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be equal. The [O III] lines and the narrow Hβ line were then subtracted to extract

the Hβ line. As with the C IV profile, the entire extraction was done interactively.

2.5.2 Estimating The Line Profile Parameters

We measured the C IV line shift, FWHM , EW , and the first and second line

moments. We define the line shift, ∆v, as the location of the line peak relative to

1549Å, in km s−1. The location of 1549Å is determined from the redshifts listed on

NED. We have checked the references for the redshifts to investigate how z was

estimated, but not all of the references report this. For those that did specify, the

redshifts were determined from the narrow emission lines (e.g., [O III] λ5007.).

IUE observations were done using a very large aperture, so the values of ∆v

for the IUE sources may be biased. However, there is no noticeable difference

between ∆v estimated from the IUE spectra, and those estimated from the HST

spectra. Furthermore, the ∆v parameter does not enter into our final analysis,

and so even if the IUE ∆v parameters are significantly biased our conclusions

remain unchanged.

The first moment of the C IV line is the centroid, µCIV , and the square root of

the second central moment is the line dispersion, σ∗. The zeroth line moment is

the line flux. The line moments are calculated as

F =
n
∑

i=1

yiδλ (2.13)

µCIV =
n
∑

i=1

xiyi

/

n
∑

i=1

yi (2.14)

σ2
∗ =

n
∑

i=1

x2
i yi

/

n
∑

i=1

yi − µ2
CIV . (2.15)

Here, F is the line flux, δλ is the spacing between subsequent wavelengths, y is

the observed spectral flux density, and x is the velocity relative to 1549Å. In prac-

tice we do not perform the sums over all the n data points, but rather only over
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those data points with f̂i ≥ 0.05(max f̂), and assuming that the profile is mono-

tonically decreasing blueward and redward of the peak. Here, f̂ denotes the

best-fit line profile, found from modelling the emission lines as a sum of Gaus-

sians. This allows us to define the extent of the line profile. Although this gives us

biased measurements of the line moments, it keeps these measurements stable.

In particular, σ∗ can be very sensitive to the profile wings, which have the highest

uncertainty. By truncating the line profile we keep the estimate stable and less

sensitive to errors in the Fe and continuum subtraction, as well as errors in the

He II λ1640 and O III] λ1665 subtraction.

The line moments are calculated using the observed line profile, y, and not

the best-fit to the spectral flux densities, f̂ . We do this because the line moments

are relatively insensitive to a lack of smoothness. To be specific, consider a line

profile, f(x), and its Fourier transform, f̃(k). For simplicity, we consider the con-

tinuous case here. The jth unnormalized line moment, µj , may be written in terms

of the Fourier transform of the line profile:

µj =
∫ ∞

−∞
xjf(x)dx =

f̃ (j)(0)

(−2πi)j
, (2.16)

where f̃ (j)(k) is the jth derivative of f̃(k) and i =
√
−1. One can see from Equation

(2.16) that the line moments only depend on f̃(k) near k = 0, and are thus insen-

sitive to the high frequency behavior of f(x). A generic smoothing operator, such

as a Gaussian fit, will shrink the high k components of f̃(k) more than the low k,

as it is generally the case that the high k components have lower signal-to-noise.

However, because the line moments do not depend on the high k components,

nothing is gained by enforcing smoothness. Because of this we just use the ob-

served C IV profile, y, as it is an unbiased estimate of the true profile, f , whereas

the best-fit estimate, f̂ , is a biased estimate.

There has been some discussion in the literature over whether FWHM or σ∗
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is the better width to use in estimating m (Fromerth & Melia, 2000; Peterson et

al., 2004). Fromerth & Melia (2000) suggested using the line dispersion, σ∗, ar-

guing that it provides a better estimate of the velocity dispersion for an arbitrary

line profile. Other advantages of σ∗ include its insensitivity to noise and narrow

absorption lines. However, σ∗ can be significantly biased due to its sensitivity to

blending with other lines in the line wings, and to the removal of continuum and

iron emission. These facts can be understood in light of Equation (2.16), which

shows that the second moment of the line depends on the low-k behavior. Be-

cause of this, σ∗ is relatively unaffected by information on small scales, such as

noise and narrow absorption lines, but is significantly affected by information

on large scales, such as line blending, truncation of the line profile, and contin-

uum placement. The FWHM , on the other hand, is insensitive to line blends

and errors in the continuum and iron subtraction. In addition, FWHM is easily

measured, however it probably provides a poor estimate of the velocity disper-

sion for irregularly shaped lines profiles. Peterson et al. (2004) compared the

strengths and weaknesses of these two measurements and concluded that σ∗ was

the better parameter when measured in the RMS spectrum.

In order to choose the better SES estimate of the BLR velocity dispersion, we

calculate the partial correlation betweenm and FWHM and σ∗, respectively. The

partial correlation coefficient describes the correlation between m and line width

at a given luminosity; the line width with the higher partial correlation should

give a better estimate of m. The partial linear correlation between logFWHM

and m is 0.36, while the partial linear correlation between log σ∗ and m is 0.31.

Because the FWHM has a moderately higher partial correlation, and because the

FWHM is not as affected by errors in the line deblending, continuum placement,

etc., we use the FWHM as an estimate of the velocity dispersion throughout the



59

rest of this analysis.

We only measure the FWHM of the Hβ emission line. This is because we are

only concerned with getting an estimate of MBH from single-epoch Hβ based on

the virial theorem for comparison with our C IV-based estimates, so the only line

parameter of interest is the Hβ width.

The standard errors on the line parameter measurments are estimated using

the bootstrap (Efron, 1979). In this method, we take our best-fit line profile spec-

tral flux densities, f̂ , and generate nboot = 128 simulated observed line profiles

by adding Gaussian noise to f̂ . We then estimate the line parameters of the sim-

ulated line profiles and calculate the variance in these parameters over the boot-

strap samples.

In Figure 2.5 we plot logMBH against log λLλ(1549 Å), logFWHM, log σ∗, logEW,∆v, µCIV ,

and continuum spectral slope. We report our measurements in Table 2.4. We

have compared our measurements with Wang et al. (1996), Bechtold et al. (2002),

Baskin & Laor (2004), and Kuraszkiewicz et al. (2004), and find them to be consis-

tent after accounting for the different procedures used to measure these quanti-

ties. For clarity, we have removed three outliers in α from the plot of m against α.

These sources were 3C 390.3, NGC 3516, and NGC 7469. 3C 390.3 is a broad-line

radio galaxy with highly variable Balmer lines and double-peaked Hα (Corbett

et al., 1998) and Hβ (Osterbrock et al., 1976) profiles; the C IV emission line also

exhibits a double-peaked profile. The other two sources represent some of the

faintest sources in our sample, and their spectra may have a contribution from

their host galaxies; however, we notice nothing unusual about their spectra, save

for their unusually soft values of α.
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Figure 2.5 Plots showing m as a function of the measured quantities for the sam-

ple with reverberation mapping data. Three outliers in the m vs α plot have been

removed so as to make the structure in the plot easier to see.



61

Table 2.4. Continuum and C IV Emission Line Parameters

Object log λLλ(1549 Å) FWHM σ∗ EW ∆v µ α

ergs cm−2 sec−1 1000 km s−1 1000 km s−1 Å 1000 km s−1 1000 km s−1

MRK 335 44.38 2.094 1.856 71.82 0.368 0.141 -0.45

PG0026+12 45.19 1.971 5.263 52.45 0.054 -0.99 -0.85

0052+2509 45.39 5.762 4.544 120.4 -0.63 -0.51 -0.29

FAIRALL9 44.39 2.686 2.633 193.0 -0.19 -0.02 -0.72

MRK 590 43.35 2.846 1.818 185.2 -0.72 -1.21 -0.80

3C 120 44.56 5.040 2.813 148.3 -1.34 -0.87 -0.77

ARK 120 43.91 4.127 3.124 70.0 -0.00 0.647 -0.95

MRK 79 43.68 4.615 2.891 112.4 -0.41 -0.68 -0.73

PG 0804+761 45.26 3.608 3.307 62.63 -0.41 -1.20 -0.79

MRK 110 43.77 3.468 2.117 185.0 0.819 0.437 -0.79

PG0953+414 45.49 3.114 4.339 95.38 -1.20 0.210 -0.25

NGC 3516 42.31 3.512 2.480 327.9 0.054 -0.47 -2.05

NGC 3783 43.23 2.376 2.527 110.8 0.054 -0.21 -0.51

3C 273.0 46.28 3.659 3.285 31.24 -1.70 -0.64 -0.57

1307+0835 45.08 4.054 3.395 96.97 0.431 0.339 -0.35

MRK 279 44.32 3.057 3.201 110.2 -0.85 -1.00 -0.29

NGC 5548 43.49 3.490 3.278 202.2 0.431 0.214 -0.69

PG 1426+015 45.21 5.398 4.422 43.81 -0.10 -0.00 -0.61

MRK 817 44.13 4.192 3.719 66.52 -0.10 0.153 -0.94

PG 1613+658 45.14 5.869 5.099 81.43 -0.10 1.562 -0.79

PG 1617+175 44.69 7.842 2.906 50.60 0.201 0.947 -0.75

3C390.3 43.81 6.325 5.113 138.2 -0.13 -0.78 1.62

MRK509 44.68 4.313 3.722 128.3 -0.95 -0.13 -0.77

PG 2130+099 44.60 2.200 1.785 58.36 -0.78 -0.94 -0.78

NGC 7469 43.29 2.822 2.420 161.3 -0.07 0.028 -1.75
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2.6 SELECTING THE IMPORTANT PARAMETERS

It is useful to investigate whether any of the additional parameters that we mea-

sured for C IV are significantly correlated with m, and thus contribute informa-

tion about m in addition to that in l and FWHM . We used our sample of 25

sources withMBH from reverberation mapping to test if including logEW,α, µCIV ,

or ∆v resulted in more accurate estimates of MBH . However, we did not find any

evidence to warrant the inclusion of these parameters.

In order to assess whether the data support including any additional pa-

rameters, we express m as a linear combination of all possible combinations of

log λLλ, logFWHM, logEW,α, µCIV , and ∆v, a total of 26 = 64 subsets. The re-

gression coefficients are estimated via least-squares, and the result is a set of 64

linear regressions. In order to assess the relative merits of each of the regres-

sions, and thus each of the respective parameters, we employ the Bayesian In-

formation Criterion (BIC Schwartz, 1979). Using the BIC allows us to under-

take a Bayesian comparison of the models without actually carrying out the full

Bayesian prescription, considerably simplifying things. The BIC is easily ob-

tained from the log-likelihood of the data as

BIC = 2`(ψ̂) + d lnn. (2.17)

Here, `(ψ̂) is the log-likelihood of the data evaluated at the maximum-likelihood

estimate, ψ denotes the regression parameters, d is the number of parameters in

the regression, and n is the number of data points.

The only parameter significantly correlated with m is l, with a posterior prob-

ability of pl = 0.975. The data are ambiguous as to whether FWHM is related

to MBH (pFWHM = 0.562); however, when using the BIC we did not compare

with regressions that assumeMBH ∝ FWHM 2
CIV , and we perform a more careful
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analysis in § 2.7.2. In addition, the data give weak evidence that the remaining pa-

rameters are unrelated to m. The posterior probabilities that m is correlated with

these parameters are estimated to be 0.270, 0.210, 0.198, and 0.186 for logEW ,

µCIV , ∆v, and α, respectively.

2.7 REGRESSION ANALYSIS

Now that we have ruled out including any additional parameters for estimating

MBH from SES, we proceed to investigate the MBH–L relationship and the C IV

R–L relationship. Because p(l|m) and p(v|l,m) are statistically independent in

their parameters, we can analyze each one seperately. Throughout this section

we will be using our sample of 25 sources with black hole mass measurements

from reverberation mapping. We begin by investigating the MBH–L relationship.

2.7.1 The MBH–L Relationship

We fit a linear relationship of the form l = α0 + αmm, assuming that the scatter

about this relationship is independent of m and z. Because we are fitting the

distribution of l at a given m, we use the BCES(Y |X) (Akritas & Bershady, 1996)

regression. The BCES methods take into account measurement errors in both

coordinates by correcting their moments; however, the measurement errors are

small compared to the variance in both m and l, so the correction is small. Based

on the regression, we find

l = 35.72(±1.67) + 1.17(±0.22)m. (2.18)

Here, l = log λLλ(1549Å). The empirical value of α̂m = 1.17 ± 0.22 is consistent

withL ∝MBH , if one assumes thatLλ ∝ L. The intrinsic scatter in Equation (2.18)

is estimated to be σ̂l = 0.61 dex. The residuals and their cumulative distribution

function (CDF) are shown in Figure 2.6. A Kolmogorov-Smirnov test found that
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the regression residuals are not significantly different from a normal distribution,

implying that p(l|m) is normal with mean given by Equation (2.18) and standard

deviation σl ≈ 0.61 dex.

The value of α̂m found here is consistent with MBH ∝ L0.9±0.15 found by Net-

zer (2003) and MBH ∝ L0.97±0.16 found by Corbett et al. (2003). Peterson et al.

(2004) used the 35 AGN with reverberation mapping data to estimate the MBH–

L relationship for Lλ at 5100Å. Using the BCES bisector regression, they find

MBH ∝ L0.79±0.09
5100 . This is shallower than our result of MBH ∝ L1.17±0.22

1549 , although

the two logarithmic slopes are consistent within the errors. The difference in the

two values most likely results from the different regressions used. We used the

BCES(Y |X) because we are modelling p(l|m), where as the bisector slope gives

the regression that bisects the distribution of l at a given m, and of m at a given l.

Woo & Urry (2002) did not find any evidence for a correlation between MBH

and the bolometric luminosity. They used both a sample of reverberation-mapped

AGNs and Seyfert galaxies with black hole masses derived from the stellar veloc-

ity dispersion. In neither case did they find evidence for a correlation, in constrast

to the results found here and by others. Unfortunately, Woo & Urry (2002) did not

perform a regression analysis or report a correlation coefficient, so it is difficult to

do a quantitative comparison of their results with ours.

We have found here that α̂m = 1.17±0.22 for the Peterson et al. (2004) sample.

However, these sources are all at low redshift and have ṁ = 0.01–1 (Woo & Urry,

2002; Peterson et al., 2004), and thus this value of αm may not be valid for sources

with ṁ ∼< 0.01 and z ∼> 0.2. Furthermore, most high z broad line quasars have

luminosities and MBH greater than that of the Peterson et al. (2004) sample, and

it is possible that αm 6= 1 outside of the reverberation mapping sample range. It

is also possible that the scatter about the MBH–L relationship depends on z. The
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Figure 2.6 The residuals l− l̂ as a function ofm for theMBH–L relationship and the

empirical CDF of the standardized residuals, (l − l̂)/σ̂l. The dashed lines define

the 95% pointwise confidence interval of the empirical CDF, and the smooth solid

line is the CDF of the standard normal density.



66

most likely source of a redshift dependence for εl is evolution of the distribution

of ṁ (e.g., Haiman & Menou, 2000; Merloni, 2004; Hopkins et al., 2006a; Steed &

Weinberg, 2006), and possibly evolution of the bolometric correction. The average

ṁ has been observed to increase with increasing z (McLure & Dunlop, 2004), but

this is likely due to selection effects. Because of these issues, one should exhibit

caution when applying this MBH–L relationship to high z sources.

2.7.2 Inferring the C IV R–L Relationship

In this subsection, we investigate the C IV R–L relationship using the reverber-

ation mapping sample. We perform a linear regression to fit for the value of

θl, R ∝ Lθl , by noting that MBH ∝ LθlV 2. Based on the results obtained here,

we find MBH ∝ L0.41±0.07
1549 FWHM 2

CIV , consistent with MBH ∝ L
1/2
1549FWHM 2

CIV

expected from simple photoionization theory.

To estimate θl, we fit a linear relationship of the form 2v = m−mBL
0 −θll using

the BCES(Y |X) method. Here, the free parameters are mBL
0 and θl. The result is

m̂CIV = −17.82(±2.99) + 0.41(±0.07)l + 2 logFWHMCIV . (2.19)

The intrinsic scatter about this relationship is σ̂CIV = 0.40 dex, where we have

corrected for the measurement errors in m and FWHMCIV . The correlation be-

tween the regression coefficients is Corr(m̂CIV
0 , θ̂l) = −0.9996. The regression

results are consistent with the expectation from simple photoionization theory,

R ∝ L
1/2
1549 (cf. Eq.[2.7]). A Kolmogorov-Smirnov test found that the regression

residuals are not significantly different from a normal distribution.

Performing the regression with v as the dependent variable ensures that the

MBH–L relationship does not ‘absorb’ into the regression coefficients, as the re-

gression models the distribution of v at a given l and m. However, if we had

performed the regression by fitting the distribution of m as a function of l and v,
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the intrinsic correlation between m and l would have absorbed into the results.

In this case we would be modelling p(m|l, v), and the statistical model would be

over-parameterized because we have only three variables. However, by seperat-

ing p(m|l, v) into p(l|m) and p(v|l,m), as was done in § 2.3.2, we can analyze each

distribution seperately and uniquely determine their parameters.

The residuals of the C IV broad line estimate, given by Equation (2.19), and

their CDF are shown in Figure 2.7. In general, there is no obvious evidence for a

violation of the regression assumptions. However, there appears to be a possible

trend in the residuals with FWHM . To test this we calculated the linear correla-

tion coefficient between the residuals and logFWHM . This correlation was sig-

nificant at only ≈ 1.7σ. Therefore there is no significant evidence for a correlation

in the residuals with FWHM , justifying the assumption MBH ∝ Lθl
1549FWHM 2.

Rank correlation tests gave similar results.

Very similar results were found by Vestergaard & Peterson (2006). However,

our work differs from their’s in that Vestergaard & Peterson (2006) assumed that

the C IV and Hβ BLRs have the same dependence on LUV , R ∝ L0.53
UV , and only fit

the constant term. In contrast, we fit both the constant term and the coefficient

for the dependence of line width on luminosity.

One can use Equation (2.9) to combine the mass estimates based on the MBH-

L with the C IV broad line mass estimate. Combining the two relationships, and

taking σ(z) → ∞, we find

µ = −30.53 + 0.54l + 1.40 logFWHM. (2.20)

The intrinsic uncertainty in µ is reduced to σµ ≈ 0.33 dex, an improvement of

≈ 18% over the broad line mass estimates. However, as mentioned in § 2.7.1, there

is considerable systematic uncertainty on the behavior of theMBH–L relationship

outside of the range probed by the reverberation mapping sample, and thus it
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Figure 2.7 The residuals m − m̂CIV for the C IV broad line mass estimate, shown

as a function of m̂CIV , l, and FWHM . Also shown is the empirical CDF of the

standardized residuals, (m−m̂CIV )/σ̂CIV . The dashed lines define the 95% point-

wise confidence interval of the empirical CDF, and the smooth solid line is the

CDF of the standard normal density.
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may be safer to just use m̂CIV .

There has been some concern over the effectiveness of using the C IV emission

line for estimating quasar black hole masses (Shemmer et al., 2004; Baskin & Laor,

2005). If one ignores the C IV FWHM , and only uses the continuum luminosity

to estimate MBH , then the intrinsic scatter is σl ≈ 0.6 dex (cf. § 2.7.1). However,

the intrinsic uncertainty in an estimate of MBH using the C IV R–L relationship

and FWHM is σCIV ≈ 0.4 dex, a improvement over the MBH–L relationship of

∼ 1/3. This improvement is significant, and therefore we conclude that the C IV

line may be used for estimating SMBH masses.

We can estimate σ2
v by comparing the C IV FWHM for the RMS spectrum

with that obtained from a single-epoch spectrum. To do this we use the sources

from Peterson et al. (2004) with C IV FWHM measured from the RMS spectrum,

FWHMRMS , excluding Fairall 9. We omitted Fairall 9 because its FWHMRMS

was considered to be unreliable by Peterson et al. (2004). The remaining five data

points are consistent with a 1:1 relationship between FWHMRMS and FWHMSE .

Estimating the intrinsic scatter using these five data points is difficult, partic-

ularly because the measurement errors are large. In fact, the observed scatter

about FWHMRMS = FWHMSE is consistent with entirely being the result of the

measurement errors. This suggests that σv is small, and it is likely that σv ∼< 0.1

dex.

If we assume that the only sources for scatter in the broad line estimates of

m are from the R–L relationship and from using the single-epoch line width to

estimate V , then a value of σv ≈ 0.1 dex implies that the intrinsic scatter about

the R–L relationship for C IV is σ̂r ≈ 0.35 dex. This is about a factor of two larger

than the value σ̂r ≈ 0.18 dex found for Hβ by Peterson et al. (2004), where we

have converted the value σ̂r ≈ 40% to dex. This larger scatter in the C IV R–L
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relationship implies that the Hβ mass estimates are more efficient than the C IV

ones. However, Vestergaard & Peterson (2006) found that the Hβ mass estimates

have a statistical scatter of σ̂Hβ ≈ 0.43 dex, and thus are just as accurate as the C

IV-based ones. This larger value of σHβ implies that either there is significant un-

certainty in using the SES Hβ line width to estimate the BLR velocity dispersion,

σHβ
v ≈ 0.36, or that there are additional sources of uncertainty in the broad line

mass estimates beyond the scatter in the R–L relationship and the uncertainty in

using the SES line width instead of the variable component line width. If there

are additional sources of scatter in the SES mass estimates, then σ̂r ≈ 0.35 dex

represents an upper bound on the C IV R–L relationship scatter.

Equation (2.7) implies that the scatter in the R–L relationship is the result

of variations in the BLR ionization parameter, gas density, and average ionizing

photon energy. While there are likely other sources of scatter in the R–L relation-

ship, such as inclination, variability, and conversion between Lλ and Lion, differ-

ences in BLR properties certainly contribute to this scatter and possibly dominate

it. The fact that σCIV
r ∼< 1.6σHβ

r suggests that the magnitude of the dispersion

in these properties is larger for the C IV emitting region. In addition, the regres-

sions of (Peterson et al., 2004) are consistent withRHβ ∝ L
1/2
1450, similar to the result

found here and by Vestergaard & Peterson (2006) for C IV.

2.8 COMPARING THE Hβ- AND C IV-BASED MASS ESTIMATES

It is worth comparing our estimates of m based on single-epoch C IV to those

based on combining single-epoch Hβ with the RHβ–L relationship. To do this, we

took our sample of 100 sources that have data for both C IV and Hβ and calcu-

lated estimates of m from each. We compare the mass estimates obtained from

both emission lines, and find that the two give mass estimates that are consistent
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so long as one uses the UV continuum to estimate the BLR size.

For the Hβ emission line, we estimate the BLR size from both the optical and

UV RHβ–L relationships. The BLR size, RHβ , is estimated as

RHβ

10 lt − dy
= R0

(

λLλ

1044ergs s−1

)α

. (2.21)

For R0 and α in the optical RHβ–L relationship, we use the luminosity at 5100Å

and the average of the BCES bisector and FITEXY (Press et al., 1992) fits of Kaspi

et al. (2005), (R̂0, α̂) = (2.23±0.21, 0.69±0.05). For the UVRHβ–L relationship, we

use the luminosity at 1450Å and (R0, α) = (2.38, 0.5). We assume RHβ ∝ L
1/2
1450 to

allow more direct comparison with the C IV-based mass estimates, and because

the fits of Kaspi et al. (2005) are consistent with this form. Using the averaged

values ofR for the Balmer lines as listed by Kaspi et al. (2005), we recalculated the

R–L1450 relationship for Hβ with α fixed at α = 0.5, and found R0 = 2.38 ± 0.25.

We then use RHβ with Hβ FWHM to calculate mHβ from Equation (2.1), after

converting the Hβ FWHM to a velocity dispersion assuming FWHM/V = 2,

based on the average FWHM/σ∗ from Peterson et al. (2004).

Based on the results of § 2.7.2, we calculate estimates of MBH from the C IV

line for these sources as m̂CIV = −21.92 + 0.5l1549 + 2vCIV . This form was found

using the same method as described in § 2.7.2, but with θl fixed at θl = 1/2. In

Table 2.5 we report the broad line mass estimates based on the Hβ and C IV lines

for these sources, as well as a weighted average of the two.
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Table 2.5. Black Hole Mass Estimates

RA (J2000) DEC (J2000) z log MHβ
BH/M¯

a log MCIV
BH /M¯ log MBL

BH/M¯
b

00 05 47.6 +02 03 02.2 0.234 7.32 ± 0.43 7.61 ± 0.40 7.47 ± 0.29

00 05 59.2 +16 09 49.1 0.450 8.38 ± 0.43 8.18 ± 0.40 8.27 ± 0.29

00 06 19.5 +20 12 10.3 0.025 6.72 ± 0.43 6.90 ± 0.40 6.82 ± 0.29

00 20 25.1 +02 26 25.3 0.401 7.23 ± 0.43 8.33 ± 0.40 7.82 ± 0.29

00 29 13.7 +13 16 03.8 0.142 7.30 ± 0.43 7.17 ± 0.40 7.23 ± 0.29

00 47 05.9 +03 19 54.9 0.624 9.07 ± 0.43 8.67 ± 0.40 8.86 ± 0.29

00 52 02.4 +01 01 29.3 2.270 9.47 ± 0.44 9.41 ± 0.40 9.44 ± 0.29

00 52 33.7 +01 40 40.6 2.307 9.25 ± 0.46 9.55 ± 0.40 9.42 ± 0.30

00 54 52.1 +25 25 39.3 0.155 7.89 ± 0.43 8.34 ± 0.40 8.13 ± 0.29

01 03 13.0 +02 21 10.4 0.394 8.47 ± 0.43 8.16 ± 0.40 8.30 ± 0.29

01 18 18.5 +02 58 05.9 0.672 8.38 ± 0.44 7.61 ± 0.40 7.96 ± 0.29

01 23 45.7 -58 48 21.8 0.047 7.40 ± 0.43 7.16 ± 0.40 7.27 ± 0.29

01 26 42.8 +25 59 01.3 2.370 9.24 ± 0.44 9.25 ± 0.40 9.25 ± 0.30

01 57 35.0 +74 42 43.2 2.338 9.10 ± 0.44 9.20 ± 0.41 9.15 ± 0.30

02 01 57.2 -11 32 33.7 0.669 8.01 ± 0.47 8.85 ± 0.40 8.49 ± 0.30

02 17 07.7 +11 04 09.6 0.408 8.69 ± 0.43 8.20 ± 0.40 8.42 ± 0.29

02 59 05.6 +00 11 21.9 3.366 8.95 ± 0.43 9.03 ± 0.40 8.99 ± 0.29

03 04 49.9 -00 08 13.4 3.294 8.90 ± 0.43 8.69 ± 0.40 8.79 ± 0.29

03 51 28.6 -14 29 09.1 0.616 8.92 ± 0.43 9.02 ± 0.40 8.98 ± 0.29

04 05 34.0 -13 08 14.1 0.571 8.56 ± 0.43 8.05 ± 0.40 8.29 ± 0.29

04 07 48.4 -12 11 36.0 0.574 8.25 ± 0.43 8.41 ± 0.40 8.34 ± 0.29

04 17 16.8 -05 53 45.9 0.781 9.04 ± 0.45 8.96 ± 0.40 9.00 ± 0.30

04 41 17.3 -43 13 43.7 0.593 8.08 ± 0.43 7.84 ± 0.40 7.95 ± 0.29

04 52 30.0 -29 53 35.0 0.286 7.37 ± 0.43 7.86 ± 0.40 7.64 ± 0.29

04 56 08.9 -21 59 09.4 0.534 8.73 ± 0.43 8.49 ± 0.40 8.60 ± 0.29

07 45 41.7 +31 42 55.7 0.462 8.27 ± 0.43 8.54 ± 0.40 8.41 ± 0.29

08 40 47.6 +13 12 23.7 0.684 8.06 ± 0.43 8.09 ± 0.40 8.07 ± 0.29

08 53 34.2 +43 49 01.0 0.513 7.84 ± 0.43 8.41 ± 0.40 8.15 ± 0.29

09 19 57.7 +51 06 10.0 0.553 8.26 ± 0.43 8.58 ± 0.40 8.43 ± 0.29

09 50 48.4 +39 26 51.0 0.206 8.53 ± 0.43 7.88 ± 0.40 8.18 ± 0.29

09 56 52.4 +41 15 23.0 0.239 7.70 ± 0.43 7.85 ± 0.40 7.78 ± 0.29

09 58 21.0 +32 24 02.2 0.533 7.48 ± 0.43 8.87 ± 0.40 8.22 ± 0.30
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Table 2.5—Continued

RA (J2000) DEC (J2000) z log MHβ
BH/M¯

a log MCIV
BH /M¯ log MBL

BH/M¯
b

10 04 02.6 +28 55 35.0 0.329 6.86 ± 0.43 8.25 ± 0.40 7.61 ± 0.29

10 04 20.1 +05 13 00.0 0.161 7.60 ± 0.43 7.40 ± 0.40 7.49 ± 0.29

10 10 27.5 +41 32 39.1 0.611 7.99 ± 0.43 8.38 ± 0.40 8.20 ± 0.29

10 30 59.1 +31 02 56.0 0.178 7.97 ± 0.44 7.59 ± 0.40 7.76 ± 0.30

10 51 51.5 +00 51 18.1 0.357 7.88 ± 0.43 8.18 ± 0.40 8.04 ± 0.29

11 04 13.9 +76 58 58.2 0.311 8.44 ± 0.43 7.92 ± 0.40 8.16 ± 0.29

11 06 31.8 +00 52 53.4 0.425 8.67 ± 0.43 8.43 ± 0.40 8.54 ± 0.29

11 06 33.5 -18 21 24.0 2.319 8.89 ± 0.45 9.65 ± 0.40 9.31 ± 0.30

11 07 15.0 +16 28 02.4 0.632 8.04 ± 0.45 8.65 ± 0.40 8.38 ± 0.30

11 18 30.3 +40 25 55.0 0.154 7.82 ± 0.43 7.93 ± 0.40 7.88 ± 0.29

11 19 08.7 +21 19 18.0 0.176 7.55 ± 0.43 8.13 ± 0.40 7.87 ± 0.29

11 24 39.2 +42 01 45.2 0.234 7.61 ± 0.43 7.47 ± 0.40 7.53 ± 0.29

11 35 04.9 -03 18 52.5 0.237 7.07 ± 0.43 7.87 ± 0.40 7.50 ± 0.29

11 39 57.1 +65 47 49.4 0.652 7.60 ± 0.43 8.22 ± 0.40 7.93 ± 0.29

11 41 21.7 +01 48 03.3 0.383 7.20 ± 0.45 8.23 ± 0.40 7.77 ± 0.30

11 47 18.0 -01 32 07.7 0.382 8.08 ± 0.43 6.68 ± 0.43 7.37 ± 0.30

11 53 24.5 +49 31 08.6 0.334 7.68 ± 0.43 8.02 ± 0.40 7.86 ± 0.29

11 58 39.9 +62 54 28.1 0.594 7.45 ± 0.51 8.32 ± 0.40 7.99 ± 0.32

11 59 26.2 +21 06 56.2 0.349 8.69 ± 0.43 8.03 ± 0.40 8.33 ± 0.29

12 04 42.2 +27 54 12.0 0.165 8.24 ± 0.43 7.26 ± 0.40 7.71 ± 0.29

12 14 17.7 +14 03 12.3 0.080 6.72 ± 0.43 6.95 ± 0.40 6.84 ± 0.29

12 19 20.9 +06 38 38.4 0.334 8.00 ± 0.43 7.95 ± 0.40 7.97 ± 0.29

12 21 44.0 +75 18 38.1 0.070 7.89 ± 0.43 7.59 ± 0.40 7.73 ± 0.29

12 31 20.6 +07 25 52.8 2.391 9.14 ± 0.49 9.19 ± 0.40 9.17 ± 0.31

12 33 25.8 +09 31 23.0 0.420 7.98 ± 0.43 8.18 ± 0.40 8.09 ± 0.29

13 01 12.9 +59 02 06.9 0.472 7.91 ± 0.43 9.01 ± 0.40 8.50 ± 0.29

13 05 33.0 -10 33 20.4 0.286 8.19 ± 0.43 8.38 ± 0.40 8.29 ± 0.29

13 09 47.0 +08 19 49.8 0.155 8.54 ± 0.43 7.87 ± 0.40 8.18 ± 0.29

13 12 17.7 +35 15 21.0 0.184 7.62 ± 0.43 7.43 ± 0.40 7.52 ± 0.29

13 19 50.3 -01 58 04.6 0.225 7.05 ± 0.43 7.23 ± 0.40 7.15 ± 0.29

13 23 49.5 +65 41 48.0 0.168 7.11 ± 0.43 7.60 ± 0.40 7.37 ± 0.29

13 36 02.0 +17 25 13.0 0.554 7.72 ± 0.43 8.79 ± 0.40 8.29 ± 0.29
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Table 2.5—Continued

RA (J2000) DEC (J2000) z log MHβ
BH/M¯

a log MCIV
BH /M¯ log MBL

BH/M¯
b

13 42 51.6 -00 53 46.0 0.326 8.27 ± 0.43 8.20 ± 0.40 8.23 ± 0.29

13 57 04.5 +19 19 06.6 0.719 7.12 ± 0.44 7.99 ± 0.40 7.60 ± 0.30

14 04 10.6 +09 37 45.5 0.441 9.06 ± 0.45 8.49 ± 0.41 8.74 ± 0.30

14 05 16.2 +25 55 33.6 0.164 7.35 ± 0.43 8.19 ± 0.40 7.80 ± 0.29

14 17 00.9 +44 56 06.0 0.114 7.61 ± 0.43 7.68 ± 0.40 7.65 ± 0.29

14 19 03.9 -13 10 45.0 0.129 7.56 ± 0.43 7.76 ± 0.40 7.67 ± 0.29

14 27 25.0 +19 49 52.3 0.111 8.03 ± 0.43 8.30 ± 0.40 8.17 ± 0.29

14 27 35.7 +26 32 15.0 0.366 7.85 ± 0.43 8.80 ± 0.40 8.36 ± 0.29

14 29 43.1 +47 47 26.0 0.221 7.65 ± 0.43 7.64 ± 0.40 7.64 ± 0.29

14 42 07.5 +35 26 22.9 0.077 7.01 ± 0.43 7.26 ± 0.40 7.15 ± 0.29

14 46 45.9 +40 35 07.1 0.267 7.38 ± 0.43 8.42 ± 0.40 7.94 ± 0.29

14 54 27.4 -37 47 34.2 0.314 7.62 ± 0.43 7.93 ± 0.40 7.79 ± 0.29

15 14 43.5 +36 50 51.0 0.371 7.84 ± 0.44 8.28 ± 0.40 8.08 ± 0.30

15 39 34.8 +47 35 31.6 0.770 8.58 ± 0.46 9.01 ± 0.40 8.82 ± 0.30

15 45 30.3 +48 46 07.9 0.400 7.73 ± 0.43 8.55 ± 0.40 8.17 ± 0.29

15 47 43.5 +20 52 16.4 0.264 8.39 ± 0.43 8.21 ± 0.40 8.29 ± 0.29

16 14 13.2 +26 04 16.2 0.131 7.05 ± 0.43 7.78 ± 0.40 7.44 ± 0.29

16 20 21.8 +17 36 24.0 0.555 8.22 ± 0.43 8.69 ± 0.40 8.47 ± 0.29

16 27 56.1 +55 22 31.0 0.133 8.49 ± 0.43 7.89 ± 0.40 8.17 ± 0.29

16 42 58.8 +39 48 36.9 0.595 8.01 ± 0.43 8.45 ± 0.40 8.24 ± 0.29

17 04 41.3 +60 44 30.0 0.371 7.37 ± 0.44 8.15 ± 0.40 7.80 ± 0.30

18 21 59.4 +64 21 07.5 0.297 8.85 ± 0.43 8.53 ± 0.40 8.68 ± 0.29

19 27 48.5 +73 58 02.0 0.302 8.13 ± 0.43 8.19 ± 0.40 8.16 ± 0.29

20 44 09.8 -10 43 24.5 0.035 7.64 ± 0.43 7.69 ± 0.40 7.66 ± 0.29

21 31 35.4 -12 07 05.5 0.501 8.13 ± 0.43 8.64 ± 0.40 8.40 ± 0.29

21 37 45.2 -14 32 55.8 0.200 8.86 ± 0.43 7.99 ± 0.43 8.42 ± 0.31

21 43 35.6 +17 43 49.1 0.213 8.24 ± 0.43 8.20 ± 0.41 8.22 ± 0.30

22 03 15.0 +31 45 37.7 0.297 8.08 ± 0.43 8.76 ± 0.40 8.45 ± 0.29

22 46 18.2 -12 06 51.2 0.630 8.41 ± 0.43 8.13 ± 0.40 8.26 ± 0.29

22 54 05.8 -17 34 55.0 0.068 8.15 ± 0.43 7.56 ± 0.40 7.83 ± 0.29

22 54 10.4 +11 36 38.9 0.323 7.59 ± 0.43 8.13 ± 0.40 7.88 ± 0.29

23 03 43.5 -68 07 37.1 0.512 7.62 ± 0.43 7.77 ± 0.40 7.70 ± 0.29
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Table 2.5—Continued

RA (J2000) DEC (J2000) z log MHβ
BH/M¯

a log MCIV
BH /M¯ log MBL

BH/M¯
b

23 11 17.8 +10 08 16.2 0.432 8.48 ± 0.43 8.36 ± 0.40 8.42 ± 0.29

23 46 36.9 +09 30 46.0 0.672 7.94 ± 0.43 7.99 ± 0.40 7.97 ± 0.29

23 51 56.0 -01 09 13.7 0.174 8.52 ± 0.43 8.09 ± 0.40 8.29 ± 0.29

23 55 25.6 -33 57 55.8 0.706 6.51 ± 0.44 8.39 ± 0.40 7.53 ± 0.30

Note. — The 1σ uncertainties include the contributions from measurement error in the line

widths and continuum luminosities, and from the intrinsic uncertainty in m̂.
aThe Hβ-based mass estimates are for the UV RHβ–L relationship. The 1σ errors were calcu-

lated assuming σHβ = 0.43 dex (Vestergaard & Peterson, 2006).
bMBL

BH is a weighted average of the Hβ- and C IV-based mass estimates.

In Figure 2.8 we show m̂Hβ vs m̂CIV for both the optical and UV RHβ–L rela-

tionship. We also show the 99% (2.6σ) confidence region for the parameters of a

BCES bisector fit to m̂CIV = A + Bm̂Hβ . As can be seen, the values of m̂Hβ calcu-

lated using the UV RHβ–L relationship are more consistent with the C IV-based

ones. In addition, a pure 1:1 relationship falls outside of the 99% confidence re-

gion on the BCES bisector parameters for the optical-based m̂Hβ values, but it is

contained within the 99% confidence region for the UV-based estimates. In fact,

the BCES bisector fit for the UV-based mass estimates differs from a 1:1 relation-

ship at a significance level of only 1.9σ. Our results are in agreement with Warner

et al. (2003) and Dietrich & Hamann (2004), who also compared the C IV- and

Hβ-based mass estimates and found them to be consistent.

That the C IV- and Hβ-based mass estimates are consistent is in contrast to

the conclusions of Baskin & Laor (2005) and Shemmer et al. (2004). Baskin &

Laor (2005) suggested that C IV-based mass estimates may be problematic be-

cause they find that log(FWHMCIV/FWHMHβ) is significantly anti-correlated
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Figure 2.8 Plots comparing the Hβ-based mass estimates with the C IV-based

ones. The values of m̂Hβ for the top left plot are calculated from the optical R–L

relationship, while the values of m̂Hβ for the top right plot assume RHβ ∝ L
1/2
1450.

The error bars denote the propagated measurement errors in m̂ resulting from the

measurement errors in the line widths and continuum luminosities. The solid

lines are a 1:1 relationship and the dashed lines are the BCES bisector fits. The

bottom left plot shows the 99% (2.6σ) confidence regions for the BCES bisector fits

comparing m̂CIV with m̂Hβ . The solid contour correspond to m̂Hβ calculated from

the optical RHβ–L relationship, and the dashed contour when m̂Hβ is calculated

from the UV one. The crosses mark the best-fit values, and the triangle marks the

values expected for a 1:1 relationship. The bottom right plot shows a comparison

between the Hβ and C IV FWHM . The solid line is the best fit FWHMHβ ∝

FWHMCIV relationship, and the dashed line is the BCES bisector fit.
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with logFWHMHβ . However this is expected even when vHβ ∝ vCIV, as an anti-

correlation between the ratio of the line widths and the Hβ FWHM is expected

by construction; i.e., an anti-correlation between logFWHMCIV − logFWHMHβ

and logFWHMHβ is expected so long as the deviations of logFWHMCIV and

logFWHMHβ from there respective means are not strongly correlated. In addi-

tion, none of the sources in the Baskin & Laor (2005) sample have Hβ broader

than C IV for FWHMHβ < 4000 km s−1. To a lesser extant, a similar effect is

seen in Figure 7 of Shemmer et al. (2004) and Figure 4 of Warner et al. (2003). In

Figure 2.8 we compare the C IV and Hβ FWHM for our sources. We find that

most of the sources with FWHMHβ ∼< 2000 km s−1 tend to have broader C IV

lines. While the line widths certainly do not have a 1:1 relationship, the BCES

bisector fit found that on average FWHMHβ is approximately proportional to

FWHMCIV , FWHMCIV ∝ FWHM 0.79±0.06
Hβ . Baskin & Laor (2005) and Shemmer

et al. (2004) did not perform a regression analysis, so we are unable to make a

more quantitative comparison.

If the line widths are set by the virial relationship, we would expect FWHMCIV ∝

FWHMHβ . While the divergence from FWHMCIV ∝ FWHMHβ is likely real

(3.5σ significance), it is small, especially when compared with the intrinsic scatter

in the FWHM plot. Furthermore, this divergence from FWHMCIV ∝ FWHMHβ

does not appear to have a significant effect on the C IV mass estimates, as the

masses inferred from the two emission lines differ only at the level of 1.9σ. As

can by seen from the plot in Figure 2.8, any systematic difference between the C

IV- and Hβ-based mass estimates is small compared to the statistical scatter in m̂.

Vestergaard & Peterson (2006) performed a reanalysis of the Baskin & Laor

(2005) sample and concluded that the poor correlation between the C IV FWHM

and the Hβ FWHM seen by Baskin & Laor (2005) was due to the inclusion of
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a large number of Narrow Line Seyfert 1s (NLS1) and the subtraction of a C IV

narrow component. Vestergaard (2004) noted that for these sources the C IV line

profile is unlikely to be suitable for estimating MBH , as there may be a strong

component from an outflowing wind. Upon removing the NLS1s and the sources

with poor IUE data, Vestergaard & Peterson (2006) found the correlation between

C IV FWHM and Hβ FWHM to be significantly better.

In addition, Baskin & Laor (2005) compared the correlation of C IV EW with

L/Ledd ∝ L/MBH . A similar investigation was performed by Shemmer et al.

(2004), where they compared the metallicity indicator N V/C IV with L/Ledd.

Both authors found a stronger correlation when MBH was estimated from the Hβ

line as compared to C IV, and suggested that the C IV line may give a less efficient

and possibly biased estimate of MBH . However, as noted in § 2.3.3, correlation

coefficients inferred from the estimated black hole masses must be interpreted

with caution. In particular, the SES estimate of m, m̂, merely defines the centroid

of the probability density of m|l, v, z, and is in general not the actual m for an

object. Therefore, this difference in the correlation coefficient between the Hβ-

and C IV-based mass estimates may be just the result of random sampling, and it

is unclear whether one can say that the correlation coefficients inferred from the

two different mass estimates are inconsistent with those mass estimates being

drawn from the same parent distribution.

The most direct test of the effectiveness of using C IV to estimateMBH is found

by comparing those values of m̂ estimated using C IV with the actual reverbera-

tion mapping values of m. This was done in § 2.7.2, where inclusion of the C IV

FWHM resulted in a reduction of the error in m̂ of ∼ 1/3. In addition, Figure 2.7

compares the C IV-based estimate of m with the reverberation mapping values.

As can be seen, assuming MBH ∝ FWHM 2
CIV is consistent with the reverbera-
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tion mapping sample, and therefore there is no reason to assume that the C IV

line gives a biased estimate of MBH . If m̂CIV does give a biased estimate of m,

then this bias is likely negligible compared to the variance in m̂CIV .

2.9 SUMMARY

In this work we have undertaken a statistical investigation of the best method to

estimate SMBH mass based on the single-epoch C IV line and AGN continuum

at 1549Å. The main conclusions are :

1. Estimating AGN black hole masses from a single-epoch spectrum is a con-

siderably different problem than in the reverberation-mapping case. Be-

cause of this, one is not estimating MBH directly, but calculating a proba-

bility distribution of MBH given the observed luminosity, line width, and

redshift, p(m|l, v, z) ∝ p(v|l,m, z)p(l|m, z)p(m|z).

2. Combining the information in L from both an intrinsic MBH–L correlation

and the R–L relationship results in improved black hole mass estimates.

However, because of the current systematic uncertainties in the MBH–L

relationship, estimates based on its inclusion should be viewed with cau-

tion. In addition, incorporating information from the intrinsic distribution

of MBH also results in more accurate estimates, on average.

3. The distribution of MBH inferred from the broad line mass estimates, m̂BL,

is broader than the intrinsic distribution of MBH , as m̂BL are estimates of

m contaminated by ‘measurement error.’ In addition, it is necessary to es-

timate or assume p(l|m, z) in order to estimate a survey’s completeness in

MBH .

4. The best estimates of MBH based on the C IV emission line are obtained
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using the UV continuum luminosity and FWHM . We find evidence that

the C IV line shift, centroid, EW , and spectral slope of the UV continuum

do not contribute any additional information to estimating MBH for a given

L1549 and FWHMCIV .

5. Using the reverberation mapping sample, we find an MBH–L relationship

of the form

l = 35.72(±1.67) + 1.17(±0.22)m. (2.22)

The intrinsic scatter about this relationship is σl ≈ 0.61 dex. Combining

mass estimates based on this relationship with the broad line mass estimates

results in a reduction in the statistical error of ≈ 18%.

6. We estimate a C IV R–L relationship of the form R ∝ L0.41±0.07
1549 . This is

consistent with an R–L relationship of the form R ∝ L1/2 predicted from

simple photoionization physics or if the BLR size is set by the dust sublima-

tion radius. The scatter about the C IV R–L relationship inferred from the

reverberation mapping estimates of MBH is σr ≈ 0.35 dex.

7. A broad line estimate of m based on the C IV emission line may be calcu-

lated as

log M̂BH/M¯ = m̂CIV = −17.82(±2.99)+0.41(±0.07) log λLλ(1549Å)+2 logFWHMCIV .

(2.23)

Here, λLλ is in units of ergs s−1 and FWHM is in units of km s−1. The cor-

relation between regression coefficients is Corr(m̂CIV
0 , θ̂l) = −0.9996. The

intrinsic scatter in m about Equation (2.23) is ≈ 0.40 dex.

8. The C IV- and Hβ-based mass estimates are consistent if one assumes R ∝

L
1/2
UV for both emission lines. The two emission lines give estimates of MBH
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with comparable accuracy.

9. We find evidence that the R–L relationships for C IV and Hβ are similar in

their dependence onLUV . For both,R ∝ L
1/2
UV is consistent with the available

data. Also, the scatter in the C IV R–L relationship is a factor ∼< 1.6 larger.

This suggests that the C IV broad line region gas has a larger dispersion in

its properties (e.g., density, ionization parameter, inclination) than the Hβ

BLR gas.
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CHAPTER 3

SOME ASPECTS OF MEASUREMENT ERROR IN LINEAR REGRESSION OF

ASTRONOMICAL DATA

3.1 CHAPTER ABSTRACT

I describe a Bayesian method to account for measurement errors in linear regres-

sion of astronomical data. The method allows for heteroscedastic and possibly

correlated measurement errors, and intrinsic scatter in the regression relation-

ship. The method is based on deriving a likelihood function for the measured

data, and I focus on the case when the intrinsic distribution of the independent

variables can be approximated using a mixture of Gaussians. I generalize the

method to incorporate multiple independent variables, non-detections, and se-

lection effects (e.g., Malmquist bias). A Gibbs sampler is described for simulat-

ing random draws from the probability distribution of the parameters, given the

observed data. I use simulation to compare the method with other common esti-

mators. The simulations illustrate that the Gaussian mixture model outperforms

other common estimators and can effectively give constraints on the regression

parameters, even when the measurement errors dominate the observed scatter,

source detection fraction is low, or the intrinsic distribution of the independent

variables is not a mixture of Gaussians. I conclude by using this method to fit the

X-ray spectral slope as a function of Eddington ratio using a sample of 39 z ∼< 0.8

radio-quiet quasars. I confirm the correlation seen by other authors between the

radio-quiet quasar X-ray spectral slope and the Eddington ratio, where the X-ray

spectral slope softens as the Eddington ratio increases. IDL routines are made

available for performing the regression.
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3.2 CHAPTER INTRODUCTION

Linear regression is one of the most common statistical techniques used in astro-

nomical data analysis. In general, linear regression in astronomy is characterized

by intrinsic scatter about the regression line, and measurement errors in both the

independent and dependent variables. The source of intrinsic scatter is varia-

tions in the physical properties of astronomical sources that are not completely

captured by the variables included in the regression. It is important to correctly

account for both measurement error and intrinsic scatter, as both aspects can have

a non-negligible effect on the regression results. In particular, ignoring the in-

trinsic scatter and weighting the data points solely by the measurement errors

can result in the higher-precision measurements being given disproportionate in-

fluence on the regression results. Furthermore, when the independent variable

is measured with error, the ordinary least squares (OLS) estimate of the regres-

sion slope is biased toward zero (e.g., Fuller, 1987; Akritas & Bershady, 1996; Fox,

1997). When there are multiple independent variables, measurement error can

have an even stronger and more unpredictable effect (Fox, 1997). In addition,

the existence of non-detections, referred to as ‘censored data’, in the data set will

result in additional complications (e.g., Isobe et al., 1986). Therefore, when per-

forming regression, it is essential to correctly account for the measurement errors

and intrinsic scatter in order to ensure that the data analysis, and thus the scien-

tific conclusions based on it, are trustworthy.

Many methods have been proposed for performing linear regression when

intrinsic scatter is present and both variables are measured with error. These in-

clude methods that correct the observed moments of the data (e.g., Fuller, 1987;

Akritas & Bershady, 1996; Freedman et al., 2004), minimize an ‘effective’ χ2 statis-

tic (e.g., Clutton-Brock, 1967; Barker & Diana, 1974; Press et al., 1992; Tremaine
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et al., 2002), assume a probability distribution for the true independent variable

values (so-called ‘structural equation models’, e.g., Schafer, 1987, 2001; Roy &

Banerjee, 2006); Bayesian approaches to these models have also been developed

(e.g., Zellner, 1971; Gull, 1989; Dellaportas & Stephens, 1995; Carroll et al., 1999;

Scheines et al., 1999). In addition, methods have been proposed to account for

measurement error in censored regression (e.g., Stapleton & Young, 1984; Weiss,

1993). The most commonly used methods in astronomy are the BCES estimator

(Akritas & Bershady, 1996) and the ‘FITEXY’ estimator (Press et al., 1992). Both

methods have their advantages and disadvantages, some of which have been

pointed out by Tremaine et al. (2002). However, neither method is applicable

when the data contain non-detections.

In this work I describe a Bayesian method for handling measurement errors

in astronomical data analysis. My approach starts by computing the likelihood

function of the complete data, i.e., the likelihood function of both the unobserved

true values of the data and the measured values of the data. The measured data

likelihood is then found by integrating the likelihood function for the complete

data over the unobserved true values (e.g., Little & Rubin, 2002; Gelman et al.,

2004). This approach is known as ‘structural equation modelling’ of measure-

ment error problems, and has been studied from both a frequentist approach

(e.g., Fuller, 1987; Carroll et al., 1995; Schafer, 2001; Aitken & Rocci, 2002) and

a Bayesian approach (e.g., Müller & Roeder, 1997; Richardson & Leblond, 1997).

In this work, I extend the statistical model of Carroll et al. (1999) to allow for

measurement errors of different magnitudes (i.e., ‘heteroscedastic’ errors), non-

detections, and selection effects, so long as the selection function can be modelled

mathematically. Our method models the distribution of independent variables as

a weighted sum of Gaussians. The mixture of Gaussians model allows flexibility
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when estimating the distribution of the true values of the independent variable,

thus increasing its robustness against model mispecification (e.g., Huang et al.,

2006). The basic idea is that one can use a suitably large enough number of Gaus-

sians to accurately approximate the true distribution of independent variables,

even though in general the individual Gaussians have no physical meaning.

The paper is organized as follows. In § 3.3 we summarize some notation,

and in § 3.4 I review the effects of measurement error on the estimates for the

regression slope and correlation coefficient. In § 3.5 I describe the statistical model

and derive the likelihood functions, and in § 3.6 I describe how to incorporate

knowledge of the selection effects and account for non-detections. In § 3.7.1 I

describe the prior distribution for this model, and in § 3.7.2 I describe a Gibbs

sampler for sampling from the posterior distributions. In § 3.8 I use simulation

to illustrate the effectiveness of this structural model and compare with the OLS,

BCES(Y |X), and FITEXY estimators. Finally, in § 3.9 I illustrate the method using

astronomical data by performing a regression of the X-ray photon index, ΓX , on

the Eddington ratio using a sample of 39 z < 0.83 radio-quiet quasars. Sections

3.5, 3.6, and 3.7 are somewhat technical, and the reader who is uninterested in the

mathematical and computational details may skip to them.

3.3 NOTATION

I will use the common statistical notation that an estimate of a quantity is denoted

by placing a ‘hat’ above it; e.g., θ̂ is an estimate of the true value of the parameter

θ. In general, greek letters will denote the true value of a quantity, while roman

letters will denote the contaminated measured value. I will frequently refer to

the ‘bias’ of an estimator. The bias of an estimator is E(θ̂) − θ0, where E(θ̂) is the

expectation value of the estimator θ̂, and θ0 is the true value of θ. An unbiased
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estimator is one such that E(θ̂) = θ0.

I will denote a normal density with mean µ and variance σ2 as N(µ, σ2), and I

will denote asNp(µ,Σ) a multivariate normal density with p-element mean vector

µ and p × p covariance matrix Σ. If I want to explicitly identify the argument of

the Gaussian function, I will use the notation N(x|µ, σ2), which should be under-

stood to be a Gaussian with mean µ and variance σ2 as a function of x. Follow-

ing Gelman et al. (2004), I denote the scaled inverse-χ2 density as Inv-χ2(ν, s2),

where ν is the degrees of freedom and s2 is the scale parameter, and we denote

the inverse-Wishart as Inv-Wishartν(S), where ν is the degrees of freedom and S

is the scale matrix. The inverse-Wishart distribution can be thought of as a mul-

tivariate generalization of the scaled inverse-χ2 distribution. I will often use the

common statistical notation where “∼” means “is drawn from” or “is distributed

as”. For example, x ∼ N(µ, σ2) states that x is drawn from a normal density with

mean µ and variance σ2.

3.4 EFFECT OF MEASUREMENT ERROR ON CORRELATION AND REGRES-

SION

It is well known that measurement error can attenuate the estimate of the regres-

sion slope and correlation coefficient (e.g., Fuller, 1987; Fox, 1997). For complete-

ness, I give a brief review of the effect of measurement error on correlation and

regression analysis for the case of one independent variable.

Denote the independent variable as ξ and the dependent variable as η; ξ and

η are also referred to as the ‘covariate’ and the ‘response’, respectively. I assume

that ξ is a random vector of n data points drawn from some probability distri-

bution. The dependent variable, η, depends on ξ according to the usual additive
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model:

ηi = α + βξi + εi (3.1)

Here, εi is a random variable representing the intrinsic scatter in ηi about the

regression relationship, and (α, β) are the regression coefficients. The mean of

ε is assumed to be zero, and the variance of ε is assumed to be constant and is

denoted as σ2. We do not observe the actual values of (ξ, η), but instead observe

values (x, y) which are measured with error. The measured values are assumed

to be related to the actual values as

xi = ξi + εx,i (3.2)

yi = ηi + εy,i, (3.3)

where εx,i and εy,i are the random measurement errors on xi and yi, respectively.

In general, the errors are normally distributed with known variances σ2
x,i and σ2

y,i,

and covariance σxy,i. For simplicity, throughout the rest of this section I assume

that σ2
x, σ

2
y , and σxy are the same for each data point.

When the data are measured without error, the least-squares estimate of the

regression slope, β̂OLS , and the estimated correlation coefficient, ρ̂, are

β̂OLS =
Cov(ξ, η)

V ar(ξ)
(3.4)

ρ̂ =
Cov(ξ, η)

√

V ar(ξ)V ar(η)
= β̂OLS

√

√

√

√

V ar(ξ)

V ar(η)
. (3.5)

Here, Cov(ξ, η) is the sample covariance between ξ and η, and V ar(ξ) is the sam-

ple variance of ξ. When the data are measured with error, the least-squares es-

timate of the regression slope, b̂OLS , and the estimated correlation coefficient, r̂,

become

b̂OLS =
Cov(x, y)

V ar(x)
=
Cov(ξ, η) + σxy

V ar(ξ) + σ2
x

(3.6)
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r̂ =
Cov(x, y)

√

V ar(x)V ar(y)
=

Cov(ξ, η) + σxy
√

(V ar(ξ) + σ2
x)(V ar(η) + σ2

y)
. (3.7)

From these equations it is apparent that the estimated slope and correlation are

biased when the data are measured with error.

It is informative to assess the effect of measurement error in terms of the ra-

tios Rx = σ2
x/V ar(x), Ry = σ2

y/V ar(y), Rxy = σxy/Cov(x, y), as these quantities

can be calculated from the data. The fractional bias in the estimated slope and

correlation may then be expressed as

b̂

β̂
=

1 −Rx

1 −Rxy

(3.8)

r̂

ρ̂
=

√

(1 −Rx)(1 −Ry)

1 −Rxy

. (3.9)

From Equations (3.8) and (3.9) it is apparent that measurement errors have the

following effects. First, covariate measurement error reduces the magnitude of

the observed correlation between the independent variable and the response, as

well as biasing the estimate of the slope towards zero. Second, measurement error

in the response also reduces the magnitude of the observed correlation between

the variables. Third, if the measurement errors are correlated the effects depend

on the sign of this correlation. If the measurement error correlation has the same

sign as the intrinsic correlation between ξ and η, then the measurement errors

cause a spurious increase in the observed correlation; otherwise the measurement

errors cause a spurious decrease in the observed correlation. The magnitude of

these effects depend on how large the measurement errors are compared to the

observed variance in x and y.

In Figure 3.1 I plot the fractional bias in the correlation coefficient, (ρ̂ − r̂)/ρ̂,

as a function of Rx and Ry when the errors are uncorrelated. As can be seen,

measurement error can have a significant effect on the estimation of the linear
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Figure 3.1 The fractional bias in the correlation coefficient when the data are con-

taminated with measurement error. The fractional bias is shown as a function

of the contribution of measurement error to the observed variance in both x and

y, for uncorrelated measurement errors. When the measurement errors make up

∼ 50% of the observed variance in both x and y, the observed correlation coeffi-

cient is reduced by about ∼ 50%.

correlation coefficient. For example, when Rx ≈ 0.5 and Ry ≈ 0.5, the estimated

correlation is ≈ 50% lower than the true correlation. Therefore, interpretation

of correlation coefficients and regression slopes must be approached with cau-

tion when the data have been contaminated by measurement error. To ensure

accurate results, it is necessary to employ statistical methods that correct for the

measurement errors.
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3.5 THE STATISTICAL MODEL

3.5.1 Regression with One Independent Variable

I assume that the independent variable, ξ, is drawn from a probability distribu-

tion p(ξ|ψ), where ψ denotes the parameters for this distribution. The dependent

variable is then drawn from the conditional distribution of η given ξ, denoted as

p(η|ξ, θ); θ denotes the parameters for this distribution. The joint distribution of ξ

and η is then p(ξ, η|ψ, θ) = p(η|ξ, θ)p(ξ|ψ). In this work I assume the normal linear

regression model given by Equation (3.1), and thus p(η|ξ, θ) is a normal density

with mean α + βξ and variance σ2, and θ = (α, β, σ2).

Since the data are a randomly observed sample, we can derive the likelihood

function for the measured data. The likelihood function of the measured data,

p(x, y|θ, ψ), is obtained by integrating the complete data likelihood over the miss-

ing data, ξ and η (e.g., Little & Rubin, 2002; Gelman et al., 2004):

p(x, y|θ, ψ) =
∫ ∫

p(x, y, ξ, η|θ, ψ) dξ dη. (3.10)

Here, p(x, y, ξ, η|θ, ψ) is the complete data likelihood function. Because of the

hierarchical structure inherent in the measurement error model, it is helpful to

decompose the complete data likelihood into conditional probability densities:

p(x, y|θ, ψ) =
∫ ∫

p(x, y|ξ, η)p(η|ξ, θ)p(ξ|ψ) dξ dη. (3.11)

The density p(x, y|ξ, η) describes the joint distribution of the measured values x

and y at a given ξ and η, and depends on the assumed distribution of the mea-

surement errors, εx and εy. In this work I assume Gaussian measurement error,

and thus p(xi, yi|ξi, ηi) is a multivariate normal density with mean (ξi, ηi) and co-

variance matrix Σi, where Σ11,i = σ2
y,i,Σ22,i = σ2

x,i, and Σ12,i = σxy,i. The statistical

model may then be conveniently expressed hierarchically as

ξi ∼ p(ξ|ψ) (3.12)
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ηi|ξi ∼ N(α+ βξi, σ
2) (3.13)

yi, xi|ηi, ξi ∼ N2([ηi, ξi],Σi) (3.14)

Note that if xi is measured without error, then p(xi|ξi) is a Dirac delta function,

and p(xi, yi|ξi, ηi) = p(yi|ηi)δ(xi − ξi). An equivalent result holds if yi is measured

without error.

Equation (3.11) may be used to obtain the observed data likelihood function

for any assumed distribution of ξ. In this work, I model p(ξ|ψ) as a mixture of K

Gaussians,

p(ξi|ψ) =
K
∑

k=1

πk
√

2πτ 2
k

exp

{

−1

2

(ξi − µk)
2

τ 2
k

}

, (3.15)

where ∑K
k=1 πk = 1. Note that, πk may be interpreted as the probability of draw-

ing a data point from the kth Gaussian. I will use the convenient notation π =

(π1, . . . , πK), µ = (µ1, . . . , µK), and τ 2 = (τ 2
1 , . . . , τ

2
K); note that ψ = (π, µ, τ 2). It

is useful to model p(ξ|ψ) using this form because it is flexible enough to adapt

to a wide variety of distributions, but is also conjugate for the regression rela-

tionship (Eq.[3.1]) and the measurement error distribution, thus simplifying the

mathematics.

Assuming the Gaussian mixture model for p(ξ|ψ), the measured data likeli-

hood for the ith data point can be directly calculated using Equation (3.11). De-

noting the measured data as z = (y, x), the measured data likelihood function for

the ith data point is then a mixture of bivariate normal distributions with weights

π, means ζ = (ζ1, . . . , ζK), and covariance matrices Vi = (V1,i, . . . , VK,i). Because

the data points are statistically independent, the full measured data likelihood is

then the product of the likelihood functions for the individual data points:

p(x, y|θ, ψ) =
n
∏

i=1

K
∑

k=1

πk

2π|Vk,i|1/2
exp

{

−1

2
(zi − ζk)

TV −1
k,i (zi − ζk)

}

(3.16)

ζk = (α + βµk, µk) (3.17)
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Vk,i =







β2τ 2
k + σ2 + σ2

y,i βτ 2
k + σxy,i

βτ 2
k + σxy,i τ 2

k + σ2
x,i





 . (3.18)

Here, zT denotes the transpose of z. Equation (3.16) may be maximized to com-

pute the maximum-likelihood estimate (MLE). When K > 1, the expectation-

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) is probably the

most efficient tool for calculating the MLE. Roy & Banerjee (2006) describe an EM

algorithm when p(ξ) is assumed to be a mixture of normals and the measure-

ment error distribution is multivariate t, and their results can be extended to the

statistical model described in this work.

It is informative to decompose the measured data likelihood, p(xi, yi|θ, ψ) =

p(yi|xi, θ, ψ)p(xi|ψ), as this representation is useful when the data contain non-

detections (cf., § 3.6.2). The marginal distribution of xi is

p(xi|ψ) =
K
∑

k=1

πk
√

2π(τ 2
k + σ2

x,i)
exp

{

−1

2

(xi − µk)
2

τ 2
k + σ2

x,i

}

, (3.19)

and the conditional distribution of yi given xi is

p(yi|xi, θ, ψ) =
K
∑

k=1

γk
√

2πV ar(yi|xi, k)
exp

{

−1

2

[yi − E(yi|xi, k)]
2

V ar(yi|xi, k)

}

(3.20)

γk =
πkN(xi|µk, τ

2
k + σ2

x,i)
∑K

j=1 πjN(xi|µj, τ 2
j + σ2

x,i)
(3.21)

E(yi|xi, k) = α +

(

βτ 2
k + σxy,i

τ 2
k + σ2

x,i

)

xi +

(

βσ2
x,i − σxy,i

τ 2
k + σ2

x,i

)

µk (3.22)

V ar(yi|xi, k) = β2τ 2
k + σ2 + σ2

y,i −
(βτ 2

k − σxy,i)
2

τ 2
k + σ2

x,i

. (3.23)

Here, γk can be interpreted as the probability that the ith data point was drawn

from the kth Gaussian given xi, E(yi|xi, k) gives the expectation value of yi at

xi, given that the data point was drawn from the kth Gaussian, and V ar(yi|xi, k)

gives the variance in yi at xi, given that the data point was drawn from the kth

Gaussian.
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3.5.2 Relationship between Uniformly Distributed Covariates and Effective χ2

Estimators

It is informative to investigate the case where the distribution of ξ is assumed to

be uniform, p(ξ) ∝ 1. Interpreting p(ξ) as a ‘prior’ on ξ, one may be tempted to

consider assuming p(ξ) ∝ 1 as a more objective alternative to the normal distri-

bution. A uniform distribution for ξ may be obtained as the limit τ 2 → ∞, and

thus the likelihood function for p(ξ) ∝ 1 can be calculated from Equation (3.20)

by taking τ 2 → ∞ and K = 1. When the measurement errors are uncorrelated,

the likelihood for uniform p(ξ) is

p(y|x, θ) =
n
∏

i=1

1
√

2π(σ2 + σ2
y,i + β2σ2

x,i)
exp

{

−1

2

(yi − α− βxi)
2

σ2 + σ2
y,i + β2σ2

x,i

}

. (3.24)

The argument of the exponential is the FITEXY goodness of fit statistic, χ2
EXY ,

as modified by Tremaine et al. (2002) to account for intrinsic scatter; this fact has

also been recognized by Weiner et al. (2006). Despite this connection, minimizing

χ2
EXY is not the same as maximizing the conditional likelihood of y given x, as

both β and σ2 appear in the normalization of the likelihood function as well.

For a given value of σ2, minimizing χ2
EXY can be interpreted as minimizing a

weighted sum of squared errors, where the weights are given by the variances in

yi at a given xi, and one assumes a uniform distribution for ξ. Unfortunately, this

is only valid for a fixed value of σ2. Moreover, little is known about the statistical

properties of the FITEXY estimator, such as its bias and variance, although boot-

strapping (e.g., Efron, 1979; Davison & Hinkley, 1997) may be used to estimate

them. Furthermore, it is ambiguous how to calculate the FITEXY estimates when

there is an intrinsic scatter term. The FITEXY goodness-of-fit statistic, χ2
EXY ,

cannot be simultaneously minimized with respect to α, β, and σ2, as χ2
EXY is a

strictly decreasing function of σ2. As such, it is unclear how to proceed in the
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optimization beyond an ad hoc approach. Many authors have followed the ap-

proach adopted by Tremaine et al. (2002) and increase σ2 until χ2
EXY /(n− 2) = 1,

or assume σ2 = 0 if χ2
EXY /(n− 2) < 1.

Despite the fact that minimizing χ2
EXY is not the same as maximizing Equation

(3.24), one may still be tempted to calculate a MLE based on Equation (3.24).

However, it can be shown that if one assumes p(ξ) ∝ 1, and if all of the x and

y have the same respective measurement error variances, σ2
x and σ2

y , the MLE

estimates for α and β are just the ordinary least squares estimates (Zellner, 1971).

While this is not necessarily true when the magnitudes of the measurement errors

vary between data points, one might expect that the MLE will behave similarly

to the OLS estimate. I confirm this fact using simulation in § 3.8.1. Unfortunately,

this implies that the MLE for p(ξ) ∝ 1 inherits the bias in the OLS estimate, and

thus nothing is gained. Furthermore, as argued by Gull (1989), one can easily be

convinced that assuming p(ξ) ∝ 1 is incorrect by examining a histogram of x.

3.5.3 Regression with Multiple Independent Variables

The formalism developed in § 3.5.1 can easily be generalized to multiple inde-

pendent variables. In this case Equation (3.1) becomes

ηi = α + βT ξi + εi, (3.25)

where β is now a p-element vector and ξi is a p-element vector containing the

values of the independent variables for the ith data point. Similar to before, we

assume that the distribution of ξi can be approximated using a mixture of K mul-

tivariate normal densities with p-element mean vectors µ = (µ1, . . . , µK), p × p

covariance matrices T = (T1, . . . , TK), and weights π = (π1, . . . , πK). The mea-

sured value of ξi is the p-element vector xi, and the Gaussian measurement errors
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on (yi,xi) have (p+1)× (p+1) covariance matrix Σi. The statistical model is then

ξi ∼
K
∑

k=1

πkNp(µk, Tk) (3.26)

ηi|ξi ∼ N(α+ βT ξi, σ
2) (3.27)

yi,xi|ηi, ξi ∼ Np+1([ηi, ξi],Σi). (3.28)

(3.29)

Denoting zi = (yi,xi), the measured data likelihood is

p(x, y|θ, ψ) =
n
∏

i=1

K
∑

k=1

πk

(2π)(p+1)/2|Vk,i|1/2
exp

{

−1

2
(zi − ζk)

TV −1
k,i (zi − ζk)

}

(3.30)

ζk = (α+ βTµk, µk) (3.31)

Vk,i =







βTTkβ + σ2 + σ2
y,i βTTk + σT

xy,i

Tkβ + σxy,i Tk + Σx,i





 . (3.32)

Here, ζk is the (p + 1)-element mean vector of zi for Gaussian k, Vk,i is the (p +

1) × (p + 1) covariance matrix of zi for Gaussian k, σ2
y,i is the variance in the

measurement error on yi, σxy,i is the p-element vector of covariances between the

measurement errors on yi and xi, and Σx,i is the p × p covariance matrix of the

measurement errors on xi.

Similar to the case for one independent variable, the measured data likeli-

hood can be decomposed as p(x, y|θ, ψ) = p(y|x, θ, ψ)p(x|ψ), where p(xi|ψ) =

∑K
k=1 πkNp(xi|µk, Tk + Σx,i) and

p(yi|xi, θ, ψ) =
K
∑

k=1

γk
√

2πV ar(yi|xi, k)
exp

{

−1

2

[yi − E(yi|xi, k)]
2

V ar(yi|xi, k)

}

(3.33)

γk =
πkN(xi|µk, Tk + Σx,i)

∑K
j=1 πjN(xi|µj, Tj + Σx,i)

(3.34)

E(yi|xi, k) = α + βTµk + (βTTk + σT
xy,i)(Tk + Σx,i)

−1(xi − µk) (3.35)

V ar(yi|xi, k) = βTTkβ + σ2 + σ2
y,i − (βTTk + σT

xy,i)(Tk + Σx,i)
−1(Tkβ + σxy,i).(3.36)
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3.6 DATA COLLECTION ISSUES: SELECTION EFFECTS AND NON-DETECTIONS

There are several issues common in the collection of astronomical data that vio-

late the simple assumptions made in § 3.5. Astronomical data collection consists

almost entirely of passive observations, and thus selection effects are a common

concern. Instrumental detection limits often result in the placement of upper or

lower limits on quantities, and astronomical surveys are frequently flux-limited.

In this section I modify the likelihood functions described in § 3.5 to include the

effects of data collection.

General methods for dealing with missing data are described in Little & Rubin

(2002) and Gelman et al. (2004), and I apply the methodology described in these

references to the measurement error model developed here. Although in this

work I focus on linear regression, many of these results can be applied to more

general statistical models, such as estimating luminosity functions.

3.6.1 Selection Effects

Suppose that one collects a sample of n sources out of a possible N sources. One

is interested in understanding how the observable properties of these sources are

related, but is concerned about the effects of the selection procedure on the data

analysis. For example, one may perform a survey that probes some area of the

sky. There are N sources located within this solid angle, where N is unknown.

Because of the survey’s selection method, the sample only includes n sources. In

this case the astronomer is interested in how measurement error and the survey’s

selection method affect statistical inference.

I investigate selection effects within the framework of our statistical model by

introducing an indicator variable, I , which denotes whether a source is included

in the sample. If the ith source is included in the sample, then Ii = 1, otherwise
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Ii = 0. In addition, I assume that the selection function only depends on the

measured values, x and y. Under this assumption, the selection function of the

sample is the probability of including a source with a given x and y, p(I|x, y).

This is commonly the case in astronomy, where sources are collected based on

their measured properties. For example, one may select sources for a sample

based on their measured properties as reported in the literature. In addition, if

one performs a flux-limited survey then a source will only be considered detected

if its measured flux falls above some set flux limit. If a sample is from a survey

with a simple flux limit, then p(Ii = 1|yi) = 1 if the measured source flux yi is

above the flux limit, and p(Ii = 1|yi) = 0 if the measured source flux is below the

flux limit. Since the selection function depends on the measured flux value, and

not the true flux value, sources with true flux values above the flux limit can be

missed by the survey, and sources with true flux below the limit can be detected

by the survey. This effect is well-known in astronomy and is commonly referred

to as Malmquist bias (e.g., Landy & Szalay, 1992).

Including the variable I , the complete data likelihood can be written as

p(x, y, ξ, η, I|θ, ψ) = p(I|x, y)p(x, y|ξ, η)p(η|ξ, θ)p(ξ|ψ). (3.37)

Equation (3.37) is valid for any number of independent variables, and thus xi

and ξi may be either scalar or vector. Integrating Equation (3.37) over the missing

data, the observed data likelihood is

p(xobs, yobs|θ, ψ,N) ∝







N

n







∏

i∈Aobs

p(xi, yi|θ, ψ)

×
∏

j∈Amis

∫

p(Ij = 0|xj, yj)p(xj, yj|ξj, ηj)p(ηj|ξj, θ)p(ξj|ψ) dxj dyj dξj dηj.(3.38)

Here,







N

n





 is the binomial coefficient, Aobs denotes the set of n included sources,
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xobs and yobs denote the values of x and y for the included sources, and Amis de-

notes the set of N − n missing sources. In addition, I have omitted terms that do

not depend on θ, ψ, or N . Note that N is unknown and is thus also a parameter

of the statistical model. The binomial coefficient is necessary because it gives the

number of possible ways to select a sample of n sources from a set of N sources.

It is apparent from Equation (3.38) that statistical inference on the regression

parameters is unaffected if the selection function is independent of y and x. (e.g.,

Little & Rubin, 2002; Gelman et al., 2004). In this case the selection function may

be ignored.

3.6.1.1 Selection Based on Measured Independent Variables

It is commonly the case that a sample is selected based only on the measured

independent variables. For example, suppose one performs a survey in which

all sources with measured optical flux greater than some threshold are included.

Then, these optically selected sources are used to fit a regression in order to un-

derstand how the X-ray luminosity of these objects depends on their optical lu-

minosity and redshift. In this case, the probability of including a source only

depends on the measured values of the optical luminosity and redshift, and is

thus independent of the X-ray luminosity.

When the sample selection function is independent of y, given x, then p(I|x, y) =

p(I|x). Because we are primarily interested in the regression parameters, θ, I

model the distributions of ξ for the included and missing sources seperately, with

the parameters for the distribution of included sources denoted as ψobs. In ad-

dition, I assume that the measurement errors between y and x are statistically

independent. Then the N − n integrals over y and η for the missing sources in

Equation (3.38) are equal to unity, and we can write the observed data likelihood
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as

p(xobs, yobs|θ, ψobs) ∝
n
∏

i=1

∫ ∫

p(xi|ξi)p(yi|ηi)p(ηi|ξi, θ)p(ξi|Ii = 1, ψobs) dξi dηi,

(3.39)

where p(ξi|Ii = 1, ψobs) is the distribution of those ξ included in one’s sample.

Here I have omitted terms depending on N because one is primarily interested

in inference on the regression parameters, θ. Equation (3.39) is identical to Equa-

tion (3.11), with the exception that p(ξ|ψ) now only models the distribution of

those ξ that have been included in one’s sample, and I have now assumed that

the measurement errors on y and x are independent. In particular, for the Gaus-

sian mixture models described in § 3.5.1 and § 3.5.3, the observed data likelihood

is given by Equations (3.16) and (3.30), where π, µ, and τ 2 (or T ) should be un-

derstood as referring to the parameters for the distribution of the observed ξ. As

is evident from the similarity between Equations (3.39) and (3.11), if the sample is

selected based on the measured independent variables, and if the measurement errors on

the dependent and independent variables are statistically independent, then inference on

the regression parameters, θ, is unaffected by selection effects.

3.6.1.2 Selection Based on Measured Dependent and Independent Variables

If the method in which a sample is selected depends on the measured dependent

variable, y, or if the measurement error in x and y are correlated, the observed

data likelihood becomes more complicated. As an example, one might encounter

this situation if one uses an X-ray selected sample to investigate the dependence

of X-ray luminosity on optical luminosity and redshift. In this case, the selection

function of the sample depends on both the X-ray luminosity and redshift, and is

thus no longer independent of the dependent variable. Such data sets are said to

be ‘truncated’.

If the selection function depends on y, or if the measurement errors on y and x
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are not independent, one cannot simply ignore the terms depending on N , since

the N − n integrals in Equation (3.38) depend on θ. However, we can eliminate

the dependence of Equation (3.38) on the unknown N by applying a Bayesian

approach. The posterior distribution of θ, ψ, andN is related to the observed data

likelihood function as p(θ, ψ,N |xobs, yobs) ∝ p(θ, ψ,N)p(xobs, yobs|θ, ψ,N), where

p(θ, ψ,N) is the prior distribution of (θ, ψ,N). If we assume a uniform prior on

θ, ψ, and logN , then one can show (e.g., Gelman et al., 2004) that the posterior

distribution of θ and ψ is

p(θ, ψ|xobs, yobs) ∝ [p(I = 1|θ, ψ)]−n
n
∏

i=1

p(xi, yi|θ, ψ). (3.40)

Here, p(xi, yi|θ, ψ) is given by Equation (3.11), and p(I = 1|θ, ψ) is the probability

of including a source in one’s sample, given the model parameters, θ and ψ:

p(I = 1|θ, ψ) =
∫ ∫

p(I = 1|x, y)p(x, y|θ, ψ) dx dy. (3.41)

I have left off the subscripts for the data points in Equation (3.41) because the

integrals are the same for each (xj, yj, ξj, ηj). If one assumes the Gaussian mixture

model of Sections 3.5.1 and 3.5.3, then p(xi, yi|θ, ψ) is given by Equations (3.16) or

(3.30). The posterior mode can then be used as an estimate of θ and ψ, which is

found by maximizing Equation (3.40).

3.6.2 Non-detections

In addition to issues related to the sample selection method, it is common in as-

tronomical data to have non-detections. Such non-detections are referred to as

‘censored’ data, and the standard procedure is to place an upper and/or lower

limit on the censored data point. Methods of data analysis for censored data

have been reviewed and proposed in the astronomical literature, (e.g., Feigelson

& Nelson, 1985; Schmitt, 1985; Marshall, 1992; Akritas & Siebert, 1996), and Isobe
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et al. (1986) describe censored regression when the variables are measured with-

out error. See Feigelson (1992) for a review of censored data in astronomy.

To facilitate the inclusion of censored data, I introduce an additional indicator

variable, D, indicating whether a data point is censored or not on the dependent

variable. If yi is detected, then Di = 1, else if yi is censored then Di = 0. It

is commonly the case that a source is considered ‘detected’ if its measured flux

falls above some multiple of the background noise level, say 3σ. Then, in this

case, the probability of detecting the source given the measured source flux yi is

p(Di = 1|yi) = 1 if yi > 3σ, and p(Di = 0|yi) = 1 if yi < 3σ. Since source detection

depends on the measured flux, some sources with intrinsic flux η above the flux

limit will have a measured flux y that falls below the flux limit. Similarly, some

sources with intrinsic flux below the flux limit will have a measured flux above

the flux limit.

I assume that a sample is selected based on the independent variables, i.e.,

p(I|x, y) = p(I|x). It is difficult to imagine obtaining a censored sample if the

sample is selected based on its dependent variable, as some of the values of y are

censored and thus unknown. Therefore, I only investigate the effects of censoring

on y when the probability that a source is included in the sample is independent

of y, given x. In addition, I do not address the issue of censoring on the indepen-

dent variable. Although such methods can be developed, it is probably simpler to

just omit such data as inference on the regression parameters is unaffected when

a sample is selected based only on the independent variables (cf., § 3.6.1).

The observed data likelihood for an x-selected sample is given by Equation

(3.39). We can modify this likelihood to account for censored y by including the

indicator variable D and again integrating over the missing data:

p(xobs, yobs, D|θ, ψobs) ∝
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∏

i∈Adet

p(xi, yi|θ, ψobs)
∏

j∈Acens

p(xj|ψobs)
∫

p(Dj = 0|yj, xj)p(yj|xj, θ, ψobs) dyj.(3.42)

Here, the first product is over the set of data points with detections, Adet, and

the second product is over the set of data points with non-detections, Acens. The

conditional distribution p(yj|xj, θ, ψobs) and the marginal distribution p(xj|ψobs)

for the Gaussian mixture model are both given in § 3.5.1 and § 3.5.3. If the data

points are measured without error and one assumes the normal regression model,

p(η|ξ, θ) = N(η|α + βξ, σ2), then Equation 3.42 becomes the censored data like-

lihood function described in Isobe et al. (1986). A MLE for censored regression

with measurement errors is then obtained by maximizing Equation (3.42).

3.7 COMPUTATIONAL METHODS

In this section I describe a Bayesian method for computing estimates of the regres-

sion parameters, θ, and their uncertainties. The Bayesian approach calculates the

posterior probability distribution of the model parameters, given the observed

data, and therefore is accurate for both small and large sample sizes. The poste-

rior distribution follows from Baye’s formula as p(θ, ψ|x, y) ∝ p(θ, ψ)p(x, y|θ, ψ),

where p(θ, ψ) is the prior distribution of the parameters. I describe some Markov

Chain methods for drawing random variables from the posterior, which can then

be used to estimate quantities such as standard errors and confidence intervals

on θ and ψ. Gelman et al. (2004) is a good reference on Bayesian methods, and

Loredo (1992) gives a review of Bayesian methods intended for astronomers. Fur-

ther details of Markov Chain simulation, including methods for making the sim-

ulations more efficient, can be found in Gelman et al. (2004).

3.7.1 The Prior Density

In order to ensure a proper posterior for the Gaussian mixture model, it is nec-

essary to invoke a proper prior density on the mixture parameters (Roeder &



103

Wasserman, 1997). I adopt a uniform prior on the regression parameters (α, β, σ2),

and take π1, . . . , πK ∼ Dirichlet(1, . . . , 1). The Dirichlet density is a multivari-

ate extension of the Beta density, and the Dirichlet(1, . . . , 1) prior adopted in this

work is equivalent to a uniform prior on π, under the constraint ∑K
k=1 πk = 1.

The prior on µ and τ 2 (or T ) adopted in this work is very similar to that advo-

cated by Roeder & Wasserman (1997) and Carroll et al. (1999). I adopt a normal

prior on the individual µk with mean µ0 and variance u2 (or covariance matrix U ).

This reflects our prior belief that the distribution of ξ is more likely to be fairly

unimodal, and thus that we expect it to be more likely that the individual Gaus-

sians will be close together than far apart. If there is only one covariate, then I

adopt a scaled inverse-χ2 prior on the individual τ 2
k with scale parameter w2 and

one degree of freedom, otherwise if there are p > 1 covariates I adopt an inverse-

Wishart prior on the individual Tk with scale matrix W and p degrees of freedom.

This reflects our prior expectation that the variances for the individual Gaussian

components should be similar, but the low number of degrees of freedom acco-

modates a large range of scales. Both the Gaussian means and variances are as-

sumed to be independent in their prior distribution, and the ‘hyper-parameters’

µ0, u
2 (or U ), and w2 (or W ) are left unspecified. By leaving the parameters for the

prior distribution unspecified, they becomes additional parameters in the statis-

tical model, and therefore are able to adapt to the data.

Since the hyper-parameters are left as free parameters they also require a prior

density. I assume a uniform prior on µ0 and w2 (or W ). If there is one covariate,

then I assume a scaled inverse-χ2 prior for u2 with scale parameter w2 and one

degree of freedom, otherwise if there are multiple covariate we assume a inverse-

Wishart prior for U with scale matrix W and p degrees of freedom. The prior

on u2 (or U ) reflects the prior expectation that the dispersion of the Gaussian
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components about their mean µ0 should be on the order of the typical disper-

sion of each individual Gaussian. The prior density for one covariate is then

p(θ, ψ, µ0, u
2, w2) ∝ p(π)p(µ|µ0, u

2)p(τ 2|w2)p(u2|w2) and is summarized hierarchi-

cally as

α, β ∼ Uniform(−∞,∞) (3.43)

σ2 ∼ Uniform(0,∞) (3.44)

π ∼ Dirichlet(1, . . . , 1) (3.45)

µ1, . . . , µK |µ0, u
2 ∼ N(µ0, u

2) (3.46)

τ 2
1 , . . . , τ

2
K , u

2|w2 ∼ Inv-χ2(1, w2) (3.47)

µ0 ∼ Uniform(−∞,∞) (3.48)

w2 ∼ Uniform(0,∞). (3.49)

The prior density for multiple covariates is just the multivariate extension of

Equations (3.43)–(3.49).

3.7.2 Markov Chains for Sampling from the Posterior Distribution

The posterior distribution summarizes our knowledge about the parameters in

the statistical model, given the observed data and the priors. Direct computa-

tion of the posterior distribution is too computationally intensive for the model

described in this work. However, we can obtain any number of random draws

from the posterior using Markov chain monte carlo (MCMC) methods. In MCMC

methods, we simulate a Markov chain that performs a random walk through the

parameter space, saving the locations of the walk at each iteration. Eventually,

the Markov chain converges to the posterior distribution, and the saved param-

eter values can be treated as a random draw from the posterior. The random

draws can then be used to estimate posterior medians, standard errors, of plot

histogram estimates of the posterior.
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3.7.2.1 Gibbs Sampler for the Gaussian Model

The easiest method for sampling from the posterior is to construct a Gibbs sam-

pler. The basic idea behind the Gibbs sampler is to construct a Markov Chain,

where new values of the model parameters and missing data are simulated at

each iteration, conditional on the values of the observed data and the current

values of the model parameters and the missing data. Within the context of the

measurement error model considered in this work, the Gibbs Sampler undergoes

four different stages.

The first stage of the Gibbs sampler simulates values of the missing data,

given the measured data and current parameter values, a process known as data

augmentation. In this work the missing data are η, ξ, and any non-detections.

In addition, I introduce an additional latent variable, Gi, which gives the class

membership for the ith data point. The vector Gi has K elements, where Gik = 1

if the ith data point comes from the kth Gaussian, and Gij = 0 if j 6= k. I will

use G to refer to the set of n vectors Gi. Noting that πk gives the probability of

drawing a data point from the kth Gaussian, the mixture model for ξ may then be

expressed hierarchically as

Gi|π ∼ Multinom(1, π1, . . . , πK) (3.50)

ξi|Gik = 1, µk, τ
2
k ∼ N(µk, τ

2
k ). (3.51)

Here, Multinom(m, p1, . . . , pK) is a multinomial distribution with m trials, where

pk is the probability of success for the kth class on any particular trial. The vector

Gi is also considered to be missing data, and is introduced to simplify construc-

tion of the Gibbs sampler.

The new values of the missing data simulated in the data augmentation step

are then used to simulate new values of the regression and Gaussian mixture
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parameters. The second stage of the Gibbs sampler simulates values of the re-

gression parameters, θ, given the current values of xi and η. The third stage

simulates values of the mixture parameters, ψ, given the current values of ξ and

η. The fourth stage uses the new values of θ and ψ to update the parameters of

the prior density. The values of the parameters are saved, and the process is re-

peated, creating a Markov Chain. After a large number of iterations, the Markov

Chain converges, and the saved values of θ and ψ from the latter part of the al-

gorithm may then be treated as a random draw from the posterior distribution,

p(θ, ψ|x, y).

Methods for simulating random variables from the distributions used for this

Gibbs sampler are described in various works (e.g., Ripley, 1987; Press et al., 1992;

Gelman et al., 2004).

A Gibbs sampler for the Gaussian mixture model is

1. Start with initial guesses for η,G, θ, ψ, and the prior parameters.

2. If there are any non-detections, then draw yi for the censored data points

from p(yi|ηi, Di = 0) ∝ p(Di = 0|yi)p(yi|ηi). This may be done by first

drawing yi from p(yi|ηi):

yi|ηi ∼ N(ηi, σ
2
y,i). (3.52)

One then draws a random variable ui, uniformly-distributed on [0, 1]. If

ui < p(Di = 0|yi) then the value of yi is kept, otherwise one draws a new

value of yi and ui until ui < p(Di = 0|yi).

3. Draw values of ξ from p(ξ|x, y, η,G, θ, ψ). The distribution p(ξ|x, y, η,G, θ, ψ)

can be derived from Equations (3.12)–(3.14) or (3.26)–(3.28) and the proper-

ties of the multivariate normal distribution:
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(a) If there is only one independent variable then ξi is updated as:

ξi|xi, yi, ηi,Gi, θ, ψ ∼ N(ξ̂i, σ
2
ξ̂,i

) (3.53)

ξ̂i =
K
∑

k=1

Gikξ̂ik (3.54)

ξ̂ik = σ2
ξ̂,i

[

ξ̂xy,i

σ2
x,i(1 − ρ2

xy,i)
+
β(ηi − α)

σ2
+
µk

τ 2
k

]

(3.55)

ξ̂xy,i = xi +
σxy,i

σ2
y,i

(ηi − yi) (3.56)

σ2
ξ̂,i

=
K
∑

k=1

Gikσ
2
ξ̂,ik

(3.57)

σ2
ξ̂,ik

=

[

1

σ2
x,i(1 − ρ2

xy,i)
+
β2

σ2
+

1

τ 2
k

]−1

. (3.58)

Here, ρxy,i = σxy,i/(σx,iσy,i) is the correlation between the measurement

errors on xi and yi. Note that ξi is updated using only information from

the kth Gaussian, since Gij = 1 only for j = k and Gij = 0 otherwise.

(b) If there are multiple independent variables, I have found it easier and

computationally faster to update the values of ξi using a scalar Gibbs

sampler. In this case, the p elements of ξi are updated individually. I

denote ξij to be the value of the jth independent variable for the ith data

point, and xij to be the measured value of ξij . In addition, I denote ξi,−j

to be the (p − 1)-element vector obtained by removing ξij from ξi, i.e.,

ξi,−j = (ξi1, . . . , ξi(j−1), ξi(j+1), . . . , ξip). Similarly, β−j denotes the (p− 1)-

element vector of regression coefficients obtained after removing βj

from β. Then, ξij is updated as

ξij|xi, yi,Gi, ξi,−j , ηi, θ, ψ ∼ N(ξ̂ij, σ
2
ξ̂,ij

) (3.59)

ξ̂ij =
K
∑

k=1

Gikξ̂ijk (3.60)

ξ̂ijk =
(Σ−1

i z∗i )j+1 + (T−1
k µ∗

ik)j + βj(ηi − α− βT
−jξi,−j)/σ

2

(Σ−1
i )(j+1)(j+1) + (T−1

k )jj + β2
j /σ

2
(3.61)
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(z∗i )l =



























yi − ηi if l = 1

xil if l = j + 1

xil − ξil if l 6= j + 1

(3.62)

(µ∗
ik)l =











(µk)l if l = j

(µk)l − ξil if l 6= j
(3.63)

σ2
ξ̂,ij

=
K
∑

k=1

Gikσ
2
ξ̂,ijk

(3.64)

σ2
ξ̂,ijk

=

[

(Σ−1
i )(j+1)(j+1) + (T−1

k )jj +
β2

j

σ2

]−1

. (3.65)

Here, z∗i is a (p+1)-element vector obtained by subtracting (ηi, ξi) from

zi = (yi,xi), with the exception of the jth element of ξi; instead, the

(j+1)th element of z∗i is just xij . The p-element vector µ∗
ik is obtained in

an equivalent manner. The (p+ 1)× (p+ 1) matrix Σi is the covariance

matrix of the measurement errors on zi. The term (Σ−1
i z∗i )(j+1) denotes

the (j+1)th element of the vector Σ−1
i z∗i , and likewise for (T−1

k µ∗
ik)j . The

terms (Σ−1
i )(j+1)(j+1) and (T−1

k )jj denote the (j+1)th and jth elements of

the diagonals of Σ−1
i and T−1

k , respectively. This step is repeated until

all p independent variables have been updated for each data point.

If any of the ξi are measured without error, then one simply sets ξi = xi for

those data points.

4. Draw values of η from p(η|x, y, ξ, θ). Similar to ξ, the distribution p(η|x, y, ξ, θ)

can be derived from Equations (3.12)–(3.14) or (3.26)–(3.28) and the proper-

ties of the multivariate normal distribution.

(a) If there is only one covariate then η is updated as

ηi|xi, yi, ξi, θ ∼ N(η̂i, σ
2
η̂,i) (3.66)
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η̂i = σ2
η̂,i

[

yi + σxy,i(ξi − xi)/σ
2
x,i

σ2
y,i(1 − ρ2

xy,i)
+
α + βξi
σ2

]

(3.67)

σ2
η̂,i =

[

1

σ2
y,i(1 − ρ2

xy,i)
+

1

σ2

]−1

. (3.68)

(b) If there are multiple covariates then η is updated as

ηi|xi, yi, ξi, θ ∼ N(η̂i, σ
2
η̂,i) (3.69)

η̂i =
(Σ−1

i z∗i )1 + (α+ βT ξi)/σ
2

(Σ−1
i )11 + 1/σ2

(3.70)

σ2
η̂,i =

[

(Σ−1
i )11 +

1

σ2

]−1

(3.71)

z∗i = (yi,xi − ξi). (3.72)

Here, (Σ−1
i z∗i )1 is the first element of the vector Σ−1

i z∗i , z∗i is a (p + 1)-

element vector whose first element is yi and remaining elements are

xi − ξi, and (Σ−1
i )11 is the first diagonal element of Σ−1

i .

If any of the η are measured without error, then one sets η = y for those data

points.

5. Draw new values of the Gaussian labels, G. The conditional distribution

of Gi is Multinomial with number of trials m = 1 and group probabilities

qk = p(Gik = 1|ξi, ψ):

Gi|ξi, ψ ∼ Multinom(1, q1, . . . , qK) (3.73)

qk =
πkNp(ξi|µk, Tk)

∑K
j=1 πjNp(ξi|µj, Tj)

. (3.74)

Note that if there is only one covariate then p = 1 and Tk = τ 2
k .

6. Draw (α, β) from p(α, β|ξ, η, σ2). Given ξ, η, and σ2, the distribution of α

and β is obtained by ordinary regression:

α, β|ξ, η, σ2 ∼ Np+1(ĉ,Σĉ) (3.75)
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ĉ = (XTX)−1XTη (3.76)

Σĉ = (XTX)−1σ2. (3.77)

Here,X is a n×(p+1) matrix, where the first column is a column of ones, the

second column contains the n values of ξi for the first independent variable,

the third column contains the n values of ξi for the second independent

variable, etc.

7. Draw a new value of σ2 from p(σ2|ξ, η, α, β). The distribution p(σ2|ξ, η, α, β)

is derived by noting that given α, β and ξi, ηi is normally distributed with

mean α + βT ξi and variance σ2. Re-expressing this distribution in terms of

σ2 instead of η, and taking the product of the distributions for each data

point, it follows that σ2 has a scaled inverse-χ2 distribution:

σ2|ξ, η, α, β ∼ Inv-χ2(ν, s2) (3.78)

ν = n− 2 (3.79)

s2 =
1

n− 2

n
∑

i=1

(ηi − α− βT ξi)
2. (3.80)

8. Draw new values of the group proportions, π. GivenG, π follows a Dirichlet

distribution:

π|G ∼ Dirichlet(n1 + 1, . . . , nK + 1) (3.81)

nk =
n
∑

i=1

Gik. (3.82)

Note that nk is the number of data points that belong to the kth Gaussian.

9. Draw a new value of µk from p(µk|ξ,G, Tk, µ0, U). If there is only one in-

dependent variable, then Tk = τ 2
k and U = u2. The new value of µk is

simulated as

µk|ξ,G, Tk, µ0, U ∼ Np(µ̂k,Σµ̂k
) (3.83)
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µ̂k = (U−1 + nkT
−1
k )−1(U−1µ0 + nkT

−1
k ξ̄k) (3.84)

ξ̄k =
1

nk

n
∑

i=1

Gikξi (3.85)

Σµ̂k
= (U−1 + nkT

−1
k )−1. (3.86)

10. Draw a new value of τ 2
k or Tk. The distribution of τ 2|ξ, µ or Tk|ξ, µ is derived

in a manner similar to σ2|ξ, η, α, β, and noting that the prior is conjugate for

this likelihood. The distribution of τ 2
k |ξ, µ is a scaled inverse-χ2 distribution,

and the distribution of Tk|ξ, µ is an inverse-Wishart distribution:

(a) If there is only one independent variable then draw

τ 2
k |ξ,G, µk, w

2 ∼ Inv-χ2(νk, t
2
k) (3.87)

νk = nk + 1 (3.88)

t2k =
1

nk + 1

[

w2 +
n
∑

i=1

Gik(ξi − µk)
2

]

. (3.89)

(b) If there are multiple independent variables then draw

Tk|ξ,G, µk,W ∼ Inv-Wishartνk
(Sk) (3.90)

νk = nk + p (3.91)

Sk = W +
n
∑

i=1

Gik(ξi − µk)(ξi − µk)
T . (3.92)

11. Draw a new value for µ0|µ, U . Noting that conditional on µ0 andU , µ1, . . . , µK

are independently distributed as Np(µ0, U), it is straight-forward to show

that

µ0|µ, U ∼ Np(µ̄, U/K) (3.93)

µ̄ =
1

K

K
∑

k=1

µk. (3.94)

If there is only one covariate then p = 1 and U = u2.
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12. Draw a new value for u2 or U , given µ0, µ, and w2 (or W ). Similar to the

case for τ 2
k or Tk, the conditional distribution of u2 or U is scaled inverse-χ2

or inverse-Wishart.

(a) If there is only one covariate then

u2|µ0, µ, w
2 ∼ Inv-χ2(νu, û

2) (3.95)

νu = K + 1 (3.96)

û2 =
1

νu

[

w2 +
K
∑

k=1

(µk − µ0)
2

]

. (3.97)

(b) If there are multiple covariates then

U |µ0, µ,W ∼ Inv-WishartνU
(Û) (3.98)

νU = K + p (3.99)

Û = W +
K
∑

k=1

(µk − µ0)(µk − µ0)
T . (3.100)

13. Finally, draw a new value of w2|u2, τ 2 or W |U, T :

(a) If there is only one covariate thenw2|u2, τ 2 is drawn from a Gamma dis-

tribution. This can be derived by noting that p(w2|u2, τ 2) ∝ p(u2|w2)p(τ 2|w2)

has the form of a Gamma distribution as a function of w2. The new

value of w2 is then simulated as

w2|u2, τ 2 ∼ Gamma(a, b) (3.101)

a =
1

2
(K + 3) (3.102)

b =
1

2

[

1

u2
+

K
∑

k=1

1

τ 2
k

]

. (3.103)

(b) If there are multiple covariates then W |U, T is drawn from a Wishart

distribution. This can be derived by noting that p(W |U, T ) ∝ p(U |W )p(T |W )
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has the form of a Wishart distribution as a function of W . The new

value of W is then simulated as

W |U, T ∼ WishartνW
(Ŵ ) (3.104)

νW = (K + 2)p+ 1 (3.105)

Ŵ = (U−1 +
K
∑

k=1

T−1
k )−1. (3.106)

After completing steps 2–13 above, an iteration of the Gibbs sampler is com-

plete. One then uses the new simulated values of ξ, η, θ, ψ, and the prior param-

eters, and repeats steps 2–13. The algorithm is repeated until convergence, and

the values of θ and ψ at each iteration are saved. Upon reaching convergence, one

discards the values of θ and ψ from the beginning of the simulation, and the re-

maining values of α, β, σ2, µ, and τ 2 (or T ) may be treated as a random draw from

the posterior distribution, p(θ, ψ|x, y). One can then use these values to calculate

estimates of the parameters, and their corresponding variances and confidence

intervals. The posterior distribution of the parameters can also be estimated from

these values of θ and ψ using histogram techniques. Techniques for monitering

convergence of the Markov Chains can be found in Gelman et al. (2004).

The output from the Gibbs sampler may be used to perform Bayesian infer-

ence on other quantities of interest. In particular, the Pearson linear correlation

coefficient, ρ, is often used in assessing the strength of a relationship between

the x and y. A random draw from the posterior distribution for the correlation

between η and ξj , denoted as ρj , can be calculated from Equation (3.5) for each

draw from the Gibbs sampler. For the Gaussian mixture model, the variance

V ar(η) and covariance matrix Σξ ≡ V ar(ξ) are

V ar(η) = βT Σξβ + σ2 (3.107)

Σξ =
K
∑

k=1

πk(Tk + µkµ
T
k ) − ξ̄ξ̄T (3.108)
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ξ̄ =
K
∑

k=1

πkµk, (3.109)

and V ar(ξj) is the jth diagonal element of Σξ. The simplification for one covariate

is self-evident.

If there is considerable posterior probability near σ2 ≈ 0 or τ 2
k ≈ 0, then the

Gibbs sampler can get ‘stuck’. For example, if τ 2
k ≈ 0, then step 3a of the Gibbs

sampler will draw values of ξ|G ≈ µk. Then, step 9 will produce a new value of

µk that is almost identical to the previous iteration, step 10a will produce a new

value of τ 2
k ≈ 0, and so on. The Gibbs sampler will eventually get ‘unstuck’, but

this can take a long time and result in very slow convergence. In particular, it is

very easy for the Gibbs sampler to get stuck if the measurement errors are large

relative to σ2 or τ 2
k , or if the number of data points is small. In this situation I have

found it useful to use the Metropolis-Hastings algorithm instead.

3.7.2.2 Metropolis-Hastings Algorithm

If the selection function is not independent of y, given the independent variables

(cf. Eq.[3.40]), or if the selection function depends on x and the measurement

errors are correlated, then posterior simulation based on the Gibbs sampler is

more complicated. In addition, if the measurement errors are large compared to

the intrinsic dispersion in the data, or if the sample size is small, then the Gibbs

sampler can become stuck and extremely inefficient. In both of these cases one

can use the Metropolis-Hastings algorithm (Metropolis & Ulam, 1949; Metropo-

lis et al., 1953; Hastings, 1970) to sample from the posterior distribution, as the

Metropolis-Hasting algorithm can avoid constructing markov chains for ξ and

η. For a description of the Metropolis-Hastings algorithm, we refer the reader to

Chib & Greenberg (1995) or Gelman et al. (2004).
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3.8 SIMULATIONS

In this section I perform simulations to illustrate the effectiveness of the Gaussian

structural model for estimating the regression parameters, even in the presence

of severe measurement error and censoring. In addition, I compare the OLS,

BCES(Y |X), and FITEXY estimators with a maximum-likelihood estimator based

on the Gaussian mixture model with K = 1 Gaussian.

3.8.1 Simulation Without Non-Detections

The first simulation I performed is for a simple regression with one independent

variable. I generated 2.7 × 105 data sets by first drawing n values of the indepen-

dent variable, ξ, from a distribution of the form

p(ξ) ∝ eξ
(

1 + e2.75ξ
)−1

. (3.110)

The distribution of ξ is shown in Figure 3.2, along with the best-fitting one and

two Gaussian approximations. In this case the two Gaussian mixture is nearly

indistinguishable from the actual distribution of ξ, and thus should provide an

excellent approximation to p(ξ). The values for ξ had a mean of µ = −0.493 and a

dispersion of τ = 1.200. I varied the number of data points in the simulated data

sets as n = 25, 50, and 100. I then simulated values of η according to Equation

(3.1), with α = 1.0 and β = 0.5. The intrinsic scatter, ε, had a normal distribution

with mean zero and standard deviation σ = 0.75, and the correlation between η

and ξ was ρ ≈ 0.62. The joint distribution of ξ and η for one simulated data set

with n = 50 is shown in Figure 3.3.

Measured values for ξ and η were simulated according to Equations (3.2) and

(3.3). The measurement errors had a zero mean normal distribution of varying

dispersion and were independent for x and y. The variances in the measure-

ment errors, σ2
x,i and σ2

y,i, were different for each data point and drawn from a
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Figure 3.2 The actual distribution of ξ (solid line) for the simulations, compared

with the best-fitting one (dashed line) and two (dashed-dotted line) Gaussian fit.

The two Gaussian fit is nearly indistinguishable from the true p(ξ). Although the

one Gaussian fit provides a reasonable approximation to the distribution of ξ, it

is not able to pick up the asymmetry in p(ξ).
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Figure 3.3 Distributions of the simulated data for various levels of measurement

error (cf., § 3.8.1). The top left panel shows the distribution of η as a function of

ξ for one simulated data set; the solid line is the true value of the regression line.

The remaining panels show the distributions of the observed values, y and x, for

various levels of measurement error. The data point with error bars in each panel

is a fictitious data point and is used to illustrate the median values of the error

bars. The box outlines the bounds of the plot of η against ξ. As can be seen, large

measurement errors wash out any visual evidence for a correlation between the

variables.
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scaled inverse-χ2 distribution. The degrees of freedom for the inverse-χ2 distri-

bution was ν = 5, and the scale parameters are denoted as t and s for the x and

y measurement error variances, respectively. The scale parameters dictate the

typical size of the measurements errors, and were varied as t = 0.5τ, τ, 2τ and

s = 0.5σ, σ, 2σ. These values corresponded to values of Rx ∼ 0.2, 0.5, 0.8 and

Ry ∼ 0.15, 0.4, 0.6 respectively. I simulated 104 data sets for each grid point of t, s,

and n, giving a total of 2.7 × 105 simulated data sets. The joint distributions of x

and y for varying values of t/τ and s/σ are also shown in Figure 3.3. These values

of x and y are the ‘measured’ values of the simulated data set shown in the plot

of η as a function of ξ.

For each simulated data set, I calculated the maximum-likelihood estimate,

found by maximizing Equation (3.16). For simplicity, I only use K = 1 Gaussian.

I also calculated the OLS, BCES(Y |X), and FITEXY estimates for comparison. I

calculated a OLS estimate of σ2 by subtracting the average σ2
y from the variance

in the regression residuals. If the OLS estimate of σ2 was negative, I set σ̂OLS = 0.

Following Fuller (1987), I estimate σ2 for a BCES(Y |X)-type estimator as σ̂2
BCES =

V ar(y)−σ̄2
y−β̂BCESCov(x, y), where σ̄2

y is the average measurement error variance

in y, and β̂BCES is the BCES(Y |X) estimate of the slope. If σ̂2
BCES is negative, I set

σ̂BCES = 0. Following Tremaine et al. (2002), I compute a FITEXY estimate of σ by

increasing σ2 until χ2
EXY /(n− 2) = 1, or assume σ2 = 0 if χ2

EXY /(n− 2) < 1. The

sampling distributions of the slope and intrinsic scatter estimators for n = 50 are

shown in Figures 3.4 and 3.5 as a function of t/τ , and the results of the simulations

are summarized in Table 3.1.

The bias of the OLS estimate is apparent, becoming more severe as the mea-

surement errors in the independent variable increase. In addition, the variance in

the OLS slope estimate decreases as the measurement errors in ξ increase, giving
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σX / τ = 0.5, RX = 0.2 σX / τ = 1.0, RX = 0.5 σX / τ = 2.0, RX = 0.8

Figure 3.4 The sampling distributions of the slope estimators as a function of co-

variate measurement error magnitude for n = 50 data points and σy ∼ σ, inferred

from simulations (cf., § 3.8.1). The estimators are the ordinary least-squares esti-

mator (OLS), the BCES(Y |X) estimator, the FITEXY estimator, and the maximum-

likelihood estimator (MLE) of the K = 1 gaussian structural model. The solid

vertical lines mark the true value of β = 0.5, and the dashed vertical lines mark

the median values of each respective estimator. The OLS estimator is biased to-

ward zero, while the FITEXY estimator is biased away from zero; in both cases,

the bias gets worse for larger measurement errors. The BCES(Y |X) estimator is,

in general, unbiased, but can become biased and highly variable if the measure-

ment errors becomes large. The MLE of the Gaussian model performs better than

the other estimators, as it is approximately unbiased and less variable.
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Figure 3.5 Same as Figure 3.4, but for the standard deviation of the intrinsic scat-

ter, σ. The solid vertical lines mark the true value of σ = 0.75, and the dashed

vertical lines mark the median values of each respective estimator. All of the

estimators exhibit some bias, and the BCES and FITEXY estimators can exhibit

significant variance. Moreover, the BCES and FITEXY estimators both commonly

have values of σ̂ = 0, misleading one into concluding that there is no intrinsic

scatter; this occasionally occurs for the OLS estimate as well. In contrast, the

MLE based on the Gaussian model does not suffer from this problem, at least for

these simulations.
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Table 3.1. Dependence of the Estimator Sampling Distributions on

Measurement Error and Sample Size

OLS BCES(Y |X) FITEXY MLE

t/τ = s/σa nb β̂c σ̂d β̂ σ̂ β̂ σ̂ β̂ σ̂

0.5 25 0.357+0.242
−0.246 0.784+0.717

−0.608 0.518+0.513
−0.349 0.687+0.714

−0.650 0.896+1.127
−0.425 0.855+1.616

−0.757 0.513+0.393
−0.315 0.677+0.663

−0.580

50 0.355+0.166
−0.164 0.801+0.591

−0.528 0.510+0.306
−0.233 0.716+0.601

−0.540 0.898+0.572
−0.298 0.873+1.042

−0.668 0.506+0.242
−0.212 0.717+0.555

−0.507

100 0.354+0.117
−0.114 0.810+0.488

−0.447 0.506+0.197
−0.164 0.743+0.494

−0.466 0.895+0.352
−0.218 0.885+0.786

−0.587 0.504+0.162
−0.149 0.732+0.456

−0.429

1.0 25 0.190+0.255
−0.239 0.798+1.047

−0.798 0.442+2.763
−2.167 0.610+1.418

−0.610 0.827+2.293
−1.687 0.727+2.899

−0.727 0.524+0.907
−0.576 0.572+0.903

−0.564

50 0.191+0.172
−0.164 0.839+0.869

−0.752 0.519+1.816
−0.707 0.643+1.023

−0.643 0.870+1.195
−0.459 0.814+1.754

−0.814 0.519+0.552
−0.370 0.669+0.745

−0.643

100 0.189+0.121
−0.116 0.862+0.726

−0.640 0.520+0.913
−0.348 0.687+0.784

−0.687 0.895+0.665
−0.329 0.855+1.246

−0.788 0.502+0.337
−0.242 0.714+0.623

−0.604

2.0 25 0.066+0.243
−0.228 0.565+1.797

−0.565 0.036+2.761
−2.944 0.663+2.544

−0.663 0.443+3.793
−2.836 0.000+2.994

−0.000 0.366+1.468
−1.395 0.381+1.223

−0.362

50 0.067+0.164
−0.158 0.768+1.525

−0.768 0.116+2.878
−2.951 0.743+2.271

−0.743 0.634+3.276
−3.027 0.258+2.983

−0.258 0.426+1.055
−0.918 0.559+1.082

−0.529

100 0.065+0.113
−0.106 0.843+1.293

−0.843 0.209+2.936
−2.962 0.743+1.932

−0.743 0.765+2.492
−2.024 0.627+2.928

−0.627 0.444+0.698
−0.548 0.673+0.921

−0.621

Note. — The values given for β̂, and σ̂ are the median and interval containing 90% of the estimates over the simulations. For example, when

t/τ = s/σ = 0.5 and n = 25, the median value of the OLS slope estimator is 0.357, and 90% of the values of β̂OLS are contained within

0.357+0.242
−0.246.

aTypical value of the measurement error magnitude for the simulations.

bThe number of data points in the simulated data sets.

cThe estimate of the slope, β. The true value is β = 0.5.

dThe estimate of the dispersion in the intrinsic scatter, σ. The true value is σ = 0.75.
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one the false impression that one’s estimate of the slope is more precise when

the measurement errors are large. This has the effect of concentrating the OLS

estimate of β around β̂OLS ∼ 0, thus effectively erasing any evidence of a rela-

tionship between the two variables. When the measurement errors are large, the

OLS estimate of the intrinsic scatter, σ̂2
OLS , is occasionally zero.

The BCES(Y |X) estimator performs better than the OLS and FITEXY estima-

tors, being approximately unbiased when the measurement errors are σx/τ ∼< 1.

However, the BCES estimate of the slope, β̂BCES = Cov(x, y)/(V ar(x)−σ̄2
x), suffers

some bias when the measurement errors are large and/or the sample size is small.

In addition, the variance in β̂BCES is larger than the MLE, and β̂BCES becomes

considerably unstable when the measurement errors on ξ are large. This instabil-

ity results because the denominator in the equation for β̂BCES is V ar(x) − σ̄2
x. If

σ̄2
x ≈ V ar(x), then the denominator is ≈ 0, and β̂BCES can become very large. Sim-

ilar to the OLS and FITEXY estimates, the estimate of the intrinsic variance for the

BCES-type estimator is often zero when the measurement errors are large, sug-

gesting the false conclusion that there is no intrinsic scatter about the regression

line.

The FITEXY estimator performed poorly in the simulations, being both biased

and highly variable. The bias of the FITEXY estimator is such that β̂EXY tends to

overestimate β, the severity of which tends to increase as Ry decreases. This up-

ward bias in β̂EXY has been noted by Weiner et al. (2006), who also performed

simulations comparing β̂EXY with β̂BCES . They note that when one minimizes

χ2
EXY alternatively with respect to β and σ2, and iterates until convergence, then

the bias in β̂EXY can be improved. I have tested this and also find that the bias

in β̂EXY is reduced, but at the cost of a considerable increase in variance in β̂EXY .

In general, our simulations imply that the variance of the FITEXY estimator is
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comparable to that of the BCES(Y |X) estimator if one does not iterate the mini-

mization of χ2
EXY , and the variance of β̂EXY is larger if one does iterate. However,

since β̂BCES is approximately unbiased when Rx is not too large, β̂BCES should

be preferred over β̂EXY . In addition, when the measurement errors are large the

FITEXY estimate of σ is commonly σ̂EXY = 0, similar to the BCES-type estimate

of the intrinsic dispersion.

The maximum-likelihood estimator based on the Gaussian structural model

performs better than the OLS, BCES, and FITEXY estimators, and gives fairly

consistent estimates even in the presence of severe measurement error and low

sample size. The MLE is approximately unbiased, in spite of the fact that the MLE

incorrectly assumes that the independent variables are normally distributed. The

variance in the MLE of the slope, β̂MLE , is smaller than that of β̂BCES and β̂EXY ,

particularly when Rx is large. In contrast to the OLS estimate of the slope, the

dispersion in β̂MLE increases as the measurement errors increases, reflecting the

additional uncertainty in β̂MLE caused by the measurement errors. Finally, in con-

trast to the other estimators, the MLE of the intrinsic variance is always positive,

and the probability of obtaining σ̂MLE = 0 is negligible for these simulations.

I argued in § 3.5.1 that assuming a uniform distribution on ξ does not lead to

better estimates than the usual OLS case. I also used these simulations to estimate

the sampling density of the MLE assuming p(ξ) ∝ 1. The results were nearly in-

distinguishable from the OLS estimator, supporting our conjecture that assuming

p(ξ) ∝ 1 does not offer an improvement over OLS.

While it is informative to compare the sampling distribution of our proposed

maximum-likelihood estimator with those of the OLS, BCES(Y |X), and FITEXY

estimators, I do not derive the uncertainties in the regression parameters from the

sampling distribution of the MLE. As described in § 3.7.2, we derive the uncer-
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tainties in the regression parameters by simulating draws from the posterior dis-

tribution, p(θ, ψ|x, y). This allows a straight-forward method of interpreting the

parameter uncertainties that does not rely on large-sample approximations, as

the posterior distribution is the probability distribution of the parameters, given

the observed data. The posterior distributions of ρ, β, and σ for a simulated data

set with n = 50, σx ∼ τ, and σy ∼ σ is shown in Figure 3.6. When estimating

these posteriors, I used K = 2 Gaussians in the mixture model. As can be seen

from Figure 3.6, the true values of ρ, β, and σ are contained within the regions of

non-negligible posterior probability. I have estimated posteriors for other simu-

lated data sets, varying the number of data points and the degree of measurement

error. As one would expect, the uncertainties in the regression parameters, rep-

resented by the widths of the posterior distributions, increase as the size of the

measurement errors increase and the sample size decreases.

A common frequentist approach is to compute the covariance matrix of the

MLE by inverting the estimated Fisher information matrix, evaluated at the MLE.

Then, under certain regularity conditions, the MLE of the parameters is asympot-

ically normally distributed with mean equal to the true value of the parameters

and covariance matrix equal to the inverse of the Fisher information matrix. Fur-

thermore, under these regularity conditions the posterior distribution and sam-

pling distribution of the MLE are asymptotically the same. Figure 3.7 compares

the posterior distribution of the slope for a simulated data set with that inferred

from the MLE. The posterior and MLE was calculated assuming K = 1 Gaussian.

As can be seen, the posterior distribution for β is considerably different from the

approximation based on the MLE of β, and thus the two have not converged for

this sample. In particular, the posterior is more skewed and heavy-tailed, placing

more probability on values of β > 0 than does the distribution approximated by
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Figure 3.6 The marginal posterior distributions of the linear correlation coeffi-

cient, the regression slope, and the intrinsic dispersion for a simulated data set

of n = 50 data points with σx ∼ τ and σy ∼ σ. The vertical lines mark the true

values of the parameters. The true values of the regression parameters are con-

tained within the spread of the marginal posteriors, implying that bounds on the

regression parameters inferred from the posterior are trustworthy.
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Figure 3.7 The posterior distributions of the slope (solid histogram), compared

with the posterior approximated from the MLE and Fisher information matrix

(dashed line), for a simulated data set of n = 50 data points with β = 0.5, σx ∼ τ,

and σy ∼ σ. The two distributions have not converged and the bayesian and

frequentist inference differ in this case, with the bayesian approach placing more

probability near β ≈ 0.5 and on positive value of β.

the MLE. Therefore, uncertainties in the MLE should be interpreted with caution

if using the asymptotic approximation to the sampling distribution of the MLE.

3.8.2 Simulation With Non-Detections

To assess the effectiveness of the Gaussian structural model in dealing with cen-

sored data sets with measurement error, I introduced non-detections into the

simulations. The simulations were performed in an identical manner as that de-

scribed in § 3.8.1, but now I only consider sources to be ‘detected’ if y > 1.5. For



127

those sources that were ‘censored’ (y < 1.5), I placed an upper limit on them of

y = 1.5.

I focus on the results for a simulated data set with n = 100 data points and

measurement errors similar to the intrinsic dispersion in the data, σy ∼ σ and

σx ∼ τ . The detection threshold of y > 1.5 resulted in a detection fraction of

∼ 30%. This simulation represents a rather extreme case of large measurement

errors and low detection fraction, and provides an interesting test of the method.

In Figure 3.8 I show the distribution of ξ and η, as well as the distribution of

their measured values, for one of the simulated data sets. For this particular

data set, there were 29 detections and 71 non-detections. As can be seen, the

significant censoring and large measurement errors have effectively erased any

visual evidence for a relationship between the two variables.

I estimated the posterior distribution of the regression parameters for this data

set using the Gibbs sampler (cf, § 3.7.2) with K = 2 Gaussians. The posterior me-

dian of the regression line, as well as the 95% (2σ) pointwise confidence intervals1

on the regression line are shown in Figure 3.8. The posterior distributions for ρ, β,

and σ are shown in Figure 3.9. As can be seen, the true value of the parameters is

contained within the 95% probability regions, although the uncertainty is large.

For this particular data set, we can put limits on the value of the correlation co-

efficient as 0.2 ∼< ρ ∼< 1 and the slope as 0 ∼< β ∼< 2.0. For comparison, the usual

maximum-likelihood estimate that ignores the measurement error (e.g., Isobe et

al., 1986) concludes β̂ = 0.229±0.077. This estimate is biased and differs from the

true value of β at a level of 3.5σ.

The posterior constraints on the regression parameters are broad, reflecting
1Technically, these are called ‘credibility intervals’, as I am employing a Bayesian approach.

These intervals contain 95% of the posterior probability. While the difference between confidence
intervals and credibility intervals is not purely semantical, I do not find the difference to be sig-
nificant within the context of my work, so I use the more familiar term ‘confidence interval’.
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Figure 3.8 Distribution of η and ξ (top), and the measured values of y and x (bot-

tom), from a simulated censored data set of n = 50 data points, σx ∼ τ , and

σy ∼ σ (cf., § 3.8.2). In the plot of η and ξ, the solid squares denote the values of

ξ and η for the detected data points, and the hollow squares denote the values

of ξ and η for the undetected data points. The solid line in both plots is the true

regression line. In the plot of y and x, the squares denote the measured values

of x and y for the detected data points, and the arrows denote the ‘upper limits’

on y for the undetected data points. The fictitious data point with error bars il-

lustrates the median values of the error bars. The dashed-dotted line shows the

best fit regression line, as calculated from the posterior median of α and β, and

the filled region defines the approximate 95% (2σ) pointwise confidence intervals

on the regression line. The true values of the regression line are contained within

the 95% confidence intervals.

.
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Figure 3.9 Same as Figure 3.6, but for the censored data set shown in Figure 3.8.

The true values of the regression parameters are contained within the spread of

the posteriors, implying that bounds on the regression parameters inferred from

the posterior are trustworthy.
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our considerable uncertainty in the slope, but they are sufficient for finding a

positive correlation between the two variables, ξ and η. Therefore, despite the

high level of censoring and measurement error in this data set, we would still be

able to conclude that η increases as ξ increases.

3.9 APPLICATION TO REAL ASTRONOMICAL DATA: DEPENDENCE OF

ΓX ON Lbol/LEdd FOR RADIO-QUIET QUASARS

To further illustrate the effectiveness of the method, I apply it to a data set drawn

from my work on investigating the X-ray properties of radio-quiet quasars (RQQs).

Recent work has suggested a correlation between quasar X-ray spectral slope,

αX , fν ∝ ν−αX , and quasar Eddington ratio, Lbol/LEdd (e.g., Porquet et al., 2004;

Piconcelli et al., 2005; Shemmer et al., 2006). In this section I apply the regression

method to a sample of 39 z < 0.83 RQQs and confirm the ΓX–Lbol/LEdd correla-

tion. Because the purpose of this section is to illustrate the use of this regression

method on real astronomical data, I defer a more in-depth analysis to a future

paper.

Estimation of the Eddington luminosity, LEdd ∝ MBH , requires an estimate

of the black hole mass, MBH . Black hole virial masses may be estimated as

MBH ∝ Rv2, where R is the broad line region size, and v is the velocity disper-

sion of the gas emitting the broad emission lines. A correlation has been found

between the luminosity of a source and the size of it’s broad line region (the R–

L relationship, e.g., Kaspi et al., 2005). One can then exploit this relationship,

and use the broad line FWHM as an estimate for v, obtaining virial mass esti-

mates M̂BH ∝ Lθv2 (e.g., Wandel et al., 1999), where the exponent is θ ≈ 0.5 (e.g.,

Vestergaard & Peterson, 2006). Unfortunately, the uncertainty on the broad line

estimates of MBH can be considerable, having a standard deviation of σm ∼ 0.4
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dex (e.g., McLure & Jarvis, 2002; Vestergaard & Peterson, 2006; Kelly & Bech-

told, 2007). For ease of comparison with previous work, I estimate MBH using

only the Hβ emission line. The logarithm of the virial mass estimates were calcu-

lated using the Hβ luminosity and FWHM according to the relationship given

by Vestergaard & Peterson (2006).

My sample consists of a subset of the sample of Kelly et al. (2007). These

sources have measurements of the X-ray photon index, ΓX = αX + 1, obtained

from Chandra observations, and measurements of the optical/UV luminosity at

2500Å, denoted as L2500, obtained from SDSS spectra. The Hβ profile was mod-

eled as a sum of Gaussians and extracted from the SDSS spectra according to the

procedure described in Kelly & Bechtold (2007). I estimated the Hβ FWHM and

luminosity from the line profile fits.

I estimate the bolometric luminosity, Lbol, from the luminosity at 2500Å, as-

suming a constant bolometric correction Lbol = 5.6L2500 (Elvis et al., 1994). The

standard deviation in this bolometric correction reported by Elvis et al. (1994) is

3.1, implying an uncertainty in logLbol of σbol ∼ 0.25 dex. Combining this with the

∼ 0.4 dex uncertainty on logMBH , the total ‘measurement error’ on logLbol/LEdd

becomes σx ∼ 0.47 dex. The distribution of ΓX as a function of logLbol/LEdd is

shown in Figure 3.10. As can be seen, the measurement errors on both ΓX and

logLbol/LEdd are large and make a considerable contribution to the observed scat-

ter in both variables, where Ry ∼ 0.1 and Rx ∼ 0.8. Therefore, we expect the

measurement errors to have a significant effect on the correlation and regression

analysis.

I performed the regression assuming the linear form ΓX = α+ β logLbol/LEdd,

and modelleling the intrinsic distribution of logLbol/Ledd using K = 2 Gaussians.

Draws from the posterior were obtained using the Gibbs sampler. The marginal
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Figure 3.10 The X-ray photon index, ΓX , as a function of logLbol/LEdd for 39 z ∼<

0.8 radio-quiet quasars. In both plots the thick solid line shows the posterior

median estimate (PME) of the regression line. In the top plot, the filled region

denotes the 95% (2σ) pointwise confidence intervals on the regression line. In the

bottom plot, the thin solid line shows the OLS estimate, the dashed line shows

the FITEXY estimate, and the dot-dashed line shows the BCES(Y |X) estimate; the

error bars have been omitted for clarity. A significant positive trend is implied by

the data.
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Figure 3.11 Same as Figure 3.6, but for the ΓX–logLbol/LEdd regression. Although

the uncertainty on the slope and correlation are large, the bounds on them im-

plied by the data are 0 ∼< β ∼< 3.5 and 0.2 ∼< ρ ∼< 1.0.

posterior distributions for β, σ, and the correlation between ΓX and logLbol/Ledd,

ρ, are shown in Figure 3.11, and the posterior median and 95% (2σ) pointwise

intervals on the regression line are shown in Figure 3.10. The posterior median

estimate of the parameters are α̂ = 3.12 ± 0.41 for the constant, β̂ = 1.35 ± 0.54

for the slope, σ̂ = 0.26 ± 0.11 for the intrinsic scatter about the regression line,

µ̂ξ = −0.77 ± 0.10 for the mean of logLbol/LEdd, and σ̂ξ = 0.32 ± 0.12 dex for the

dispersion in logLbol/Ledd. Here, I have used a robust estimate of the posterior

standard deviation as an ‘error bar’ on the parameters. These results imply that

the observed scatter in logLbol/LEdd is dominated by measurement error, σx/τ ∼

1.5, as expected from the large value of Rx.
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For comparison, the BCES(Y |X) estimate of the slope is β̂BCES = 3.29 ± 3.34,

the FITEXY estimate is β̂EXY = 1.76 ± 0.49, and the OLS estimate is β̂OLS =

0.56±0.14; the standard error on β̂EXY was estimated using bootstrapping. Figure

3.10 also compares the OLS, BCES, and FITEXY best-fit lines with the posterior

median estimate. The 95% confidence region on the slope implied by the poste-

rior draws is 0.46 < β < 3.44, whereas the approximate 95% confidence region

implied by the BCES, FITEXY, and OLS standard errors are −3.26 < β < 9.84,

0.80 < β < 2.72, and 0.42 < β < 0.70, respectively. The OLS and FITEXY es-

timates and the Bayesian approach give ‘statistically significant’ evidence for a

correlation between logLbol/LEdd and ΓX ; however the BCES estimate is too vari-

able to rule out the null hypothesis of no correlation. As noted before, the large

measurement errors on logLbol/LEdd bias the OLS estimate of β toward shallower

values and the FITEXY estimate of β toward steeper values. Because of this bias,

confidence regions based on β̂OLS and β̂EXY are not valid because they are not

centered on the true value of β, and thus do not contain the true value with the

stated probability (e.g., 95%). On the other hand, confidence regions based on

the BCES estimate are likely to be approximately valid; however, in this exam-

ple the large measurement errors have caused β̂BCES to be too variable to give

meaningful constraints on the regression slope.

The BCES-type estimate of the intrinsic dispersion was σ̂BCES = 0.32 and

the OLS estimate of the intrinsic dispersion was σ̂OLS = 0.41, where both were

calculated in the same manner as in § 3.8.1. The FITEXY estimate of the intrinsic

dispersion was σ̂EXY = 0, as χ2
EXY /(n − 2) < 1. The BCES-type estimate of σ

is similar to the Bayesian posterior median estimate, while σ̂OLS overestimates

the scatter compared to the Bayesian estimate by ≈ 58%. In contrast, the FITEXY

estimator does not find any evidence for intrinsic scatter in the regression, which
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is inconsistent with the posterior distribution of σ.

From the posterior distribution, we can constrain the correlation between ΓX

and logLbol/LEdd to be 0.328 ∼< ρ ∼< 0.998 with ≈ 95% probability, confirming the

positive correlation between ΓX and Eddington ratio seen previously. The pos-

terior median estimate of the correlation is ρ̂ = 0.87, compared with an estimate

of r̂ = 0.54 if one naively calculates the correlation directly from the measured

data. The large measurement errors significantly attenuate the observed cor-

relation, making the observed correlation between ΓX and logLbol/Ledd appear

weaker than if one does not correct for the measurement errors.

3.10 CONCLUSIONS

In this work I have derived a likelihood function for handling measurement er-

rors in linear regression of astronomical data. Our probability model assumes

that the measurement errors are Gaussian with zero mean and known variance,

that the intrinsic scatter in the dependent variable about the regression line is

Gaussian, and that the intrinsic distribution of the independent variables can be

well approximated as a mixture of Gaussians. I extend this model to enable the

inclusion of non-detections, and describe how to incorporate the data selection

process. A Gibbs sampler is described to enable simulating random draws from

the posterior distribution.

I illustrated the effectiveness of structural Gaussian mixture models using

simulation. For the specific simulations performed, a maximum-likelihood esti-

mator based on the Gaussian structural model performed better than the OLS,

BCES(Y |X), and FITEXY estimators, especially when the measurement errors

were large. In addition, our method also performed well when the measurement

errors were large and the detection fraction was small, with the posterior distri-
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butions giving reasonable bounds on the regression parameters. These results

were in spite of the fact that the intrinsic distribution of the independent variable

was not a sum of Gaussians for the simulations, suggesting that approximating

the distribution of the independent variable as a mixture of Gaussians does not

lead to a significant bias in the results. Finally, I concluded by using the method

to fit the radio-quiet quasar X-ray photon index as a function of logLbol/LEdd, us-

ing a sample of 39 z < 0.83 sources. The posterior distribution for this data set

constrained the slope to be 0 ∼< β ∼< 3.5 and the linear correlation coefficient to

be 0.2 ∼< ρ ∼< 1.0, confirming the correlation between X-ray spectral slope and

Eddington ratio seen by other authors.

Although I have focused on linear regression in this work, the approach that I

have taken is quite general and can be applied to other applications. In particular,

Equations (3.11), (3.40), and (3.42) are derived under general conditions and are

not limited to regression. In this work, I assume forms for the respective proba-

bility densities that are appropriate for linear regression; however, these equation

provide a framework for constructing more general probability models of one’s

data, as in, for example, nonlinear fitting or estimation of luminosity functions.
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CHAPTER 4

A FLEXIBLE METHOD OF ESTIMATING LUMINOSITY FUNCTIONS

4.1 CHAPTER ABSTRACT

We describe a Bayesian approach to estimating luminosity functions. We derive

the likelihood function and posterior probability distribution for the luminos-

ity function, given the observed data, and we compare the Bayesian approach

with maximum-likelihood by simulating sources from a Schechter function. For

our simulations confidence intervals derived from bootstrapping the maximum-

likelihood estimate can be too narrow, while confidence intervals derived from

the Bayesian approach are valid. We develop our statistical approach for a flexi-

ble model where the luminosity function is modelled as a mixture of Gaussian

functions. Statistical inference is performed using markov chain monte carlo

(MCMC) methods, and we describe a Metropolis-Hastings algorithm to perform

the MCMC. The MCMC simulates random draws from the probability distribu-

tion of the luminosity function parameters, given the data, and we use a sim-

ulated data set to show how these random draws may be used to estimate the

probability distribution for the luminosity function. In addition, we show how

the MCMC output may be used to estimate the probability distribution of any

quantities derived from the luminosity function, such as the peak in the space

density of quasars. The Bayesian method we develop has the advantage that

it is able to place accurate constraints on the luminosity function even beyond

the survey detection limits, and that it provides a natural way of estimating the

probability distribution of any quantities derived from the luminosity function,

including those that rely on information beyond the survey detection limits.
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4.2 CHAPTER INTRODUCTION

The luminosity function (LF) has been an important tool for understanding the

evolution of galaxies and quasars, as it provides a census of the galaxy and quasar

populations over cosmic time. Quasar luminosity functions have been estimated

for optical surveys (e.g., Fan et al., 2001; Wolf et al., 2003; Croom et al., 2004;

Richards et al., 2006; Jiang et al., 2006a), X-ray surveys (e.g., Steffen et al., 2003;

Ueda et al., 2003; Barger et al., 2005; La Franca et al., 2005), infrared surveys (e.g.,

Barger et al., 2005; Matute et al., 2006; Babbedge et al., 2006), radio surveys (e.g.,

Waddington et al., 2001; Willott et al., 2001), and emission lines (Hao et al., 2005).

In addition, luminosity functions across different bands have been combined to

form an estimate of the bolometric luminosity function (Hopkins et al., 2007). Be-

sides providing an important constraint on models of quasar evolution and su-

permassive black hole growth (e.g., Wyithe & Loeb, 2003; Hopkins et al., 2006a),

studies of the LF have found evidence for ‘cosmic downsizing’, where the space

density of more luminous quasars peaks at higher redshift. Attempts to map

the growth of supermassive black holes start from the local supermassive black

hole distribution, and employ the argument of Soltan (1982), using the quasar

luminosity function as a constraint on the black hole mass distribution. These

studies have found evidence that the highest mass black holes grow first (e.g., Yu

& Tremaine, 2002; Marconi et al., 2004; Merloni, 2004), suggesting that this cos-

mic downsizing is the result of an anti-hierarchical growth of supermassive black

holes.

Similarly, galaxy luminosity functions have been estimated in the optical (e.g.,

Blanton et al., 2003; Dahlen et al., 2005; Brown et al., 2007; Marchesini et al., 2007),

X-ray (e.g., Kim et al., 2006; Ptak et al., 2007), infrared (e.g., Cirasuolo et al., 2007;

Huynh et al., 2007), ultraviolet (e.g., Budavári et al., 2005; Paltani et al., 2007), ra-
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dio (e.g., Lin & Mohr, 2007; Mauch & Sadler, 2007), for galaxies in clusters (e.g.,

Popesso et al., 2006; Harsono & de Propris, 2007), and for galaxies in voids (Hoyle

et al., 2005). The galaxy luminosity function probes several aspects of the galaxy

population; namely (a) the evolution of stellar populations and star formation

histories (e.g., Faber et al., 2007), (b) the local supermassive black hole mass dis-

tribution (e.g, Yu & Tremaine, 2002; Marconi et al., 2004) via the Magorrian re-

lationship (Magorrian et al., 1998), (c) the dependence of galaxy properties on

evironment (e.g., Croton et al., 2005; Lauer et al., 2007), and (d) places constraints

on models of structure formation and galaxy evolution (e.g., Bower et al., 2006;

Finlator et al., 2006; Marchesini & van Dokkum, 2007).

Given the importance of the luminosity function as an observational con-

straint on models of quasar and galaxy evolution, it is essential that a statistically

accurate approach be employed when estimating these quantities. However, the

existence of complicated selection functions hinders this, and, as a result, a va-

riety of methods have been used to accurately account for the selection function

when estimating the LF. These include various binning methods (e.g., Schmidt,

1968; Avni & Bahcall, 1980; Page & Carrera, 2000), maximum-likelihood fitting

(e.g., Marshall et al., 1983; Fan et al., 2001), and a powerful semi-parameteric

approach (Schafer, 2007). In addition, there have been a variety of methods pro-

posed for estimating the cumulative distribution function of the LF (e.g., Lynden-

Bell, 1971; Efron & Petrosian, 1992; Maloney & Petrosian, 1999).

Each of these statistical methods has advantages and disadvantages. Statis-

tical inference based on the binning procedures cannot be extended beyond the

support of the selection function, and the cumulative distribution function meth-

ods typically assume that luminosity and redshift are statistically independent.

Furthermore, one is faced with the arbitrary choice of bin size. The maximum-
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likelihood approach typically assumes a restrictive and somewhat ad hoc param-

eteric form, and has not been used to give an estimate of the LF normalization;

instead, for example, the LF normalization is often chosen to make the expected

number of sources detected in one’s survey equal to the actual number of sources

detected. In addition, confidence intervals based on the errors derived from the

various procedures are typically derived by assuming that the uncertainties on

the LF parameters have a Gaussian distribution. While this is valid as the sample

size approaches infinity, it is not necessarily a good approximation for finite sam-

ple sizes. This is particularly problematic if one is employing the best fit results

to extrapolating the luminosity function beyond the bounds of the selection func-

tion. It is unclear if the probability distribution of the uncertainty in the estimated

luminosity function below the flux limit is even asymptotically normal.

Motivated by these issues, we have developed a Bayesian method for esti-

mating the luminosity function. We derive the likelihood function of the LF by

relating the observed data to the true LF, assuming some parameteric form, and

derive the posterior probability distribution of the LF parameters, given the ob-

served data. While the likelihood function and posterior are valid for any param-

eteric form, we focus on a flexible parameteric model where the LF is modeled

as a weighted sum of Gaussian functions. This is a type of ‘non-parameteric’

approach, where the basic idea is that the individual Gaussian functions do not

have any physical meaning, but that given enough Gaussian functions one can

obtain a suitably accurate approximation to the true LF; a similar approach has

been taken by Blanton et al. (2003) for estimating galaxy LFs, and by Kelly et

al. (2007) within the context of linear regression with measurement error. Mod-

elling the LF as a mixture of Gaussian functions avoids the problem of choosing

a particular parameteric form, especially in the absence of any guidance from
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astrophysical theory. The mixture of Gaussians model has been studied from

a Bayesian perspective by numerous authors (e.g., Roeder & Wasserman, 1997;

Jasra et al., 2005; Dellaportas & Papageorgiou, 2006). In addition, we describe a

markov chain monte carlo (MCMC) algorithm for obtaining random draws from

the posterior distribution. These random draws allow one to estimate the poste-

rior distribution for the LF, as well as any quantities derived from it. The MCMC

method therefore allows a straight-forward method of calculating uncertainties

on any quantity derived from the LF, such as the redshift where the space density

of quasars or galaxies peaks; this has proven to be a challenge for other statistical

methods developed for LF estimation. Because the Bayesian approach is valid for

any sample size, one is therefore able to place reliable constraints on the LF and

related quantities even below the survey flux limits.

Because of the diversity and mathematical complexity of some parts of this

paper, we summarize the main results here. We do this so that the reader who

is only interested in specific aspects of this paper can conveniently consult the

sections of interest.

• In § 4.3 we derive the general form of the likelihood function for luminosity

function estimation. We show that the commonly used likelihood function

based on the Poisson distribution is incorrect, and that the correct form of

the likelihood function is derived from the binomial distribution. How-

ever, because the Poisson distribution is the limit of the binomial distribu-

tion as the probability of including a source in a survey approaches zero,

the maximum-likelihood estimates derived from the two distribution give

nearly identical results so long as a survey’s detection probability is small.

The reader who is interested in using the correct form of the likelihood func-

tion of the LF should consult this section.
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• In § 4.4 we describe a Bayesian approach to luminosity function estimation.

We build on the likelihood function derived in § 4.3 to derive the probabil-

ity distribution of the luminosity function, given the observed data (i.e., the

posterior distribution). We use a simple example based on a Schechter func-

tion to illustrate the Bayesian approach, and compare it with the maximum-

likelihood approach. For this example, we find that confidence intervals

derived from the posterior distribution are valid, while confidence inter-

vals derived from bootstrapping the maximum-likelihood estimate can be

too small. The reader who is interested in a Bayesian approach to luminos-

ity function estimation, and how it compares with maximum-likelihood,

should consult this section.

• In § 4.5 we develop a mixture of Gaussian functions model for the lumi-

nosity function, deriving the likelihood function and posterior distribution

for the model. Under this model, the LF is modelled as a weighted sum

of Gaussian functions. This model has the advantage that given a suitably

large enough number of Gaussian functions, it is flexible enough to give an

accurate estimate of any smooth and continuous LF. This allows the model

to adapt to the true LF, thus minimizing the bias that can result when as-

suming a parameteric form of the LF. This is particularly useful when ex-

trapolating beyond the flux limits of a survey, where bias caused by pa-

rameteric mispecification can be a significant concern. The reader who are

interested in employing the mixture of Gaussian functions model should

consult this section.

• Because of the large number of parameters often associated with luminosity

function estimation, Bayesian inference is most easily performed by obtain-
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ing random draws of the LF from the posterior distribution. In § 4.6 we

describe the Metropolis-Hastings algorithm (MHA) for obtaining random

draws of the LF from the posterior distribution. As an example, we de-

scribe a MHA for obtaining random draws of the parameters for a Schechter

function from the posterior distribution. Then, we describe a more com-

plex MHA for obtaining random draws of the parameters for the mixture

of Gaussian functions model. The reader who is interested in the com-

putational aspects of ‘fitting’ the mixture of Gaussian functions model, or

who is interested in the computational aspects of Bayesian inference for

the LF, should consult this section. A computer routine for performing the

Metropolis-Hastings alogrithm for the mixture of Gaussian functions model

is available on request from B. Kelly.

• In § 4.7 we use simulation to illustrate the effectiveness of our Bayesian

Gaussian mixture model for luminosity function estimation. We construct a

simulated data set similar to the Sloan Digital Sky Survey DR3 Quasar Cata-

loge (Schneider et al., 2005). We then use our mixture of Gaussian functions

model to recover the true LF and show that our mixture model is able to

place reliable constraints on the LF. We also illustrate how to use the MHA

output to constrain any quantity derived from the LF, and how to use the

MHA output to assess the quality of the fit. The reader who is interested in

assessing the effectiveness of our statistical approach, or who is interested

in using the MHA output for statistical inference on the LF, should consult

this section.

We adopt a cosmology based on the the WMAP best-fit parameters (h = 0.71,Ωm =

0.27,ΩΛ = 0.73, Spergel et al., 2003)
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4.3 THE LIKELIHOOD FUNCTION

4.3.1 Notation

We use the common statistical notation that an estimate of a quantity is denoted

by placing a ‘hat’ above it; e.g., θ̂ is an estimate of the true value of the parameter

θ. The parameter θ may be scalar or multivalued. We denote a normal density1

(i.e., a Gaussian distribution) with mean µ and variance σ2 as N(µ, σ2), and we

denote as Np(µ,Σ) a multivariate normal density with p-element mean vector µ

and p×p covariance matrix Σ. If we want to explicitly identify the argument of the

Gaussian function, we use the notation N(x|µ, σ2), which should be understood

to be a Gaussian with mean µ and variance σ2 as a function of x. We will often

use the common statistical notation where “∼” means “is drawn from” or “is

distributed as”. This should not be confused with the common usage of implying

“similar to”. For example, x ∼ N(µ, σ2) states that x is drawn from a normal

density with mean µ and variance σ2, whereas x ∼ 1 states that the value of x is

similar to one.

In this work, the maximum-likelihood estimate of the luminosity function

refers to an estimate of the LF obtained by maximizing the likelihood function

of the unbinned data. Therefore, the maximum-likelihood estimate does not re-

fer to an estimate obtained by maximizing the likelihood function of binned data,

such as fitting the results obtained from the 1/Va technique.

4.3.2 Derivation of the Luminosity Function Likelihood

The luminosity function, denoted as φ(L, z)dL, is the number of sources per co-

moving volume V (z) with luminosities in the range L,L + dL. The luminosity
1We use the terms probability density and probability distribution interchangeably.
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function is related to the probability density of (L, z) by

p(L, z) =
1

N
φ(L, z)

dV

dz
, (4.1)

where N is the total number of sources in the observable universe, and is given

by the integral of φ over L and V (z). Note that p(L, z)dLdz is the probability of

finding a source in the rangeL,L+dL and z, z+dz. Equation (4.1) seperates the LF

into its shape, given by p(L, z), and its normalization, given by N . Once we have

an estimate of p(L, z), we can easily convert this to an estimate of φ(L, z) using

Equation (4.1). In general, it is easier to work with the probability distribution of

L and z, instead of directly with the LF, because p(L, z) is more directly related to

the likelihood function.

If we assume a parameteric form for φ(L, z), with parameters θ, we can derive

the likelihood function for the observed data. The likelihood function is the prob-

ability of observing one’s data, given the assumed model. The presense of flux

limits and various other selection effects can make this difficult, as the observed

data likelihood function is not simply given by Equation (4.1). In this case, the set

of luminosities and redshifts observed by a survey gives a biased estimate of the

true underlying distribution, since only those sources with L above the flux limit

at a given z are detected. In order to derive the observed data likelihood function,

it is necessary to take the survey’s selection method into account. This is done by

first deriving the joint likelihood function of both the observed and unobserved

data, and then integrating out the unobserved data.

Because the data points are independent, the likelihood function for all N

sources in the universe is

p(L, z|θ) =
N
∏

i=1

p(Li, zi|θ). (4.2)

In reality, we do not know the luminosities and redshifts for all N sources, nor
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do we know the value of N , as our survey only covers a fraction of the sky and

is subject to a selection function. As a result, our survey only contains n sources.

Because of this, the selection process must also be included in the probability

model, and the total number of sources, N , is an additional parameter that needs

to be estimated.

We can incorporate the sample selection into the likelihood function by in-

cluding the random detection of sources. We introduce an N -element indicator

vector I that takes on the values Ii = 1 if the ith source is included in our survey

and Ii = 0 otherwise. Note that I is a vector of size N containing only ones and

zeros. In this case, the selection function is the probability of including a source

given L and z, p(Ii = 1|Li, zi). The complete data likelihood is then the probabil-

ity that all objects of interest in the universe (e.g., all quasars) have luminosities

L1, . . . , LN and redshifts z1, . . . , zN , and that the selection vector I has the values

I1, . . . , IN , given our assumed luminosity function:

p(L, z, I|θ,N) = CN
n

∏

i∈Aobs

p(Ii = 1|Li, zi)p(Li, zi|θ)
∏

j∈Amis

p(Ij = 0|Lj, zj)p(Lj, zj|θ).

(4.3)

Here, CN
n = N !/n!(N − n)! is the binomial coefficient, Aobs denotes the set of n

included sources, and Amis denotes the set of N−n missing sources. The number

of sources detected in a survey is random, and therefore the binomial coefficient

is necessary in normalizing the likelihood function, as it gives the number of

possible ways to select a subset of n sources from a set of N total sources.

Because we are interested in the probability of the observed data, given our as-

sumed model, the complete data likelihood function is of little use by itself. How-

ever, we can integrate Equation (4.3) over the missing data to obtain the observed

data likelihood function. This is because the marginal probability distribution of

the observed data is obtained by integrating the joint probability distribution of
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the observed and the missing data over the missing data:

p(Lobs, zobs, I|θ,N) = CN
n

∏

i∈Aobs

p(Ii = 1|Li, zi)p(Li, zi|θ) (4.4)

×
∏

j∈Amis

∫ ∞

0

∫ ∞

0
p(Ij = 0|Lj, zj)p(Lj, zj|θ) dLj dzj (4.5)

∝ CN
n [p(I = 0|θ)]N−n

∏

i∈Aobs

p(Li, zi|θ), (4.6)

where the probability that the survey misses a source, given the parameters θ, is

p(I = 0|θ) =
∫ ∫

p(I = 0|L, z)p(L, z|θ) dL dz. (4.7)

Here, we have introduced the notation that Lobs and zobs denote the set of values

of L and z for those sources included in one’s survey, and we have omitted terms

that do not depend on θ or N from Equation (4.6). Equation (4.6) is the observed

data likelihood function, given an assumed luminosity function (Eq.[4.1]). Qual-

itatively, the observed data likelihood function is the probability of observing the

set of n luminosities L1, . . . , Ln and redshifts z1, . . . , zn given the assumed lumi-

nosity function parameterized by θ, multiplied by the probability of not detecting

N − n sources given θ, multiplied by the number of ways of selecting a subset of

n sources from a set ofN total sources. The observed data likelihood function can

be used to calculate a maximum likelihood estimate of the luminosity function,

or combined with a prior distribution to perform Bayesian inference.

4.3.3 Comparison with the Poisson Likelihood

The observed data likelihood given by Equation (4.6) differs from that commonly

used in the luminosity function literature. Instead, a likelihood based on the Pois-

son distribution is often used. Marshall et al. (1983) give the following equation

for the log-likelihood function based on the Poisson distribution:

log p(Lobs, zobs|θ,N) =
∑

i∈Aobs

log φ(Li, zi|N, θ)+
∫ ∫

p(I = 1|L, z)φ(L, z|θ,N)
dV

dz
dL dz.

(4.8)
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Inserting Equation (4.1) for φ(L, z|θ), the log-likelihood based on the poisson like-

lihood becomes

log p(Lobs, zobs|θ,N) = n logN +
∑

i∈Aobs

log p(Li, zi|θ) −Np(I = 1|θ), (4.9)

where, p(I = 1|θ) = 1 − p(I = 0|θ), and p(I = 0|θ) is given by Equation (4.7). In

contrast, the log-likelihood we have derived based on the binomial distribution

is the logarithm of Equation (4.6):

log p(Lobs, zobs|θ,N) = logN !−log n!−log(N−n)!+
∑

i∈Aobs

log p(Li, zi|θ)+(N−n) log p(I = 0|θ).

(4.10)

The likelihood functions implied by Equations (4.9) and (4.10) are functions of

N , and thus the likelihoods may also be maximized with respect to the LF nor-

malization. This is contrary to what is often claimed in the literature, where the

LF normalization is typically chosen to make the expected number of sources

observed in one’s survey equal to the actual number observed.

The binomial likelihood, given by Equation (4.6), contains the termCN
n , result-

ing from the fact that the total number of sources included in a survey, n, follows

a binomial distribution. For example, suppose one performed a survey over one

quarter of the sky with no flux limit. Assuming that sources are uniformly dis-

tributed on the sky, the probability of including a source for this survey is simply

1/4. If there are N total sources in the universe, the total number of sources that

one would find within the survey area follows a binomial distribution with N

‘trials’ and probability of ‘success’ p = 1/4. However, the Poisson likelihood

is derived by noting that the number of sources detected in some small bin in

(L, z) follows a poisson distribution. Since the sum of a set of poisson distributed

random variables also follows a poisson distribution, this implies that the total

number of sources detected in one’s survey, n, follows a poisson distribution.
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However, n actually follows a binomial distribution, and thus the observed data

likelihood function is not given by the poisson distribution. The source of this

error is largely the result of approximating the number of sources in a bin as fol-

lowing a Poisson distribution, when in reality it follows a binomial distribution.

Although the poisson likelihood function for the LF is incorrect, the previ-

ous discussion should not be taken as a claim that previous work based on the

poisson likelihood function is incorrect. When the number of sources included

in one’s sample is much smaller than the total number of sources in the uni-

verse, the binomial distribution is well approximated by the poisson distribu-

tion. Therefore, if the survey only covers a small fraction of the sky, or if the

flux limit is shallow enough such that n ¿ N , then the poisson likelihood func-

tion should provide an accurate approximation to the true binomial likelihood

function. When this is true, statistical inference based on the poisson likelihood

should only exhibit negligible error, so long as there are enough sources in one’s

survey to obtain an accurate estimate of the LF normalization. In § 4.4.3 we use

simulate to compare results obtained from the two likelihood functions, and to

compare the maximum-likelihood approach to the Bayesian approach.

4.4 POSTERIOR DISTRIBUTION FOR THE LF PARAMETERS

We can combine the likelihood function for the LF with a prior probability distri-

bution on the LF parameters to perform Bayesian inference on the LF. The result

is the posterior probability distribution of the LF parameters, i.e., the probability

distribution of the LF parameters given our observed data. This is in contrast

to the maximum likelihood approach, where the maximum likelihood approach

seeks to relate the observed value of the MLE to the true parameter value through

an estimate of the sampling distribution of the MLE. In Appendix A we give a
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more thorough introduction to the difference between the maximum likelihood

and Bayesian approaches.

4.4.1 Derivation of the Posterior Probability Distribution

The posterior probability distribution of the model parameters is related to the

likelihood function and the prior probability distribution as

p(θ,N |Lobs, zobs, I) ∝ p(θ,N)p(Lobs, zobs, I|θ,N), (4.11)

where p(θ,N) is the prior on (θ,N), and p(Lobs, zobs, I|θ,N) is is the observed data

likelihood function, given by Equation (4.6). The posterior distribution is the

probability distribution of θ and N , given the observed data, Lobs and zobs. Be-

cause the luminosity function depends on the parameters θ and N , the poste-

rior distribution of θ and N can be used to obtain the probability distribution of

φ(L, z), given our observed set of luminosities and redshifts.

It is of use to decompose the posterior as p(θ,N |Lobs, zobs) ∝ p(N |θ, Lobs, zobs)p(θ|Lobs, zobs);

here we have dropped the explicit conditioning on I. This decomposition seper-

ates the posterior into the conditional posterior of the LF normalization at a given

θ, p(N |Lobs, zobs, θ), from the marginal posterior of the LF shape, p(θ|Lobs, zobs).

In this work we assume that N and θ are independent in their prior distribu-

tion, p(θ,N) = p(N)p(θ), and that the prior on N is uniform over logN . A uni-

form prior on logN corresponds to a prior distribution on N of p(N) ∝ 1/N ,

as p(logN)d logN = p(N)dN . Under this prior, one can show that the marginal

posterior probability distribution of θ is

p(θ|Lobs, zobs) ∝ p(θ) [p(I = 1|θ)]−n
∏

i∈Aobs

p(Li, zi|θ), (4.12)

where p(I = 1|θ) = 1 − p(I = 0|θ). We derive Equation (4.12) in Appendix B (see

also Gelman et al., 2004). Under the assumption of a uniform prior on θ, Equa-
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tion (4.12) is equivalent to Equation (22) in Fan et al. (2001), who use a different

derivation to arrive at a similar result.

Under the prior p(logN) ∝ 1, the conditional posterior distribution of N at

a given θ is a negative binomial distribution with parameters n and p(I = 1|θ).

The negative binomial distribution gives the probability that the total number of

sources in the universe is equal to N , given that we have observed n sources in

our sample with probability of inclusion p(I = 1|θ):

p(N |n, θ) = CN−1
n−1 [p(I = 1|θ)]n [p(I = 0|θ)]N−n . (4.13)

Here, p(I = 0|θ) is given by Equation (4.7) and p(I = 1|θ) = 1 − p(I = 0|θ).

Further description of the negative binomial distribution is given in § C. The

complete joint posterior distribution of θ and N is then the product of Equations

(4.12) and (4.13), p(θ,N |Lobs, zobs) ∝ p(N |θ, n)p(θ|Lobs, zobs).

Because it is common to fit a luminosity function with a large number of

parameters, it is computationally intractable to directly calculate the posterior

distribution from Equations (4.12) and (4.13). In particular, the number of grid

points needed to calculate the posterior will scale exponentially with the num-

ber of parameters. Similarly, the number of integrals needed to calculate the

marginal posterior probability distribution of a single parameters will also in-

crease exponentially with the number of parameters. Instead, Bayesian inference

is most easily performed by simulating random draws of N and θ from their pos-

terior probability distribution. Based on the decomposition p(θ,N |Lobs, zobs) ∝

p(N |n, θ)p(θ|Lobs, zobs), we can obtain random draws of (θ,N) from the posterior

by first drawing values of θ from Equation (4.12). Then, for each draw of θ, we

draw a value of N from the negative binomial distribution. The values of N and

θ can then be used to compute the values of luminosity function via Equation

(4.1). The values of the LF computed from the random draws of N and θ are then
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treated as a random draw from the probability distribution of the LF, given the

observed data. These random draws can be used to estimate posterior means

and variances, confidence intervals, and histogram estimates of the marginal dis-

tributions. Random draws for θ may be obtained via markov chain monte carlo

(MCMC) methods, described in § 4.6, and we describe in § C how to obtain ran-

dom draws from the negative binomial distribution. In § 4.7.2 we give more

details on using random draws from the posterior to perform statistical inference

on the LF.

4.4.2 Illustration of the Bayesian Approach: Schechter Function

Before moving to more advanced models, we illustrate the Bayesian approach by

applying it to a simulated set of luminosities drawn from a Schechter function.

We do this to give an example of how to calculate the posterior distribution, how

to obtain random draws from the posterior and use these random draws to draw

scientific conclusions based on the data, and to compare the Bayesian approach

with the maximum-likelihood approach (see § 4.4.3). The Schechter luminosity

function is:

φ(L) =
N

L∗Γ(α + 1)

(

L

L∗

)α

e−L/L∗

, θ = (α,L∗). (4.14)

For simplicity, we ignore a z dependence. The Schechter function is equivalent

to a Gamma distribution with shape parameter k = α + 1, and scale parameter

L∗. Note that k > 0 and α > −1; otherwise the integral of Equation (4.14) may

be negative or become infinite. For our simulation, we randomly draw N =

1000 galaxy luminosities from Equation (4.14) using a value of α = 0 and L∗ =

1044 erg s−1.

To illustrate how the results depend on the detection limit, we placed two

different detection limits on our simulated survey. The first limit was at Lmin =

2 × 1043 ergs s−1, and the second was at Lmin = 2 × 1044 ergs s−1. We used a hard
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detection limit, where all sources above Lmin were detected and all sources below

Lmin were not: p(I = 1|L > Lmin) = 1 and p(I = 1|L < Lmin) = 0. Note that the

first detection limit lies below L∗, while the second detection limit lies above L∗.

We were able to detect n ∼ 818 sources for Lmin = 2 × 1043 ergs s−1 and n ∼ 135

sources for Lmin = 2 × 1044 ergs s−1

The marginal posterior distribution of α and L∗ can be calculated by inserting

into Equation (4.12) an assumed prior probability distribution, p(α,L∗), and the

likelihood function, p(Li|α,L∗). Because we are ignoring redshift in our exam-

ple, the likelihood function is simply p(Li|α,L∗) = φ(L)/N . In this example, we

assume a uniform prior on logL∗ and α, and therefore p(L∗, α) ∝ 1/L∗. From

Equations (4.12) and (4.14), the marginal posterior distribution of the parameters

is

p(α,L∗|Lobs) ∝
1

L∗
[p(I = 1|α,L∗)]−n

n
∏

i=1

1

L∗Γ(α + 1)

(

Li

L∗

)α

e−Li/L∗

, (4.15)

where the survey detection probability is

p(I = 1|α,L∗) =
∫ ∞

Lmin

1

L∗Γ(α+ 1)

(

Li

L∗

)α

e−Li/L∗

dL. (4.16)

The conditional posterior distribution of N at a given θ is given by inserting in

Equation (4.16) into Equation (4.13), and the joint posterior of α,L∗, and N is

obtained by multiplying Equation (4.15) by Equation (4.13).

We perform statistical inference on the LF by obtaining random draws from

the posterior distribution. In order to calculate the marginal posterior distribu-

tions, p(α|Lobs), p(L
∗|Lobs), and p(N |Lobs), we would need to numerically integrate

the posterior distribution over the other two parameters. For example, in order

to calculate the marginal posterior of α, p(α|Lobs, zobs), we would need to inte-

grate p(α,L∗, N |Lobs) over L∗ and N on a grid of values for α. While feasible for

the simple 3-dimensional problem illustrated here, it is faster to simply obtain
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a random draw of α,L∗, and N from the posterior, and then use a histogram to

estimate p(α|Lobs). Further details are given in § 4.7.2 on performing Bayesian

inference using random draws from the posterior.

We used the Metropolis-Hastings algorithm described in § 4.6.1 to obtain a

random draw of α,L∗, and N from the posterior probability distribution. The

result was a set of 105 random draws from the posterior probability distribution

of α,L∗, and N . In Figure 4.1 we show the estimated posterior distribution of

α,L∗, and N for both detection limits. While L∗ is fairly well constrained for both

detection limits, the uncertainties on α and N are highly sensitive to whether the

detection limit lies above or below L∗. In addition, the uncertainties on these

parameters are not Gaussian, as is often assumed for the MLE.

The random draws of α,L∗, andN can also be used to place constraints on the

LF. This is done by computing Equation (4.14) for each of the random draws of

α,L∗, and N , and plotting the regions that contain, say, 90% of the probability. In

Figure 4.2 we show the posterior median estimate of the LF, as well as the region

containing 90% of the posterior probability. As can be seen, the 90% bounds

contain the true value of the LF, and increase or decrease to reflect the amount of

data available as a function of L. Furthermore, unlike the traditional MLE, these

bounds do not rely on an assumption of Gaussian uncertainties, and therefore

the confidence regions are valid for any sample size.

4.4.3 Comparison with Maximum-likelihood: Schechter Function

We also use monte carlo simulation to compare the Bayesian approach to maximum-

likelihood for both the binomial and Poissson likelihood functions. We simulated

20 data sets for four types of surveys: (1) A large area shallow survey, (2) a large

area medium depth survey, (3) a small area deep survey, and (4) a large area deep

survey for rare objects, such as z ∼ 6 quasars (e.g., Fan et al., 2006). For all four
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Figure 4.1 Posterior probability distribution of the Schechter luminosity function

parameters, N,α, and L∗, for the simulated sample described in § 4.4.2. The top

three panels show the posterior when the luminosity limit of the survey is L > 2×

1043 [erg s−1], and the bottom three panels show the posterior distribution when

the luminosity limit of the survey is L > 2× 1044 [erg s−1]. The vertical lines mark

the true values of the parameters, N = 1000, α = 0, and L∗ = 1044 [erg s−1]. The

uncertainty on the parameters increases considerably when Lmin > L∗, reflecting

the fact that the bright end of the Schechter LF contains little information on α or

N .

.
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Figure 4.2 True value of the Schechter luminosity function (dashed line), com-

pared with the best fit luminosity function calculated from the posterior median

of the Schechter function parameters,N,α, and L∗ (solid line), from the simulated

sample described in § 4.4.2. The top panel summarizes the posterior probability

distributin of the LF when the luminosity limit is L > 2 × 1043 [erg s−1], and the

bottom panel summarizes the posterior distribution of the LF when the luminos-

ity limit is L > 2 × 1044 [erg s−1]. In both panels the shaded region contains 90%

of the posterior probability, and the vertical line marks the lower luminosity limit

of the simulated survey. The uncertainty on the LF below the luminosity limit in-

creases considerably when Lmin > L∗, reflecting the fact that the bright end of the

Schechter LF contains little information on α or N , and therefore contains little

information on the faint end of the LF.

.
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survey types we simulated quasars from a Schechter luminosity function with

parameters the same as in § 4.4.2. For the large area shallow survey we used a

total number of sources of N = 105, an area of Ω = 104 deg2, and a lower lumi-

nosity limit of Lmin = 5 × 1044 erg s−1. Only n ∼ 160 sources are expected to be

detected by this survey. For the large area medium depth survey we also used a

LF normalization of N = 105 and area of Ω = 104 deg2, but instead used a lower

luminosity limit of Lmin = 5 × 1043 erg s−1. The large area medium depth survey

is expected to detect n ∼ 1.5 × 104 sources. For the small area deep survey we

used a survey area of Ω = 448 arcmin2, a LF normalization of N = 5×107 sources,

and a lower luminosity limit of Lmin = 1043 erg s−1. This survey is expected to

detect n ∼ 140 sources. Finally, for the large area deep rare object survey we

used an area of Ω = 104 deg2, a LF normalization of N = 75 sources, and a lower

luminosity limit of Lmin = 1043 erg s−1. Only n ∼ 16 sources are expected to be

detected by the rare object survey.

We fit each of the 20 simulated data sets by maximum-likelihood for both the

binomial and Poisson likelihood functions. The 95% confidence intervals on the

best-fit parameters were determined using 2000 bootstrap samples. We use the

bootstrap to estimate the confidence intervals because the bootstrap does not as-

sume that the errors are Gaussian, and because it is a common technique used in

the LF literature. We estimate the 95% confidence intervals directly from the 0.025

and 0.975 percentiles of the bootstrap sample. While bootstrap confidence inter-

vals derived in this manner are known to be biased (e.g., Efron, 1987; Davison &

Hinkley, 1997), additional corrections to the bootstrap samples are complicated.

In addition, it is common practice to estimate bootstrap confidence intervals in

this manner, and it is worth testing their accuracy. For the Bayesian approach, we

used the MHA algorithm described in § 4.6.1 to simulate 5 × 104 random draws
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from the posterior distribution. The MHA algorithm was faster than fitting the

2000 bootstrap samples using maximum likelihood.

For each of the simulated samples, we counted the number of times that the

true values of N,α, and L∗ were contained within the estimated 95% confidence

interval. Because we estimated values of three parameters for 20 simulated data

sets of 4 different types of surveys, we had 240 ‘trials’ with probability of ‘suc-

cess’ p = 0.95. If the estimated 95% confidence regions corresponded to the true

regions, then with ≈ 99% probability between 220 and 236 of the ‘trials’ would

fall within the estimated confidence region. For the binomial likelihood, the true

value of a parameter was within the estimated 95% confidence region only 210

times (88%), and for the Poisson likelihood the true value of a parameter was

within the estimated 95% confidence region only 202 times (84%). In contrast, the

Bayesian approach was able to correctly constrain the true value of a parameter

to be within the 95% confidence region 233 times (97%). Therefore, for our simu-

lations confidence regions derived from bootstrapping the maximum-likelihood

estimate are too narrow, while the confidence regions derived from the Bayesian

method are correct.

Most of the failure in the maximum-likelihood confidence intervals came from

the difficulty of the maximum-likelihood approach in constraining the LF nor-

malization, N , for the small area deep survey and for the rare object survey. In

particular, for these two surveys the bootstrap 95% confidence intervals for both

the binomial and Poisson likelihood function only contained the true value of N

∼ 50% of the time. In addition, the Poisson and binomial likelihood functions

gave slightly different results for the larger area medium depth survey. For this

survey the 95% confidence intervals for the maximum-likelihood estimate de-

rived from the Poisson distribution were somewhat smaller than those for the
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binomial distribution, only correcting including the true values of N, k, and L∗

∼ 85% of the time. This is expected, because the Poisson distribution is the limit

of the binomial distribution as the probability of including a source approaches

zero; however, the detection probability for the large area medium depth survey

is ≈ 0.15.

4.5 MIXTURE OF GAUSSIAN FUNCTIONS MODEL FOR THE LUMINOSITY

FUNCTION

In this section we describe a mixture of Gaussian functions model for the lumi-

nosity function. The mixture of Gaussians model is a common ‘non-parameteric’

model that allows flexibility when estimating a distribution, and is often em-

ployed when there is uncertainty regarding the specific functional form of the

distribution of interest. The basic idea is that one can use a suitably large enough

number of Gaussian functions to accurately approximate the true LF, even though

the individual Gaussians have no physical meaning. As a result, we avoid the as-

sumption of a more restrictive parameteric form, such as a power-law, which

can introduce considerable bias when extrapolating beyond the bounds of the

observable data.

In this work we assume the mixture of Gaussian functions for the joint dis-

tribution of logL and log z, as the logarithm of a strictly positive variable tends

to more closely follow a normal distribution than does the untransformed vari-

able. Therefore, we expect that a fewer number of Gaussians will be needed to

accurately approximate the true LF, thus reducing the number of free parameters.

Assuming a mixture of Gaussian functions for the joint distribution of logL and

log z is equivalent to assuming a mixture of log-normal distributions for the dis-

tribution of L and z. The mixture of K Gaussian functions model for the ith data
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point is

p(logLi, log zi|π, µ,Σ) =
K
∑

k=1

πk

2π|Σk|1/2
exp

[

−1

2
(xi − µk)

T Σ−1
k (xi − µk)

]

, θ = (π, µ,Σ),

(4.17)

where ∑K
k=1 πk = 1. Here, xi = (logLi, log zi), µk is the 2-element mean (i.e.,

position) vector for the kth Gaussian, Σk is the 2 × 2 covariance matrix for the

kth Gaussian, and xT denotes the transpose of x. In addition, we denote π =

(π1, . . . , πK), µ = (µ1, . . . , µK), and Σ = (Σ1, . . . ,ΣK). The variance in logL for

Gaussian k is σ2
l,k = Σ11,k, the variance in log z for Gaussian k is σ2

z,k = Σ22,k, and

the covariance between logL and log z for Gaussian k is σlz,k = Σ12,k.

Under the mixture model, the LF can be calculated from Equations (4.1) and

(4.17). Noting that p(L, z) = p(logL, log z)/(Lz(ln 10)2), the mixture of Gaussian

functions model for the LF is

φ(L, z|θ,N) =
N

Lz(ln 10)2

(

dV

dz

)−1 K
∑

k=1

πk

2π|Σk|1/2
exp

[

−1

2
(x − µk)

T Σ−1
k (x − µk)

]

,

(4.18)

where, as before, x = (logL, log z). A mixture of Gaussian functions models was

also used by Blanton et al. (2003) to estimate the z = 0.1 galaxy LF from the Sloan

Digital Sky Survey (SDSS). Our mixture of Gaussian functions model differs from

that used by Blanton et al. (2003) in that we do not fix the gaussian function

centroids to lie on a grid of values, and their individual widths are allowed to

vary. This flexibility enables us to use a smaller number of Gaussian functions

(typically ∼ 3 − 6) to accurately fit the LF.

4.5.1 Prior Distribution

In this section we describe the prior distribution that we adopt on the mixture

of Gaussian functions parameters. While one may be tempted to assumed a uni-

form prior on π, µ, and Σ, this will lead to an improper posterior, i.e., the poste-
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rior probability density does not integrate to one (Roeder & Wasserman, 1997).

Therefore, a uniform prior cannot be used, and we need to develop a more infor-

mative prior distribution. Following Roeder & Wasserman (1997), we assume a

uniform prior on π1, . . . , πK under the constraint that∑K
k=1 πk = 1; formally, this is

a Dirichlet(1, . . . , 1) prior, where Dirichlet(α1, . . . , αK) denotes a Dirichlet density

with parameters α1, . . . , αK . We give further details on the Dirichlet probability

distribution in Appendix C.

Although our prior knowledge of the LF is limited, it is reasonable to assume a

priori that the LF should be unimodal, i.e., that the LF should not exhibit multiple

peaks. To reflect this, we construct our prior distribution to place more proba-

bility on situations where the individual Gaussian functions are close together in

terms of their widths. In addition, we only specify the parameteric form of the

prior distribution, but allow the parameters of the prior distribution to vary and

to be determined by the data. This allows our prior distribution to be flexible

enough to have a minimal effect on the final results beyond conveying our prior

consideration that the LF should be unimodal. We introduce our prior to place

more probability on unimodal luminosity functions, to ensure that the posterior

integrates to one, and to aid in convergence of the MCMC. Figure 4.3 illustrates

the general idea that we are attempting to incorporate into our prior distribu-

tion. In this figure, we show a situation where the Gaussian functions are close

together with respect to their widths, and far apart with respect to their widths.

When the distances between the individual Gaussian functions, normalized by

their covariance matrices (the measure of their ‘width’), is small, the LF is uni-

modal; however, when the distances between the Gaussian functions are large

with respect to to their covariance matrices, the LF exhibits multiple modes. We

construct a prior distribution that places less probability on the latter situation.
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Figure 4.3 An illustration of our prior distribution for the Gaussian function pa-

rameters, for K = 5 Gaussian functions. Shown are a case when the Gaussian

functions used in modelling the luminosity function are close together with re-

spect to their covariances (top), and when the Gaussian functions are far apart

with respect to their covariance matrices (bottom). The marginal distributions

of log z are shown above the plots, and the marginal distributions of logL are

shown to the right of the plots. When the Gaussian functions are close, the LF is

unimodal, but when the Gaussian functions are far apart, the LF is multimodal.

Because our prior distribution is constructed to place more probability on situ-

ations when the Gaussian functions are closer together with respect to their in-

dividual covariance matrices, it would place more probability on the situation

shown in the left plot a priori. Our prior therefore reflects our expectation that the

LF should not exhibit multiple peaks (modes).

.
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Our prior on the Gaussian mean vectors and covariance matrices is simi-

lar to the prior described by Roeder & Wasserman (1997), but generalized to

2-dimensions. For our prior, we assume an independent multivariate Cauchy

distribution for each of the Gaussian means, µ, with 2-dimensional mean vector

µ0 and 2 × 2 scale matrix T . A Cauchy distribution is equivalent to a student’s t

distributions with 1 degree of freedom, and when used as a function in astronomy

and physics it is commonly referred to as a Lorentzian; we describe the Cauchy

distribution further in Appendix C. The scale matrix is chosen to be the harmonic

mean of the Gaussian function covariance matrices:

T =

(

1

K

K
∑

k=1

Σ−1
k

)−1

. (4.19)

Qualitatively, this prior means that we consider it more likely that the centroids

of the individual Gaussian functions should scatter about some mean vector µ0,

where the width of this scatter should be comparable to the typical width of the

individual Gaussian functions. The prior mean, µ0, is left unspecified and is an

additional free parameter to be estimated from the data. We choose a Cauchy

prior because the Cauchy distribution is heavy tailed, and therefore does not

heavily penalize the Gaussian functions for being too far apart. As a result, the

Cauchy prior is considered to be robust compared to other choices, such as the

multivariate normal distribution.

Because we use a random walk computational technique to explore the pa-

rameter space and estimate the posterior distribution, we find it advantageous

to impose additional constraints on the Gaussian centroids. Both µ and µ0 are

constrained to the region logLlow ≤ µl,k ≤ logLhigh and log zlow ≤ µz,k ≤ log zhigh,

where µl,k is the mean in logL for the kth Gaussian, µz,k is the mean in log z for

the kth Gaussian. These constraints are imposed to keep the markov chains (see

§ 4.6) from ‘wandering’ into unreasonable regions of the parameter space. The
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flux limit sets a lower limit on the luminosity of detected sources as a function of

z, and therefore there is nothing in the observed data to ‘tell’ the random walk

that certain values of µl are unreasonable. For example, suppose our survey is

only able to detect quasars with L ∼> 1010L¯. Because of this, there is nothing in

our data, as conveyed through the likelihood function, that says values of, say,

L ∼ 10L¯ are unreasonable, and thus the markov chains can get stuck wander-

ing around values of µl ∼ 1. However, we know a priori that values of µl ∼ 1 are

unphysical, and therefore it is important to incorporate this prior knowledge into

the posterior, as it is not reflected in the likelihood function. The values of these

limits should be chosen to be physically reasonable. As an example, for the SDSS

DR3 quasar LF with luminosities measured at λLλ(2500Å), it might be reasonable

to take Llow = 1040 erg s−1, Lhigh = 1048 erg s−1, zlow = 10−4, and zhigh = 7.

Generalizing the prior of Roeder & Wasserman (1997), we assume indepen-

dent inverse Wishart priors on the individual Gaussian covariance matrices with

ν = 1 degrees of freedom, and common scale matrix A. We give a description

of the Wishart and inverse Wishart distributions in § C. This prior states that the

individual Σk are more likely to be similar rather than different. The common

scale matrix, A, is left unspecified so it can adapt to the data. As with µ, we rec-

ommend placing upper and lower limits on the allowable values of dispersion in

logL and log z for each Gaussian..

Mathematically, our prior is

p(π, µ,Σ, µ0, A) ∝
K
∏

k=1

p(µk|µ0,Σ)p(Σk|A) (4.20)

∝
K
∏

k=1

Cauchy2(µk|µ0, T )Inv-Wishart1(Σk|A), (4.21)

under the constraints given above. Here, Cauchy2(µk|µ0, T ) denotes a 2-dimensional

Cauchy distribution as a function of µk, with mean vector µ0 and scale matrix T .
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In addition, Inv-Wishart1(Σk|A) denotes an inverse Wishart density as a function

of Σk, with one degree of freedom and scale matrix A. We have also experi-

mented with using a uniform prior on the parameters, constricted to some range.

In general, this did not change our constraints on the LF above the flux limit, but

resulted in somewhat wider confidence regions on the LF below the flux limit.

This is to be expected, since our adopted Cauchy prior tends to restrict the in-

ferred LF to be unimodal, and therefore limits the number of possible luminosity

functions that are considered to be consistent with the data.

4.5.2 Posterior Distribution for Mixture of Gaussians Model

Now that we have formulated the prior distribution, we can calculate the poste-

rior distribution for the mixture of Gaussians model of φ(L, z). Because we have

formulated the mixture model for the LF in terms of logL and log z, the marginal

posterior distribution of θ is

p(θ, µ0, A| logLobs, log zobs) ∝ p(θ, µ0, A) [p(I = 1|θ)]−n
∏

i∈Aobs

p(logLi, log zi|θ), θ = (π, µ,Σ),

(4.22)

where p(θ, µ0, A) is given by Equation (4.21), p(logLi, log zi|θ) is given by Equation

(4.17), and

p(I = 1|θ) =
∫ ∞

−∞

∫ ∞

−∞
p(I = 1| logL, log z)p(logL, log z|θ) d logL d log z (4.23)

is the probability of including a source, given the model parameters θ. The condi-

tional posterior distribution of N given π, µ, and Σ is given by inserting Equation

(4.23) into (4.13). The complete joint posterior distribution is then

p(θ,N, µ0, A| logLobs, log zobs) ∝ p(N |θ, n)p(θ, µ0, A| logLobs, log zobs). (4.24)
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4.6 USING MARKOV CHAIN MONTE CARLO TO ESTIMATE THE POSTE-

RIOR DISTRIBUTION OF THE LUMINOSITY FUNCTION

For our statistical model, µ0 has 2 free parameters, A has 3 free parameters, and

each of the K Gaussian components has 6 free parameters. Because the values

of π are constrained to sum to one, there are only 6K − 1 free parameters for

the Gaussian mixture model. The number of free parameters in our statistical

model is therefore 6K + 4. The large number of parameters precludes calcula-

tion of the posterior on a grid of π, µ,Σ, µ0, A, and N . Furthermore, the multiple

integrals needed for marginalizing the posterior, and thus summarizing it, are

numerically intractable. Because of this, we employ Markov Chain Monte Carlo

(MCMC) to obtain a set of random draws from the posterior distribution. For the

case of a random walk, a Markov chain is a random walk where the probability

distribution of the current location only depends on the previous location. To ob-

tain random numbers generated from the posterior distribution, one constructs a

Markov chain that performs a random walk through the parameter space, where

the Markov chain is constructued to eventually converge to the posterior distri-

bution. Once convergence is reached, the values of the markov chain are saved

at each iteration, and the values of these locations can be treated as a random

draw from the posterior distribution. These draws may then be used to estimate

the posterior distribution of φ(L, z), and thus an estimate of the LF and its uncer-

tainty can be obtained.

In this work we use the Metropolis-Hastings algorithm (MHA, Metropolis

& Ulam, 1949; Metropolis et al., 1953; Hastings, 1970) to perform the MCMC.

We describe the particular MHA we employ for Bayesian inference on the LF;

however for a more general and complete description of the MHA, we refer the

reader to Chib & Greenberg (1995) or Gelman et al. (2004). We use the MHA to
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obtain a set of random draws from the marginal posterior distribution of θ, given

by Equation (4.22). Then, given these random draws of θ, random draws for N

may be obtained directly from the negative binomial distribution (see Eq.[4.13]

and Appendix C).

The basic idea behind the MHA is illustrated in Figure 4.4 for the special case

of a symmetric jumping distribution. First, one starts with an initial guess for

θ. Then, at each iteration a propsed value of θ is randomly drawn from some

‘jumping’ distribution. For example, this jumping distribution could be a normal

density with some fixed covariance matrix, centered at the current value of θ.

Then, if the proposed value of θ improves the posterior, it is stored as the new

value of θ. Otherwise, it is stored as the new value with probability equal to the

ratio of the values of the posterior distribution at the proposed and current value

of θ. If the proposed value of θ is rejected, then the value of θ does not change,

and the current value of θ is stored as the ‘new’ value of θ. The process is repeated

until convergence. If the jumping distribution is not symmetric, then a correction

needs to be made to the acceptance rule in order to account for asymetry in the

jumping distribution. A jumping distribution is symmetric when the probability

of jumping from a current value θ to a new value θ∗ is the same as jumping from

θ∗ to θ. For example, the normal distribution is symmetric, while the log-normal

distribution is not.

4.6.1 Metropolis-Hastings Algorithm for Schechter Luminosity Function

Before describing our MHA algorithm for the mixture of Gaussian functions

model, we describe a simpler MHA algorithm for the Schechter function model

given by Equation (4.14) in § 4.4.2. We do this to illustrate the MHA using a more

familiar luminosity function. An MHA for obtaining random draws of α,L∗, and

N from Equation (4.15) is:
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Figure 4.4 Schematic diagram illustrating the random walk Metropolis-Hastings

algorithm. The posterior probability distribution is illustrated by the contours,

and the random walk is initially at the position marked with a square. A new

proposed value of θ1 is randomly drawn, marked by the arrow pointing to the

left. Because the proposed value of θ1 is at a location with higher posterior prob-

ability, the new value of θ1 is saved, and the random walk ‘jumps’ to the position

marked by the arrow. Then, a new proposal for θ2 is randomly drawn, marked

by the arrow pointing upward. Because this proposed value of θ2 is at a location

with lower posterior probability, it is only accepted with probability equal to the

ratio of the values of the posterior at the proposed position and the current posi-

tion. If the proposed value is kept, then the new value of θ2 is saved, otherwise

the current value of θ2 is saved. Next, a proposed value of θ1 is randomly drawn,

and the process repeats, creating a random walk through the parameter space.

Because the amount of time that the random walk spends in any given bin in θ1

and θ2 is proportional to the posterior probability distribution, after the random

walk has converged, the values of θ1 and θ2 from the random walk may be treated

as a random draw from the posterior distribution.
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1. Start with an initial value of α and L∗, denoted as α̃ and L̃∗. A good initial

value is the maximum-likelihood estimate.

2. Draw a proposal value of logL∗ from a normal distribution centered on the

current value of logL∗, log L̃∗. The variance in the jumping distribution of

logL∗ should be fixed at the beginning of the MHA. A larger jumping vari-

ance will lead to jumps that travel greater distances, but will then lead to

lower MHA acceptance rates. The value of the jumping variance should be

tuned to give acceptance rates ∼ 0.4. We use a normal jumping distribution

to vary logL∗ because logL∗ is defined on (−∞,∞), while L∗ is only defined

on (0,∞). While we could use a jumping distribution to directly vary L∗, it

is not always easy to simulate random variables directly from distributions

that are only defined for L∗ > 0.

Denoting the proposal value of L∗ as L̂∗, calculate the ratio

rL∗ =
L̂∗p(α̃, L̂∗|Lobs)

L̃∗p(α̃, L̃∗|Lobs)
(4.25)

Here, p(α,L∗|Lobs) is the posterior distribution for the Schechter function,

given by Equation (4.15). If rL∗ > 1, then keep the proposal and set L̃∗ = L̂∗.

If rL∗ < 1, then draw a random number u uniformly distributed between 0

and 1. If u < rL∗ , then keep the proposal and set L̃∗ = L̂∗. Otherwise, the

proposal is rejected and the value of L̃∗ is unchanged. The factor of L̂∗/L̃∗

is necessary in Equation (4.25) in order to correct for the asymmetry in the

log-normal jumping distribution.

3. Draw a proposal value of log k = log(α + 1) from a normal distribution

centered at the current value of log k, log k̃ = log(α̃+1). Similar to the MHA

step for L∗, we use a normal jumping distribution to vary log k because log k

is defined on (−∞,∞), while α is only defined on (−1,∞).
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Denoting the proposal value of k as k̂, the proposal value of α̂ is α̂ = k̂ − 1.

Using the values of α̃ and α̂, calculate the ratio

rα =
k̂p(α̂, L̃∗|Lobs)

k̃p(α̃, L̃∗|Lobs)
(4.26)

If rα > 1, then keep the proposal and set α̃ = α̂. If rα < 1, then draw a

random number u uniformly distributed between 0 and 1. If u < rα, then

keep the proposal and set α̃ = α̂. Otherwise, the proposal is rejected and

the value of α̃ is unchanged. As with the MHA step for L∗, the factor of k̂/k̃

is necessary in Equation (4.26) in order to correct for the asymmetry in the

log-normal jumping distribution.

4. Repeat steps (2)–(3) until the MHA algorithm converges. Techniques for

monitoring convergence are described in Gelman et al. (2004). After con-

vergence, use Equation (4.13) to directly simulate random draws of the LF

normalization, N , for each simulated value of α and L∗ obtained from the

above random walk. Equation (4.13) has the form of a negative binomial

distribution, and a method for simulated random variables from the nega-

tive binomial distribution is described in Appendix C.

4.6.2 Metropolis-Hastings Algorithm for the Mixture of Gaussian Functions Lu-

minosity Function

Our MHA for the mixture of Gaussian functions model is a more complex version

of that used for the Schechter function model. As before, we denote the current

value of a parameter by placing a˜over its symbol, and we denote the proposed

value by placing aˆover its symbol. For example, if one were updating π, then π̃

denotes the current value of π in the random walk, and π̂ denotes the proposed

value of π. We will only update one parameter at a time, so, if we are drawing a
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proposal for π, the current value of θ is denoted as θ̃ = (π̃, µ̃, Σ̃), and the proposed

value of θ is denoted as θ̂ = (π̂, µ̃, Σ̃).

Our MHA for the mixture of Gaussian functions model is:

1. Start with initial guesses for π, µ,Σ, µ0, A, and T .

2. Draw a proposal value for π from a Dirichlet(g̃1, . . . , g̃K) density, where g̃k =

cπnπ̃k +1, n is the number of sources in the survey, and cπ is a fixed positive

constant that controls how far the ‘jumps’ in π go. Because cπ controls the

variance of the Dirichlet density, a smaller value of cπ produces values of

π̂ that are further from π̃. The value of cπ should be chosen so that about

15–40% of the MHA proposals are accepted.

After drawing a proposal for π, calculate the value of the posterior distri-

bution at the new value of θ, θ̂, and at the old value of θ, θ̃. Then, use these

values to calculate the ratio

rπ =
Dirichlet(π̃|ĝ)
Dirichlet(π̂|g̃)

p(θ̂|Lobs, zobs)

p(θ̃|Lobs, zobs)
, (4.27)

where ĝ = cπnπ̂1 + 1, . . . , cπnπ̂K + 1. The ratio of Dirichlet densities in

Equation (4.27) corrects the MHA acceptance rule for the asymmetry in the

Dirichlet jumping distribution. If rπ ≥ 1 then keep the proposed value of

π: π̃ = π̂. Otherwise keep the proposal with probability rπ. This is done

by drawing a uniformly distributed random variable between 0 and 1, de-

noted by u. If u < rπ, then set π̃ = π̂. If u > rπ then keep the current value

of π.

Methods for simulating from the Dirichlet distribution, as well as the func-

tional form of the Dirichlet distribution, are given in § C.
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3. For each Gaussian function, draw a proposal for µk by drawing µ̂k ∼ N2(µ̃k, Vk),

where Vk is some set covariance matrix. Because the jumping density is

symmetric, the MHA acceptance ratio is just given by the ratio of the poste-

rior distributions at the proposed and current value of µk: rµ = p(θ̂|Lobs, zobs)/p(θ̃|Lobs, zobs).

If rµ ≥ 1 then set µ̃k = µ̂k, otherwise set µ̃k = µ̂k with probability rµ. The

MHA update should be performed seperately for each Gaussian. The co-

variance matrix of the jumping kernel, Vk, should be chosen such that ∼ 30%

of the MHA jumps are accepted.

Since we have constructed the prior distribution with the constraint logLlow ≤

µl,k ≤ logLhigh and log zmin ≤ µz,k ≤ log zhigh for all k, any values of µ̂k that

fall outside of this range should automatically be rejected.

4. For each Gaussian, draw a proposal for Σk by drawing Σ̂k ∼ Wishartνk
(Σ̃k/νk),

where νk is some set degrees of freedom. Larger values of νk will produce

values of Σ̂k that are more similar to Σ̃k. The MHA acceptance ratio is

rΣ =

(

|Σ̃k|
|Σ̂k|

)νk−3/2

exp
{

−νk

2
tr
[

(Σ̂k)
−1Σ̃k − Σ̃−1

k Σ̂k

]

}

p(θ̂|xobs)

p(θ̃|xobs)
, (4.28)

where tr(·) denotes the trace of a matrix. If rΣ ≥ 1 then set Σ̃k = Σ̂k, oth-

erwise set Σ̃k = Σ̂k with probability rΣ. The MHA update should be per-

formed seperately for each Gaussian. The degrees of freedom of the jump-

ing kernel, νk, should be chosen such that ∼ 15–40% of the MHA jumps are

accepted.

If there are any bounds on Σk incorporated into the prior distribution, then

values of Σk that fall outside of this range should automatically be rejected.

Methods for simulating from the Wishart distribution, as well as the func-

tional form of the Wishart distribution, are given in § C.
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5. Draw a proposal for the prior parameter µ0 as µ̂0 ∼ N2(µ̃0, V0). The accep-

tance ratio only depends on the prior distribution and is

r0 =

[

K
∏

k=1

Cauchy2(µk|µ̂0, T )

Cauchy2(µk|µ̃0, T )

]





∫ log Lhigh

log Llow

∫ log zhigh

log zlow
Cauchy2(µk|µ̃0, T ) dµk

∫ log Lhigh

log Llow

∫ log zhigh

log zlow
Cauchy2(µk|µ̂0, T ) dµk





K

.

(4.29)

Here, T is given by Equation (4.19) and the integrals are needed because of

the prior constraints on µ. If r0 ≥ 1 then set µ̃0 = µ̂0, otherwise set µ̃0 = µ̂0

with probability r0. We have found a good choice for V0 to be the sample

covariance matrix of µ̃.

6. Finally, update the value of A, the common scale matrix. Because we can

approximately calculate the conditional distribution of A, given Σ, we can

directly simulate from p(A|Σ). Directly simulating from the conditional dis-

tributions is referred to as a Gibbs sampler. We perform a Gibbs update to

draw a new value of Ã:

Â ∼ WishartνA
(S) (4.30)

νA = K + 3 (4.31)

S =

(

K
∑

k=1

Σ̃−1
k

)−1

. (4.32)

For the Gibbs sampler update, we do not need to calculate an acceptance

ratio, and every value of Â is accepted: Ã = Â. If there are any prior

bounds set on Σ, then this is technically only an approximate Gibbs update,

as it ignores the constraint on Σ. A true MHA update would account for

the constraint on Σ by renormalizing the conditional distribution appropri-

ately; however, this involves a triple integral that is expensive to compute.

If there are prior bounds on Σ, then Equation (4.30) is approximately cor-

rect, and ignoring the normalization in p(A|Σ) does not did not have any

effect on our results.
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Steps 2–6 are repeated until the MCMC converges, where one saves the values

of θ̃ at each iteration. After convergence, the MCMC is stopped, and the values

of θ̃ may be treated as a random draw from the marginal posterior distribution

of θ, p(θ| logLobs, log zobs). Techniques for monitering convergence of the Markov

Chains are described in Gelman et al. (2004). If one wishes to assume a uniform

prior on µ and Σ, constrained within some set range, instead of the prior we sug-

gest in § 4.5.1, then only steps 2–4 need to be performed. Given the values of

θ obtained from the MCMC, one can then draw values of N from the negative

binomial density (cf. Eq.[4.13]). In § C we describe how to simulate random vari-

ables from a negative binomial distribution. The speed of our MHA algorithm

depends on the sample size and the programming language. As a rough guide,

on a modern computer our MHA can take a couple of hours to converge for sam-

ple sizes of ∼ 1000, and our MHA can take as long as a day or two to converge

for sample sizes ∼ 104.

When performing the MCMC it is necessary to perform a ‘burn-in’ stage, after

which the markov chains have approximately converged to the posterior distri-

bution. The values of θ from the MCMC during the burn-in stage are discarded,

and thus only the values of θ obtained after the burn-in stage are used in the anal-

ysis. We have found it useful to perform ∼ 104 iterations of burn-in, although this

probably represents a conservative number. In addition, the parameters for the

MHA jumping distributions should be tuned during the burn-in stage. In partic-

ular, the parameters Σα, σ
2
σl
, cπ,Σµ,k, and νk should be varied within the burn-in

stage to make the MHA more efficient and have an acceptance rate of ∼ 0.15–0.4

(Gelman, Roberts, & Gilks, 1995). These jumping distribution parameters cannot

be changed after the burn-in stage. Jasra et al. (2005) and Neal (1996) described

additional complications and considerations developing MHAs for mixture mod-
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els.

Some post processing of the Markov chains is necessary. This is because some

chains can get ‘stuck’ wandering in regions far below flux limit, likely in the

presence of a local maximum in the posterior. While such chains will eventu-

ally converge and mix with the other chains, they do not always do so within

the finite number of iterations used when running the random walk MHA. In

general, we have found that divergent chains are easy to spot. Because the diver-

gent chains usually get stuck in regions far below the flux limit, they correspond

to luminosity functions with implied extremely low detection probabilities, i.e.,

p(I = 1|θ) ¿ 1. As a result, the random draws of N from the posterior for these

chains tend to have values that are too high and far removed from the rest of

the posterior distribution of N . The divergent chains are therefore easily found

and removed by inspecting a histogram of logN . In fact, we have found that

the divergent chains often become too large for the long integer format used in

our computer routines, and therefore are returned as negative numbers. Because

negative values ofN are unphysical, it is easy to simply remove such chains from

the analysis.

Having obtained random draws of N and θ from p(θ,N | logLobs, log zobs), one

can then use these values to calculate an estimate of φ(L, z), and its corresponding

uncertainty. This is done by inserting the MCMC values of θ and N directly into

Equation (4.18). The posterior distribution of φ(L, z) can be estimated for any

value of L and z by plotting a histogram of the values of φ(L, z) obtained from

the MCMC values of θ and N . In § 4.7, we illustrate in more detail how to use the

MHA results to perform statistical inference on the LF.
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4.7 APPLICATION TO SIMULATED DATA

As an illustration of the effectiveness of our method, we applied it to a simulated

data set. We construct a simulated sample, and then recover the luminosity func-

tion based on our mixture of Gaussian functions model. We assume the effective

survey area and selection function reported for the DR3 quasar sample (Richards

et al., 2006).

4.7.1 Construction of the Simulated Sample

We first drew a random value of NΩ quasars from a binomial distribution with

probability of success Ω/4π = 0.0393 and number of trials N = 3 × 105. Here,

Ω = 1622 deg2 is the effective sky area for our simulated survey, and we chose the

total number of quasars to be N = 3 × 105 in order to ultimately produce a value

of n ∼ 1300 observed sources, after accounting for the SDSS selection function.

This first step of drawing from a binomial distribution simulates a subset ofNΩ ∼

1.2 × 104 sources from N total sources randomly falling within an area Ω on the

sky. For simplicity, in this simulation we ignore the effect of obscuration on the

observed quasar population. While our choice of N = 3 × 105 produces a much

smaller sample than the actual sample of n ∼ 1.5 × 104 quasars from the SDSS

DR3 luminosity function work (Richards et al., 2006), we chose to work with this

smaller sample to illustrate the effectiveness of our method on more moderate

sample sizes.

For each of these NΩ ∼ 1.2 × 104 sources, we simulated values of L and z. We

first simulated values of log z from a marginal distribution of the form

f(log z) =
4Γ(a+ b)

Γ(a)Γ(b)

exp(aζ∗)

(1 + exp(ζ∗))a+b , (4.33)

where ζ∗ = 4(log z − 0.4). The parameters a = 1.25 and b = 2.5 were chosen to

give an observed redshift distribution similar to that seen for SDSS DR3 quasars
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(e.g., Richards et al., 2006). Values of log z are easily drawn from Equation (4.33)

by first drawing x∗ ∼ Beta(a, b), and then setting log z = logit(x∗)/4 + 0.4; here,

Beta(a, b) is a beta probability density, and logit(x) = ln(x/(1 − x)) is the logit

function.

For each simulated value of z, we simulated a value of L using a similar func-

tional form. The conditional distribution of logL given z is

f(logL|z) =
Γ(α(z) + β(z))

Γ(α(z))Γ(β(z))

(L/L∗(z))α(z)/ ln 10

[1 + (L/L∗(z))1/ ln 10]
α(z)+β(z)

(4.34)

α(z) = 6 + log z (4.35)

β(z) = 9 + 2 log z (4.36)

L∗(z) = 1045z2, (4.37)

where L∗(z) approximately marks the location of the peak in f(logL|z), t(z) is

the age of the universe in Gyr at redshift z, α(z) is the slope of log f(logL|z) for

L ∼< L∗(z), and β(z) is the slope of log f(logL|z) for L ∼> L∗(z). In this simulated

‘universe’, both the peak and logarithmic slopes of the LF evolve. The form of the

luminosity function assumed by Equation (4.34) is similar to the double power-

law form commonly used in the quasar LF literature, but has a more gradual

transition between the two limiting slopes.

After using Equations (4.33) and (4.34) to generate random values of L and z,

we simulated the effects at a selection function. We randomly kept each source

for z < 4.5, where the probability of including a source given its luminosity and

redshift was taken to be the SDSS DR3 Quasar selection function, as reported by

Richards et al. (2006). After running our simulated sample through the selection

function, we were left with a sample of n ∼ 1300 sources. Therefore, our sim-

ulated survey is only able to detect ∼ 0.4% of the N = 3 × 105 total quasars in

our simulated ‘universe’. The distributions of L and z are shown in Figure 4.5
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for both the detected sources and the full sample. As can be seen, the majority of

sources are missed by our simulated survey.

The joint probability distribution of L and z is f(L, z) = f(L|z)f(z), and there-

fore Equations (4.33) and (4.34) imply that the true LF for our simulated sample

is

φ0(L, z) =
N

zL(ln 10)2

(

dV

dz

)−1

f(logL|z)f(log z) (4.38)

Figure 4.6 shows φ0(L, z) at several redshifts. Also shown in Figure 4.6 is the best

fit for a mixture of K = 4 gaussian functions. Despite the fact that φ0(L, z) has

a rather complicated parameteric form, a mixture of four gaussian functions is

sufficient to achieve an excellent approximation to φ0(L, z); in fact, the mixture of

four gaussian functions approximation is indistinguishable from the true LF.

4.7.2 Performing Statistical Inference on the LF with the MCMC Output

We performed the MHA algorithm described in § 4.6 to obtain random draws

from the posterior probability distribution for our this simulated sample, assum-

ing the Gaussian mixture model described in § 4.5. We performed 104 iterations

of burn-in, and then ran the markov chains for 3× 104 more iterations. We ran 20

chains simultaneously in order to monitor convergence (e.g., see Gelman et al.,

2004) and explore possible multimodality in the posterior. We saved the values of

θ for the Markov chains after the initial 104 burn-in iterations, and, after removing

divergent chains with N < 0 we were left with ∼ 8× 104 random draws from the

posterior distribution, p(θ,N |Lobs, zobs).

The output from the MCMC can be used to perform statistical inference on the

LF. Denote the T ∼ 8 × 104 random draws of θ and N obtained via the MHA as

θ1, . . . , θT and N 1, . . . , NT , respectively. The individual values of (θt, N t) can then

be used to construct histograms as estimates of the posterior distribution for each

parameter. For each random draw of θ and N , we can also calculate a random
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Figure 4.5 The distribution of L and z for the simulated sample described in

§ 4.7.1. Red dots denote sources included in the sample, black dots denote sources

not included in the sample, the blue line denotes L∗ as a function of z, and the

green contours display the 2-d luminosity function. Also shown are histograms

of the marginal distributions of logL and z, for all simulated objects (black his-

togram) and only the detected ones (red histogram). For clarity, the histogram of

the detected sources has been forced to peak at a value equal to half of the peak

of the histogram of all objects.
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Figure 4.6 The true LF (solid red line) at several values of z, and the best K = 4

Gaussian function fit (dashed black line). In this case, approximating the LF with

four 2-dimensional Gaussian functions provides an excellent fit.

.
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draw of φ(L, z) from its posterior distribution. In particular, the tth random draw

of the LF under the mixture of normals model, denoted as φt(L, z), is calculated

by inserting θt and N t into Equation (4.18). The T values of φt(L, z) can then

be used to estimate the posterior distribution of φ(L, z) for any given value of

L and z. Furthermore, random draws from the posterior for quantities that are

computed directly from the LF, such as the location of its peak as a function of

z, are obtained simply by computing the quantity of interest from each of the T

values of φt(L, z).

In Figures 4.7 and 4.8 we show φ(logL, z) at several different redshifts, on both

a linear scale and a logarithmic scale. In general, we find it easier to work with

φ(logL, z) = ln 10Lφ(L, z), as φ(logL, z) can span several orders of magnitude in

L. Figures 4.7 and 4.8 show the true value of the LF, φ0(logL, z), the best-fit es-

timate of φ(logL, z) based on the mixture of Gaussian functions model, and the

regions containing 90% of the posterior probability. Here, as well as through-

out this work, we will consider the posterior median of any quantity to be the

‘best-fit’ for that quantity. In addition, in this work we will report errors at the

90% level, and therefore the regions containing 90% of the posterior probabil-

ity can be loosely interpreted as asymmetric error bars of length ≈ 1.65σ. The

region containing 90% of the probability for φ(logL, z) is easily estimated from

the MCMC output by finding the values of t1 and t2 such that 90% of the values

of φ1(logL, z), . . . , φT (logL, z) have φt1(logL, z) < φt(logL, z) < φt2(logL, z). As

can be seen, the true value of φ(logL, z) is contained within the 90% probability

region for all almost values of L, even those below the survey detection limit.

Figure 4.9 compares the true integrated z < 6 number distribution of logL,

n(logL, z < 6), with the mixture of Gaussian functions estimate. The quantity

n(logL, z < 6)d logL gives the number of quasars at z < 6 with black hole masses
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Figure 4.7 The true LF (solid red line) at several redshifts for the simulated sample

described in § 4.7.1. The axis labels are the same for all panels, but for clarity we

only label the bottom left panel. Also shown is the posterior median estimate of

the LF based on the mixture of Gaussian functions model (dashed blue line), the

region containing 90% of the posterior probability (shaded region). The bayesian

mixture of Gaussian functions model is able to accurately constrain the LF, even

below the survey detection limit.
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Figure 4.8 Same as Figure 4.7, but shown with a logarithmic stretch.
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between logL and logL+ d logL. It is calculated as

n(logL, z < 6) =
∫ 6

0
φ(logL, z)

(

dV

dz

)

dz, (4.39)

which, for the mixture of normals model, is

n(logL, z < z0) = N
K
∑

k=1

πkN(logL|µl,k, σ
2
l,k)Φ





log z0 − E(log z|L, k)
√

V ar(log z|L, k)



(4.40)

E(log z|L, k) = µz,k +
σlz,k

σ2
z,k

(logL− µl,k) (4.41)

V ar(log z|L, k) = σ2
z,k −

σ2
lz,k

σ2
z,k

. (4.42)

Here, Φ(·) is the cumulative distribution function for the standard normal den-

sity. Similar to Figures 4.7 and 4.8, the true value of n(logL, z < 6) is contained

within the 90% probability region for all values of L, even those below the survey

detection limit.

In addition, in Figure 4.9 we show the comoving number density of broad line

AGN as a function of redshift, n(z). This is obtained by integrating φ(L, z) over

all possible values of L. For the mixture of normals model, this becomes

n(z) = N

(

dV

dz

)−1 K
∑

k=1

πkp(z|k), (4.43)

where the marginal distribution of z|k is

p(z|k) =
1

z ln 10
√

2πσ2
z,k

exp







−1

2

(

log z − µz,k

σz,k

)2






. (4.44)

As before, the true value of n(z) is contained within the 90% probability region,

despite the fact that the integration extends over all L, even those below the de-

tection limit. The wider confidence regions reflect additional uncertainty in n(z)

resulting from integration over those L below the detection limit. In particular,

the term dV/dz becomes small at low redshift, making the estimate of n(z) more

unstable as z → 0, and thus inflating the uncertainties at low z.
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Figure 4.9 The integrated z < 6 quasar number density (number per logL in-

terval, top) and the quasar comoving quasar number density as a function of z

(number per mpc3, bottom) for the simulated sample described in § 4.7.1. As

with Figure 4.7, the solid red line denotes the true value for the simulation, the

dashed blue line denotes the posterior median for the mixture of Gaussian func-

tions model, and the shaded region contain 90% of the posterior probability. The

posterior median provides a good fit to the true values, and the uncertainties de-

rived from the MCMC algorithm based on the Gaussian mixture model are able

to accurately constrain the true values of these quantities, despite the flux limit.
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Two other potentially useful quantities are the comoving luminosity density

for quasars, ρL(z), and its derivative. The comoving quasar luminosity density is

given by ρL(z) =
∫∞
0 Lφ(L, z) dL. For the mixture of Gaussian functions model it

may be shown that

ρL(z) = N

(

dV

dz

)−1 K
∑

k=1

πkp(z|k)

× exp

{

ln 10E(logL|z, k) +
(ln 10)2

2
V ar(logL|z, k)

}

(4.45)

E(logL|z, k) = µl,k +
σlz,k

σ2
z,k

(log z − µz,k) (4.46)

V ar(logL|z, k) = σ2
l,k −

σ2
lz,k

σ2
z,k

, (4.47)

where p(z|k) is given by Equation (4.44). We calculate the derivative of ρL(z)

numerically. Figure 4.10 compares the true values of ρL(z) and its derivative

with the posterior distribution for ρL(z) inferred from the mixture model, both

as a function of z and the age of the universe at redshift z, t(z). Comparison

with Figure 4.9 reveals that the comoving quasar luminosity density, ρL(z), is

a better constrained quantity than the comoving quasar number density, n(z).

Furthermore, n(z) appears to peak much later than ρL(z). In addition, we can

correctly infer that the comoving quasar luminosity density reaches it point of

fastest growth at t(z) ∼ 2 Gyr, and its point of fastest decline at t(z) ∼ 5 Gyr.

Figure 4.11 quantifies the suggestion that n(z) peaks later than ρL(z) by dis-

playing the posterior distribution for the location of the respective peaks in n(z)

and ρL(z). We can still constrain the peak in n(z) to be at z ∼< 0.5. In contrast, the

location of the peak in ρL(z) is constrained to occur earlier at 1 ∼< z ∼< 3. This is

a consequence of the fact that while there were more quasars per comoving vol-

ume element in our simulated universe at z ∼< 0.5, their luminosities were much

higher at higher redshift. This evolution in characteristic L is quantified in Figure
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Figure 4.10 Comoving quasar luminosity density (top two panels) and its deriva-

tive (bottom two panels), shown as a function of redshift (left two panels) and

cosmic age (right two panels) for the simulated sample described in § 4.7.1. The

plotting symbols are the same as in Figure 4.9. As in the previous figures, the

Gaussian mixture model is able to provide an accurate fit to the true values of

ρL(z), and the bayesian MCMC approach is able to provide accurate constraints

on ρL(z) and dρL/dz, despite the fact that the integral used for calculating these

quanties extends below the survey detection limit.
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4.12, which summarizes the posterior distribution for the location of the peak in

φ(logL, z) as a function of redshift and t(z). As can be seen, the location of the

peak in the LF shows a clear trend of increasing ‘characteristic’ L with increasing

z, although there is considerable uncertainty on the actual value of the location

of the peak.

4.7.3 Using the MCMC Output to Evaluate the LF Fit

Throughout this section we have been analyzing the MCMC results by compar-

ing to the true LF. However, in practice we do not have access to the true LF, and

thus a method is needed for assessing the quality of the fit. The statistical model

may be checked using a technique known as posterior predictive checking (e.g.,

Rubin, 1981, 1984; Gelman, Meng, & Stern, 1998). Here, the basic idea is to use

each of the MCMC outputs to simulate a new random observed data set. The

distributions of the simulated observed data sets are then compared to the true

observed data in order to assess whether the statistical model gives an accurate

representation of the observed data. It is important to construct simulated data

sets for each of the MCMC draws in order to incorporate our uncertainty in the

model parameters.

For each value ofN t and θt obtained from the MCMC output, a simulated data

set of (ltobs, z
t
obs) may be obtained through a similar procedure to that described in

§ 4.7.1. First, one draws a value of N t
Ω from a binomial distribution with N t trials

and probability of ‘success’ p = Ω/4π. Then, one draws N t
Ω values of Lt and zt

from p(L, z|θt).

For our model, p(logL, log z|θt) is a mixture of normal densities, and one needs

to employ a two-step process in order to simulate a random value from p(logL, log z|θt).

First, one needs to randomly assign the ith data point to one of the Gaussian dis-

tributions. Since πk gives the probability that a data point will be drawn from the
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Figure 4.11 Posterior distribution for the redshift location of the peak in the co-

moving number density of quasars (top) and the peak in the comoving quasar

luminosity density (bottom) for the simulated sample described in § 4.7.1. For

clarity we only show the posterior distribution for the peak in n(z) at z > 0.5,

since values of the peak at z < 0.5 arise because the term (dV/dz)−1 becomes very

large at low z. The vertical lines denote the true values. The posterior distribution

inferred from the MCMC output is able to accurately constrain the true values of

the argumentative maximum in n(z) and ρL(z).
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Figure 4.12 Location of the peak in the LF as a function of z (top) and cosmic

age (bottom) for the simulated sample described in § 4.7.1. The plot symbols

are the same is in Figure 4.9. In general the posterior median of the Gaussian

mixture model provides a good estimate of the true peak locations, although the

uncertainty is high due to the survey flux limit. However, it is clear from these

plots that the location of the peak in φ(L, z) evolves.
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kth Gaussian distribution, one first needs to simulate a random vector Gt
i from a

multinomial distribution with one trial and probability of success for the kth class

πt
k; i.e., first draw Gt

i ∼ Multinom(1, πt
1, . . . , π

t
K). The vector Gt

i gives the class

membership for the ith data point, where Gt
ik = 1 if the ith data point comes from

the kth Gaussian, and Gt
ij = 0 if j 6= k. Then, given Gt

ik = 1, one then simulates a

value of (logLt
i, log z

t
i) from a 2-dimensional Gaussian distribution with mean µt

k

and covariance matrix Σt
k. This is repeated for all N t

Ω sources, leaving one with a

random sample (logLt, log zt) ∼ p(logL, log z|θt).

A random draw from Multinom(1, π1, . . . , πK), may be obtained as a sequence

of binomial random draws. First, draw n′
1 ∼ Binomial(1, π1). If n′

1 = 1, then

assign the data point to the first Gaussian distribution, i.e., set Gi1 = 1. If n′
1 = 0,

then draw n′
2 ∼ Binomial(1, π2/

∑K
k=2 πk). If n′

2 = 1, then assign the data point to

the second Gaussian distribution, i.e., set Gi2 = 1. If n′
2 = 0, then the process is

repeated for the remaining Gaussian distribution as follows. For j = 3, . . . , K−1,

sequentially draw n′
j ∼ Binomial(1, πj/

∑K
k=j πk). If at any time n′

j = 1, then stop

the process and assign the data point to the j th Gaussian distribution. Otherwise,

if none of the n′
j = 1, then assign the data point to the K th Gaussian distribution.

Once one obtains a random draw of (Lt, zt), randomly ‘observe’ these sources,

where the probability of including a source given Lt
i and zt

i is given by the selec-

tion function. This will leave one with a simulated observed data set, (Lt
obs, z

t
obs).

This process is repeated for all T values of N t and θt obtained from the MCMC

output, leaving one with T simulated data sets of (Lt
obs, z

t
obs). One can then com-

pare the distribution of the simulated data sets with the true values of Lobs, and

zobs to test the statistical model for any inconsistencies.

In Figure 4.13 we show histograms for the true observed distributions of z

and logL. These histograms are compared with the posterior median of the dis-
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tributions based on the mixture of Gaussian functions model, as well as error

bars containing 90% of the simulated values. Also shown is a plot comparing

the true values of the maximum of Lobs as a function of z with those based on

Lt
obs and zt

obs. As can be seen, the distributions of the observed data assuming the

mixture of Gaussian functions model are consistent with the true distributions of

the observed data, and therefore there is no reason to reject the mixture model as

providing a poor fit.

4.8 SUMMARY

We have derived the observed data likelihood function which relates the quasar

LF to the observed distribution of redshifts, luminosities. This likelihood func-

tion is then used in a Bayesian approach to estimating the LF, where the LF is

approximated as a mixture of Gaussian functions. Because much of this work

was mathematically technical, we summarize the important points here.

• Equation 4.6 gives the likelihood function for an assumed parameteric lu-

minosity function. This likelihood function differs from the poisson like-

lihood commonly used in the LF literature because it correctly models the

sample size as a binomial random variable, whereas the poisson likelihood

approximates the sample size as a poisson random variable. In practice,

the difference in the maximum-likelihood estimates obtained from the two

likelihood functions do not seem to be significantly different so long as the

probability of including a source in a survey is small.

• The product of Equations (4.12) and (4.13) is the joint posterior probabil-

ity distribution of the LF, given the observed data. These equations may

be used to perform Bayesian inference on the LF, after assuming a prior

distribution on the LF parameters. Bayesian inference is often most eas-
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Figure 4.13 Posterior predictive check for the Gaussian mixture model (see

§ 4.7.3). The histograms show the actual distributions of Lobs and zobs, the red

squares denote the posterior medians for the number of sources in each respec-

tive bin, and the error bars contain the inner 90% of the histogram values for the

samples simulated from the posterior. Also shown is a plot of the maximum ob-

served luminosity as a function of z for the simulated samples, the red squares

mark the value from the actual sample used in the fit, and the error bars con-

tain 90% of the values simulated from the posterior distribution. The mixture

of Gaussian functions model is able to provide an accurate prediction of the ob-

served distribution of luminosity, redshift, and line widths, and thus there is not

any evidence to reject it as providing a poor fit.



194

ily performed by simulating random variables drawn from the posterior

probability distribution. These random draws may be used to estimate the

posterior distribution for the LF, as well as to estimate the posterior distri-

bution for any quantities calculated from the LF. The posterior distribution

provides statistically accurate uncertainties on the LF and related quanti-

ties, even when the sample size is small and one is including information

below the survey detection limits. In contrast, confidence intervals derived

from bootstrapping the maximum-likelihood estimate can be too small.

• We describe a flexible model for the LF, where the LF is modelled as a mix-

ture of Gaussian functions. Equation (4.17) describes the probability distri-

bution of logL and log z under the mixture of Gaussian functions model,

and (4.18) describes the LF under the mixture of Gaussian functions model.

Equation (4.21) gives our prior distribution for the Gaussian function pa-

rameters. The marginal posterior distribution of the mixture model param-

eters is given by Equation (4.22), the conditional posterior distribution of

N at a given θ is given by Equation (4.13), and the complete joint posterior

distribution is the product of Equations (4.22) and (4.13).

• We describe in § 4.6 a Metropolis-Hastings algorithm for obtaining random

draws from the posterior distribution for the LF assuming a Schechter func-

tion or mixture of Gaussian functions model. In § 4.7, we use a simulated

sample, modelled after the SDSS DR3 quasar catalogue, to illustrate the ef-

fectiveness of our statistical method, as well as to give an example on how

to use the Metropolis-Hastings output to perform statistical inference on the

LF and assess the LF fit.
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So long as the mixture of Gaussian functions model is an accurate approxima-

tion to the true LF over all luminosities, the uncertainties on the LF, assuming the

Gaussian mixture model, are trustworthy because they are calculated directly

from the probability distribution of the LF, given the observed data. Statisti-

cal inference on the LF below the flux limit can become significantly biased if

one assumes an incorrect and restrictive parameteric form, as extrapolation er-

rors can become large. In this case, the derived posterior may not contain the

true LF because the wrong parameteric model was assumed; this type of error

is known as model mispecification. For example, consider a case when the true

LF is a Schechter function, and one is only able to detect sources brighter than

L∗. If one were to assume a power-law for the LF, extrapolation below the flux

limit would be signficantly biased. In contrast, the mixture of Gaussian func-

tions model, while incorrect, is flexible enough to accurately approximate the

true Schechter function form, thus minimizing extrapolation bias due to model

mispecification. Of course, in this example, the most accurate results would be

obtained by fitting a Schechter function to the data, since it is the correct parame-

teric form. Therefore, the mixture of Gaussian functions model will not perform

as well as assuming the correct parameteric model, or at least as well as an alter-

native parameteric model that better approximates the true LF.

Although we have focused on the mixture of Gaussian functions model, the

likelihood and posterior distribution are applicable for any parameteric form, as

illustrated in § 4.4.2. The observed data likelihood function for the LF is given by

Equation (4.6), and the posterior distribution is given by the product of Equations

(4.12) and (4.13). Then, one can use Equation (4.1) to ‘plug-in’ any parameteric

form of the LF into the appropriate likelihood function and posterior distribu-

tion, as was done in Equation (4.15) for a Schechter function. In addition, the
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metropolis-hastings algorithm is a general method for obtaining random draws

from the posterior, and can be developed for any parameteric form of the LF. This

therefore allows one to perform Bayesian inference for any variety of parameteric

models of the LF, and one is not merely limited to the mixture of Gaussian func-

tions model or Schechter function considered in this work.
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CHAPTER 5

DETERMINING QUASAR BLACK HOLE MASS FUNCTIONS FROM THEIR BROAD

EMISSION LINES: APPLICATION TO THE BRIGHT QUASAR SURVEY

5.1 CHAPTER ABSTRACT

We describe a Bayesian approach to estimating quasar black hole mass functions

(BHMF) when using the broad emission lines to estimate black hole mass. We

show how using the broad line mass estimates in combination with statistical

techniques developed for luminosity function estimation (e.g., the 1/Va correc-

tion) leads to biased results. We derive the likelihood function for the BHMF

based on the broad line mass estimates, and derive the posterior distribution for

the BHMF, given the observed data. We develop our statistical approach for a

flexible model where the BHMF is modelled as a mixture of Gaussian functions.

Statistical inference is performed using markov chain monte carlo (MCMC) meth-

ods, and we describe a metropolis-hasting algorithm to perform the MCMC. The

MCMC simulates random draws from the probability distribution of the BHMF

parameters, given the data, and we use a simulated data set to show how these

random draws may be used to estimate the probability distribution for the BHMF.

In addition, we show how the MCMC output may be used to estimate the prob-

ability distribution of any quantities derived from the BHMF, such as the peak

in the space density of quasars. Our method has the advantage that it is able to

place accurate constraints on the BHMF even beyond the survey detection limits,

accounts for measurement errors and the intrinsic uncertainty in broad line mass

estimates, and provides a natural way of estimating the probability distribution

of any quantities derived from the BHMF. We conclude by using our method to

estimate the local active BHMF using the z < 0.5 Bright Quasar Survey sources.
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At z ∼ 0.2, the quasar BHMF falls off approximately as a power law with slope

∼ 2 for MBH ∼> 108M¯. We find that at a given MBH , z < 0.5 broad line quasars

have a typical Eddington ratio of ∼ 0.4 and a dispersion in Eddington ratio of

∼< 0.5 dex.

5.2 CHAPTER INTRODUCTION

It is widely accepted that the extraordinary activity associated with quasars1 in-

volves accretion onto a supermassive black hole (SMBH). The correlation be-

tween SMBH mass and both host galaxy luminosity (e.g., Kormendy & Richstone,

1995; Magorrian et al., 1998; McLure & Dunlop, 2001; Marconi & Hunt, 2003) and

stellar velocity dispersion (MBH–σ relationship, e.g., Gebhardt et al., 2000a; Mer-

ritt & Ferrarese, 2001; Tremaine et al., 2002), together with the fact that quasars

have been observed to reside in early-type galaxies (McLure et al., 1999; Kukula et

al., 2001; McLeod & McLeod, 2001; Nolan et al., 2001; Percival et al., 2001; Dunlop

et al., 2003), implies that the evolution of spheroidal galaxies and quasars is intri-

cately tied together (e.g., Silk & Rees, 1998; Haehnelt & Kauffmann, 2000; Merritt

& Poon, 2004; Di Matteo et al., 2005; Hopkins et al., 2006a). Therefore, investigat-

ing the evolution of active super-massive black holes (SMBHs) is an important

task of modern astronomy, giving insight into the importance of AGN activity on

the formation of structure in the universe. Determination of the comoving num-

ber density, energy density, and mass density of active black holes is a powerful

probe of the quasar-galaxy connection and the evolution of active black holes.

Recently, advances in reverberation mapping (e.g., Peterson et al., 2004) have

made it possible to estimate the masses of black holes for broad line AGN. A cor-

relation has been found between the size of the region emitting the broad lines
1Throughout this work we will use the terms quasar and AGN to refer generically to broad

line AGNs. No luminosity difference between the two is assumed.
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and the luminosity of the AGN (Kaspi et al., 2005; Bentz et al., 2006), allowing one

to use the source luminosity to estimate the distance between the broad line re-

gion (BLR) and the central black hole. In addition, one can estimate the velocity

dispersion of the BLR gas from the broad emission line width. One then com-

bines the BLR size estimate with the velocity estimate to obtain a virial black hole

mass (e.g., Wandel et al., 1999; McLure & Dunlop, 2002; Vestergaard & Peterson,

2006). Estimates of MBH obtained from the broad emission lines have been used

to estimate the distribution of quasar black hole masses at a variety of redshifts

(e.g., McLure & Dunlop, 2004; Vestergaard, 2004; Kollmeier et al., 2006; Wang et

al., 2006; Greene & Ho, 2007; Vestergaard et al., 2008).

Given the importance of the BHMF as an observational constraint on mod-

els of quasar evolution, it is essential that a statistically accurate approach be

employed when estimating the BHMF. However, the existence of complicated

selection functions hinders this. A variety of methods have been used to accu-

rately account for the selection function when estimating the quasar luminosity

function. These include various binning methods (e.g., Schmidt, 1968; Avni &

Bahcall, 1980; Page & Carrera, 2000), maximum-likelihood fitting (e.g., Marshall

et al., 1983; Fan et al., 2001), a semi-parameteric approach (Schafer, 2007), and a

Bayesian approach we develop in a companion paper (Kelly, Fan, & Vestergaard,

2008, hereafter KFV08). In addition, there have been a variety of methods pro-

posed for estimating the cumulative distribution function of the luminosity func-

tion (e.g., Lynden-Bell, 1971; Efron & Petrosian, 1992; Maloney & Petrosian, 1999).

While these techniques have been effective for estimating luminosity functions,

estimating the BHMF from the broad line mass estimates is a more difficult prob-

lem, and currently there does not exist a statistically correct method of estimating

the BHMF.
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If we could directly measure black hole mass for quasars, and if the selection

function only depended on MBH and z, then we could simply employ the for-

malism described in KFV08 after replacing L with MBH . However, surveys are

selected based on luminosity and redshift, not on MBH . At any given luminosity

there exists a scatter in black hole mass, and thus one cannot simply employ the

luminosity selection function ‘as-is’ to correct for the flux limit. In other words,

completeness in flux is not the same thing as completeness in MBH , and the use

of a flux selection results in a softer selection function for MBH . Moreover, we

cannot directly observe MBH for large samples of quasars, but rather derive an

estimate of MBH from their broad emission lines. The intrinsic uncertainty on

MBH derived from the broad emission lines is ∼ 0.4 dex (Vestergaard & Peterson,

2006), and the uncertainty on MBH broadens the inferred distribution of MBH

(e.g., Kelly & Bechtold, 2007; Shen et al., 2007). As a result, even if there is no

flux limit, the BHMF inferred directly from the broad line mass estimates will be

systematically underestimated near the peak and overestimated in the tails. In

order to ensure an accurate estimate of the BHMF it is important to correct for

the uncertainty in the estimates of MBH .

Motivated by these issues, we have developed a Bayesian method for esti-

mating the BHMF. In KFV08 we derived the likelihood function and posterior

probability distribution for luminosity function estimation, and we described a

mixture of Gaussian functions model for the luminosity function. In this work,

we extend our statistical method and derive the likelihood function of the BHMF

by relating the observed data to the true BHMF, and derive the posterior proba-

bility distribution of the BHMF parameters, given the observed data. While the

likelihood function and posterior are valid for any parameteric form, we focus

on a flexible parameteric model where the BHMF is modeled as a sum of Gaus-
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sian functions. This is a type of ‘non-parameteric’ approach, where the basic

idea is that the individual Gaussian functions do not have any physical mean-

ing, but that given enough Gaussian functions one can obtain a suitably accurate

approximation to the true BHMF. Modelling the BHMF as a mixture of normals

avoids the problem of choosing a particular parameteric form, especially in the

absence of any guidance from astrophysical theory. In addition, we describe a

markov chain monte carlo (MCMC) algorithm for obtaining random draws from

the posterior distribution. These random draws allow one to estimate the pos-

terior distribution for the BHMF, as well as any quantities derived from it. The

MCMC method therefore allows a straight-forward method of calculating errors

on any quantity derived from the BHMF. Because the Bayesian approach is valid

for any sample size, one is able to place reliable constraints on the BHMF and

related quantities, even where the survey becomes incomplete.

Because of the diversity and mathematical complexity of some parts of this

paper, we summarize the main results here. We do this so that the reader who

is only interested in specific aspects of this paper can conveniently consult the

sections of interest.

• In § 5.3.2 we derive the general form of the likelihood function for black hole

mass function estimation based on quasar broad emission lines. Because we

can not directly observe MBH for a large sample of quasars, the likelihood

function gives the probability of observing a set of redshifts, luminosities,

and line widths, given an assumed BHMF. In § 5.3.3 we derive the black hole

mass selection function, and discuss how the differences between the MBH

selection function and the luminosity selection function affect estimating

the BHMF. The reader who is interested in the likelihood function of the

broad line quasar BHMF, or issues regarding correcting for incompleteness
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in MBH , should consult this section.

• In § 5.4 we describe a Bayesian approach to black hole mass function esti-

mation. We build on the likelihood function derived in § 5.3.2 to derive the

probability distribution of the BHMF, given the observed data (i.e., the pos-

terior distribution). The reader who is interested in a Bayesian approach to

BHMF estimation should consult this section.

• In § 5.5 we develop a mixture of Gaussian functions model for the black hole

mass function, deriving the likelihood function and posterior distribution

for this model. Under this model, the BHMF is modelled as a weighted

sum of Gaussian functions. This model has the advantage that, given a

suitably large enough number of Gaussian functions, it is flexible enough

to give an accurate estimate of any smooth and continuous BHMF. This

allows the model to adapt to the true BHMF, thus minimizing the bias that

can result when assuming a parameteric form for the BHMF. In addition,

we also describe our statistical model for the distribution of luminosities at a

givenMBH , and the distribution of line widths at a given L andMBH . These

two distribution are necessary in order to link the BHMF to the observed set

of luminosities and line widths. The reader who are interested in employing

our mixture of Gaussian functions model should consult this section.

• Because of the large number of parameters associated with black hole mass

function estimation, Bayesian inference is most easily performed by obtain-

ing random draws of the BHMF from the posterior distribution. In § 5.6

we describe a Metropolis-Hastings algorithm (MHA) for obtaining random

draws of the BHMF from the posterior distribution, assuming our mixture

of Gaussian functions model. The reader who is interested in the computa-
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tional aspects of ‘fitting’ the mixture of Gaussian functions model, or who is

interested in the computational aspects of Bayesian inference for the BHMF,

should consult this section.

• In § 5.7 we use simulation to illustrate the effectiveness of our Bayesian

Gaussian mixture model for black hole mass function estimation. We con-

struct a simulated data set similar to the Sloan Digital Sky Survey DR3

Quasar Cataloge (Schneider et al., 2005). We then use our mixture of Gaus-

sian functions model to recover the true BHMF and show that our mixture

model is able to place reliable constraints on the BHMF over all values of

MBH . In constrast, we show that estimating the BHMF by binning up the

broad line mass estimates, and applying a simple 1/Va correction, systemat-

ically biases the inferred BHMF toward larger MBH . We also illustrate how

to use the MHA output to constrain any quantity derived from the BHMF,

and how to use the MHA output to assess the quality of the fit. Finally,

we discuss difficulties associated with inferring the distribution of Edding-

ton ratios. The reader who is interested in assessing the effectiveness of

our statistical approach, or who is interested in using the MHA output for

statistical inference on the BHMF, should consult this section.

• In § 5.8 we use our statistical method to estimate the z < 0.5 BHMF from

the Bright Quasar Survey sources. We also attempt to infer the mean and

dispersion in the z < 0.5 distribution of Eddington ratios. The reader who

is interested in the scientific results regarding our estimated z < 0.5 BHMF

should consult this section.

We adopt a cosmology based on the the WMAP best-fit parameters (h =

0.71,Ωm = 0.27,ΩΛ = 0.73, Spergel et al., 2003)
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5.3 THE LIKELIHOOD FUNCTION

5.3.1 NOTATION

We use the common statistical notation that an estimate of a quantity is denoted

by placing a ‘hat’ above it; e.g., θ̂ is an estimate of the true value of the parameter

θ. We denote a normal density with mean µ and variance σ2 as N(µ, σ2), and we

denote as Np(µ,Σ) a multivariate normal density with p-element mean vector µ

and p×p covariance matrix Σ. If we want to explicitly identify the argument of the

Gaussian function, we use the notation N(x|µ, σ2), which should be understood

to be a Gaussian function with mean µ and variance σ2 as a function of x. We

will often use the common statistical notation where “∼” means “is drawn from”

or “is distributed as”. This should not be confused with the common usage of

implying “similar to”. For example, x ∼ N(µ, σ2) states that x is drawn from a

normal density with mean µ and variance σ2, whereas x ∼ 1 states that the value

of x is similar to one.

5.3.2 Likelihood Function for the BHMF Estimated from AGN Broad Emission

Lines

The black hole mass function, denoted as φ(MBH , z)dMBH , is the number of sources

per comoving volume V (z) with black hole masses in the range MBH ,MBH +

dMBH . The black hole mass function is related to the probability density of

(MBH , z) by

p(MBH , z) =
1

N
φ(MBH , z)

dV

dz
, (5.1)

where N is the total number of sources in the universe, and is given by the in-

tegral of φ over MBH and V (z). If we assume a parameteric form for φ(MBH , z),

with parameters θ, we can derive the likelihood function for the observed data.

The likelihood function is the probability of observing one’s data, given the as-
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sumed model. The presense of selection effects and intrinsic uncertainty in the

broad line mass estimates can make this difficult, as the observed data likelihood

function is not simply given by Equation (5.1). However, we can account for these

difficulties by first deriving the likelihood function for the complete set of data,

and then integrating over the missing data to obtain the observed data likelihood

function.

For broad line AGNs, we can relate the distribution of MBH and z to the joint

distribution of Lλ,v, and z. Here, v = (vHβ, vMgII , vCIV ), where vHβ = vHβ is

the the velocity dispersion for the Hβ broad line emitting gas, and similarly for

vMgII and vCIV . These three lines are commonly used in estimating MBH from

single-epoch spectra of broad line AGN (e.g., McLure & Dunlop, 2002; Kaspi et

al., 2005; Vestergaard & Peterson, 2006), where the velocity dispersion is typically

estimated from the FWHM of the emission line. The distribution of Lλ and v are

then related to the BHMF via the R–L relationship and the virial theorem.

The BHMF for broad line AGN can be inferred from the distribution of Lλ,v,

and z, and thus it is necessary to formulate the observed data likelihood function

in terms of (Lλ,v, z). While it is possible to formulate the likelihood function in

terms of the broad line mass estimates, denoted as M̂BL ∝ L
1/2
λ V 2, the broad line

mass estimates are simply linear combinations of logLλ and log v, and thus statis-

tical inference does not depend on whether we formulate the likelihood function

in terms of Lλ and v or M̂BL. We find it mathematically simpler and more intu-

itive to infer the BHMF directly from the distribution of Lλ,v, and z, as opposed

to inferring it from the distribution of Lλ, M̂BL, and z.

Following the discussion in KFV08, we derive the likelihood function for the

set of observed luminosities, redshifts, and emission line widhts. We introduce

an indicator variable I denoting whether a source is included in the survey or not:
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if Ii = 1 then a source is included, otherwise, Ii = 0. The variable I is considered

to be part of the observed data in the sense that we ‘observe’ whether a source

is detected or not. The survey selection function is the probability of including

the ith source in one’s survey, p(Ii = 1|vi, Lλ,i, zi). Here, we have assumed that

the probability of including a source in one’s sample only depends on luminos-

ity, redshift, and emission line width, and is therefore conditionally independent

of MBH . This is the case, in general, since one can only select a survey based

on quantities that are directly observable. Including the additional ‘data’ I , the

observed data likelihood function for broad line AGN is:

p(vobs, Lobs, zobs, I|θ,N) ∝ (5.2)

CN
n

∏

i∈Aobs

∫

p(vi, Lλ,i,MBH,i, zi|θ) dMBH,i (5.3)

×
∏

j∈Amis

∫ ∫ ∫ ∫

p(I = 0|vj, Lλ,j , zj)p(vj, Lλ,j ,MBH,j , zj|θ) (5.4)

×dvj dLλ,jdMBH,j dzj (5.5)

∝ CN
n [p(I = 0|θ)]N−n

∏

i∈Aobs

p(vi, Lλ,i, zi|θ), (5.6)

where Aobs denotes the set of sources included in one’s survey, Amis denotes the

set of sources not included in one’s survey, and on the last line we have omitted

terms that do not depend on N or θ. Here,

p(vi, Lλ,i, zi|θ) =
∫ ∞

0
p(vi, Lλ,i, zi,MBH,i|θ) dMBH,i (5.7)

is the probability of observing values of vi, Lλ,i, and zi for the ith source, given θ,

and

p(I = 0|θ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
p(I = 0|v, Lλ, z)p(v, Lλ, z|θ) dv dLλ dz (5.8)

is the probability that the survey misses a source, given θ; note that p(I = 0|θ) =

1− p(I = 1|θ). Qualitatively, the observed data likelihood function for the BHMF
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is the probability of observing a set of n emission line widths v1, . . . ,vn, lumi-

nosities Lλ,1, . . . , Lλ,n, and redshifts z1, . . . , zn given the assumed BHMF model

parameterized by θ, multiplied by the probability of not detecting N − n sources

given θ, multiplied by the number of ways to select a subset of n sources from

a set of N total sources. Equation (5.5) can be maximized to calculate a maxi-

mum likelihood estimate of the black hole mass function when using broad line

estimates of MBH , or combined with a prior distribution to perform Bayesian in-

ference.

It is often preferred to write the BHMF observed data likelihood function by

factoring the joint distribution of v, Lλ,MBH , and z into conditional distributions.

This has the advantage of being easier to interpret and work with, especially

when attempting to connect the distribution of line widths and luminosities to

the distribution of black hole mass. The joint distribution can be factored as (Kelly

& Bechtold, 2007)

p(v, Lλ,MBH , z) = p(v|Lλ,MBH , z)p(Lλ|MBH , z)p(MBH , z). (5.9)

Here, p(v|Lλ,MBH , z) is the distribution of emission line widths at a givenLλ,MBH ,

and z, p(Lλ|MBH , z) is the distribution of luminosities at a given MBH and z, and

p(MBH , z) is the probability distribution of black hole mass and redshift, related

to the BHMF via Equation (5.1). When using broad line estimates of MBH , it is

assumed that p(v|Lλ,MBH , z) is set by the virial theorem, where the distance be-

tween the central black hole and the broad line-emitting gas depends on Lλ via

the R–L relationship. In this work we assume that the R–L relationship does not

depend on z (e.g., Vestergaard, 2004), and thus p(v|Lλ,MBH , z) = p(v|Lλ,MBH).

Under the factorization given by Equation (5.8), the observed data likelihood

function (Eq. [5.5]) becomes

p(vobs, Lobs, zobs, I|θ,N) ∝
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CN
n [p(I = 0|θ)]N−n (5.10)

×
∏

i∈Aobs

∫ ∞

0
p(vi|Lλ,i,MBH,i, θ)p(Lλ,i|MBH,i, z, θ)p(MBH,i, z|θ) dMBH,i.(5.11)

The BHMF likelihood function, given by Equation (5.5) or (5.9), is entirely gen-

eral, and it is necessary to assume parametric forms in order to make use of it. In

§ 5.5 we describe a parametric form based on a mixture of Gaussians model, and

explicitly calculate Equation (5.5) for the mixture model.

5.3.3 Selection Function

The selection probability, p(I = 1|v, Lλ, z), depends on both the luminosity and

redshift through the usual flux dependence, but can also depend on the emis-

sion line width. In particular, an upper limit on v may occur if there is a width

above which emission lines become difficult to distinguish from the continuum

and iron emission. In this case, if all emission lines in one’s spectrum are wider

than the maximum line width than one is not able to obtain a reliable estimate

of the line width for any emission line, and therefore the source is not used to

estimate φ(MBH , z). A lower limit on the line width may be imposed in order to

prevent the inclusion of narrow line AGN, for which broad line mass estimates

are not valid. In this case the inclusion criterion might be that at least one emis-

sion line is broader than, say, FWHM = 2000 km s−1. In addition to the limits

on line width that may be imposed, there is an upper and lower limit on z due to

redshifting of emission lines out of the observable spectral range. For example, if

one uses optical spectra than the range of useable spectra is 0 < z ∼< 4.5, as the C

IV line redshifts into the near-infrared for z ∼> 4.5.

Denote the upper and lower limit of v as vmin and vmax, and the upper and

lower limit of z as zmin and zmax. Furthermore, denote the usual survey selection

function in terms of Lλ and z as s(Lλ, z), where s(Lλ, z) is the probability that a
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source is included in the survey before any cuts on line width are imposed; s(l, z)

would typically correspond to the selection function used in luminosity function

estimation. Note that in this work s(Lλ, z) gives the probability that any source

in the universe is included in the survey, given its luminosity and redshift, and

thus s(Lλ, z) ≤ Ω/4π, where Ω/4π is the fraction of the sky covered by the survey.

Then, p(Ii = 1|vi, Lλ,i, zi) = s(Lλ,i, zi) if zmin ≤ zi ≤ zmax and at least one emission

line has vmin ≤ vi ≤ vmax; otherwise, p(Ii = 1|vi, Lλ,i, zi) = 0. In this case, the

probability that a source is included in the survey (see Eq.[5.7]) is

p(I = 1|θ) =
∫ ∞

0

∫ zmax

zmin

s(Lλ, z) (5.12)

×
∫ vmax

vmin

∫ ∞

0
p(v|Lλ,MBH , θ)p(Lλ|MBH , z, θ)p(MBH , z|θ) dMBH dv dz dLλ,(5.13)

where the inner two integrals are over v and MBH , and the outer two integrals

are over Lλ and z. One can then plug Equation (5.10) into Equation (5.5) to get

the likelihood function.

It is informative to express the selection function in terms of black hole mass

and redshift. The selection function as a function of black hole mass and redshift

is the probability of including a source, given its MBH and z, and is calculated as

p(I = 1|MBH , z) =
∫ ∞

0
s(Lλ, z)p(Lλ|MBH , z)

∫ vmax

vmin

p(v|Lλ,MBH) dLλ dv. (5.14)

At any given value of MBH a range of luminosities and emission line widths are

possible, and thus sources with low black hole mass can be detected if they are

bright enough and have line widths vmin < v < vmax. Conversely, sources with

high black hole masses can be missed by the survey if their luminosity is below

the flux limit at that redshift, or if their line width falls outside of the detectable

range. This has the effect of smoothing the survey’s selection function, and thus
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the black hole mass selection function is a broadened form of the flux selection

function.

As an example, consider the case when the selection function is simply a flux

limit. In this case, the selection function is

s(l, z) =











1 if 4πfminD
2
L(z) < Lλ < 4πfmaxD

2
L(z)

0 otherwise
, (5.15)

where fmin is the survey’s lower flux limit, fmax is the survey’s upper flux limit,

and DL(z) is the luminosity distance to redshift z. For simplicity, in this example

we assume that there is no additional cut on emission line width, i.e., vmin = 0 and

vmax = ∞. In this case, the black hole mass selection function, p(I = 1|MBH , z), is

the convolution of the luminosity selection function with the distribution of Lλ at

a given MBH . If the distribution of logLλ at a given MBH is a Gaussian function

with mean α0 + αm logMBH and dispersion σl, then the black hole mass selection

function is

p(I = 1|MBH , z) = Φ

(

logLmax(z) − α0 − αm logMBH

σl

)

− Φ

(

logLmin(z) − α0 − αm logMBH

σl

)

. (5.16)

Here, Lmax(z) = 4πfmaxD
2
L(z), Lmin(z) = 4πfminD

2
L(z), and Φ(·) is the cumulative

distribution function of the standard normal density.

In Figure 5.1 we show the black hole mass selection function, p(I = 1|MBH , z),

given by Equation (5.13) at z = 1. Here, we have used the SDSS quasar sam-

ple flux limit, 19.1 > i > 15, α0 = 37, αm = 1, and σl = 0.6 dex. Because the

black hole mass selection function is the convolution of the luminosity selection

function with the distribution of Lλ at a given MBH , the black hole mass selec-

tion function is positive over a wider range in MBH , as compared to the range in
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Figure 5.1 Comparison of the selection function for luminosity (shaded region)

and black hole mass (curve) for a simple upper and lower flux limit. The selection

is complete in luminosity within the flux limits, but is never ‘complete’ in MBH .

The intrinsic physical scatter in luminosity at a given black hole mass creates a

more complicated selection function for MBH , since at any given MBH and z only

those quasars with luminosities within the flux limits are detected.

Lλ for which s(Lλ, z) is positive. However, because p(I = 1|MBH , z) spreads the

selection probability over a wider range in MBH , all bins in MBH are incomplete.

The difference in selection functions for black hole mass and luminosity re-

sults in an important distinction between the estimation of the black hole mass

functions and the estimation of luminosity functions. First, one cannot correct the

binned BHMF for the survey flux limits by simply applying the 1/Va correction.

This is a common technique used for estimating binned luminosity functions,



212

where the number density in a (Lλ, z) bin is corrected using the survey volume in

which a source with luminosity Lλ could have been detected and still remained

in the redshift bin. In the case of the BHMF, a survey volume in which the black

hole could have been detected ceases to have any meaning, as black holes can

be detected over many different survey volumes, albeit with varying probabil-

ity. Alternatively, the 1/Va correction can be thought of as dividing the number

of sources in a bin in (Lλ, z) by the detection probability as a function of Lλ and

z. Therefore, applying a 1/Va correction to a bin in (MBH , z) is essentially the

same as dividing the number of sources in a bin in (MBH , z) by the detection

probability as a function of Lλ and z. For the simple example shown in Figure

5.1, those quasars in a given bin in (MBH , z) that happen to have luminosities

Lmin(z) < Lλ < Lmax(z) will receive no correction, since s(Lλ, z) = 1. However,

those quasars which have luminosities outside of the detectable range will not be

detected. The end result is a systematic underestimate of the binned BHMF.

The number of sources in a given bin in the MBH–z plane can be estimated by

dividing the observed number of black holes in each bin by the black hole mass

selection function, p(I = 1|MBH , z). Similarly, one can use a 1/Va-type correction

by calculating an ‘effective’ 1/Va, found by integrating dV/dz over the black hole

mass selection function. This approach has been adopted previously within the

context of binned luminosity functions (e.g., Warren et al., 1994; Fan et al., 2001).

However, it is essential that the black hole mass selection function be used and

not the luminosity selection function. Unfortunately, this implies that one must

assume a form for p(Lλ|MBH , z).
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5.4 POSTERIOR DISTRIBUTION FOR THE BHMF PARAMETERS

The posterior probability distribution of the model parameters is

p(θ,N |vobs, Lobs, zobs, I) ∝ p(θ,N)p(vobs, Lobs, zobs, I|θ,N), (5.17)

where p(θ,N) is the prior on (θ,N), and p(vobs, Lobs, zobs, I|θ,N) is the likelihood

function, given by Equation (5.5). The posterior distribution gives the probability

that θ and N have a given value, given the observed data (vobs, Lobs, zobs). There-

fore, the posterior distribution of θ and N can be used to obtain the probability

that φ(MBH , z) has any given value, given that we have observed some set of

emission line widths, luminosities, and redshifts.

It is of use to decompose the posterior as p(N, θ|xobs) ∝ p(N |θ, xobs)p(θ|xobs),

where we have abbreviated the observed data as xobs = (vobs, Lobs, zobs). This de-

composition seperates the posterior into the conditional posterior of the BHMF

normalization, p(N |xobs, θ), from the marginal posterior of the BHMF shape, p(θ|xobs).

In this work we takeN and θ to be independent in their prior distribution, p(N, θ) =

p(N)p(θ), and that the prior on N is uniform over logN . In this case, one case

show (e.g., Gelman et al., 2004, KFV08) that the marginal posterior distribution

of θ is

p(θ|vobs, Lobs, zobs) ∝ p(θ) [p(I = 1|θ)]−n
∏

i∈Aobs

p(vi, Lλ,i, zi|θ), (5.18)

where p(I = 1|θ) = 1 − p(I = 0|θ).

Under the prior p(logN) ∝ 1, the conditional posterior of N |θ, xobs is a neg-

ative binomial distribution with parameters n and p(I = 1|θ). The negative

binomial distribution gives the probability that the total number of sources is

equal to N , given that there have been n detections with probability of detection

p(I = 1|θ):

p(N |n, θ) = CN−1
n−1 [p(I = 1|θ)]n [p(I = 0|θ)]N−n . (5.19)
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Because of the large number of parameters in the model, Bayesian inference

is most easily performed by randomly drawing values of N and θ from their

posterior. Based on the decomposition p(θ,N |xobs) ∝ p(N |n, θ)p(θ|xobs), we can

obtain random draws of (N, θ) by first drawing values of θ from Equation (5.15).

Then, for each draw of θ, we draw a value of N from the negative binomial dis-

tribution. Random draws for θ may be obtained via markov chain monte carlo

(MCMC) methods, described in § 5.6, and random draws from the negative bino-

mial distribution are easily obtained using standard methods (e.g., Gelman et al.,

2004, KFV08).

5.5 THE STATISTICAL MODEL

In order to compute the likelihood function for the observed set of luminosities,

redshifts, and broad emission line widths (see Eq.[5.9]), it is necessary to relate

the BHMF to the distribution of Lλ and v. To do this, Equation (5.8) implies

that we need three terms. The first term is an assumed BHMF, p(MBH , z) =

N−1(dV/dz)−1φ(MBH , z). The second term is an assumed distribution of lumi-

nosities at a given black hole mass and redshift, p(Lλ|MBH , z). The third term

is an assumed distribution of broad emission line widths at a given luminosity

and black hole mass, p(v|Lλ,MBH). Once we have a parameteric form for each of

these three distributions, we can calculate the observed data likelihood directly

from Equation (5.9). In this section we describe parameteric forms for each of

these distributions based on a mixture of Gaussian functions model.

5.5.1 Mixture of Gaussian Functions Model for the BHMF

The mixture of Gaussian functions model is a common ‘non-parameteric’ model

that allows flexibility when estimating the BHMF. The basic idea is that one can

use a suitably large enough number of Gaussian functions to accurately approx-
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imate the true BHMF, even though the individual Gaussian functions have no

physical meaning. Furthermore, the Gaussian mixture model is also conjugate

to the distributions p(Lλ|m) and p(v|Lλ,m) assumed in §§5.5.2 and 5.5.3, thus

enabling us to calculate some of the integrals in Equation (5.15) analytically.

In KFV08 we described a mixture of Gaussian functions model for a luminos-

ity function. The mixture of Gaussian functions model of the BHMF is identical

to that for the luminosity function, after replacing L with MBH . Our mixture of

Guassian functions model, including our adopted prior, is described in KFV08;

for completeness we briefly review it here.

The mixture of K Gaussian functions model for the BHMF is

p(logMBH , log z|π, µ,Σ) =
K
∑

k=1

πk

2π|Σk|1/2
exp

[

−1

2
(y − µk)

T Σ−1
k (y − µk)

]

, (5.20)

where ∑K
k=1 πk = 1. Here, y = (logMBH , log z), µk is the 2-element mean vec-

tor for the kth Gaussian, Σk is the 2 × 2 covariance matrix for the kth Gaussian,

and xT denotes the transpose of x. In addition, we denote π = (π1, . . . , πK), µ =

(µ1, . . . , µK), and Σ = (Σ1, . . . ,ΣK). The variance in m for Gaussian k is σ2
m,k =

Σ11,k, the variance in log z for Gaussian k is σ2
z,k = Σ22,k, and the covariance be-

tween logMBH and log z for Gaussian k is σmz,k = Σ12,k. Note that Equation(5.17)

is equivalent to assuming that p(MBH , z) is a mixture of log-normal densities.

Under the mixture model, the BHMF can be calculated from Equations (5.1) and

(5.17). Noting that p(MBH , z) = p(logMBH , log z)/(MBHz(ln 10)2), the mixture of

normals model for the BHMF is

φ(MBH , z|θ,N) =
N

MBHz(ln 10)2

(

dV

dz

)−1 K
∑

k=1

πk

2π|Σk|1/2
exp

[

−1

2
(y − µk)

T Σ−1
k (y − µk)

]

,

(5.21)

where, as before, y = (logMBH , log z).
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5.5.2 The Distribution of Lλ at a Given MBH

We model the distribution of luminosities at a givenMBH as a log-normal density,

where the average logLλ at a given MBH depends linearly on logMBH :

p(logLλ|MBH , α) =
1

√

2πσ2
l

exp



−1

2

(

logLλ − α0 − αm logMBH

σl

)2


 . (5.22)

Here, the unknown parameters are α = (α0, αm, σ
2
l ). This is equivalent to as-

suming a simple linear regression of logLλ on logMBH , where α0 is the constant,

αm is the slope, and σl is the standard deviation of the random Gaussian scatter

about the regression line. We assume a uniform prior on these parameters, i.e.,

p(α0, αm, σl) ∝ 1.

The form of the MBH–Lλ relationship given by Equation (5.19) is motivated

by noting that Lλ can be related to MBH as

λLλ = 1.3 × 1038 ΓEdd

Cλ

MBH

M¯

[erg s−1], (5.23)

where ΓEdd ≡ Lbol/LEdd is the Eddington ratio, andCλ is the bolometric correction

to λLλ. Equation (5.20) implies that the scatter in luminosities at a given black

hole mass is caused by the scatter in Eddington ratios and bolometric corrections

at a given black hole mass. The distribution of the scatter in logLλ at a given

MBH is the convolution of the distribution of log ΓEdd at a given MBH , with the

distribution of logCλ at a given MBH . The parameter σl is thus an estimate of the

dispersion in log(ΓEdd/Cλ) at a given MBH .

If both ΓEdd and Cλ are statistically independent of MBH , then we would ex-

pect that on average Lλ ∝MBH , i.e., αm = 1. However, if ΓEdd orCλ are correlated

with MBH , then αm 6= 1. Currently, it is unknown whether MBH and ΓEdd are cor-

related. However, it is likely that quasar SEDs depend on both ΓEdd and MBH ,

and therefore the bolometric correction will also depend on ΓEdd and MBH . In-

deed, recently some authors have found evidence that the bolometric correction
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depends on Eddington ratio (Vasudevan & Fabian, 2007) and black hole mass

(Kelly et al., 2008). Therefore, it is likely that αm 6= 1, and we therefore leave

it as a free parameter. In addition, comparison of Equation (5.19) with Equa-

tion (5.20) implies that the average value of ΓEdd/Cλ is related to α0 according

to E(log ΓEdd/Cλ) = α0 − 38.11, where E(x) denotes the expectation value of x.

Therefore, one can use α0 to estimate the typical broad line quasar Eddington

ratio, assuming a typical bolometric correction.

Currently, there is little known about the distribution of luminosities at a

given black hole mass, so for simplicity we assume the simple linear form given

by Equation (5.19). Furthermore, the assumption of Gaussian scatter in logL at

a given MBH is consistent with the L–MBH relationship for those AGN with re-

verberation mapping data (Kelly & Bechtold, 2007). More sophisticated models

could include a non-linear dependence on logMBH , an additional redshift depen-

dence, or non-Gaussian scatter. Unfortunately, this introduces additional com-

plexity into the model. Furthermore, an additional redshift dependence in Equa-

tion (5.19) implies that the distribution of ΓEdd or Cλ at a given MBH evolves.

However, currently most investigations have not found any evidence for signif-

icant evolution in ΓEdd (e.g., Vestergaard, 2004; Kollmeier et al., 2006), and it is

unclear if the quasar SED evolves at a given MBH . Therefore, there is currently

no compelling evidence to justify inclusion of a redshift dependence in Equation

(5.19). In addition, we note that it is impossible to use p(L|MBH) to infer the

distribution of Eddington ratios without making an assumption about the distri-

bution of Cbol, as Equation (5.20) shows that ΓEdd and Cbol are degenerate. While

estimating the distribution of ΓEdd is of significant interest, it is beyond the scope

of this work to develop a robust technique to do so, as our goal is to estimate the

black hole mass function.
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Because of the large number of parameters, large uncertainty in the broad

line black hole mass estimates, and flux limit, estimating the BHMF is already

a difficult statistical problem. As such, our approach is to initially assume the

simple form given by Equation (5.19) in order to keep the degrees of freedom

low, and to check if this assumption is consistent with our data (see § 5.7.3). If it

is found that the observed data are inconsistent with this statistical model (e.g.,

see § 5.7.3) then Equation (5.19) should be modified.

5.5.3 The Distribution of v at a given L and MBH

Following Kelly & Bechtold (2007), we can derive the distribution of emission

line widths at a given luminosity and black hole mass. Given an AGN luminosity,

LBL
λ , the BLR distance R is assumed to be set by the luminosity according to the

R–L relationship, R ∝ Lβl
λ , with some additional log-normal scatter:

p(logR|LBL
λ ) =

1
√

2πσ2
r

exp



−1

2

(

logR− r0 − βl logL
BL
λ

σr

)2


 . (5.24)

Here, r0 is a constant, σr is the dispersion in logR at a given luminosity, and LBL
λ

is the AGN continuum luminosity at some reference wavelength appropriate for

the broad emission line of interest. Note that the reference wavelength for LBL
λ

is not necessarily the same wavelength as for Lλ used in § 5.5.2. In particular,

the wavelength for Lλ used in the MBH–Lλ relationship should be chosen to ad-

equately account for the selection function, while the reference wavelength for

LBL
λ should be appropriate for describing the R–L relationship. Since AGN con-

tinua are well described by a power-law, fν ∝ ν−α, it should be easy to calculate

Lλ at different values so long as the spectral index, α, is known. The intrinsic

scatter in R at a given LBL
λ is likely due to variations in quasar SED, reddening,

non-instantaneous response of the BLR to continuum variations, etc.

Assuming that the BLR gas is gravitationally bound, the velocity dispersion
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of the broad line-emitting gas is related to R and MBH as MBH = fRv2/G. Here,

G is the gravitational constant, and f is a factor that converts the virial product,

RMBH/G, to a mass. We do not directly measure v, but instead estimate it by the

FWHM or dispersion of the broad emission line in a single-epoch spectra. As a

result, the measured line width will scatter about the actual value of v, where this

scatter may be due in part to variations in line profile shape and the existence of

stationary components in the single-epoch line profile. In our statistical model

we assume that this scatter is log-normal with a dispersion of σv. In addition,

the value of f depends on the measure of line width used. Onken et al. (2004)

estimated f by comparing black hole masses derived form reverberation map-

ping with those derived from the MBH–σ relationship, and find that on average

f = 1.4 ± 0.4 when using the FWHM . This value is consistent with a value of

f = 0.75 expected from a spherical BLR geometry (e.g., Netzer, 1990b).

Under our model, the distribution of emission line widths at a given BLR size

and black hole mass is

log v|R,MBH =
1

√

2πσ2
v

exp







−1

2

[

log v − v0 − 1/2(log f + logR− logMBH)

σv

]2






.

(5.25)

where v0 is a constant. For convenience, here and throughout this paper we

denote the estimate of the BLR gas velocity dispersion as v, i.e., v is either the

FWHM or dispersion of the emission line. The term v in Equation (5.22) should

not be confused with the actual velocity dispersion of the BLR gas, but is an es-

timate of it based on a measure of the width of the broad emission line. From

Equation (5.22) it is apparent that the term f shifts the distribution of log v by a

constant amount, which has the effect of shifting the inferred BHMF by a con-

stant amount in logMBH . Throughout the rest of this work we assume the value

of f = 1.4 found by Onken et al. (2004).
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The distribution of v at a given L and MBH is obtained from Equations (5.21)

and (5.22) by averaging the distribution of v at a given R and MBH over the dis-

tribution of R at a given LBL
λ :

p(log v|LBL
λ ,MBH , β) =

∫ ∞

−∞
p(log v| logR,MBH , β)p(logR|LBL

λ , β) d logR (5.26)

=
1

√

2πσ2
BL

× exp







−1

2

[

log v − β0 − 1/2(βl logL
BL
λ − logMBH)

σBL

]2






. (5.27)

where β0 is a constant, σ2
BL = σ2

v + σ2
r/4, and β ≡ (β0, βl, σBL). Note that in Equa-

tion (5.24) we have absorbed log f into the constant term, β0. We introduce β into

Equation (5.24) to make it explicit that Equation (5.24) depends on β. The term

σBL is the dispersion in emission line widths at a given luminosity and black hole

mass, and can be related to the intrinsic uncertainty in the broad line estimates of

MBH . The usual broad line mass estimates of AGN can be obtained by inverting

the mean of Equation (5.24) as log M̂BL = βl logL
BL
λ + 2 log v − 2β0, or equiva-

lently M̂BL ∝ Lβl
λ,BLv

2. The intrinsic uncertainty on the broad line mass estimates

is set by a combination of the intrinsic scatter in the R–L relationship and the

uncertainty in using the single-epoch line width as an estimate of the broad line

gas velocity dispersion: σM̂BL
= 2σBL. Equation (5.24) describes the statistical

scatter in the broad line mass estimates, and does not account for any additional

systematic errors (e.g., Krolik, 2001; Collin et al., 2006).

It is typically the case that one employs multiple emission lines to estimate

MBH , producing black hole mass estimates across a broad range of redshifts and

luminosities. In our work, we use the Hβ, Mg II, and C IV emission lines. In

order to facilitate the use of different emission lines in the BHMF estimation, we

introduce an indicator variable denoted by δ. Here, δHβ = 1 if the Hβ line width

is available, and δHβ = 0 if the Hβ line widths is not available; δMgII and δCIV are
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defined in an equivalent manner. For example, if one is using optical spectra, then

at z = 0.4 only the Hβ emission line is available, and therefore δHβ = 1, δMgII = 0,

and δCIV = 0.

Assuming that the line width distributions for each line are independent at

a given luminosity and black hole mass, then the observed distribution of line

widths is the product of Equation (5.24) for each individual emission line:

p(log v|L,MBH , z, β) =
[

N(log vHβ|v̄Hβ, σ
2
Hβ)

]δHβ
[

N(log vMgII|v̄MgII, σ
2
MgII)

]δMgII

×
[

N(log vCIV|v̄CIV, σ
2
CIV)

]δCIV (5.28)

Here, the average line width for Hβ is v̄Hβ = βHβ
0 −(1/2)βHβ

l logLHβ
λ +(1/2) logMBH ,

and likewise for Mg II and C IV. Here, LHβ
λ denotes the value of Lλ that is used to

calibrate the broad line mass estimates for Hβ, typically Lλ(5100Å).

Vestergaard & Peterson (2006) give equations for calculating broad line mass

estimates from Hβ and C IV, derived from the most recent reverberation mapping

data (Peterson et al., 2004; Kaspi et al., 2005), and Vestergaard et al. (2008, in

progress) give an equation for calculating a broad line mass estimate from Mg II.

These mass scaling relationships are:

log M̂Hβ = −21.09 + 0.50 log λLλ(5100Å) + 2 logFWHMHβ (5.29)

log M̂MgII = −21.21 + 0.50 log λLλ(2100Å) + 2 logFWHMMgII (5.30)

log M̂CIV = −22.66 + 0.53 log λLλ(1350Å) + 2 logFWHMCIV (5.31)

For the equations listed above we have used the FWHM of the emission line

as an estimate of the velocity dispersion, i.e., v = FWHM . Because log M̂BL =

βl log λLBL
λ + 2 log v− 2β0, it follows that βHβ

0 = 10.55, βMgII
0 = 10.61, βCIV

0 = 11.33,

and βl ≈ 0.5 for all three emission lines. In addition, Vestergaard & Peterson

(2006) find the statistical scatter about MBH in the broad line mass estimates to
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be 0.43 dex and 0.36 dex for Hβ and C IV, respectively. Therefore, since σBL =

σM̂BL
/2, if follows that σHβ ≈ 0.22 and σCIV ≈ 0.18 dex. Likewise, Vestergaard et

al. (2008, in progress) find the intrinsic uncertainty in the broad line mass estimate

for Mg II to be ∼ 0.4 dex, and therefore σMgII ≈ 0.2 dex.

Broad line mass estimates are now fairly well understood, and we derive our

prior distribution for β from the scaling results of Vestergaard & Peterson (2006)

and Vestergaard et al. (2008, in progress). We fix βl = 0.5, 0.5, and 0.53 for Hβ,

Mg II, and C IV, respectively. However, in order to account for the uncertainty in

these scaling relationships, we consider β0 and σBL to be free parameters in our

model. We cannot estimate the normalization and scatter in the broad line mass

estimates solely from the distribution of v, L, and z, since β0 and σBL are degener-

ate with the other parameters. Therefore, it is necessary to place constraints on β0

and σBL through a prior distribution. This allows us to constrain β0 and σBL while

still incorporating their uncertainty. The parameters for the prior distribution of

β0 and σBL are based on the uncertainty in the scaling relationships of Vester-

gaard & Peterson (2006) and Vestergaard et al. (2008, in progress). Our prior for

β0 are independent Gaussian distributions with means equal to 10.55, 10.61, and

11.33 for Hβ, Mg II, and C IV, respectively, and standard deviations equal to 0.1.

To allow greater flexibility in our model, we chose the prior standard deviation

of 0.1 to be wider than the formal uncertainty on the scaling factors of ≈ 0.02

reported by Vestergaard & Peterson (2006). For each emission line, our prior for

σBL is a scaled inverse-χ2 distribution with ν = 25 degrees of freedom and scale

parameter equal to 0.2 dex. We chose ν = 25 degrees of freedom because approx-

imately 25 AGN were used to derive the scaling relationships in Vestergaard &

Peterson (2006). The values of β0 were constrained to be within ±0.3 (i.e., ±3σ)

of the values reported by Vestergaard & Peterson (2006) and Vestergaard et al.
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(2008, in progress), and the values of σBL were constrained to be within the in-

verval containing 99% of the probability for the scaled inverse-χ2 distribution.

By placing these constraints on β0 and σBL, we ensure that their values remain

consistent with the results derived from reverberation mapping.

5.5.4 Likelihood function for Mixture of Gaussians Model

Now that we have formulated the conditional distributions, we can calculate the

likelihood function for the mixture of Gaussians model of φ(MBH , z). Compar-

ison with Equation (5.15) suggests that we need two terms: p(vi, Lλ,i, zi|θ) and

p(I = 1|θ). The first term is the joint distribution of line widths, luminosities, and

redshifts:

p(vi, Lλ,i, zi|θ) =
∫

p(vi|Lλ,i,MBH,i, β)p(Lλ,i|MBH,i, α)p(MBH,i, zi|π, µ,Σ) dMBH,i,

(5.32)

where θ = (α, β, π, µ,Σ).

The integral in Equation (5.29) can be done analytically by plugging Equations

(5.17), (5.19), and (5.25) into Equation (5.29). However, the result depends on

the number of emission lines used for the ith source. Expressing the likelihood

function for a single emission line in terms of logarithms, p(log vi, logLλ,i, log zi|θ)

is a mixture of K 3-dimensional Gaussian functions:

p(log vi, logLλ,i, log zi|θ) =
K
∑

k=1

πk
√

8π3|Vk|
exp

{

−1

2
(xi − ξk)

TV −1
k (xi − ξk)

}

(5.33)

xi = (log vi, logLλ,i, log zi) (5.34)

ξk = (v̄k, l̄k, µz,k) (5.35)

l̄k = α0 + αmµm,k (5.36)

v̄k = β0 −
1

2
βl l̄BL,k +

1

2
µm,k (5.37)

l̄BL,k = l̄k + (1d+ αλ) log

(

λBL

λML

)

(5.38)
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V ar(log v|k) = σ2
BL +

1

4

[

β2
l V ar(log l|k) + (1 − αm)σ2

m,k

]

(5.39)

V ar(log l|k) = σ2
l + α2

mσ
2
m,k (5.40)

Cov(log v, log l|k) =
1

2
αmσ

2
m,k −

1

2
βlV ar(log l|k) (5.41)

Cov(log v, log z|k) =
(

βlαm +
1

2

)

σmz,k, (5.42)

where the covariance matrix of (log vi, logLλ,i, log zi) for the kth Gaussian is

Vk =















V ar(log v|k) Cov(log v, log l|k) Cov(log v, log z|k)

Cov(log v, log l|k) V ar(log l|k) αmσmz,k

Cov(log v, log z|k) αmσmz,k σ2
z,k















(5.43)

Here, ξk is the mean vector of (log vi, logLλ,i, log zi) for the kth Gaussian. In ad-

dition, l̄k is the mean logLλ for Gaussian k, v̄k is the mean v for Gaussian k, l̄BL

is the mean logLBL
λ for Gaussian k, V ar(log v|k) is the variance in log v for Gaus-

sian k, V ar(logLλ|k) is the variance in logLλ for Gaussian k, Cov(log v, logLλ|k)

is the covariance between log v and logLλ for Gaussian k, and Cov(log v, log z|k)

is the covariance between log v and log z for Gaussian k; note that αmσmz,k is the

covariance between logLλ and z for Gaussian k. The mean logLBL
λ for Gaus-

sian k is calculated from l̄k assuming a power-law continuum of the form LBL
λ =

Lλ(λBL/λML)αλ , where λBL is the wavelength used in the R–LBL
λ relationship for

the emission line of interest, and λML is the wavelength that the MBH–Lλ is for-

mulated in. For example, λBL = 5100Å for the Hβ-based mass scaling relation-

ship of Vestergaard & Peterson (2006), and λML may be, say, equal to 2500Å. Note

that we are assuming that αλ is known.

In Equation (5.30) it should be understood that vi, β0, βl, and σ2
BL correspond

to the particular emission line being used. For example, if one is using the C IV

line width for the ith source, then vi = vCIV,i, β0 = βCIV
0 , βl = βCIV

l , and σ2
BL =

σ2
CIV .
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If there are two emission line widths available for the ith AGN, then p(vi, Lλ,i, zi|θ)

is a mixture of K 4-dimensional Gaussian functions:

p(log vi, logLλ,i, zi|θ) =
K
∑

k=1

πk
√

16π4|Vk|
exp

{

−1

2
(xi − ξk)

TV −1
k (xi − ξk)

}

(5.44)

xi = (log v1,i, log v2,i, logLλ,i, log zi) (5.45)

ξk = (v̄1,k, v̄2,k, l̄k, µz,k) (5.46)

Cov(log v1, log v2|k) =
1

4

(

βl,1βl,2V ar(logLλ|k) + σ2
m

)

(5.47)

Here, Cov(log v1, log v2|k) denotes the covariance between the logarithms of the

two line widths, v1 and v2, for the kth gaussian. The 4 × 4 covariance matrix of

(log vi, logLλ,i, log zi) is

Vk =























V ar(log v1|k) Cov(log v1, log v2|k) Cov(log v1, logLλ|k) Cov(log v1, log z|k)

Cov(log v1, log v2|k) V ar(log v2|k) Cov(log v2, logLλ|k) Cov(log v2, log z|k)

Cov(log v1, logLλ|k) Cov(log v2, logLλ|k) V ar(logLλ|k) αmσmz,k

Cov(log v1, log z|k) Cov(log v2, log z|k) αmσmz,k σ2
z,k























.

(5.48)

The other terms are given by Equations (5.34)–(5.40), where it should be under-

stood that β0, βl, and σ2
BL correspond to the values appropriate for each emission

line. For example, at z ∼ 0.6 both Hβ and Mg II are observable in the optical

spectral region, and thus it is possible to have line widths for both emission lines.

In this case, v1,i is the logarithm of the Hβ width for the ith source, v2,i is the log-

arithm of the Mg II width for the ith source, βl,1 corresponds to βl for the Hβ line,

and βl,2 corresponds to βl for the Mg II line. The labeling of the Hβ line width as

v1 is irrelevant, and the same result would be obtained if we had labeled the Hβ

line width as v2.

It should be noted that in Equation (5.41) we have made the assumption that if

at least one emission line has vmin < v < vmax, then v is estimated for all emission
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lines in the observable spectral range at that redshift. If this is not the case, then

Equation (5.41) must be integrated over v1,i or v2,i if either of v1,i or v2,i fall outside

of (vmin, vmax).

The term p(I = 1|θ) is the probability that a source is included in one’s sample

for a given set of model parameters θ. Under the mixture of Gaussians model,

Equation (5.10) can be simplified, allowing more efficient calculation. However,

as above, the actual functional form of p(I = 0|θ) depends on the number of

emission lines used in broad line mass estimation. If only one emission line is

used, then Equation (5.10) becomes

p(I = 1|θ) =
∫ ∞

−∞

∫ zmax

zmin

s(Lλ, z)

z ln 10

×
K
∑

k=1

πkfv(Lλ, z, θ, k)N2(ylz|ȳlz,k, Vlz,k) dz dLλ (5.49)

ylz = (logLλ, log z) (5.50)

ȳlz,k = (l̄k, µz,k) (5.51)

Vlz,k =







V ar(logLλ|k) αmσmz,k

αmσmz,k σ2
z,k





 . (5.52)

The term fv(Lλ, z, θ, k) is the probability that a source has at least one line width

between vmin and vmax for the kth Gaussian function, given its luminosity and

redshift. For redshifts where only one emission line is used, fv(Lλ, z, θ, k) =

Pr(vmin < v < vmax|Lλ, z, θ, k), where

Pr(vmin < v < vmax|Lλ, z, θ, k) = Φ





log vmax − E(log v|Lλ, z, k)
√

V ar(log v|Lλ, z, k)





− Φ





log vmin − E(log v|Lλ, z, k)
√

V ar(log v|Lλ, z, k)



 (5.53)

E(log v|l, z, k) = v̄k + cT
k V

−1
lz,k (ylz − ȳlz,k) (5.54)

V ar(log v|Lλ, z, k) = V ar(log v|k) − cT
k V

−1
lz,kc

T
k (5.55)

ck = [Cov(log v, logLλ|k), Cov(log v, log z|k)] .(5.56)
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Here, Φ(·) is the cumulative distribution function of the standard normal density,

E(log v|Lλ, z, k) is the mean of log v for the kth Gaussian at a given Lλ and z,

V ar(log v|Lλ, z, k) is the variance in log v for the kth Gaussian at a given Lλ and

z, and ck is a 2-dimensional vector containing the covariances between log v and

both logLλ and log z. The standard normal cumulative distribution function can

be efficiently computed using a look-up table, and therefore only two integrals

need to be calculated numerically in Equation (5.46).

If one is using multiple emission lines for estimating φ(MBH , z), then fv(Lλ, z, θ, k)

must be modified to account for this. Equation (5.50) gives the probability that an

emission line has a line width vmin < v < vmax, under the assumption that only

one emission line is used at any given redshift. However, if there are redshifts

where two emission lines are used, then fv(Lλ, z, θ, k) must be modified, as in

these cases we need the probability that at least one emission line has vmin < v <

vmax. At redshifts where two emission lines are used, fv(Lλ, z, θ, k) becomes the

probability that either vmin < v1 < vmax or vmin < v2 < vmax:

fv(Lλ, z, θ, k) = Pr(vmin < v1 < vmax|Lλ, z, θ, k)

+ Pr(vmin < v2 < vmax|Lλ, z, θ, k)

− Pr(vmin < v1 < vmax|Lλ, z, θ, k)

× Pr(vmin < v2 < vmax|Lλ, z, θ, k), (5.57)

where Pr(vmin < vj < vmax|Lλ, z, θ, k) are given by Equation (5.50) for j = 1, 2,

respectively.

As an example, at z ∼ 0.2 only the Hβ line is available in the optical spectral

region, and thus, at this redshift, an optical survey can only employ the Hβ line

for estimating the BHMF. In this case, p(log vi, logLλ,i, log zi|θ) is given by Equa-

tion (5.30), and fv(Lλ, z, θ, k) is given by Equation (5.50). However, at z ∼ 0.6,
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both Hβ and Mg II are observable in the optical spectral region, and thus both

may be employed for estimating the BHMF. At this redshift, p(log vi, logLλ,i, log zi|θ)

is given by Equation (5.41), and fv(Lλ, z, θ, k) is given by Equation (5.55), where

v = (v1, v2), v1 is the Hβ line width, and v2 is the Mg II line width (or vice versa).

If only one emission line is available at any particular redshift, either because

of limited spectral range or because of a choice on the part of the researcher to

ignore certain emission lines, then only Equations (5.30) and (5.50) need be used.

The functional forms of p(vi, Lλ,i, zi|θ) and p(I = 1|θ) given above can be

plugged into Equation (5.5) to obtain the likelihood function for the mixture of

normals model. A maximum-likelihood estimate of φ(MBH , z) can be obtained by

first maximizing Equation (5.5) with respect toN and θ = (α0, αm, σ
2
l , β0, βl, σ

2
BL, π, µ,Σ).

Then, using the maximum-likelihood estimate of (N, π, µ,Σ), the maximum-likelihood

estimate of φ(MBH , z) is calculated by using Equation (5.17) in Equation (5.1).

Unfortunately, for K > 1 gaussians, maximizing the likelihood for the Gaussian

mixture model is a notoriously difficult optimization problem. The maximization

is probably most efficiently performed using the Expectation-Maximization (EM,

Dempster, Laird, & Rubin, 1977) algorithm, or employing a stochastic search rou-

tine. Since we focus on Bayesian inference, a derivation of the EM algorithm for

the BHMF is beyond the scope of this work.

The posterior distribution of θ and N can be calculated using the forms given

above for p(log vi, logLλ,i, zi|θ) and p(I = 1|θ). In this case, one plugs the equa-

tions for p(log vi, logLλ,i, log zi|θ) and p(I = 1|θ) for the Gaussian mixture model

into Equations (5.15) and (5.16). The prior distribution, p(θ), is given by Equation

(21) in KFV08.
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5.5.5 Accounting for Measurement Error

The preceding discussion has assumed that vi and Lλ,i are known. However, in

general, both quantities are measured with error. The effect of measurement error

is to broaden the observed distributions of vi and Lλ,i. Because the Bayesian ap-

proach attempts to define the set of BHMFs that are consistent with the observed

distribution of vi, Lλ,i, and zi, where ‘consistency’ is measured by the posterior

probability distribution, measurement error can affect statistical inference on the

BHMF. If the variance of the measurement errors on vi and Lλ,i are small com-

pared to the intrinsic physical variance in these quantities, then measurement

error does not have a significant effect on the results. In general, the measure-

ment errors on Lλ,i will likely be small compared to the real physical scatter in

AGN luminosities, so we neglect them. This may not always be the case for the

emission line widths, and in this section we modify the likelihood function for the

mixture of Gaussian functions model to include measurement errors in vi. The

general method of handling measurement errors within a Bayesian or likelihood

function approach is described in Kelly (2007). For the sake of brevity, we omit

the derivations and simply report the modifications to the likelihood function.

If one is only employing one emission line at a given redshift, then Equation

(5.29) can be factored as

p(log vi, logLλ,i, log zi|θ) = p(log vi|Lλ,i, zi, θ)p(logLλ,i, log zi|θ). (5.58)

Under the mixture of Gaussian functions model, the joint distribution of lumi-

nosity and redshift is obtained from Equations (5.30)–(5.36) by simply omitting

the terms that depend on vi:

p(logLλ,i, log zi|θ) =
K
∑

k=1

πk
√

4π2|Vlz,k|
exp

{

−1

2
(ylz,i − ȳlz,k)

TV −1
lz,k(ylz,i − ȳlz,k)

}

.

(5.59)
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Here, ylz,i = (logLλ,i, log zi), ȳlz,k is given by Equation (5.48) and Vlz,k is given by

Equation (5.49). The distribution of the measured log vi at Lλ,i and zi is

p(log vi|Lλ,i, zi, θ) =
K
∑

k=1

πk
√

2π[V ar(log v|Lλ,i, zi, k) + σ2
v,i]

× exp

{

−1

2

(log vi − E(log v|Lλ,i, zi, k))
2

V ar(log v|Lλ,i, zi, k) + σ2
v,i

}

. (5.60)

Here, σ2
v,i is the variance of the measurement error on vi, E(log v|Lλ,i, zi, k) is

given by Equation (5.51), and V ar(log v|Lλ,i, zi, k) is given by Equation (5.52).

From Equation (5.58) the effect of measurement error on the line width becomes

apparent: the distribution of line widths at a given luminosity and redshift is

broadened by an amount dependent on the magnitude of the line width measure-

ment error. If σ2
v,i ¿ V ar(log v|Lλ,i, zi, k) then Equation (5.56) reduces to Equation

(5.29). Otherwise, if measurement error on vi is a concern, Equations (5.56)–(5.58)

should be used for Equation (5.29) instead of Equation (5.30).

If one is employing two emission lines at a given redshift, then Equation (5.29)

becomes

p(log vi, logLλ,i, log zi|θ) = p(log v1,i|Lλ,i, zi, θ)p(log v2,i|Lλ,i, zi, θ)p(logLλ,i, log zi|θ).

(5.61)

In this case, p(log vj,i|Lλ,i, zi, θ), j = 1, 2, must be calculated seperately for each

emission line from Equation (5.58).

5.6 POSTERIOR DISTRIBUTION OF THE BHMF VIA MARKOV CHAIN MONTE

CARLO

The number of free parameters in our statistical model is 6K + 8, where K is the

number of Gaussians used to approximate φ(logMBH , log z). Because of the large

number of free parameters, summarizing the posterior is most efficiently done by

using Markov Chain Monte Carlo techniques to simulate random draws of θ and
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N from the posterior distribution. In this work we use the Metropolis-Hastings

algorithm (MHA, Metropolis & Ulam, 1949; Metropolis et al., 1953; Hastings,

1970) to perform the MCMC. We use the MHA to obtain a set of random draws

from the marginal posterior distribution of θ, given by Equation (5.15). Then,

given the values of θ, random draws for N may be obtained from the negative bi-

nomial distribution. A further description of the Metropolis-Hastings algorithm

is given by KFV08, and our MHA is an extension of the MHA described in KFV08.

For further details on the MHA see Chib & Greenberg (1995) or Gelman et al.

(2004).

As in KFV08, we denote the current value of a parameter by placing a˜over its

symbol, and we denote the proposal value by placing a ∗ in the superscript. For

example, if one were updating α0, then α̃0 denotes the current value of α0 in the

random walk, α∗
0 denotes the proposed value of α0, θ̃ denotes the current value of

θ, and θ∗ denotes the proposed value of θ, i.e., θ∗ = (α∗
0, α̃m, σ̃

2
l , β̃0, σ̃

2
BL, π̃, µ̃, Σ̃, µ̃0, Ã, T̃ ).

Here, µ0, A and T are the parameters for the prior distribution on the mixture of

Gaussian functions parameter (see KFV08). In addition, for ease of notation we

define xobs = (vobs, Lobs, zobs) to be the set of observable quantities.

1. Start with initial guesses for α0, αm, σ
2
l , β0, σ

2
BL, π, µ,Σ, µ0, and A.

2. Draw a proposal value for α0 and αm from a 2-dimensional normal distribu-

tion centered at the current values of α0 and αm with set covariance matrix,

Σα. The proposal values of α0 and αm are then simulated as (α∗
0, α

∗
m) ∼

N2([α̃0, α̃m],Σα). If p(θ∗|xobs) > p(θ̃|xobs) then set α̃0 = α∗
0 and α̃m = α∗

m.

Otherwise, calculate the ratio rα = p(θ∗|xobs)/p(θ̃|xobs) and draw a random

number uniformly distributed between 0 and 1, denoted as u. If u < rα

then set α̃0 = α∗
0 and α̃m = α∗

m. Otherwise, if u > rα, the values of α̃0 and

α̃m remain unchanged.
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3. Draw a proposal value for log σ2
l as log σ̃2

l ∼ N(2 log σ∗
l , σ

2
σl

), where σ2
σl

is

some set variance. Similar to before, calculate the ratio rσ = σ∗
l p(θ

∗|xobs)/σ̃lp(θ̃|xobs).

Here, the term σ∗
l /σ̃l arises because the MHA acceptance rule must be cor-

rected for the asymmetry in the log-normal jumping distribution used for

σ2
l . If rσ ≥ 1 then set σ̃l = σ∗

l , otherwise set σ̃l = σ∗
l with probability rσ. This

is done by drawing a uniformly distributed random variable as in step 2.

4. Draw a proposal value for β0 from a normal distribution centered at the

current value of β0 with set variance, σ2
β . If p(θ∗|xobs) > p(θ̃|xobs) then set

β̃0 = β∗
0 . Otherwise, calculate the ratio rβ = p(θ∗|xobs)/p(θ̃|xobs) and draw

a random number uniformly distributed between 0 and 1, denoted as u.

If u < rβ then set β̃0 = β∗
0 . Otherwise, if u > rβ , then the value of β̃0

remain unchanged. If one is employing multiple emission lines to estimate

the BHMF, then we have found it faster to simulate proposed values of β0

for each emission line simultaneously from a multivariate normal density.

5. Draw a proposal value for log σ2
BL as log σ̃2

BL ∼ N(2 log σ∗
BL, σ

2
σBL

), where

σ2
σBL

is some set variance. Similar to the update for σ2
l , calculate the ratio

rBL = σ∗
BLp(θ

∗|xobs)/σ̃BLp(θ̃|xobs). If rBL ≥ 1 then set σ̃BL = σ∗
BL, otherwise

set σ̃BL = σ∗
BL with probability rσ. This is done by drawing a uniformly

distributed random variable as in step 2. If one is employing multiple emis-

sion lines to estimate the BHMF, then we have found it faster to simulate

proposed values of log σ2
BL for each emission line simultaneously from a

multivariate normal density.

6. Draw new values of the Gaussian mixture model parameters according to

steps 2–6 in the MHA described in KFV08.

One then repeats steps 2–6 until the MCMC converges, saving the values of θ̃
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at each iteration. After convergence, the MCMC is stopped, and the values of θ̃

may be treated as a random draw from the marginal posterior distribution of θ,

p(θ|xobs). Techniques for monitering convergence of the Markov Chains can be

found in Gelman et al. (2004). Given the values of θ obtained from the MCMC,

one can then draw values of N from the negative binomial density (cf. Eq.[5.16]).

Having obtained random draws of N and θ from p(θ,N |vobs, Lobs, zobs), one

can then use these values to calculate an estimate of φ(MBH , z), and its corre-

sponding uncertainty. This is done by plugging in each of the MCMC draws of θ

and N directly into Equation (5.18). The posterior distribution of φ(MBH , z) can

be estimated for any value of MBH and z by plotting a histogram of the values

of φ(MBH , z) obtained from the MCMC values of θ and N . KFV08 illustrates in

more detail how to use the MHA results to perform statistical inference.

5.7 APPLICATION TO SIMULATED DATA

As an illustration of the effectiveness of our method, we applied it to a simulated

data set. Because we will eventually apply this method to the BHMF for the SDSS

DR3 quasar catalogue (Schneider et al., 2005), we assume the effective survey area

and selection function reported for the DR3 quasar sample (Richards et al., 2006).

5.7.1 Construction of the Simulated Sample

We construct our simulated survey in a manner very similar to that used by

KFV08. We first drew a random value of NΩ quasars from a binomial distribu-

tion with probability of success Ω/4π = 0.0393 and number of trials N = 2 × 105.

Here, Ω = 1622 deg2 is the effective sky area for our simulated survey, and we

chose the total number of quasars to be N = 2 × 105 in order to produce a value

of n ∼ 1000 observed sources after including the flux limit. While this produces a

much smaller sample than the actual sample of ∼ 1.5×104 quasars from the SDSS



234

DR3 luminosity function work (Richards et al., 2006), we chose to work with this

smaller sample to illustrate the effectiveness of our method on more moderate

sample sizes. This first step of drawing from a binomial distribution simulates

a subset of NΩ sources randomly falling within an area Ω on the sky, where the

total number of sources is N . Note that we have not included any flux limits yet.

For each of these NΩ ∼ 8000 sources, we simulated values of MBH and z. We

first simulated values of log z from a distribution of the form

f(log z) =
4Γ(a+ b)

Γ(a)Γ(b)

exp(aζ∗)

(1 + exp(ζ∗))a+b , (5.62)

where ζ∗ = 4(log z − 0.4). The parameters a = 2 and b = 3 were chosen to give

an observed redshift distribution similar to that seen for SDSS DR3 quasars (e.g.,

Richards et al., 2006).

For each simulated value of z, we simulated a value of MBH by taking the

distribution ofMBH at a given redshift to be a smoothly-connected double power-

law. In this case, the conditional distribution of logMBH at a given z is

f(logMBH |z) ∝ M
γ(z)/ ln 10
BH



1 +

(

MBH

M∗
BH(z)

)(γ(z)+δ(z))/ ln 10




−1

(5.63)

γ(z) = 2.5 + 0.5 log z (5.64)

δ(z) = 4.75 + 2 log z (5.65)

logM ∗
BH(z) = 7.5 + 3 log(1 + z), (5.66)

where logM ∗
BH(z) approximately marks the location of the peak in f(logMBH |z),

γ(z) is the slope of log f(logMBH |z) for MBH ∼< M∗
BH(z), and δ(z) is the slope

of log f(logMBH |z) for MBH ∼> M∗
BH(z). For our simulation, both the peak and

logarithmic slopes of the BHMF evolve.

The joint probability distribution of logMBH and log z is f(logMBH , log z) =

f(logMBH |z)f(log z), and therefore Equations (5.60) and (5.61) imply that the true
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BHMF for our simulated sample is

φ0(MBH , z) ∝
N

zMBH

(

dV

dz

)−1

f(logMBH |z)f(log z). (5.67)

The constant of proportionality in Equation (5.65) can be calculated by noting

that
∫ ∫

φ0(MBH , z) dMBH dV = N . Figure 5.2 shows φ0(MBH , z) at several redshifts.

Also shown in Figure 5.2 is the best fit for a mixture of K = 4 gaussian functions.

Despite the fact that φ0(MBH , z) has a rather complicated parameteric form, a

mixture of four gaussian functions is sufficient to achieve a good approximation

to φ0(MBH , z).

For each simulated black hole mass and redshift, we simulated a luminosity

according to Equation (5.20). However, unlike the Gaussian distribution assumed

in this work (see Eq.[5.19]), we assume an asymetric distribution of Eddington

ratios that evolves at ΓEdd ∝
√

1 + z. We do this in order to test the robustness of

our simple assumption that the distribution of Lλ at a given MBH is independent

of redshift and given by a normal distribution. In this simulated ‘universe’, the

distribution of ΓEdd does not evolve strongly, as is implied by observations (e.g.,

Vestergaard, 2004; Kollmeier et al., 2006).

To simulate values of luminosity at a given black hole mass, we first simulated

values of the Eddington ratio from a skew-normal distribution as

log ΓEdd = 0.2ε− 0.75|δ| − 0.3 + 0.5 log(1 + z). (5.68)

Here, ε and δ are both random deviates independently drawn from the standard

normal distribution, i.e., ε, δ ∼ N(0, 1). Figure 5.3 shows the distribution of ΓEdd

at a few different redshifts. Values of λLλ we then calculated according to Equa-

tion (5.20) assuming a constant bolometric correction of Cλ = 10 (e.g., Kaspi et

al., 2000). For simplicity, we only use a constant bolometric correction for all
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Figure 5.2 The true BHMF (solid red line) at several values of z, and the best

K = 4 Gaussian function fit (dashed black line). In this case, approximating the

BHMF with K = 4 2-dimensional Gaussian functions provides an excellent fit.

.
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Figure 5.3 Distribution of Eddington ratios, ΓEdd, for our simulated survey at

z = 0.5, 2, and 4. The corresponding values of λLλ are shown along the top of the

plot for a black hole with MBH = 109M¯.

simulated quasars. In our simulation we take λ = 2500Å; the choice of λ is arbi-

trary and has not material effect on our results. The median Eddington ratio for

our simulated sample is ΓEdd ≈ 0.25, and the dispersion in log ΓEdd is ≈ 0.5 dex.

Because the mean ΓEdd evolves in our simulation, and because the mean MBH

evolves, ΓEdd and MBH are slightly correlated due to the shared correlation with

z: ΓEdd ∝M0.09
BH . Therefore, Lλ ∝M1.09

BH . Comparison with Equation (5.19) suggest

that we would expect α0 ∼ 36, αm ∼ 1.09, and σl ∼ 0.5 dex.

For each simulated black hole mass and luminosity, we simulated broad emis-

sion line widths for Hβ, Mg II, and C IV according to Equation (5.24). We simu-

lated values of the Hβ line width for 0 < z < 0.9, values of the Mg II line width
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for 0.4 < z < 2.2, and values of the C IV line width for 1.6 < z < 4.5. Note that

for this simulation both Hβ and Mg II are available at 0.4 < z < 0.9, and both Mg

II and C IV are available at 1.6 < z < 2.2. Based on the most recent reverberation

mapping data (Kaspi et al., 2005; Bentz et al., 2006), we took R ∝ L
1/2
λ (βl = 0.5)

for all emission lines. In addition, we set β0 = 10.6, 10.6, and 10.7 for the Hβ, Mg

II, and C IV emission lines, respectively; these values were chosen to give emis-

sion line FWHM with typical values of several thousand km s−1. The dispersion

in the logarithm of the emission line width at a given luminosity and black hole

mass was taken to be σBL = 0.25, 0.225, and 0.2 for Hβ, Mg II, and C IV, respec-

tively. These values of σBL were chosen to give broad line mass estimate statistical

uncertainties similar to that found from the reverberation mapping data (Vester-

gaard & Peterson, 2006).

We randomly kept each source, where the probability of including a source

given its luminosity and redshift was taken to be the SDSS DR3 Quasar selec-

tion function, as reported by Richards et al. (2006). In addition, we only kept

sources with at least one emission line having a line width 1000 km s−1 < v <

1.8 × 104 km s−1. Sources with v < 1000 were assumed to be indistinguishable

from narrow-line AGN, and sources with v > 1.8 × 104 were assumed to be too

difficult to distinguish from the underlying continuum and iron emission, and

are thus too broad to be able to obtain a reliable estimate of the line width. Af-

ter simulating the effects of the selection function, we were left with a sample of

n ∼ 1000 sources. Therefore, our simulated survey was only able to detect ∼ 0.5%

of the N = 2 × 105 total quasars in our simulated ‘universe’.

The distributions of MBH , z, Lλ, and v are shown in Figure 5.4 for both the

detected sources and the full sample. As can be seen, the majority of sources are

missed by our simulated survey, and that the fairly ‘hard’ limit on luminosity
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corresponds to a much ‘softer’ limit on MBH . In particular, almost all simulated

quasars with MBH ∼< 108M¯ are missed at z ∼> 1, and all simulated quasars with

MBH ∼< 107M¯ are missed at any redshift.

To simulate the effects of using values of β0 and σBL derived from a reverber-

ation mapping sample, we simulated a sample of 25 low-z sources with known

MBH ; these low-z sources were simulated in the same manner as described above.

We then used these 25 ‘reverberation mapping’ sources to fit β0 and σBL. The fit-

ted values were then used for our prior distribution on β0 and σBL as described

in § 5.5.3.

5.7.2 Performing Statistical Inference on the BHMF with the MCMC Output

We performed the MHA algorithm described in § 5.6 to obtain random draws

from the posterior distribution for this sample, assuming the Gaussian mixture

model described in § 5.5. We performed 104 iterations of burn-in, and then ran

the markov chains for an additional 3×104. We ran five chains at the same time in

order to monitor convergence (e.g., see Gelman et al., 2004) and explore possible

multimodality in the posterior. The chains had converged after 4×104 total itera-

tions, leaving us with ∼ 1.5 × 105 random draws from the posterior distribution,

p(θ,N |vobs, Lobs, zobs).

In Figure 5.5 we show φ(logMBH , z) at several different redshifts, on both a

linear scale and a logarithmic scale. In general, we find it easier to work with

φ(logMBH , z) = ln 10MBHφ(MBH , z), as φ(MBH , z) can span several orders of

magnitude in MBH . Figure 5.5 shows the true value of the BHMF, φ0(logMBH , z),

the best-fit estimate of φ(logMBH , z) based on the mixture of Gaussian functions

model, and the regions containing 90% of the posterior probability. Here, as well

as throughout this work, we will consider the posterior median of any quantity

to be the ‘best-fit’ for that quantity. In addition, in this work we will report errors
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Figure 5.4 The distribution of MBH , Lλ, and v for our simulated sample. Red

dots denote sources included in the sample, and black dots denote sources not

included in the sample. In the plot of v as a function of z, yellow dots denote

sources with Hβ measurements, red dots denote sources with Mg II measure-

ments, and green dots denots sources with C IV measurements. In the plot of Lλ

as a function of MBH , the solid line shows the best linear regression of logLλ as a

function of logMBH , and the dashed line shows the Eddington limit assuming a

bolometric correction of Cλ = 10.
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at the 90% level unless specified otherwise, and therefore the regions containing

90% of the posterior probability can be loosely interpreted as asymmetric error

bars of length ≈ 1.65σ. As can be seen, the true value of φ(logMBH , z) is con-

tained within the 90% probability region for all almost values of m, even those

below the survey detection limit.

We compare our method with an estimate of the BHMF obtained by combin-

ing the broad line mass estimates with the more traditional 1/Va estimator, de-

veloped for luminosity function estimation. We do this primarily to illustrate the

pitfalls that can arise from employing broad line mass estimates and not properly

accounting for the black hole mass selection function. Following Fan et al. (2001),

we denote the effective volume of the ith source as V i
a . If the ith source lies in a

redshift bin of width ∆z and has a luminosity Lλ,i, then

V i
a =

∫

∆z
s(Lλ,i, z)

(

dV

dz

)

dz. (5.69)

Dividing up the (logMBH , z) plane into bins of width ∆ logMBH × ∆z, one may

be tempted to calculate an estimate of φ(logMBH , z) based on the broad line esti-

mates of logMBH as

φ̂BL(logMBH , z) =
1

∆ logMBH

∑

i

1

V i
a

. (5.70)

Here, the sum is over all sources with broad lines estimates logMBH ≤ log M̂BL,i ≤

logMBH + ∆ logMBH and z ≤ zi ≤ z + ∆z.

Figure 5.5 also displays the expected value of φ̂BL for z = 0.5, 1.5, 2.5, 3.5 and

4.5. In order to estimate the expected value of φ̂BL at each z, we simulated 107

quasars at each redshift interval. This produces extremely small error bars on

φ̂BL and allows us to estimate the value of φ̂BL that would be obtained on aver-

age, i.e., in the limit of an infinitely large sample. As can be seen, φ̂BL is a biased
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Figure 5.5 The true BHMF (solid red line) at several redshifts. The axis labels

are the same for all panels, but for clarity we only label the bottom left panel.

Also shown is the posterior median estimate of the BHMF based on the mixture

of Gaussian functions model (dashed blue line), the region containing 90% of

the posterior probability (shaded region), and the expected value for a 1/Va-type

binned estimate based on the broad emission line estimates, φ̂BL (thin bumpy

solid green line). The bayesian mixture of Gaussian functions model is able to

accurately constrain the BHMF, even below the survey detection limit. However,

φ̂BL provides a biased estimate of the BHMF.
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estimate of the BHMF. The poor performance of φ̂BL lies in the use of the lumi-

nosity selection function and the broad line mass estimates. The large statistical

uncertainties on the broad line mass estimates broaden the inferred BHMF, and

therefore φ̂BL significantly overestimates the BHMF at the high mass end, while

underestimating the BHMF near its peak. In addition, φ̂BL underestimates the

BHMF at the low mass end due to the inability of the 1/Va technique to correct

for incompleteness. The end result is a systematic shift in the inferred BHMF to-

ward higher MBH , and a similar effect has been noted by Shen et al. (2007). The

effective volume in Equation (5.67) is defined based on the detection probability

as a function of luminosity, and not black hole mass. As mentioned in § 5.3.3, in

order to correctly apply the 1/Va estimator for BHMF estimation it is necessary to

obtain the black hole mass selection function, given by Equation (5.11). However,

this requires knowledge of p(Lλ|MBH , z). Furthermore, even if there were no se-

lection effects, φ̂BL would still be biased because of the significant uncertainty

(∼ 0.4 dex) on log ˆMBHBL.

As in KFV08, we can use the MCMC output to constrain various quanti-

ties of interest calculated from the BHMF. Figure 5.6 compares the true inte-

grated z < 6 number distribution of logMBH , n(logMBH , z < 6), with the mix-

ture of Gaussian functions estimate. The quantity n(logMBH , z < 6)d logMBH

is the number of quasars at z < 6 with black hole masses between logMBH

and logMBH + d logMBH . KFV08 give an equation for calculating n(logL, z <

z0) based on the mixture of Gaussian functions model (see their Eq.[42]), and

n(logMBH , z < z0) is calculated in an equivalent manner. Similar to Figure 5.5,

the true value of n(logMBH , z < 6) is contained within the 90% probability region

for all values of MBH , even those below the survey detection limit.

In addition, in Figure 5.6 we show the comoving number density of broad line
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Figure 5.6 The integrated z < 6 quasar number density (number per logMBH

interval, left two panels) and the comoving quasar number density as a function

of z (number per mpc3, right two panels). The top two panels show a linear

stretch and the bottom two panels show a logarithmic stretch. As with Figure

5.5, the solid red line denotes the true value for the simulation, the dashed blue

line denotes the posterior median for the mixture of Gaussian functions model,

and the shaded regions contain 90% of the posterior probability. The posterior

median provides a good fit to the true values, and the uncertainties derived from

the MCMC algorithm based on the Gaussian mixture model are able to accurately

constrain the true values of these quantities, despite the flux limit.
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AGN as a function of redshift, n(z). This is obtained by integrating φ(MBH , z)

over all possible values of MBH , given by Equation (45) of KFV08. As before, the

true value of n(z) is contained within the 90% probability region, despite the fact

that the integration extends over all MBH , even those below the detection limit.

The wider confidence regions reflect additional uncertainty in n(z) resulting from

integration over those MBH below the detection limit. In particular, the term

dV/dz becomes small at low redshift, making the estimate of n(z) more unstable

as z → 0, and thus inflating the uncertainties at low z.

Two other potentially useful quantities are the comoving black hole mass den-

sity for quasars, ρQSO
BH (z), and its derivative. The comoving black hole mass den-

sity is given by ρQSO
BH (z) =

∫∞
0 MBHφ(MBH , z) dMBH . The quantity ρQSO

BH (z) is

given by Equation (47) of KFV08 and replacing luminosity with black hole mass.

We calculate the derivative of ρQSO
BH (z) numerically. Figure 5.7 compares the true

values of ρQSO
BH (z) and its derivative with the posterior distribution for ρQSO

BH (z)

inferred from the mixture model, both as a function of z and the age of the uni-

verse at redshift z, t(z). Comparison with Figure 5.6 reveals that the comoving

quasar black hole mass density, ρQSO
BH (z), is a better constrained quantity than the

comoving quasar number density, n(z). Furthermore, n(z) appears to peak later

than ρQSO
BH (z). We can correctly infer that the quasar comoving black hole mass

density reaches it point of fastest growth at t(z) ∼< 1 Gyr, and its point of fastest

decline at t(z) ∼ 4 Gyr.

Figure 5.8 quantifies the suggestion that n(z) peaks later than ρQSO
BH (z) by dis-

playing the posterior distribution for the location of the respective peaks in n(z)

and ρQSO
BH (z). While the location of the peak in n(z) is highly uncertain we can

still constrain it to be z ∼< 1.5, whereas the location of the peak in ρQSO
BH (z) is con-

strained to occur earlier at 2 ∼< z ∼< 4. This is a consequence of the fact that
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Figure 5.7 Comoving broad line quasar black hole mass density (top two panels)

and its derivative (bottom two panels), shown as a function of redshift (left two

panels) and cosmic age (right two panels). The plotting symbols are the same

as in Figure 5.6. As in the previous figures, the Gaussian mixture model is able

to provide an accurate fit to the true values of ρQSO
BH (z), and the bayesian MCMC

approach is able to provide accurate constraints on ρQSO
BH (z) and dρQSO

BH /dz, despite

the fact that the integral used for calculating these quanties extends below the

survey detection limit.
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while there were more quasars at z ∼ 1 per comoving volume, their black hole

masses were much higher at higher redshift. This evolution in characteristicMBH

is quantified in Figure 5.9, which summarizes the posterior distribution for the lo-

cation of the peak in φ(logMBH , z) as a function of redshift and t(z). As can be

seen, the location of the peak in the BHMF shows a clear trend of increasing ‘char-

acteristic’ MBH with increasing z, although the mixture of Gaussian functions fit

has difficulty constraining the location of the peak at low redshift.

As noted in § 5.5.2, we can use the values of α0 and σl to estimate the aver-

age Eddington ratio and the dispersion in log ΓEdd. We find α0 = 35.7+0.9
−1.1, αm =

1.11+0.12
−0.10, and σl = 0.31+0.06

−0.05, where the errors are at 95% confidence. For a bolo-

metric correction of Cλ = 10, and assuming that ΓEdd is independent of MBH ,

this implies that our inferred typical Eddington ratio is ΓEdd = 0.040+0.278
−0.036 at 95%

confidence; the estimated dispersion in log ΓEdd is simply given by σl, ∼ 0.3 dex.

While the typical Eddington ratio that we infer from α0 is roughly consistent

with the actual median ΓEdd of 0.25, our estimated dispersion in ΓEdd underes-

timates the true value of 0.5 dex. This is because we incorrectly assume that

the MBH–L relationship is described by Equation (5.19). Our inference regarding

the Eddington ratio distribution is therefore biased because we assume that the

distribution of ΓEdd does not evolve, and that the distribution is Gaussian. In par-

ticular, the bias resulting from the assumption of Gaussian dispersion appears to

significantly effect the estimated dispersion in log ΓEdd more than the estimated

typical value of ΓEdd, at least for our simulation. This is largely because the dis-

tribution in ΓEdd is skewed toward lower values of ΓEdd. However, because of the

flux limit, sources with low values of ΓEdd are undetectable. Because the disper-

sion in log ΓEdd is estimated from the detected sources, in combination with the

assumption of a Gaussian distribution, Equation (5.19) is not able to pick up the
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Figure 5.8 Posterior distribution for the redshift location of the peak in the comov-

ing number density of quasars (n(z), top) and the peak in the comoving quasar

black hole mass density (ρQSO
BH (z), bottom). The spike in the posterior at z ≈ 0 for

values of the peak in n(z) arises because the term (dV/dz)−1 becomes very large

at low z. The vertical lines denote the true values. The posterior distribution in-

ferred from the MCMC output is able to accurately constrain the true values of

the argumentative maximum in n(z) and ρQSO
BH (z).
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Figure 5.9 Location of the peak in the BHMF as a function of z (top) and cosmic

age (bottom). The plot symbols are the same is in Figure 5.6. In general the

posterior median of the Gaussian mixture model provides a good estimate of the

true peak locations, although some bias is exhibited at the lowest redshifts. It is

clear from these plots that the location of the peak in φ(MBH , z) evolves.
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additional skew at low log ΓEdd. As a result, the estimated dispersion in log ΓEdd

is underestimated when assuming a Gaussian distribution.

In order to assess how the inferred BHMF depends on the sample size, we

simulated a second data set in the sammer manner as described above, but used

N = 2× 106 sources for the BHMF normalization. This gave use n ∼ 104 detected

quasars. In Figure 5.10 we compare the estimated BHMF at z = 2.5 for the sur-

vey with n ∼ 1000 sources and n ∼ 104 sources. The uncertainties are lower for

the survey with more sources, where the most noticeable improvement occurs at

low MBH . However, the increased sample size did not offer a significant amount

of improvement at high MBH , where sources are more easily detected. This is

likely because the uncertainty in the broad line mass estimate normalization, β0,

and intrinsic scatter, σBL, dominates the uncertainty in the BHMF at high MBH .

Because we cannot constrain β0 and σBL from the distribution of line widths and

luminosities, the data do not contain any information on β0 and σBL. Therefore,

the likelihood function is unable to convey any information on β0 and σBL, and

all of the information comes from the prior distribution. As a result, our ability

to constrain the BHMF is limited by the ‘systematic’ uncertainty on β0 and σBL,

and an increase in the sample size will eventually not result in a decrease in the

uncertainty on the BHMF. The only way to reduce the uncertainty on the BHMF

for large surveys is to better constrain the broad line mass estimate normalization

and intrinsic scatter, most likely by increasing the sample of AGN with reverber-

ation mapping data.

5.7.3 Using the MCMC Output to Evaluate the BHMF Fit

Throughout this section we have been analyzing the MCMC results by compar-

ing to the true BHMF. However, in practice we do not have access to the true

BHMF, and thus a method is needed for assessing the quality of the fit. As in
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Figure 5.10 BHMF at z = 2.5 for the simulated sample with n ∼ 1000 detected

sources (top) and n ∼ 104 detected sources (bottom); the top panel is the same as

the z = 2.5 BHMF shown in Figure 5.5. The uncertainties derived for the n ∼ 104

are smaller than for the n ∼ 1000 sample, particularly at low MBH where the sur-

vey becomes incomplete. However, the uncertainties for the n ∼ 104 survey at

high MBH , where the survey is complete, are not considerably smaller than those

for the n ∼ 1000 survey. This is because the BHMF estimate is limited by the sys-

tematic uncertainty in the broad line mass estimate normalization, derived from

β0, and the broad line mass estimate statistical error, derived from σBL. Because

the observed distribution of luminosities and line widths does not convey any

information on these two quantities, increasing the sample size will not reduce

the uncertainty on the BHMF beyond the systematic uncertainty on β0 and σBL.
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KFV08, the statistical model may be checked using a technique known as poste-

rior predictive checking (e.g., Rubin, 1981, 1984; Gelman, Meng, & Stern, 1998).

Here, the basic idea is to use each of the MCMC outputs to simulate a new ran-

dom observed data set. The distributions of the simulated observed data sets are

then compared to the true observed data in order to assess whether the statistical

model gives an accurate representation of the observed data. It is important to

construct simulated data sets for each of the MCMC draws in order to incorporate

our uncertainty in the model parameters.

Random draws for MBH and z for each MCMC draw may be obtained ac-

cording to the procedure outlined in § 7.3 of KFV08, after replacing L with MBH .

Once one obtains a random draw of MBH and z, simulated values of Lλ may be

obtained using Equation (5.19) with α0, αm, and σl. Then, given these values of

Lλ and MBH , values of v for each emission line can be simulated from Equation

(5.24) using the values of β0, βl, and σBL. Simulation from Equation (5.24) requires

a value of αλ in order to convert Lλ to LBL
λ . In order to account for the intrinsic

scatter in continuum slopes, we randomly draw of value of αλ from our data

set and use this value to convert to LBL
λ . These simulated values of Lλ, z, and

v are then folded through the selection function, leaving one with a simulated

observed data set (vobs, Lobs, zobs). This process is repeated for all values of N and

θ obtained from the MCMC output, leaving one with simulated observed data

sets of (vobs, Lobs, zobs). These simulated observed data sets can then be compared

with the true distribution of vobs, Lobs, and zobs to test the statistical model for any

inconsistencies.

In Figure 5.11 we show histograms for the observed distributions of z, logLλ,

and logFWHM for the Hβ, Mg II, and C IV emission lines. These histograms

are compared with the posterior median of the observed distributions based on
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the mixture of Gaussian functions model, as well as error bars containing 90% of

the simulated observed values. As can be seen, the distributions of the observed

data sets simulated from our assumed statistical model are consistent with the

distributions of the true observed data, and therefore there is no reason to reject

the statistical model as providing a poor fit.

5.8 APPLICATION TO BQS QUASARS

As a final illustration of our method we used it to estimate the low redshift ac-

tive BHMF from the 87 z < 0.5 quasars from the Bright Quasar Survey (BQS,

Schmidt & Green, 1983). The Hβ line widths and continuum luminosities for 71

of the BQS quasars are taken from Table 7 of Vestergaard & Peterson (2006), and

16 of the quasars in the Boroson & Green (1992) sample have black hole mass

estimates from reverberation mapping (Peterson et al., 2004). For each source

with reverberation mapping data, we used the first entry of λLλ(5100Å) in Table

1 of Vestergaard & Peterson (2006) as the single-epoch luminosity; these values

were based on continuum luminosities reported by Boroson & Green (1992) or

Marziani et al. (2003). We assumed measurement errors of 10% on the emission

line FWHM . The BQS sample covers an area of Ω = 10, 714 deg2 and is selected

with an average flux limit of B = 16.16 (Schmidt & Green, 1983), with no ap-

parent correlation with redshift and U − B color (Jester, 2005). We converted the

B = 16.16 flux limit to a flux limit at 5100Å assuming a power law continuum,

fν ∝ ν−α, with α = 0.5 (Richards et al., 2001). We used K = 3 Gaussian functions

to fit φ(MBH , z) for z < 0.5.

Because we are including the actual values of MBH for the 16 reverberation

mapping sources, the contribution to the posterior for these sources is

p(θ|MBH , Lλ, z) =
16
∏

i=1

p(logLλ,i|MBH,i, θ)p(logMBH,i, log zi|θ). (5.71)
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Figure 5.11 Posterior predictive check for the Gaussian mixture model (see

§ 5.7.3). The histograms show the actual distributions of logLobs, zobs, and log vobs,

the red squares denote the posterior medians for the number of sources in each

respective bin, and the error bars contain the inner 90% of the histogram values

for the samples simulated from the posterior. The mixture of Gaussian functions

model is able to provide an accurate prediction of the observed distribution of

luminosity, redshift, and line widths, and thus there is not any evidence to reject

it as providing a poor fit.
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Here, p(Lλ,i|MBH,i, θ) is given by Equation (5.19) and p(logMBH,i, log zi|θ) is given

by Equation (5.17). The product in Equation (5.69) is only over the quasars with

MBH estimated from reverberation mapping, whereas the contribution to the pos-

terior for the BQS sources without reverberation mapping is given by Equation

(5.15). The posterior for the complete BQS sample is then the product of Equation

(5.69) and Equation (5.15).

In Figure 5.12 we show the z = 0.17 BHMF derived from the BQS sample.

Also shown is the binned BHMF for the BQS sources, calculated directly from the

broad line mass estimates by Vestergaard (2006). We show the BHMF at z = 0.17

because the average redshift of the BQS sources is z ≈ 0.17, therefore allowing a

more direct comparison between the binned BHMF and the BHFM derived using

our mixture of Gaussian functions approach. In addition, the uncertainties on our

estimated BHMF are smallest at z ≈ 0.17. We are able to place some constraints

on the local BHMF, despite the fact that the BQS sample only contains 87 sources

and has a very shallow flux limit. The z ∼ 0.2 quasar BHMF appears to fall off

as a power law above MBH ∼> 108M¯. Unfortunately, our estimate of the local

BHMF becomes considerably uncertain below MBH ∼< 108M¯, so it is unclear

to what degree the power law trend continues below this point. In addition, the

binned estimate overestimates the BHMF at the highMBH end due to the intrinsic

uncertainty in the broad line mass estimates, and underestimates the BHMF at

the low MBH end due to incompleteness, in agreement with our simulations (see

§ 5.7.2).

In Figure 5.12 we also compare our estimate of the BHMF at z = 0.5 with the

z = 0.5 BHMF as reported by Vestergaard et al. (2008). Vestergaard et al. (2008)

estimated the z = 0.5 BHMF by binning estimates of MBH derived from the Hβ

broad emission line over the redshift range 0.3 < z < 0.68, using the SDSS DR3
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Figure 5.12 The z = 0.17 (top) and z = 0.5 (bottom) broad line quasar BHMF as

estimated from the BQS sample. The dashed line denotes the posterior median

for the mixture of Gaussian functions model, the shaded region contains 90% of

the posterior probability, and the tick marks along the x-axis mark the locations

of the broad line mass estimates. The estimate of the z = 0.17 BHMF becomes

significantly uncertain at MBH ∼< 108M¯, and the z = 0.17 BHMF appears to fall

off as a power law above MBH ∼> 108M¯. The z = 0.5 BHMF is not very well

constrained, but there is evidence for a shift in the BHMF toward higher MBH

from z = 0.17 to z = 0.5. For comparison, we show the BHMF estimated by

Vestergaard (2006) using the BQS sources (top, solid line with error bars), and

the BHMF estimated by Vestergaard et al. (2008) using the SDSS DR3 quasars

(bottom, solid line with error bars). The shift in the BHMF inferred from the

binned mass estimates is apparent in the BQS sample, while the SDSS and BQS

z = 0.5 BHMF estimates agree fairly well.
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quasar catalogue (Schneider et al., 2005). Despite the differences in approach and

survey selection, the two estimates of the z = 0.5 BHMF agree fairly well. How-

ever, because z = 0.5 defines the upper redshift limit of our BQS sample, the

uncertainties on the BHMF derived from the BQS quasars are very large. In ad-

dition, incompleteness in MBH likely affects the low MBH bins of the Vestergaard

et al. (2008), causing the Vestergaard et al. (2008) z = 0.5 BHMF to underestimate

the true z = 0.5 BHMF in these bins. However, a direct comparison between our

Bayesian approach and the Vestergaard et al. (2008) estimate is difficult, due to

the different redshift ranges used to estimate the BHMF, and the different selec-

tion methods of the BQS and the SDSS.

Although the BQS has a small sample size and probes narrow range in z,

we can attempt to quantify any evolution in the local BHMF by comparing the

ratio of the comoving number density of quasars at two different values of MBH .

Comparison of the estimated BHMF at z = 0.17 and z = 0.5 suggests a shift in the

BHMF toward large MBH . In Figure 5.13 we show the best fit values of the ratio

of φ(logMBH , z) at MBH = 5 × 108M¯ to φ(logMBH , z) at MBH = 5 × 109M¯ as a

function of z, as well as the 90% confidence interval. The logarithm of this ratio

gives the slope of a power-law betweenMBH = 5×108M¯ andMBH = 5×109M¯,

and therefore allows us to probe evolution in the shape of the quasar BHMF at

the high MBH end. In general, the ratio is fairly flat, implying no evolution in the

high MBH slope of the BHMF. However, at z ∼> 0.3 there is marginal evidence for

an increase in the comoving number density of quasars hostingMBH ∼ 5×109M¯

SMBHs, as compared to the comoving number density of quasars hostingMBH ∼

5 × 108M¯. The values of this ratio imply that the BHMF at the high MBH end

falls off as a power-law with slope ∼ 2, although slopes of ∼ 1 and ∼ 3 are also

consistent with the BQS quasars.
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Figure 5.13 The ratio of the broad line quasar BHMF at MBH = 5 × 109M¯ com-

pared to the BHMF at MBH = 5 × 108M¯, as a function of z and estimated from

the BQS quasars. The dashed line is the posterior median, and the shaded region

contains 90% of the probability. Assuming that the BHMF is a power-law from

MBH = 5× 108M¯ to MBH = 5× 109M¯, the logarithm of this ratio is the slope of

the BHMF. The high MBH BHMF slope appears to be fairly constant for z ∼< 0.3

with a slope of ∼ 2, and there is marginal evidence for a flattening of the high

MBH slope at z ∼> 0.3.
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In figure 5.14 we summarize the posterior probability distribution for the pa-

rameters governing the distribution ofLλ at a givenMBH (see Eq.[5.19]). Based on

the MCMC results, we can constrain the MBH–λLλ(5100Å) relationship at z < 0.5

to be

λLλ(5100Å) = 5.18+429
−5.14 × 1036

(

MBH

M¯

)0.92±0.24

[erg s−1], (5.72)

where we have quoted the errors at 95% confidence. The dispersion in L5100 at a

given MBH is estimated to be σl = 0.35+0.13
−0.08. Assuming that the bolometric cor-

rection is on average C5100 ∼ 10 (e.g., Kaspi et al., 2000), comparison of Equation

(5.70) with Equation (5.20) suggests that z < 0.5 broad line AGN have typical

Eddington ratios of ΓEdd ∼ 0.4. As argued in § 5.5.2, the scatter in the distribu-

tion of logLλ at a given MBH is the convolution of the scatter in log ΓEdd with the

scatter in logCλ. Therefore, the dispersion in Lλ at a given MBH is a combina-

tion of the dispersion in Eddington ratio and bolometric correction. As a result,

we are unable to estimate the dispersion in Eddington ratios at a given MBH

from σl. However, if the bolometric correction to L5100 increases with increasing

Eddington ratio, as found by Vasudevan & Fabian (2007), or if the bolometric

correction is independent of ΓEdd, then the dispersion in ΓEdd must be less than

σl. Therefore, because we infer that σl ∼< 0.5 dex, our results imply that the dis-

persion in Eddington ratios at a given MBH is ∼< 0.5 dex for z < 0.5 broad line

quasars. These results on the Eddington ratio distribution are consistent with

previous work (e.g., McLure & Dunlop, 2004; Vestergaard, 2004; Kollmeier et al.,

2006); however, they may be biased because of our assumption of a Gaussian and

non-evolving Eddington ratio distribution. In particular, if the distribution of Ed-

dington ratios is skewed toward low log ΓEdd, then we will have underestimated

the intrinsic dispersion in log ΓEdd.
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Figure 5.14 Posterior distributions of the parameters for the distribution of lu-

minosities at a given MBH , as estimated from the z < 0.5 BQS quasars. The

uncertainty on α0 and αm is highly correlated. Assuming a bolometric correction

of C5100 ∼ 10, the values of α0 and σl imply that the z < 0.5 distribution of broad

line quasar Eddington ratios has a mean of ΓEdd ∼ 0.4 and a dispersion of ∼ 0.5

dex.
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5.9 SUMMARY

We have derived the observed data likelihood function which relates the quasar

BHMF to the observed distribution of redshifts, luminosities, and broad emission

line widths. This likelihood function is then used in a Bayesian approach to es-

timating the BHMF, where the BHMF is approximated as a mixture of Gaussian

functions. Because much of this work was mathematically technical, we summa-

rize the important points here.

• Using methods developed for luminosity function estimation (e.g., 1/Va-

type estimators) without modification will lead to errors in black hole mass

function estimation, as the black hole mass selection function is not equiv-

alent to the flux selection function. In addition, using broad line estimates

of MBH will lead to a broader inferred BHMF if one does not correct for the

intrinsic uncertainty in the broad line mass estimates. This causes one to

overestimate φ(MBH , z) in the tails of the distribution, and underestimate

φ(MBH , z) near the peak of the distribution. However, because low MBH

AGN are more likely to be missed by flux-limited surveys, φ(MBH , z) will

be underestimated at low MBH due to incompleteness. The end result is a

spurious shift in the inferred BHMF toward higher MBH : incompleteness

at low MBH causes one to low MBH sources while the intrinsic statistical

uncertainty on the broad line mass estimates causes one to overestimate the

number of high MBH black holes.

• Equations (5.15) and (5.16) give the posterior probability distribution of the

BHMF parameters, given the observed data, for broad line mass estimates.

These equations may be used to perform Bayesian inference on the BHMF

for any assumed parameterization.
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• In this work we describe a flexible parameteric model for the BHMF, where

the BHMF is modelled as a mixture of Gaussian functions. The distribution

of luminosities is modelled as a linear regression of logLλ as a function of

logMBH , where the intrinsic scatter in logLλ at a given MBH was assumed

to follow a normal distribution. The distribution in line widths at a given Lλ

and MBH is also assumed to have the form of a linear regression, where the

parameters are based on the most recent broad line mass estimates. Equa-

tion (5.18) gives the BHMF under the mixture of Gaussian function model.

Equations (5.30) and (5.46) define the likelihood function for broad line

mass estimates under the mixture of Gaussian functions model if only one

emission line at a given z is used to estimate MBH . Otherwise, if multi-

ple emission lines are used for a single quasar, then Equation (5.41) must

be used. The posterior is then found by pluggin the prior distribution and

likelihood function into Equations (5.15) and (5.16).

• In § 5.5.5 we modify the likelihood function to include measurement error in

the emission line width. We show that if the measurement errors on the line

width are much smaller than the intrinsic physical dispersion in line widths,

then measurement error may be neglected. However, if measurement error

on the line width is a concern, Equations (5.56)–(5.58) should be used for

Equation (5.29) instead of Equation (5.30).

• We describe in § 5.6 a Metropolis-Hastings algorithm (MHA) for obtain-

ing random draws from the posterior distribution of the BHMF under the

mixture of Gaussian functions model. These random draws may be used

to estimate the posterior distribution for the BHMF, as well as to estimate

the posterior for any quantities calculated from the BHMF. The posterior
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provides statistically accurate uncertainties on the BHMF and related quan-

tities, even below the survey detection limits. We use simulation in § 5.7

to illustrate the effectiveness of our statistical method, as well as to give an

example on how to use the MHA output to perform statistical inference.

• We concluded by applying our method to obtain an estimate of the local

unobscured quasar BHMF from the z < 0.5 BQS quasar sample. Although

there is little information in the BQS quasars on the BHMF atMBH ∼< 108M¯,

the mixture of Gaussian functions estimate suggests that the local quasar

BHMF falls off approximately as a power law with slope ∼ 2 for MBH ∼>

108M¯ at z ≈ 0.2. The local quasar BHMF appears to shift toward larger

MBH at higher z, and there is marginal evidence for a flattening of the high

mass BHMF slope at z ∼> 0.3. We estimate that at a given MBH , z < 0.5

broad line quasars have a typical Eddington ratio of ∼ 0.4 and a dispersion

in Eddington ratio of ∼< 0.5 dex. However, the estimate of the dispersion in

Eddington ratio could be biased toward smaller values if the true distribu-

tion of Eddington ratios is significantly skewed toward lower values.
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CHAPTER 6

EVOLUTION OF THE X-RAY EMISSION OF RADIO-QUIET QUASARS

6.1 CHAPTER ABSTRACT

We report new Chandra observations of seven optically faint, z ∼ 4 radio-quiet

quasars. We have combined these new observations with previous Chandra ob-

servations of radio-quiet quasars to create a sample of 174 sources. These sources

have 0.1 < z < 4.7, and 1044 ergs s−1 < νLν(2500Å) < 1048 ergs s−1. The X-ray

detection fraction is 90%. We find that the X-ray loudness of radio-quiet quasars

decreases with UV luminosity and increases with redshift. The model that is best

supported by the data has a linear dependence of optical-to-X-ray ratio, αox, on

cosmic time, and a quadratic dependence of αox on logLUV , where αox becomes

X-ray quiet more rapidly at higher logLUV . We find no significant evidence for a

relationship between the X-ray photon index, ΓX , and the UV luminosity, and we

find marginally significant evidence that the X-ray continuum flattens with in-

creasing z (2σ). The ΓX–z anti-correlation may be the result of X-ray spectral cur-

vature, redshifting of a Compton reflection component into the observed Chandra

band, and/or redshifting of a soft excess out of the observed Chandra band. Using

the results for ΓX , we show that the αox–z relationship is unlikely to be a spurious

result caused by redshifting of the observable X-ray spectral region. A correlation

between αox and z implies evolution of the accretion process. We present a qual-

itative comparison of these new results with models for accretion disk emission.

6.2 CHAPTER INTRODUCTION

It is widely accepted that the extraordinary activity associated with quasars in-

volves accretion onto a supermassive black hole, with the UV/optical emission
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arising from a geometrically thin, optically thick cold accretion disk, and the X-

ray continuum arising from a hot, optically thin corona that Compton upscatters

the disk’s UV photons. The geometry of the X-ray emitting region is uncertain,

but possibilities include an accretion disk that evaporates into a hot inner flow

(e.g., Shapiro et al., 1976; Zdziarski et al., 1999), a hot ionized ‘skin’ that sand-

wiches the cold disk (e.g., Bisnovatyi-Kogan & Blinnikov, 1977; Liang & Price,

1977; Nayakshin, 2000), a combination of a hot inner flow and a corona that sand-

wiches the disk (e.g., Poutanen et al., 1997; Sobolewska et al., 2004a), or a patchy

corona, consisting of a number of hot spots above the accretion disk (e.g., Galeev

et al., 1979; Malzac et al., 2001; Sobolewska et al., 2004b). In addition, the UV

and X-ray producing processes may be coupled as a result of radiation pressure

from the UV photons driving a flow from the disk into the corona (Proga, 2005).

Investigating the relationships between the UV and X-ray emission is an impor-

tant step towards understanding the origin of the X-ray emission. Furthermore,

learning how the X-ray and UV emission change with z provides insight into

evolution of the accretion process, quasar black hole mass, and accretion rate.

Many studies have investigated whether αox, the ratio of X-ray to UV/optical

flux, depends on redshift or UV luminosity, LUV (e.g., Avni & Tananbaum, 1982;

Wilkes et al., 1994; Yuan et al., 1998a; Bechtold et al., 2003; Vignali et al., 2003b;

Strateva et al., 2005; Steffen et al., 2006). The parameter αox is a simple measure of

the amount of X-ray radiation, dominated by non-thermal processes, in respect to

the amount of UV radtion, dominated by thermal processes. Most studies have

concluded that there is no evidence for a redshift dependence of αox (e.g., Avni

& Tananbaum, 1986; Wilkes et al., 1994; Strateva et al., 2005), although Bechtold

et al. (2003) argued that αox is significantly correlated with both z and UV lumi-

nosity, and Yuan et al. (1998a) found evidence for a slight dependence of αox on
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redshift at z < 0.5. Vignali et al. (2003b), Strateva et al. (2005, S05), and Steffen

et al. (2006, S06) used a partial correlation and regression analysis to conclude

that there is no evidence for a dependence of αox on z, after accounting for the

αox–LUV and LUV –z correlations. These authors also found evidence that RQQs

become more X-ray quiet with increasing UV luminosity.

Previous investigations of the X-ray photon index, ΓX , have also produced

mixed results. Bechtold et al. (2003) used a sample of ROSAT observations over

from Yuan et al. (1998a) and Chandra observations of high redshift quasars to

conclude that ΓX is correlated with both luminosity and z. A ΓX–LUV correlation

was also seen by Dai et al. (2004), using a sample of gravitationally-lensed sources

with XMM-Newton and Chandra data. Some evidence for an anti-correlation be-

tween ΓX and z has also been found using ASCA observations (Reeves et al., 1997;

Vignali et al., 1999) and XMM-Newton observations (Page et al., 2003). However,

other investigations based on XMM-Newton data (e.g., Risaliti & Elvis, 2005) and

spectral fitting of composite spectra from Chandra observations (e.g., Vignali et al.,

2003c, 2005; Shemmer et al., 2006) have not revealed any evidence for a relation-

ship between ΓX , LUV , and z. Similarly, other ASCA observations have also not

produced evidence for a ΓX–z correlation (Reeves & Turner, 2000). In addition,

there has been evidence for a correlation between ΓX and the Eddington ratio

(e.g., Lu & Yu, 1999; Wang et al., 2004; Shemmer et al., 2006), and Gallagher et

al. (2005) found evidence for an anti-correlation between ΓX and the UV spectral

slope.

All of these conclusions are by necessity based on flux-limited samples. Flux-

limited samples typically suffer from an artificial correlation between z and LUV ,

making it difficult to disentangle which parameter is more important in deter-

mining X-ray properties. To help break the LUV –z degeneracy, we observed
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seven optically faint z ∼ 4 radio-quiet quasars with Chandra. We combined

these sources with Chandra data of optically-selected radio-quiet quasars, drawn

mostly from the Sloan Digital Sky Survey (SDSS, York et al., 2000), to create a

flux-limited sample of 174 sources, 90% of which have detections. Because the

X-ray emission in radio-loud sources can have an additional component from the

jet (e.g., Zamorani et al., 1981; Wilkes & Elvis, 1987), we focus our analysis on

the radio-quiet majority. We use these sources to perform a multivariate analy-

sis of αox,ΓX , LUV , and z in a manner that allows us to effectively separate the

dependence of the X-ray spectral properties on LUV and z.

We adopt a cosmology based on the the WMAP best-fit parameters (h =

0.71,Ωm = 0.27,ΩΛ = 0.73, Spergel et al., 2003). For ease of notation, we define

lUV ≡ log νLν(2500Å), and lX ≡ log νLν(2 keV).

6.3 OBSERVATIONS AND COMPARISON SAMPLE

The new observations targeted seven non-BAL RQQs with z > 4 from the litera-

ture. These were known to be among the faintest (νLν(2500Å) ∼< 3× 1046 ergs s−1)

z ∼ 4 optically-selected quasars to be observed thus far by Chandra or XMM-

Newton. All seven were observed on-axis on the ACIS-S3 chip with exposure

times 10–23 ksec. The exposure times were chosen in order to ensure that the

X-ray source would be detected if αox < 1.9. All targets were, in fact, detected.

The new observations are summarized in Table 6.1.

The other z ∼> 4 sources were selected from the literature (Bechtold et al.,

2003; Vignali et al., 2001, 2003a), and had been observed as targeted observations

with Chandra. The z ∼< 4 sources were found by cross-correlating the SDSS DR3

quasar catalogue (Schneider et al., 2005) with the Chandra public archive as of

2005 February 22. We selected those SDSS DR3 quasars that were serendipitiously
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Table 6.1. List of New Observations

Source RA DEC z ra OBSID Countsb fX
c Exp. Time Spec. Ref.d Phot. Ref.e

J2000 J2000 10−15 ergs cm−2 s−1 ksec

SDSS 0050-0053 00 50 06.3 -00 53 19.0 4.331 20.13 4825 26.3 6.91 ± 1.38 13.0 1 1

Q 0910+564 09 14 39.3 +56 13 21.0 4.035 20.87 4821 13.4 1.79 ± 0.57 23.0 2 2

SDSS 1321+0038 13 21 10.8 +00 38 22.0 4.716 21.30 4824 19.8 3.88 ± 0.87 17.8 1 1

SDSS 1413+0000 14 13 15.3 +00 00 32.0 4.078 19.75 4823 23.0 4.33 ± 1.02 12.5 1 1

SDSS 1444-0123 14 44 28.7 -01 23 44.0 4.179 19.64 4826 12.1 4.12 ± 1.26 10.0 1 1

PC 1450+3404 14 53 00.6 +33 52 06.0 4.191 20.81 4822 20.2 6.20 ± 1.36 14.8 3 4

SDSS 2357+0043 23 57 18.3 +00 43 50.0 4.362 19.92 4827 19.7 5.20 ± 1.23 12.7 1 1

ar-band apparent magnitude.

bNumber of observed background-subtracted source counts in the range 0.3–7.0 keV.

cUnabsorbed 2–10 keV flux, assuming a power law with ΓX = 1.9.

dReference for the observed frame optical spectrum.

eReference for the r-band magnitude.

References. — (1) SDSS; (2) Schneider et al. (1991); (3) Constantin et al. (2002); (4) Schneider et al. (1997)
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within 12′ of a Chandra target. The radio-quiet sources were selected to have

Ri = 0.4(i− t1.4GHz) < 1.5 (Ivezić et al., 2004), where, t1.4GHz is the FIRST 1.4 GHz

AB magnitude, and i is the SDSS i-band magnitude. The radio-loud sources were

omitted because such sources have an additional component of X-ray emission

arising from the jet (e.g., Wilkes & Elvis, 1987; Worrall et al., 1987). Almost all of

the z < 4 quasars have their Chandra data reported here for the first time.

The optical/UV spectra for each source were inspected by eye to exclude the

BALs or any sources that had significant absorption. It is necessary to remove

the BAL QSOs because their high column density gives them the appearance of

being X-ray weak (e.g., Green et al., 2001; Gallagher et al., 2002, 2006), potentially

biasing our analysis. We are unable to remove the high-ionization BAL quasars

for z < 1.5, as their identification requires observations of the C IV line. We are

able to remove low-ionization BALs at 0.45 < z < 2.25 based on Mg II absorption.

Reichard et al. (2003) found the fraction of BALs in the SDSS to be ∼ 14%, and

therefore we expect there to be 13 ± 3 BALs in our sample at z < 1.5. We did not

include seven sources with an obvious contribution in their spectra from the host-

galaxy. Host-galaxy contamination is likely negligible for all included sources,

except for possibly the lowest luminosity quasars, since νL∗
ν ∼ 1044 ergs s−1 at

2500Å for galaxies (Budavári et al., 2005).

We visually inspected the Chandra events files to find those sources that fell on

an ACIS chip. We did not include any sources that were observed on chip S4 due

to higher read-out noise (Data Caveats on CIAO web pages 1). All X-ray sources

reported are within 1”–2” of the optical position. The archival sources and their

X-ray properties are listed in Table 6.2.

1http://cxc.harvard.edu/ciao/caveats
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Table 6.2. List of Archival Sources

Source RA DEC z ra OBSID θb Countsc Exp. Time fX
d Spec. Ref.e Phot. Ref.f

J2000 J2000 ksec 10−14 ergs cm−2 s−1

0002+0049 00 02 30.7 +00 49 59.0 1.352 18.12 4861 0.58 188.0 5.7 10.52 ± 1.07 1 1

0006-0015 00 06 54.1 -00 15 33.4 1.725 18.20 4096 0.58 46.2 4.5 3.35 ± 0.49 1 1

0022+0016 00 22 10.0 +00 16 29.3 0.574 18.06 2252 7.12 343.4 71.2 2.82 ± 0.48 1 1

0027+0026 00 27 52.4 +00 26 15.7 0.205 18.18 4080 4.48 54.4 1.6 11.66 ± 4.47 1 1

0031+0034 00 31 31.4 +00 34 20.2 1.735 18.79 2101 1.20 73.9 6.7 3.10 ± 0.51 1 1

0057+1450 00 57 01.1 +14 50 03.0 0.623 18.81 865 1.15 4.6 4.6 < 0.91 1 1

0059+0003 00 59 22.8 +00 03 01.0 4.178 19.5 2179 0.58 9.0 2.7 1.21 ± 0.38 2 5

0106+0048 01 06 19.2 +00 48 22.0 4.437 19.1 2180 0.60 24.2 3.7 2.04 ± 0.41 2 5

0113+1531 01 13 05.7 +15 31 46.5 0.576 18.30 3219 2.09 1291.8 58.5 12.41 ± 0.53 1 1

0113+1535 01 13 09.1 +15 35 53.6 1.806 18.33 3219 6.29 528.3 58.5 6.20 ± 0.29 1 1

0115+0020 01 15 37.7 +00 20 28.7 1.275 18.72 3204 6.79 406.2 37.6 6.77 ± 0.66 1 1

0133+0400 01 33 40.4 +04 00 59.0 4.150 18.0 3152 0.59 39.4 6.1 2.03 ± 0.33 3 3

0134+3307 01 34 21.5 +33 07 56.6 4.530 18.9 3018 0.60 22.7 5.0 1.38 ± 0.32 3 3

0148+0001 01 48 12.2 +00 01 53.3 1.704 17.67 4098 0.57 42.3 3.7 3.57 ± 0.55 1 1

0148-0002 01 48 21.0 -00 02 25.8 0.930 18.39 4098 5.41 94.7 3.7 7.96 ± 1.53 1 1

0152+0105 01 52 58.7 +01 05 07.4 0.647 19.22 1448 4.13 104.6 7.9 6.86 ± 1.30 1 1

0153+0052 01 53 09.1 +00 52 50.1 1.161 18.81 3580 7.26 58.1 19.9 2.27 ± 0.37 1 1

0156+0053 01 56 50.3 +00 53 08.5 1.652 18.65 4100 0.59 95.2 5.6 4.58 ± 0.49 1 1

0159+0023 01 59 50.2 +00 23 40.8 0.162 15.97 4104 0.58 5708.2 9.7 189.5 ± 8.19 1 1

0201-0919 02 01 18.7 -09 19 35.8 0.660 17.61 3772 7.83 379.2 19.7 11.42 ± 1.17 1 1

0208+0022 02 08 45.5 +00 22 36.1 1.885 17.08 4099 0.58 58.2 3.5 4.69 ± 0.65 1 1

0209+0517 02 09 44.7 +05 17 14.0 4.140 17.8 3153 0.60 30.2 5.8 1.66 ± 0.31 3 3

0232-0731 02 32 17.7 -07 31 19.9 1.163 19.19 3030 10.1 0.0 4.2 < 1.85 1 1

0241-0811 02 41 05.8 -08 11 53.2 0.978 19.87 385 1.69 5.8 2.3 < 1.56 1 1

0241+0023 02 41 10.0 +00 23 01.4 0.790 20.47 4011 9.33 15.8 5.0 2.35 ± 0.57 1 1

0244-0134 02 44 01.9 -01 34 03.0 4.053 18.4 875 0.64 17.6 7.4 0.55 ± 0.15 2 6

0248+1802 02 48 54.3 +18 02 49.9 4.430 18.4 876 0.66 18.1 1.7 3.55 ± 0.83 2 5

0259+0048 02 59 59.7 +00 48 13.6 0.892 19.44 4145 0.54 40.6 4.7 3.13 ± 0.47 1 1

0311-1722 03 11 15.2 -17 22 47.3 4.000 18.0 3154 0.57 8.9 6.1 < 1.07 3 3

0314-0111 03 14 27.5 -01 11 52.3 0.387 18.05 4084 4.48 114.8 1.9 23.9 ± 5.29 1 1
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Table 6.2—Continued

Source RA DEC z ra OBSID θb Countsc Exp. Time fX
d Spec. Ref.e Phot. Ref.f

J2000 J2000 ksec 10−14 ergs cm−2 s−1

0403-1703 04 03 56.6 -17 03 24.1 4.236 18.7 2182 0.59 13.9 3.8 1.08 ± 0.29 2 6

0419-5716 04 19 50.9 -57 16 13.1 4.460 18.7 4066 0.58 9.3 4.0 0.71 ± 0.24 3 3

0755+2203 07 55 02.1 +22 03 46.9 0.399 18.99 647, 3767 3.85, 7.26 457.0 156.2 5.83 ± 0.41 1 1

0755+4058 07 55 35.6 +40 58 03.0 2.417 18.85 3032 9.48 15.6 7.3 1.37 ± 0.36 1 1

0755+4111 07 55 40.0 +41 11 19.1 0.967 17.86 3032 10.0 9.6 7.3 1.13 ± 0.35 1 1

0755+4056 07 55 45.6 +40 56 43.6 2.348 19.17 3032 9.06 19.8 7.3 1.49 ± 0.37 1 1

0819+3649 08 19 51.4 +36 49 50.8 0.736 19.19 4119 11.5 86.6 7.3 11.22 ± 2.71 1 1

0832+5243 08 32 06.0 +52 43 59.3 1.572 19.47 1643 3.80 7.6 9.1 < 0.56 1 1

0845+3431 08 45 26.6 +34 31 02.0 2.046 19.88 818 10.1 3.4 4.5 < 2.13 1 1

0849+4457 08 49 05.1 +44 57 14.8 1.259 20.00 927, 1708 3.26, 3.26 938.2 186.5 2.37 ± 0.11 1 1

0849+4500 08 49 43.7 +45 00 24.3 1.592 18.39 927, 1708 10.4, 10.4 1149.6 186.5 3.87 ± 0.13 1 1

0910+5427 09 10 29.0 +54 27 19.0 0.525 18.76 2227 7.57 3327.4 105.7 19.95 ± 0.74 1 1

0912+0547 09 12 10.3 +05 47 42.1 3.240 18.06 419, 1629 10.9, 11.0 53.9 38.6 0.88 ± 0.14 1 1

0918+5139 09 18 28.6 +51 39 32.1 0.185 17.46 533 4.51 147.5 11.3 5.05 ± 3.14 1 1

0918+0647 09 18 47.5 +06 47 04.7 0.821 18.80 3563 11.1 78.0 4.9 5.62 ± 1.63 1 1

0933+5515 09 33 59.3 +55 15 50.8 1.863 19.08 805 1.27 779.7 40.8 4.57 ± 0.24 1 1

0941+5948 09 41 33.7 +59 48 11.3 0.967 16.38 3035 2.83 398.1 4.2 25.16 ± 2.86 1 1

0950+5619 09 50 24.0 +56 19 46.7 1.912 20.53 4151 6.76 29.0 8.9 1.87 ± 0.34 1 1

0951+5940 09 51 30.2 +59 40 37.1 1.056 18.74 3036 5.39 45.9 5.1 4.48 ± 0.66 1 1

0951+5944 09 51 51.6 +59 44 30.0 2.338 19.79 3036 1.12 28.5 5.1 1.26 ± 0.28 1 1

0952+5152 09 52 40.2 +51 52 50.0 0.553 18.47 3195 2.42 1487.6 26.9 12.81 ± 0.94 1 1

0952+5151 09 52 43.0 +51 51 21.1 0.861 17.34 3195 3.25 1688.2 26.9 14.79 ± 0.76 1 1

0955+5935 09 55 05.6 +59 35 17.6 0.912 18.91 3156 4.84 38.3 5.7 3.50 ± 0.56 1 1

0955+5940 09 55 11.3 +59 40 32.2 4.340 18.58 3156 0.60 17.8 5.7 0.90 ± 0.21 1 1

0955+4116 09 55 42.1 +41 16 55.3 3.420 19.36 5294 7.45 31.2 17.3 1.01 ± 0.20 1 1

0955+4109 09 55 48.1 +41 09 55.3 2.307 18.74 5294 2.67 71.9 17.3 2.47 ± 0.30 1 1

0956+4110 09 56 40.4 +41 10 43.5 1.887 20.49 5294 7.23 12.8 17.3 0.58 ± 0.15 1 1

0958+0734 09 58 20.5 +07 34 36.1 1.885 18.44 2990 9.38 296.9 14.1 14.01 ± 1.66 1 1

0958+0747 09 58 22.6 +07 47 47.7 3.218 20.07 2990 8.48 10.6 14.1 0.72 ± 0.20 1 1

0958+0745 09 58 36.6 +07 45 56.3 1.487 19.17 2990 6.23 192.1 14.1 4.70 ± 0.63 1 1
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Table 6.2—Continued

Source RA DEC z ra OBSID θb Countsc Exp. Time fX
d Spec. Ref.e Phot. Ref.f

J2000 J2000 ksec 10−14 ergs cm−2 s−1

1002+5542 10 02 05.4 +55 42 57.9 1.151 18.03 2038 2.84 161.6 26.6 3.44 ± 0.62 1 1

1003+4736 10 03 52.8 +47 36 53.4 2.934 19.72 4152 0.59 64.5 13.7 1.24 ± 0.16 1 1

1013-0052 10 13 14.9 -00 52 33.6 0.275 17.78 4085 4.49 192.3 2.0 32.75 ± 5.50 1 1

1019+4737 10 19 02.0 +47 37 14.6 2.944 19.19 4153 0.58 28.7 8.0 0.98 ± 0.19 1 1

1023+0415 10 23 50.9 +04 15 42.0 1.809 19.40 1651, 909 6.66, 6.66 240.7 211.7 2.19 ± 0.14 1 1

1030+0524 10 30 31.6 +05 24 54.9 1.182 17.74 3357 0.88 11.2 8.0 0.57 ± 0.15 1 1

1032+5738 10 32 27.9 +57 38 22.5 1.968 20.58 3345, 3344 8.17, 8.18 589.7 77.0 3.79 ± 0.16 1 1

1032+5800 10 32 36.2 +58 00 34.0 0.686 19.83 3343 7.90 1.7 37.0 < 0.25 1 1

1036-0343 10 36 23.8 -03 43 20.0 4.509 18.5 877 0.65 15.7 3.4 1.29 ± 0.33 2 6

1038+4727 10 38 08.7 +47 27 34.9 1.047 18.56 4154 3.96 15.6 9.8 0.65 ± 0.17 1 1

1042+0100 10 42 30.7 +01 00 01.6 1.400 18.40 4086 4.87 21.2 1.7 4.05 ± 1.27 1 1

1044+5921 10 44 54.9 +59 21 34.1 1.291 19.03 5030 7.31 265.5 65.7 2.51 ± 0.27 1 1

1049+5750 10 49 21.5 +57 50 36.6 1.106 18.81 1673 8.73 23.9 4.9 2.92 ± 0.62 1 1

1050+5702 10 50 15.6 +57 02 55.7 3.273 20.17 1679, 1680 10.9, 8.19 24.0 9.4 1.47 ± 0.33 1 1

1050+5738 10 50 50.1 +57 38 20.0 1.281 19.09 1678 3.98 32.8 4.7 3.49 ± 0.62 1 1

1052+5724 10 52 39.6 +57 24 31.4 1.111 17.79 1683 2.96 90.8 4.7 8.81 ± 1.64 1 1

1053+5735 10 53 16.8 +57 35 50.8 1.204 19.08 1683, 1684 9.42, 7.40 161.8 9.4 10.6 ± 0.96 1 1

1054+5740 10 54 04.1 +57 40 19.8 1.100 18.04 1688 5.25 24.7 4.7 2.61 ± 0.54 1 1

1054+5720 10 54 22.6 +57 20 31.0 2.972 19.85 1687 7.13 3.1 4.7 < 1.99 1 1

1055+5704 10 55 18.1 +57 04 23.6 0.695 18.73 1686, 1691 8.96, 8.35 86.7 9.4 6.43 ± 1.06 1 1

1056+5722 10 56 44.5 +57 22 33.5 0.286 18.90 1693 4.96 26.2 5.7 2.56 ± 0.52 1 1

1057+4555 10 57 56.4 +45 55 52.0 4.100 17.48 878 0.65 34.8 2.8 3.12 ± 0.53 2 1

1109+0900 11 09 05.3 +09 00 48.7 1.674 19.42 3252 7.34 22.1 10.0 1.40 ± 0.31 1 1

1111+5532 11 11 32.1 +55 32 40.3 1.004 18.44 2025 7.89 333.8 59.4 3.70 ± 0.37 1 1

1114+5315 11 14 52.8 +53 15 31.7 1.213 19.02 3253, 3321 4.01, 8.41 39.8 13.6 4.60 ± 0.46 1 1

1115+5309 11 15 20.7 +53 09 22.1 0.877 18.05 3321 1.18 2.6 4.8 < 0.55 1 1

1129-0137 11 29 43.9 -01 37 52.3 1.294 18.15 2082 5.66 128.7 4.8 7.96 ± 1.14 1 1

1129-0150 11 29 51.2 -01 50 37.3 1.784 20.24 2082 7.89 23.7 4.8 2.86 ± 0.56 1 1

1136+0159 11 36 21.2 +01 59 27.9 0.766 19.24 4833 3.15 85.1 5.9 5.28 ± 0.98 1 1

1136+0158 11 36 31.9 +01 58 01.1 1.470 17.85 4833 0.57 9.8 5.9 0.74 ± 0.21 1 1
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Table 6.2—Continued

Source RA DEC z ra OBSID θb Countsc Exp. Time fX
d Spec. Ref.e Phot. Ref.f

J2000 J2000 ksec 10−14 ergs cm−2 s−1

1136+0207 11 36 33.1 +02 07 47.7 0.239 18.07 4833 9.31 65.4 5.9 5.48 ± 2.06 1 1

1202-0129 12 02 26.8 -01 29 15.3 0.150 17.13 4108 0.59 2361.2 9.4 54.36 ± 3.27 1 1

1204+0150 12 04 36.6 +01 50 25.6 1.927 18.63 3234 5.49 148.6 30.0 1.85 ± 0.19 1 1

1208+0016 12 08 29.6 +00 16 42.7 1.063 18.97 2083 5.86 34.8 4.6 3.53 ± 0.61 1 1

1213+0252 12 13 43.0 +02 52 48.9 0.641 19.30 4110 4.55 57.9 10.0 1.69 ± 0.47 1 1

1214+0055 12 14 15.2 +00 55 11.5 0.395 18.35 4087 4.48 137.3 2.0 21.42 ± 3.75 1 1

1215-0034 12 15 40.5 -00 34 33.8 0.757 19.46 4201 3.45 551.2 44.5 7.16 ± 0.56 1 1

1218+0546 12 18 36.1 +05 46 28.1 0.795 18.89 3322 0.98 72.5 4.6 3.53 ± 0.60 1 1

1220-0025 12 20 04.4 -00 25 39.1 0.421 18.96 3141 0.58 2380.4 19.7 30.45 ± 1.26 1 1

1223+1034 12 23 07.5 +10 34 48.2 2.747 18.59 3232 4.65 302.6 30.1 3.02 ± 0.20 1 1

1226-0011 12 26 52.0 -00 11 59.6 1.175 17.88 4865 0.58 137.7 4.9 8.07 ± 1.05 1 1

1228+4413 12 28 18.0 +44 13 02.0 0.662 18.05 2031 5.81 3.0 26.6 < 0.27 1 1

1228+4411 12 28 53.7 +44 11 52.9 1.276 18.79 2031 9.09 96.6 26.6 2.71 ± 0.30 1 1

1230+0302 12 30 05.8 +03 02 04.2 1.604 18.91 4040 3.01 34.1 3.5 3.07 ± 0.56 1 1

1230+0305 12 30 25.9 +03 05 35.4 1.055 19.45 4040 3.17 35.9 3.5 4.72 ± 0.80 1 1

1230+0306 12 30 27.4 +03 06 27.5 0.628 18.65 4040 4.05 105.6 3.5 14.99 ± 2.32 1 1

1230+0308 12 30 39.9 +03 08 57.3 1.843 19.50 4040 8.02 12.7 3.5 1.73 ± 0.54 1 1

1230+0305 12 30 54.7 +03 05 37.2 0.427 19.19 4040 9.76 16.8 3.5 3.05 ± 0.78 1 1

1236+6215 12 36 22.9 +62 15 26.6 2.587 20.44 580, 2423, 2344, 3409, 6.83, 1.67, 5.38, 1.79, 3741.3 1961.0 0.90 ± 0.02 1 1

967, 966, 3389, 957, 5.46, 5.45, 4.11, 1.73,

3408, 2233, 2232, 2386, 4.12, 1.67, 1.69, 5.38,

3388, 2421, 2234, 3293, 4.12, 1.64, 1.64, 4.12,

3294, 3390, 3391, 1671 1.79, 1.79, 1.79, 5.37

1237+6203 12 37 16.0 +62 03 23.4 2.068 19.86 580, 2344, 967, 966, 9.23, 9.77, 9.59, 9.62, 198.9 431.9 0.30 ± 0.03 1 1

2386, 1671 9.78, 9.78

1242+0249 12 42 55.3 +02 49 57.0 1.458 19.21 323, 3926 8.17, 6.56 657.2 127.1 3.250 ± 0.17 1 1

1245-0027 12 45 41.0 -00 27 44.9 1.693 18.58 4018 7.82 88.7 4.9 11.24 ± 1.21 1 1

1255+5652 12 55 35.1 +56 52 39.6 1.803 19.13 1031 6.00 339.3 39.3 1.79 ± 0.18 1 1

1255+5650 12 55 36.2 +56 50 00.1 1.373 19.83 1031 6.32 0.0 39.3 < 0.14 1 1

1258-0143 12 58 49.8 -01 43 03.3 0.967 17.06 4178 4.58 2024.9 27.3 21.09 ± 1.00 1 1
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Table 6.2—Continued

Source RA DEC z ra OBSID θb Countsc Exp. Time fX
d Spec. Ref.e Phot. Ref.f

J2000 J2000 ksec 10−14 ergs cm−2 s−1

1259+0102 12 59 43.6 +01 02 55.0 0.394 18.34 4088 4.48 4.0 1.9 < 2.47 1 1

1311+0031 13 11 08.5 +00 31 51.7 0.429 17.92 4089 4.48 14.9 1.7 2.86 ± 0.76 1 1

1317+3531 13 17 43.2 +35 31 31.1 4.360 19.1 879 0.64 5.7 2.8 < 1.78 2 5

1344-0000 13 44 25.9 -00 00 56.2 1.095 18.58 2251 0.39 26.2 9.6 0.82 ± 0.16 1 1

1411+5217 14 11 04.1 +52 17 55.6 2.882 19.07 2254 6.15 247.3 90.9 1.48 ± 0.11 1 1

1411+5205 14 11 04.9 +52 05 16.8 1.083 18.97 2254 7.19 41.1 90.9 1.20 ± 0.68 1 1

1417+4456 14 17 00.8 +44 56 06.4 0.113 16.32 541 8.26 5313.3 31.2 92.89 ± 4.08 1 1

1419+4709 14 19 51.9 +47 09 01.4 2.288 17.37 3076 0.59 174.3 7.7 6.77 ± 0.53 1 1

1424+4214 14 24 14.1 +42 14 00.1 1.608 19.03 3077 5.91 133.1 5.9 6.81 ± 0.79 1 1

1424+4210 14 24 36.0 +42 10 30.5 2.217 17.51 3077 0.58 137.0 5.9 5.35 ± 0.57 1 1

1432-0059 14 32 44.4 -00 59 15.2 1.026 17.26 907 7.56 1715.9 21.4 43.53 ± 2.13 1 1

1433+0227 14 33 35.3 +02 27 18.3 2.072 19.94 3959 3.85 17.0 3.5 2.57 ± 0.63 1 1

1434+0227 14 34 07.5 +02 27 04.6 1.710 19.41 3959 4.24 28.4 3.5 2.91 ± 0.56 1 1

1438+0341 14 38 42.0 +03 41 10.4 1.737 18.27 3290 5.97 296.9 57.6 3.11 ± 0.20 1 1

1438+0335 14 38 59.1 +03 35 47.5 0.733 18.43 3290 8.23 498.2 57.6 7.25 ± 0.50 1 1

1442+0110 14 42 31.7 +01 10 55.3 4.560 20.90 3960 0.58 43.9 11.0 1.37 ± 0.20 4 1

1443+5856 14 43 40.8 +58 56 53.2 4.260 18.28 3160 0.58 16.3 5.8 0.71 ± 0.19 1 1

1445+0129 14 45 54.8 +01 29 03.3 1.845 20.00 2112 2.40 38.9 5.9 2.22 ± 0.34 1 1

1448+4738 14 48 53.4 +47 38 21.3 2.894 19.39 4155 0.58 19.0 6.9 0.93 ± 0.21 1 1

1448+0015 14 48 56.7 +00 15 10.3 0.832 18.80 4092 7.59 19.2 2.1 4.64 ± 1.08 1 1

1449+0024 14 49 13.5 +00 24 06.9 0.440 19.13 4092 3.10 48.0 2.1 7.82 ± 1.18 1 1

1452+4304 14 52 15.6 +43 04 48.7 0.296 18.89 1048, 2424 3.14, 3.11 785.1 47.2 5.010 ± 0.49 1 1

1452+4308 14 52 40.9 +43 08 14.4 1.704 19.41 1048 8.36 139.8 17.7 4.46 ± 0.38 1 1

1511+5659 15 11 26.5 +56 59 34.8 1.031 17.55 3334 9.81 3.9 4.9 < 4.30 1 1

1515+5521 15 15 04.9 +55 21 07.3 1.844 20.40 3006 9.83 18.2 9.6 1.02 ± 0.39 1 1

1539+4313 15 39 47.6 +43 13 41.6 0.347 18.75 2993 1.30 870.1 14.8 15.96 ± 1.28 1 1

1543+5405 15 43 16.4 +54 05 26.1 0.245 18.11 822 8.39 132.3 4.5 14.35 ± 3.03 1 1

1545+4846 15 45 30.2 +48 46 09.1 0.399 16.44 3339 8.93 245.8 4.9 34.29 ± 5.79 1 1

1605-0109 16 05 17.8 -01 09 55.5 1.572 19.14 2086 5.42 80.4 4.6 7.08 ± 0.91 1 1

1618+3456 16 18 34.0 +34 56 25.6 1.922 18.73 3341 5.29 17.4 4.9 1.83 ± 0.46 1 1
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Figure 6.1 The (LUV , z) distribution of our sample. The seven new observations

are denoted by red triangles, the SDSS sources are denoted by blue crosses, and

the non-SDSS z ∼> 4 sources are denoted by black asterisks. There appears to be

data points for only six RQQs with new Chandra observations because sources

0050-0053 and 2357+0053 have almost the same LUV and z, causing their symbols

to overlap.

Altogether, the sample consists of 174 radio-quiet quasars, with a broad range

in redshift (0.1 < z < 4.7) and luminosity (1044 ergs s−1 ∼< νLν(2500Å) ∼< 1048 ergs s−1).

All sources have been observed with the Chandra X-ray Observatory using the

ACIS-S or ACIS-I detectors, and 157 (90%) of them are detected. The (LUV , z)

distribution of the sample is shown in Figure 6.1.
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Table 6.2—Continued

Source RA DEC z ra OBSID θb Countsc Exp. Time fX
d Spec. Ref.e Phot. Ref.f

J2000 J2000 ksec 10−14 ergs cm−2 s−1

1640+4644 16 40 25.0 +46 44 49.1 0.537 18.38 896 1.17 1049.2 42.3 5.17 ± 0.41 1 1

1641+4649 16 41 10.6 +46 49 11.9 0.695 19.21 896 9.98 366.1 42.3 4.83 ± 0.48 1 1

1641+4000 16 41 54.2 +40 00 33.1 1.002 17.81 3575 1.29 311.8 46.5 3.09 ± 0.38 1 1

1657+3524 16 57 13.2 +35 24 39.4 2.328 19.37 3662 8.88 102.8 49.6 1.16 ± 0.14 1 1

1701+6412 17 01 00.6 +64 12 09.0 2.735 16.00 547 4.98 364.7 49.5 3.69 ± 0.21 1 1

1702+3405 17 02 24.5 +34 05 39.0 2.038 18.93 4179 5.25 97.8 57.0 0.65 ± 0.06 1 1

1703+6045 17 03 55.8 +60 45 11.7 0.284 18.77 435 4.97 250.3 9.1 12.0 ± 2.11 1 1

1708+6154 17 08 17.9 +61 54 48.6 1.414 17.84 4864 0.58 239.4 4.1 16.4 ± 1.83 1 1

1719+2732 17 19 27.3 +27 32 46.8 1.446 18.72 3245 10.1 92.7 10.0 7.27 ± 1.29 1 1

1720+2638 17 20 26.5 +26 38 16.0 1.141 19.13 3224, 4361 4.43, 5.43 170.6 49.5 2.66 ± 0.27 1 1

1735+5355 17 35 51.9 +53 55 15.7 0.955 17.91 4863 0.58 268.2 5.4 14.86 ± 1.76 1 1

1737+5828 17 37 16.6 +58 28 39.5 1.775 19.05 3038 3.28 21.2 4.6 3.71 ± 0.83 1 1

1738+5837 17 38 36.2 +58 37 48.6 1.279 17.71 4860 0.58 10.1 3.9 0.76 ± 0.26 1 1

2215-1611 22 15 27.1 -16 11 33.0 3.990 18.1 2185 0.59 16.6 3.2 1.35 ± 0.37 2 6

2238-0921 22 38 19.8 -09 21 06.0 3.259 18.04 2411 6.07 1.3 5.9 < 5.97 1 1

2238-0937 22 38 54.7 -09 37 36.2 1.472 19.14 2411 12.7 4.0 5.8 < 17.5 1 1

2239-0933 22 39 17.3 -09 33 40.9 1.817 19.28 2414 11.3 9.9 5.7 < 14.6 1 1

2249-0808 22 49 03.3 -08 08 41.7 0.457 19.42 583 8.04 304.5 11.7 13.6 ± 1.97 1 1

2337+0025 23 37 18.1 +00 25 50.7 2.053 19.28 3248 7.59 20.6 9.2 1.85 ± 0.40 1 1

2337+0022 23 37 22.0 +00 22 38.9 1.376 19.27 3248 4.50 8.0 9.2 0.97 ± 0.33 1 1

2337+0026 23 37 39.1 +00 26 56.2 1.703 18.85 3248 7.44 61.7 9.2 4.13 ± 0.58 1 1

2348+0107 23 48 40.1 +01 07 53.5 0.718 18.50 861 10.8 779.4 74.2 7.08 ± 0.46 1 1

Note. — For sources with multiple observation IDs, the off-axis angles are reported for each. However, the reported counts and exposure time are summed over the observation

IDs.
ar-band apparent magnitude.

bOff-axis angle, in arcmin.

cNumber of observed background-subtracted source counts in the range 0.3–7.0 keV.

dUnabsorbed 2–10 keV flux, assuming a power-law. A photon index of ΓX = 1.9 was assumed for those sources with < 50 counts. A “<”denotes an upper limit.

eReference for the observed frame optical spectrum.

fReference for the r-band magnitude.

References. — (1) SDSS; (2) Constantin et al. (2002); (3) Péroux et al. (2001); (4) Anderson et al. (2001); (5) Kennefick et al. (1995); (6) Storrie-Lombardi et al. (1996)
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Figure 6.2 The distribution of observed, background-subtracted, 0.3–7.0 keV pho-

ton counts for our sample.

6.3.1 X-ray Spectra

Source extraction was done using CIAO 3.2.22 and CALDB 3.1. We extracted the

PHA spectrum for all 174 sources using a circular aperture with radius chosen to

include 95% of 3.5 keV photons. Typical extraction regions range from 5” for on-

axis sources, to 10”–30” for most off-axis sources. The background was extracted

from an annular region centered on the source, and any nearby sources were

removed from the extraction regions. A correction for pileup was necessary for

only one source in our sample, MRK 1014. The distribution of source counts is

shown in Figure 6.2.

Spectral fitting was done using the CIAO tool SHERPA (Freeman et al., 2001).
2Chandra Interactive Analysis of Observations (CIAO), http://cxc.harvard.edu/ciao/
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We estimated the parameters for a power law of the form

N(E) = n0

(

E

1 keV

)−ΓX

, (6.1)

where ΓX is the photon index and n0 is the normalization at 1 keV, in units of pho-

tons keV−1 cm−2 s−1. We restricted our fits to energies 0.3–7.0 keV, and included

Galactic absorption with NH fixed to that inferred from 21 cm maps (COLDEN3

Dickey & Lockman, 1990). If the source had < 200 counts, we fit the unbinned

spectrum using the Cash statistic (Cash, 1979). For these sources, the background

was fit simultaneously with Equation (6.1) using an empirically determined back-

ground for the ACIS-S and ACIS-I, respectively. If the source had< 50 counts, we

calculated n0 by fixing ΓX = 1.9, a typical value for RQQs (Reeves & Turner, 2000;

Piconcelli et al., 2003). We also estimate ΓX for these sources, but fix ΓX = 1.9

when calculating n0 to stabilize the estimates of LX and αox. We fit n0 and ΓX si-

multaneously for sources with counts between 50 and 200. If the source had> 200

counts, we fit the binned spectrum by minimizing χ2 and included an intrinsic

neutral absorber if justified by the data; only two of the sources with> 200 counts

showed evidence for intrinsic absorption. These were 1438+0335 and 0958+0734,

with intrinsic NH = 5.34+0.745
−0.203 × 1021 cm−2 and NH = 1.363+2.034

−0.626 × 1022 cm−2, re-

spectively; the errors are at 95% confidence. The background for the > 200 count

sources was binned and subtracted before spectral fitting. There were 86 sources

with < 50 counts, 44 sources with between 50 and 200 counts, and 44 sources

with > 200 counts.

We included an intrinsic neutral absorber for sources 0259+0048, 0918+5139,

1002+5542, and 1411+5205, despite the fact that they have < 200 counts. These

sources initially exhibited unusually hard X-ray spectra (ΓX ∼< 1), so we fit ΓX

and NH simultaneously to test if these low values of ΓX were caused by unrecog-
3For COLDEN, see http://cxc.harvard.edu/toolkit/colden.jsp
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nized absorption. Even after including an absorber at the quasar redshift, sources

0259+0048, 0918+5139, and 1002+5542 still have rather hard X-ray continua, with

photon induces of 1.02± 0.24, 0.92± 0.33, and 1.27± 0.15, respectively. Such hard

X-ray spectra could be the result of more complex absorption, such as an ion-

ized or partial covering absorber. However, the low number of counts for these

sources preclude obtaining meaningful spectral fits for more complex models. In

addition, the mean ΓX for our sample is ≈ 2 and the observed dispersion in ΓX for

our sample is 0.44. Thus, we might expect to observe a few sources with ΓX ∼ 1

in a sample with 157 X-ray detected sources, and therefore these three sources are

probably not outliers but just represent the tail of the RQQ ΓX distribution.

Source 1411+5205 shows evidence for considerable absorption,NH ∼ 1023 cm−2,

and may be a BAL QSO. A 95% confidence interval on the column density for this

source is 1.8 × 1022 cm−2 < NH < 2.45 × 1023 cm−2.

We used the projection method in Sherpa to estimate a 3σ confidence interval

on n0. Those sources that did not contain n0 = 0 in their 3σ confidence interval

were considered detected, otherwise we set a 3σ upper limit on n0. For those

sources with < 50 counts, the projection method was used to calculate the 68%

(1σ) individual confidence intervals on the power law parameters. We calculated

the covariance matrix of the parameters for those sources with > 50 counts.

Fifteen sources were in multiple observations. For each of these sources, all

of the observations were fit simultaneously assuming the same power-law spec-

trum.

Based on our X-ray spectral fits, we estimate the mean value of ΓX for our

sample to be Γ̄X = 2.033 ± 0.034, with an observed dispersion of 0.44. After

accounting for the additional scatter in ΓX caused by measurement error, we find

that the intrinsic dispersion of ΓX is ∼ 0.31. This is consistent with the dispersion
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found in other studies (e.g., Piconcelli et al., 2005; Brocksopp et al., 2006; Grupe

et al., 2006). The intrinsic dispersion in ΓX is similar to the intrinsic dispersion in

the optical/UV spectral slope (Richards et al., 2001).

6.3.2 Optical/UV Spectra

Optical spectra were obtained for most sources from the SDSS. We also obtained

spectra for some of the high redshift quasars from Anderson et al. (2001), Péroux

et al. (2001), and Constantin et al. (2002).

We corrected the optical spectra for Galactic absorption using the E(B − V )

values taken from Schlegel et al. (1998), as listed in the NASA/IPAC Extragalac-

tic Database (NED), and the extinction curve of Cardelli et al. (1989), assuming

a value of AV /E(B − V ) = 3.1. We model the continuum as a power law of the

form fν ∝ ν−α, and the Fe emission as a scaled and broadened iron template

extracted from I Zw I in the UV by Vestergaard & Wilkes (2001). The contin-

uum and iron emission were fit simultaneously using the Levenberg-Marquardt

method for nonlinear χ2-minimization. The median value of α for our sample is

0.602, and the dispersion in α is ≈ 0.4.

We were not able to obtain a spectrum for Q 0910+564. For this source, we

calculated the flux density at 2500Å from the AB magnitude at 1450(1 + z)Å and

the spectral index reported by (Schneider et al., 1991).

We were not able to use a power-law fit to calculate lUV for the z < 0.3 sources,

as the SDSS spectral range for these sources does not contain the rest-frame UV

continuum. We therefore performed a linear regression of the dependence of lUV

on log νLν(5100Å) and αopt for higher redshift sources (0.3< z < 1.2) for which we

had all three quantities. Here αopt is the spectral index of the optical continuum.

Using the regression results, lUV was then estimated for the z < 0.3 sources based

on their optical luminosity and spectral index. The optical continuum parameters
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were found in the same manner as for the UV continuum, except that we used

the Fe emission template from Véron-Cetty et al. (2004). For sources within 0.3 <

z < 1.2 the scatter about the regression fit resulted in a ‘measurement’ error on

lUV of ≈ 0.07 dex. For comparison, typical measurement errors on lUV for the

z > 0.3 sources are ≈ 0.001–0.01 dex, ignoring variability.

6.3.3 αox

We calculate the ratio of optical to X-ray flux (Tananbaum et al., 1979) as

αox = − log(fX/fUV )

log(νX/νUV )
, (6.2)

where fX and fUV are the rest-frame flux densities at 2 keV and 2500Å, respec-

tively. If the flux density from 2500Å to 2 keV is a simple power law, then αox is

the spectral slope of this continuum, and thus αox may be thought of as a crude

estimate of the shape of the ionizing continuum. The parameter αox is an impor-

tant parameter for model comparison, as it summarizes the amount of energy

emitted in the X-ray region (most likely a Comptonized component), compared

with that emitted in the optical-UV (accretion disk component). The mean αox

of our sample is ᾱox = 1.49 ± 0.01, and the dispersion of αox is estimated to be

σox ≈ 0.19. Because some of the data points are censored, these estimates of the

mean and dispersion of αox were obtained by maximum-likelihood assuming a

normal density. The Kaplan-Meier estimate of the mean (e.g., Feigelson & Nel-

son, 1985), a non-parametric estimate, gives ᾱox = 1.49 ± 0.06.

In Figure 6.3 we show the distributions of lX and αox as functions of lUV and

z. We report the X-ray and UV parameters in Table 6.3.
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Figure 6.3 The distribution of lX and αox as functions of lUV and z. Red arrows

denote upper limits for lX and lower limits of αox.



283

Table 6.3. X-ray and UV Parameters

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

0002+0049 1.353 2.82 41.87 ± 3.08 2.20 ± 0.11 45.87 44.88 1.38 1.33

0006-0015 1.725 3.16 13.26+2.04
−1.85 1.81+0.22

−0.22 46.12 44.61 1.58 0.74

0022+0016 0.575 2.70 11.40 ± 0.88 2.30 ± 0.20 44.97 43.35 1.62 0.52

0027+0026 0.205 3.01 47.63 ± 7.30 1.68 ± 0.27 43.90 43.04 1.33 . . .

0031+0034 1.735 2.41 12.24 ± 1.49 2.21 ± 0.18 45.98 44.62 1.52 0.15

0050-0053e 4.332 2.70 2.66+0.56
−0.50 2.02+0.33

−0.32 46.54 44.84 1.65 0.98

0057+1450 0.624 4.35 < 3.69 . . . 45.11 < 42.99 > 1.81 0.64

0059+0003 4.178 3.01 4.65+1.62
−1.33 0.91+0.44

−0.44 46.58 45.05 1.59 1.12

0106+0048 4.437 3.16 7.85+1.70
−1.49 1.95+0.31

−0.30 46.83 45.33 1.57 0.60

0113+1531 0.576 4.40 50.18 ± 3.63 1.91 ± 0.08 45.05 44.04 1.39 0.53

0113+1535 1.807 4.38 24.49 ± 1.37 2.29 ± 0.10 46.17 44.98 1.46 0.53

0115+0020 1.276 3.34 26.95 ± 1.77 1.92 ± 0.11 45.55 44.61 1.36 0.64

0133+0400 4.150 3.01 7.84+1.34
−1.21 2.16+0.28

−0.27 46.98 45.27 1.66 1.00

0134+3307 4.530 4.67 5.29+1.31
−1.14 2.24+0.42

−0.40 47.11 45.18 1.74 0.65

0148+0001 1.705 2.88 14.12+2.29
−2.07 2.39+0.24

−0.24 46.29 44.62 1.64 0.16

0148-0002 0.930 2.75 31.91 ± 3.49 2.31 ± 0.19 45.40 44.34 1.40 0.54

0152+0105 0.647 2.80 27.70 ± 2.75 2.50 ± 0.18 44.90 43.85 1.40 0.18

0153+0052 1.161 2.69 9.06 ± 1.44 2.19 ± 0.26 45.49 44.05 1.56 0.59

0156+0053 1.652 2.69 18.15 ± 2.12 1.36 ± 0.15 46.01 44.63 1.53 1.38

0159+0023 0.163 2.13 775.4 ± 12.4 2.39 ± 0.03 44.90 43.86 1.40 . . .

0201-0919 0.661 2.08 46.05 ± 2.87 2.16 ± 0.12 45.40 44.12 1.49 0.90
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

0208+0022 1.885 2.78 18.49 ± 2.65 1.56 ± 0.20 46.69 44.79 1.73 0.49

0209+0517 4.140 4.57 6.39+1.27
−1.12 2.72+0.33

−0.31 47.20 45.18 1.78 0.68

0232-0731 1.164 3.30 < 7.39 . . . 45.24 < 43.95 > 1.50 1.41

0241-0811 0.979 2.90 < 6.24 . . . 44.87 < 43.70 > 1.45 0.63

0241+0023 0.790 3.37 9.46+2.45
−2.12 2.01+0.48

−0.44 44.55 43.64 1.35 0.78

0244-0134 4.053 3.52 2.14+0.62
−0.53 1.52+0.41

−0.39 47.22 44.68 1.97 1.06

0248+1802 4.430 9.02 13.64+3.43
−2.94 1.97+0.39

−0.37 46.97 45.57 1.54 0.34

0259+0048 0.892 7.22 12.56+2.18
−1.94 1.02+−1.0

−1.02 45.11 43.90 1.46 0.58

0311-1722 4.000 3.81 < 4.14 . . . 47.21 < 44.95 > 1.87 1.90

0314-0111 0.387 5.78 97.12 ± 9.62 2.75 ± 0.17 44.88 43.79 1.42 . . .

0403-1703 4.236 2.29 4.16+1.20
−1.01 1.39+0.37

−0.37 46.62 45.01 1.62 1.26

0419-5716 4.460 1.67 2.73+1.01
−0.82 2.13+0.51

−0.49 47.20 44.88 1.89 2.18

0755+2203 0.400 5.60 23.69 ± 2.84 1.38 ± 0.10 44.55 43.43 1.43 . . .

0755+4058 2.417 4.78 5.36+1.52
−1.31 3.22+0.57

−0.55 46.16 44.56 1.62 0.27

0755+4111 0.967 4.98 4.53+1.51
−1.27 2.09+0.61

−0.55 45.78 43.54 1.86 0.20

0755+4056 2.348 4.73 5.86+1.55
−1.34 2.75+0.56

−0.53 46.03 44.57 1.56 0.45

0819+3649 0.736 4.82 45.20 ± 5.24 3.08 ± 0.26 45.00 44.18 1.32 0.38

0832+5243 1.573 3.87 < 2.23 . . . 45.58 < 43.74 > 1.71 0.30

0845+3431 2.046 3.41 < 8.40 . . . 45.60 < 44.59 > 1.39 0.62

0849+4457 1.259 2.75 9.43 ± 0.37 2.07 ± 0.07 45.08 44.15 1.36 0.38

0849+4500 1.592 2.70 15.33 ± 0.57 2.10 ± 0.06 45.94 44.61 1.51 0.53
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

0910+5427 0.526 2.03 80.75 ± 1.73 2.11 ± 0.04 44.85 44.13 1.28 -0.3

0912+0547 3.241 3.65 3.40 ± 0.56 1.94 ± 0.31 46.75 44.67 1.80 0.67

0914+5613e 4.035 2.89 0.69+0.24
−0.20 1.04+0.55

−0.52 46.14 44.18 1.75 1.43

0918+5139 0.185 1.36 20.66 ± 9.26 0.92 ± 0.33 44.15 42.75 1.54 . . .

0918+0647 0.821 3.65 22.58 ± 3.32 2.81 ± 0.28 45.21 44.03 1.45 0.68

0933+5515 1.864 2.00 18.05 ± 1.18 2.08 ± 0.11 45.83 44.85 1.37 0.81

0941+5948 0.968 2.19 100.8 ± 5.90 2.44 ± 0.12 46.28 44.89 1.54 0.48

0950+5619 1.913 1.19 7.36+1.40
−1.25 2.87+0.38

−0.36 45.20 44.46 1.28 0.68

0951+5940 1.057 1.67 17.92+2.76
−2.51 1.80+0.25

−0.24 45.43 44.23 1.46 0.55

0951+5944 2.339 1.51 4.95+1.17
−1.01 2.01+0.38

−0.36 45.60 44.49 1.43 0.21

0952+5152 0.554 0.88 51.81 ± 1.52 2.29 ± 0.06 44.97 43.97 1.38 0.60

0952+5151 0.862 0.86 59.38 ± 1.62 2.16 ± 0.05 45.59 44.53 1.41 0.88

0955+5935 0.912 1.50 14.05+2.37
−2.13 2.20+0.30

−0.30 45.08 43.97 1.42 0.69

0955+5940 4.340 1.33 3.47+0.89
−0.76 1.87+0.34

−0.33 46.76 44.96 1.69 0.47

0955+4116 3.420 0.64 3.93+0.83
−0.73 2.15+0.38

−0.36 46.16 44.78 1.53 0.23

0955+4109 2.308 0.59 9.68 ± 1.36 2.13 ± 0.22 46.09 44.82 1.49 0.25

0956+4110 1.887 0.72 2.28+0.63
−0.54 2.50+0.53

−0.50 45.28 43.94 1.51 -0.5

0958+0734 1.885 2.95 59.53 ± 11.9 2.22 ± 0.26 46.10 45.40 1.27 0.72

0958+0747 3.219 2.97 2.77+0.82
−0.70 2.56+0.57

−0.54 45.82 44.56 1.48 0.44

0958+0745 1.488 3.05 18.66 ± 1.47 2.20 ± 0.19 45.46 44.64 1.31 0.72

1002+5542 1.151 0.84 13.75 ± 2.00 1.27 ± 0.15 45.76 44.19 1.60 1.04
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

1003+4736 2.934 0.93 4.83 ± 0.64 1.53 ± 0.17 45.88 44.60 1.49 0.52

1013-0052 0.276 3.49 133.5 ± 10.1 2.74 ± 0.12 44.55 43.56 1.38 . . .

1019+4737 2.945 0.99 3.82+0.78
−0.69 2.31+0.28

−0.27 46.04 44.61 1.55 0.53

1023+0415 1.809 2.89 8.66 ± 0.68 2.05 ± 0.11 45.65 44.50 1.45 0.55

1030+0524 1.183 2.72 2.27+0.67
−0.56 1.21+0.40

−0.39 45.85 43.46 1.92 0.48

1032+5738 1.969 0.59 14.95 ± 0.81 1.73 ± 0.07 45.15 44.77 1.15 0.73

1032+5800 0.687 0.61 < 1.00 . . . 44.55 < 42.52 > 1.78 0.57

1036-0343 4.509 4.77 4.96+1.38
−1.18 2.67+0.50

−0.45 47.09 45.15 1.74 0.62

1038+4727 1.047 1.47 2.61+0.74
−0.64 0.92+0.40

−0.40 45.55 43.39 1.83 0.69

1042+0100 1.401 3.95 16.10+3.88
−3.36 2.25+0.36

−0.35 45.85 44.51 1.51 0.61

1044+5921 1.292 0.70 10.00 ± 0.80 1.85 ± 0.11 45.45 44.19 1.48 0.41

1049+5750 1.106 0.60 11.66+2.65
−2.31 1.79+0.40

−0.38 45.42 44.10 1.51 0.72

1050+5702 3.273 0.59 5.70+1.38
−1.20 2.45+0.49

−0.46 45.92 44.89 1.40 0.81

1050+5738 1.281 0.59 13.89+2.61
−2.32 2.68+0.36

−0.35 45.38 44.33 1.41 0.53

1052+5724 1.112 0.60 35.22 ± 4.58 1.80 ± 0.18 45.76 44.58 1.45 0.72

1053+5735 1.205 0.59 42.26 ± 4.19 1.86 ± 0.15 45.29 44.74 1.21 1.37

1054+5740 1.101 0.59 10.45+2.30
−2.01 2.12+0.37

−0.36 45.72 44.04 1.64 0.54

1054+5720 2.972 0.59 < 7.75 . . . 45.91 < 44.93 > 1.38 0.62

1055+5704 0.696 0.60 25.93 ± 3.29 2.12 ± 0.20 44.92 43.93 1.38 0.87

1056+5722 0.286 0.60 10.45+2.24
−1.97 0.28+0.32

−0.33 44.01 42.66 1.52 . . .

1057+4555 4.100 1.16 12.05+2.17
−1.94 2.08+0.27

−0.27 47.67 45.44 1.86 2.14
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

1109+0900 1.674 2.79 5.56+1.29
−1.13 1.67+0.38

−0.36 45.60 44.20 1.54 0.85

1111+5532 1.004 0.78 14.82 ± 0.91 3.23 ± 0.10 45.50 44.10 1.54 0.71

1114+5315 1.213 0.96 18.34 ± 2.19 1.65 ± 0.16 45.29 44.38 1.35 2.11

1115+5309 0.877 0.97 < 2.21 . . . 45.53 < 43.13 > 1.92 0.56

1129-0137 1.295 3.58 31.69 ± 3.31 1.54 ± 0.15 45.71 44.67 1.40 0.75

1129-0150 1.785 3.56 11.30+2.37
−2.09 2.11+0.37

−0.35 45.15 44.57 1.22 0.97

1136+0159 0.766 2.50 21.23 ± 2.44 2.03 ± 0.19 44.94 43.96 1.38 0.73

1136+0158 1.471 2.61 2.95+0.89
−0.75 1.45+0.39

−0.40 46.10 43.80 1.88 0.57

1136+0207 0.239 2.61 22.37 ± 4.05 1.63 ± 0.26 44.04 42.87 1.45 . . .

1202-0129 0.150 2.22 222.5 ± 5.86 3.02 ± 0.04 44.05 43.09 1.37 . . .

1204+0150 1.927 1.88 7.29 ± 0.63 2.10 ± 0.15 45.93 44.50 1.55 0.29

1208+0016 1.063 1.99 14.11+2.56
−2.29 1.25+0.28

−0.27 45.21 44.14 1.41 0.92

1213+0252 0.641 1.74 6.82 ± 0.99 2.10 ± 0.25 44.64 43.27 1.53 0.98

1214+0055 0.396 1.95 87.02 ± 7.77 2.44 ± 0.13 44.67 43.82 1.33 . . .

1215-0034 0.758 2.07 28.80 ± 1.72 2.08 ± 0.11 44.69 44.07 1.24 0.86

1218+0546 0.795 1.57 14.21 ± 2.11 1.28 ± 0.20 44.88 43.86 1.39 1.73

1220-0025 0.421 2.02 123.6 ± 2.93 1.45 ± 0.03 44.36 44.18 1.07 . . .

1223+1034 2.747 2.13 11.80 ± 0.81 1.59 ± 0.11 46.35 44.95 1.54 0.27

1226-0011 1.175 1.93 32.20 ± 2.91 2.43 ± 0.13 45.79 44.62 1.45 1.28

1228+4413 0.662 1.45 < 1.07 . . . 45.29 < 42.51 > 2.07 0.59

1228+4411 1.277 1.34 10.81 ± 1.18 2.12 ± 0.18 45.61 44.21 1.54 0.12
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

1230+0302 1.605 1.80 11.27+2.17
−1.93 1.61+0.29

−0.28 45.72 44.48 1.48 0.40

1230+0305 1.056 1.83 18.88+3.37
−3.02 2.37+0.32

−0.31 45.08 44.26 1.32 0.46

1230+0306 0.628 1.81 59.90 ± 6.60 2.03 ± 0.17 44.99 44.20 1.30 0.33

1230+0308 1.843 1.81 6.85+2.35
−1.92 2.61+0.59

−0.57 45.63 44.39 1.48 0.29

1230+0305 0.428 1.83 12.38+3.41
−2.92 1.73+0.52

−0.48 44.28 43.13 1.44 . . .

1236+6215 2.587 1.52 1.19 ± 0.12 1.79 ± 0.19 45.53 43.95 1.61 0.55

1237+6203 2.068 1.44 3.54 ± 0.08 1.85 ± 0.03 45.66 44.21 1.56 1.02

1242+0249 1.459 1.92 12.89 ± 0.58 2.32 ± 0.08 45.58 44.47 1.43 0.06

1245-0027 1.693 1.73 44.48 ± 6.08 1.80 ± 0.19 45.96 45.10 1.33 0.72

1255+5652 1.804 1.25 7.06 ± 0.48 2.44 ± 0.11 45.74 44.46 1.49 0.34

1255+5650 1.374 1.25 < 0.56 . . . 45.23 < 43.00 > 1.85 0.28

1258-0143 0.967 1.54 84.49 ± 2.06 2.30 ± 0.05 46.03 44.81 1.47 0.56

1259+0102 0.395 1.62 < 10.05 . . . 44.48 < 42.96 > 1.58 . . .

1311+0031 0.429 1.84 11.60+3.33
−2.80 2.58+0.46

−0.44 44.82 43.11 1.66 . . .

1317+3531 4.360 0.99 < 6.84 . . . 46.54 < 45.26 > 1.49 0.90

1321+0038e 4.716 1.88 1.49+0.36
−0.31 2.50+0.38

−0.37 46.60 44.67 1.74 2.04

1344-0000 1.096 1.89 3.27+0.68
−0.60 1.80+0.32

−0.30 45.47 43.53 1.74 0.43

1411+5217 2.883 1.33 5.79 ± 0.50 1.82 ± 0.14 46.16 44.75 1.54 0.57

1411+5205 1.084 1.40 4.80 ± 2.07 2.44 ± 0.49 45.30 43.70 1.61 0.73

1413+0000e 4.078 3.15 1.67+0.42
−0.37 1.93+0.43

−0.39 46.46 44.58 1.72 1.66

1417+4456 0.114 1.13 380.7 ± 5.53 2.38 ± 0.03 44.11 43.21 1.35 . . .
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

1419+4709 2.288 1.56 26.56 ± 2.06 1.85 ± 0.12 46.83 45.19 1.63 1.25

1424+4214 1.608 1.25 26.00 ± 2.42 1.97 ± 0.15 45.63 44.84 1.30 -0.0

1424+4210 2.218 1.25 23.20 ± 2.15 2.39 ± 0.12 46.55 45.21 1.51 0.35

1432-0059 1.027 3.39 174.2 ± 5.15 2.06 ± 0.05 45.88 45.19 1.26 0.78

1433+0227 2.072 2.75 9.59+2.54
−2.16 2.36+0.46

−0.44 45.54 44.66 1.34 0.75

1434+0227 1.711 2.76 10.73+2.19
−1.94 2.05+0.34

−0.32 45.60 44.51 1.42 0.08

1438+0341 1.737 2.62 12.71 ± 0.93 2.11 ± 0.13 46.15 44.63 1.59 1.22

1438+0335 0.734 2.62 20.96 ± 3.70 1.70 ± 0.17 45.18 43.92 1.48 0.88

1442+0110 4.560 3.36 5.25+0.82
−0.74 1.98+0.23

−0.23 46.38 45.19 1.46 0.71

1443+5856 4.260 1.56 2.74+0.80
−0.67 2.29+0.42

−0.40 46.97 44.84 1.82 0.29

1444-0123e 4.179 4.03 1.59+0.53
−0.44 2.95+0.77

−0.66 46.63 44.58 1.79 1.60

1445+0129 1.846 3.48 8.75+1.42
−1.28 2.45+0.29

−0.28 45.61 44.50 1.43 0.17

1448+4738 2.894 2.05 3.61+0.86
−0.74 1.72+0.32

−0.31 46.29 44.57 1.66 1.12

1448+0015 0.832 3.58 18.64+4.73
−4.05 2.24+0.48

−0.45 45.17 44.00 1.45 0.60

1449+0024 0.441 3.58 31.72+5.06
−4.58 2.50+0.27

−0.27 44.55 43.57 1.38 . . .

1452+4304 0.296 1.69 20.43 ± 0.99 1.97 ± 0.07 44.07 42.97 1.42 . . .

1452+4308 1.704 1.64 17.64 ± 1.90 1.78 ± 0.15 45.63 44.70 1.36 0.20

1453+3352e 4.191 1.22 2.39+0.56
−0.49 1.38+0.35

−0.34 46.23 44.76 1.56 2.05

1511+5659 1.031 1.54 < 17.19 . . . 45.80 < 44.19 > 1.62 0.61

1515+5521 1.844 1.44 4.02+1.63
−1.44 4.56+0.90

−0.90 45.30 44.16 1.44 0.33

1539+4313 0.348 2.03 64.94 ± 2.34 1.96 ± 0.06 44.27 43.63 1.24 . . .
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

1543+5405 0.245 1.31 58.57 ± 5.41 2.08 ± 0.15 44.28 43.22 1.41 . . .

1545+4846 0.400 1.61 139.3 ± 10.9 2.23 ± 0.13 45.59 44.06 1.59 . . .

1605-0109 1.573 8.88 28.07 ± 3.18 2.03 ± 0.18 45.85 44.85 1.38 0.62

1618+3456 1.922 1.46 7.21+1.96
−1.66 1.76+0.44

−0.42 46.10 44.46 1.63 1.60

1640+4644 0.537 1.74 20.91 ± 0.73 2.13 ± 0.06 45.07 43.56 1.58 0.36

1641+4649 0.695 1.77 19.47 ± 1.22 2.11 ± 0.11 44.79 43.81 1.38 0.67

1641+4000 1.003 1.02 12.38 ± 0.95 1.74 ± 0.12 45.72 44.02 1.65 0.63

1657+3524 2.329 1.75 4.55 ± 0.68 1.69 ± 0.24 45.85 44.41 1.55 0.45

1701+6412 2.736 2.59 14.40 ± 0.93 2.04 ± 0.10 47.41 45.15 1.86 0.37

1702+3405 2.038 2.04 2.55 ± 0.29 1.37 ± 0.16 46.01 43.97 1.78 1.11

1703+6045 0.285 2.32 49.18 ± 3.43 2.18 ± 0.13 44.04 43.27 1.30 . . .

1708+6154 1.415 2.49 65.18 ± 4.69 2.00 ± 0.14 46.03 45.11 1.35 1.15

1719+2732 1.447 3.68 28.89 ± 3.64 2.22 ± 0.21 45.72 44.80 1.35 1.11

1720+2638 1.141 3.86 10.63 ± 0.94 2.40 ± 0.15 45.33 44.10 1.47 0.20

1735+5355 0.956 3.39 59.55 ± 3.96 1.98 ± 0.12 45.62 44.65 1.37 1.01

1737+5828 1.776 3.51 14.65+3.51
−3.03 2.39+0.40

−0.38 45.80 44.68 1.43 0.79

1738+5837 1.279 3.59 3.04+1.16
−0.94 2.23+0.55

−0.53 45.97 43.66 1.89 1.41

2215-1611 3.990 2.65 5.23+1.53
−1.29 1.30+0.38

−0.38 46.81 45.05 1.68 0.80

2238-0921 3.259 4.64 < 23.19 . . . 46.70 < 45.50 > 1.46 0.31

2238-0937 1.472 4.78 < 69.50 . . . 45.58 < 45.17 > 1.16 1.07

2239-0933 1.818 4.63 < 57.74 . . . 45.84 < 45.30 > 1.21 0.63
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6.4 DEPENDENCE OF αox ON LUV AND z

6.4.1 Regression Results

In order to study the relationship between αox, optical/UV luminosity, and red-

shift, we performed a multivariate regression of αox on z and lUV . In our anal-

ysis, we perform the regression using several different parameteric models for

the redshift and lUV dependencies. We compare the different models simultane-

ously using the Kullback-Leibler information (KLI; Kullback & Leibler 1951), a

well-studied method for comparing data to models from information theory. In

Appendix D, we describe KLI minimization in detail, and compare this approach

to classical statistical methods for testing for significance.

Currently, there is no a priori reason to assume a certain parameteric form for

a dependence αox on LUV and z. Initially, we are interested in testing for the

existence of a dependence of αox on redshift and on UV luminosity, and we are

not concerned with the particular parameteric forms of the possible redshift and

luminosity dependencies. As described in Appendix D, the KLI is a particularly

powerful tool for comparing and testing several different parameteric models

simultaneously, and is valid even if the ‘correct’ parameterization is not among

those considered.

We compare models with redshift dependencies of the formLX ∝ e−t(z)/t0 , LX ∝

ez/z0 , and LX ∝ (1 + z)βζ , and LUV dependencies of the form LX ∝ Lβl
UV . Here,

t(z) is the age of the universe at z in units of Gyr. In addition, Steffen et al. (2006)

found some evidence for a nonlinear dependence of αox on lUV , and to test this

we include models that contain a quadratic term for lUV .

We also tested for including the UV spectral slope, αUV , as one of the inde-

pendent variables. However, we found no evidence that αox depended on αUV .

Each of the statistical models considered here may be expressed as a normal
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Table 6.3—Continued

Source Redshift Gal. NH
a n0

b ΓX
c log νLν(2500Å) log νLν(2 keV) αox αUV

d

1020 cm−2 10−6 cm−2 s−1 keV−1 ergs s−1 ergs s−1

2249-0808 0.457 3.46 55.44 ± 4.29 1.81 ± 0.11 44.11 43.86 1.09 . . .

2337+0025 2.054 3.81 6.89+1.59
−1.39 2.29+0.47

−0.43 45.87 44.50 1.53 0.18

2337+0022 1.376 3.30 3.87+1.46
−1.18 2.93+0.70

−0.65 45.48 43.85 1.63 0.99

2337+0026 1.703 3.80 21.37 ± 3.03 2.67 ± 0.28 45.84 44.90 1.36 0.15

2348+0107 0.718 3.98 28.51 ± 1.28 2.05 ± 0.08 45.19 44.01 1.45 0.32

2357+0043e 4.362 3.33 2.00+0.51
−0.44 1.58+0.40

−0.38 46.54 44.72 1.70 1.74

Note. — Quoted errors are at 68% (1σ) confidence.

aGalactic NH , inferred from COLDEN (Dickey & Lockman, 1990).

bWhen fitting n0 for the sources with < 50 counts, we fix ΓX = 1.9.

cThe photon index could not be estimated for those sources with upper limits.

dThe UV spectral slope could not be estimated for sources with z < 0.5.

eOne of seven new Chandra observations.
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density with variance σ2 and mean E(αox) = ᾱox(γ). Here, E(αox) is the expecta-

tion value of αox at a given lUV and z, and γ denotes the regression coefficients.

The five models considered differ in their description of ᾱox(γ):

Mz : ᾱox(γ) = γ0 + γllUV + γzz (6.3)

Mζ : ᾱox(γ) = γ0 + γllUV + γζ log(1 + z) (6.4)

Mt : ᾱox(γ) = γ0 + γllUV + γtt(z) (6.5)

Ml : ᾱox(γ) = γ0 + γllUV + γl2l
2
UV (6.6)

Ml+t : ᾱox(γ) = γ0 + γllUV + γl2l
2
UV + γtt(z). (6.7)

Here, we have introduced the notation that Mz stands for the model that param-

eterizes the average value of αox as depending linearly on redshift, and similarly

for the remaining four models. We do not include models with terms higher than

quadratic in lUV because such models were estimated to give a poorer fit to the

data (cf. § 6.4.4). Model Mt is almost identical to the paramerization used by sev-

eral other authors (e.g., Avni & Tananbaum, 1986; Wilkes et al., 1994, ,S06), with

the exception that other authors have used the fractional cosmological look-back

time, τ(z) = 1 − t(z)/t(0).

Because some of the values of lX are only upper limits, we employ the Expectation-

Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Aitken, 1981) to

calculate the maximum-likelihood solution for the regression parameters. These

parameters are the regression coefficients, γ, and the intrinsic variance about the

linear relationship, σ2. The likelihood functions for these five models are normal

densities with means given by Equations (6.3)–(6.7). The regression is carried out

directly on αox = 0.384(lUV − lX + 2.605) using computer routines coded by the

authors.
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The results of the regressions using the entire Chandra sample are

ᾱox = (−5.148 ± 1.293) + (0.147 ± 0.029)lUV − (0.014 ± 0.018)z, σ = 0.157(6.8)

ᾱox = (−7.048 ± 1.443) + (0.190 ± 0.033)lUV − (0.293 ± 0.137) log(1 + z),

σ = 0.155 (6.9)

ᾱox = (−8.816 ± 1.473) + (0.223 ± 0.031)lUV + (3.061 ± 0.890) × 10−2t(z),

σ = 0.151 (6.10)

ᾱox = (62.83 ± 30.48) − (2.816 ± 1.336)lUV + (3.226 ± 1.464) × 10−2l2UV ,

σ = 0.155 (6.11)

ᾱox = (24.22 ± 32.88) − (1.212 ± 1.428)lUV + (1.560 ± 1.552) × 10−2l2UV +

(2.684 ± 0.965) × 10−2t(z), σ = 0.151. (6.12)

For all of these models, αox increases (becomes more X-ray quiet) with increasing

luminosity and decreases (becomes more X-ray loud) with increasing redshift.

The intrinsic scatter about the relationships is estimated to be σ ∼ 0.15.

6.4.2 Evidence for low-redshift BAL QSOs in the Sample

The estimates for the regression parameters are derived via maximum-likelihood.

However, the likelihood functions assume that the residuals are normally dis-

tributed. If this assumption is not true, then it may bias our results. To test the

assumption of normality in the residuals, in Figure 6.4 we compare the cumu-

lative distribution function (CDF) of the standardized residuals for Mt with the

standard normal. The standardized residuals are the residuals normalized by the

intrinsic scatter. The CDFs for the other models were very similar. As can be seen,

there is evidence for a violation of the assumption of normality. A Kolmogorov-

Smirnov (KS) test confirmed this, finding a probability of ≈ 0.001–0.007 that

the maximum difference between the CDFs of the standardized residuals for the
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models and the standard normal is greater than that observed, assuming that the

two distributions are the same. In addition, inspection of the residuals reveals

that there are several sources that are significantly more X-ray quiet than would

be expected from Equations (6.8)–(6.13), and are therefore outliers. These sources

are all censored (i.e., not detected in the X-rays) and at z < 1.5. As noted in § 6.3,

the high column density of BAL QSOs gives them the appearance of being X-ray

weak. Furthermore, we are unable to remove BALs at z < 1.5. These two facts

suggests that the regression outliers are BALs, as they are unusually X-ray weak

and at z < 1.5.

To test the possibility that the z < 1.5 censored sources are dominated by

BALs, and thus affecting our regression analysis, we removed these 10 sources

and recalculated the regressions. Note that this number is consistent with the

expected number of BALs in the z < 1.5 sample (cf., § 6.3). While this may re-

move some non-BALs from the z < 1.5 sample, it is unlikely that removing a few

censored non-BALs from the fit will significantly affect the results, since these

sources are not expected to be outliers and the regression is dominated by the

detected sources. However, the BALs can have a non-negligible effect on the re-

gression even if they are censored because they have an additional absorption

component that contributes to the observed X-ray luminosity, and therefore are

not expected to follow the functional form assumed by the regression and can be

outliers. The existence of outliers has the effect of biasing the estimate of the in-

trinsic scatter upwards, inflating the uncertainties on the regression coefficients,

and therefore reducing the statistical significance of the regression coefficients.

After removing the z < 1.5 censored data points, we were left with a sample

of 164 sources, 157 (96%) of which are detected. Performing the regressions on
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Figure 6.4 Empirical cumulative distribution functions (CDF) of the standardized

residuals for the regression of αox on lUV and t(z) using the complete sample (top),

and after removing suspected BALs (all z < 1.5 censored data points, bottom).

The red line is the standard normal CDF, and the dashed lines denote the 95%

pointwise confidence interval on the empirical CDF. The CDF of the standard-

ized residuals for the full sample shows evidence of diverging from normality,

while the CDF of the sample with suspected BALs removed is consistent with

the assumption of normality.
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this second sample, we find

ᾱox = (−5.340 ± 1.097) + (0.150 ± 0.025)lUV − (0.004 ± 0.015)z, σ = 0.131(6.13)

ᾱox = (−7.152 ± 1.229) + (0.192 ± 0.028)lUV − (0.224 ± 0.116) log(1 + z),

σ = 0.129 (6.14)

ᾱox = (−9.273 ± 1.241) + (0.233 ± 0.026)lUV + (2.870 ± 0.750) × 10−2t(z),

σ = 0.125 (6.15)

ᾱox = (74.61 ± 25.17) − (3.349 ± 1.103)lUV + (3.827 ± 1.208) × 10−2l2UV ,

σ = 0.127 (6.16)

ᾱox = (40.97 ± 27.34) − (1.949 ± 1.187)lUV + (2.370 ± 1.288) × 10−2l2UV +(6.17)

(2.263 ± 0.813) × 10−2t(z),

σ = 0.124 (6.18)

The results are very similar to Equations (6.8)–(6.19), but the intrinsic scatter has

decreased and the significance levels of the regression coefficients are in general

higher. Note that Equations (6.16) and (6.19) are equivalent to the form LX ∝

e−t(z)/t0 , where the e-folding time is t0 = 5.75+4.98
−1.83 (95% confidence) Gyr for Mt

and t0 = 7.25+14.4
−2.96 (95% confidence) Gyr for Ml+t.

The CDF of the standardized residuals for Equation (6.16) is also shown in

Figure 6.4. As can be seen, the residuals no longer show any evidence for a

significant divergence from normality, suggesting that we have minimized BAL

contamination by removing the z < 1.5 censored sources. A KS test also found

that the empirical distribution of the standardized residuals for all parameteriza-

tions considered are not significantly different than the standard normal, having

p-values of p ∼ 0.1.
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6.4.3 αox Depends on Both LUV and z.

It is apparent from Equations (6.14)–(6.19) that there is statistically significant ev-

idence for a dependence of αox on lUV (> 6σ significance). In addition, there is

evidence from model Mt that αox depends on cosmic time (3.8σ significance), and

evidence from model Ml that the αox–lUV relationship is nonlinear (3.2σ signifi-

cance). While the coefficients for both parameterizations imply that our data are

inconsistent with the simple form ᾱox = γ0 + γllUV , it is unclear which parame-

terization is the preferred one. In particular, because there is a strong correlation

between lUV and z, it is possible that the αox–t(z) relationship is simply correct-

ing for the nonlinearity in the αox–lUV relationship, and is thus a spurious result.

Because the models are not nested, (i.e. one is not merely a subset of the next),

we cannot use classical statistical methods, such as the likelihood ratio or F -test,

to compare their relative merits (e.g., Efron, 1984; Freeman et al., 1999; Protassov

et al., 2002). Instead, we adopt an approach that attempts to find the model that

minimizes the ‘distance’ to the true probability density that gives rise to the ob-

served data. We do this by finding the model that minimizes the Kullback-Leibler

information (KLI; see Appendix D).

We use the Akaike Information Criterion (AIC, Akaike, 1974) to estimate the

difference in KLI between models. We estimate the difference in KLI between two

models by multiplying their difference inAIC by 1/2. Terms of order higher than

l2UV increased the AIC for models Ml and Ml+t, and were not included in the

analysis. Denoting the maximum likelihood estimate of the model parameters

as θ̂, and the estimated KLI as H(θ̂), we find H(θ̂z) − H(θ̂l+t) = 7.599, H(θ̂ζ) −

H(θ̂l+t) = 5.798, H(θ̂l)−H(θ̂l+t) = 2.770, and H(θ̂t)−H(θ̂l+t) = 0.677. Here, H(θz)

denotes the KLI for model Mz, and likewise for H(θζ), H(θl), H(θt), and H(θl+t).

Model Ml+t is best supported by the empirical evidence.
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Plots showing the residuals and partial residuals for the Ml+t regression are

shown in Figure 6.5. To visualize the result, Figure 6.6 shows a 3-dimensional plot

of the best fit for this model. The partial residual plots display the dependence

of αox on LUV , after accounting for the dependence on cosmic time, and the de-

pendence of αox on z, after accounting for the dependence on LUV . Both of these

figures correspond to the regression results after removing the suspected BALs.

Also shown in Figure 6.5 are non-parametric fits to the residuals, calculated us-

ing a locally-weighted average based on a Gaussian smoothing kernel; the kernel

width was chosen using generalized cross-validation (e.g., see Hastie, Tibshirani,

& Friedman, 2001). As can be seen, according to this model the nonlinearity in

the αox–lUV dependence, if real, is such that αox increases (becomes more X-ray

quiet) faster at higher lUV . This trend is in agreement with the results of Steffen

et al. (2006), who found evidence that the slope of the αox–lUV correlation may be

steeper at higher lUV .

Based on theAIC, model Ml+t, which contains the t(z) parameterization with

a quadratic lUV term, appears to provide the best description of our data, fol-

lowed by the t(z) parameterization with only a linear lUV term.

6.4.4 Effects of Sampling and Nonlinear Dependence of αox on Luminosity

To assess how our estimate of the KLI varies under sampling from the underly-

ing joint distribution of (αox, lUV , z), we use the non-parameteric bootstrap (Efron,

1979). We drew 104 bootstrap samples and performed the regression for each pa-

rameterization on each bootstrap sample. We then estimated the KLI in the same

manner, with the exception that we now use the sample mean of the difference

in log-likelihoods of the original sample, evaluated at the maximum likelihood

estimate of θ based on the bootstrapped samples. The sampling distributions of

the differences in KLI between Mz,Mζ ,Ml, and Mt, with respect to Ml+t, are
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Figure 6.5 The residuals of the αox regression for model Ml+t, shown as a function

of the fitted αox, and partial residuals shown as functions of LUV and z. The

partial residual plots show the dependence of αox on LUV or z, after accounting

for the dependence of αox on z or LUV . Also shown are kernel-smoother fits to

the residuals (solid blue lines), as well as approximate 95% pointwise confidence

intervals on the kernel-smoother fits (dashed blue lines).
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Figure 6.6 The 3-dimensional distribution of αox, lUV , and z. The surface is the

best fit to the data, obtained with model Ml+t. Red denotes data points that fall

above the fit, green denotes data points that fall below the fit.
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shown in Figure 6.7. The t(z) parameterization with quadratic lUV term, Ml+t,

had the smallest estimated KLI for ≈ 99.9% of the bootstrap samples. Therefore,

the preference for Ml+t is unlikely to have resulted from fluctuations caused by

random sampling, and thus it appears that this parameterization provides the

best description of our data.

It is unlikely that the evidence for evolution is a result of nonlinearity in lUV .

Assuming that there is no dependence of αox on z, we can use a suitably large

enough polynomial expansion of lUV to approximate any smooth nonlinear de-

pendence of αox on lUV . However, as mentioned above, model Ml had the best

AIC among the set of polynomial expansions in lUV , and thus our data does not

prefer terms of order higher than l2UV . Therefore, Ml should be viewed as the best

approximation to the αox–lUV relationship that is supported by our data without

overfitting, and assuming that αox is independent of z. However, because the

models that included t(z) had an AIC lower than Ml, and because Ml had an

AIC lower than models that included terms of higher order, if follows that mod-

els Ml+t and Mt are preferred by our data over any polynomial expansion of αox

as a function of lUV . This is not to say that models Ml+t and Mt are preferred

over any smooth nonlinear function of lUV , but that if such a function exists, it

is unlikely to differ significantly from Ml. The nonlinear effects are not extreme,

and in fact are not ‘statistically significant’ in the classical sense. However, while

there is not enough evidence in the data to reject a null hypothesis that αox is lin-

ear in lUV and t(z) at, say, > 2σ significance, the empirical evidence supports a

nonlinear dependence of αox on lUV at a given z over a linear dependence.

6.4.5 Effect of Variability and Measurement Error on the Results

Measurement error or variability may induce false correlations between param-

eters. In this section, we consider two effects. The first is especially important
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Figure 6.7 Sampling distributions of the difference in Kullback-Leibler informa-

tion relative to the t(z) parameterization with quadratic lUV term, Ml+t, as deter-

mined from bootstrapping. Shown are the estimated distributions of the differ-

ence in KLI between Mz and Ml+t (thin solid line), Mζ and Ml+t (dot-dashed

line), Ml and Ml+t (dashed line), and Mt and Ml+t (thick solid line). As can

be seen, the t(z) parameterization with quadratic lUV term is almost always pre-

ferred.
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when many sources are near the flux limit of the sample, and when the number

of sources increases strongly with decreasing flux. In the second case, a bias can

result even if all the sources are far above the flux limit.

For the first case, we argue that the expected tendancy would be for αox to

increase with increasing redshift, the opposite of what we claim from the data.

Consider the possiblity that the sources are variable. Assume for simplicity of

argument that the sources vary around some mean flux in all spectral bands, and

that a particular source spends an equal amount of time brighter than the mean

and dimmer than the mean. Then the sources that were discovered by SDSS near

the flux limit are preferentially observed in their ‘bright’ state. By the time we

observed them with Chandra, they will likely no longer be in their ‘bright’ state,

and thus may be systematically X-ray quieter. Thus we expect the sources near

the flux limit to appear fainter in X-rays on average than they really are. Since

most of the sources near the flux limit are at high redshift, the tendency may be

for αox to increase (quasars are less X-ray bright) with redshift. Since this is the

opposite of what we see, variability of sources near the flux limit is not producing

the result.

For measurement error, the qualitative argument is similar. Near the flux

limit, random errors in photon counts result in more sources just below the limit

being randomly included in the sample than sources above the limit being ran-

domly excluded, provided that the number of sources is an increasing function

of decreasing flux limit (which is the case here). Thus, the SDSS selection would

again be biased towards sources with optical fluxes that appear brighter in opti-

cal than they really are. Chandra then measured X-ray fluxes for essentially all

the sources. Thus, we expect the sources near the flux limit to be systematically

more X-ray faint than they really are. Again, this is the opposite of what we see
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in the data, so this Malmquist-type bias is not important.

For the second case, measurement errors or variability may induce false cor-

relations even if all sources are detected far above the flux limit. However in this

case, Monte Carlo simulations can be carried out to see how important the effect

might be. Measurement errors on the independent variables can bias the esti-

mates of the regression coefficients (e.g., Akritas & Bershady, 1996; Fox, 1997), and

errors on the dependent variable can bias the coefficient estimates for censored

regression. When the dependent variable is measured with error and/or vari-

ability, the measurement error and variability inflate the observed variance in the

regression residuals, biasing the estimate of the intrinsic scatter, σ2. For ordinary

least-squares this is not a problem, since the estimate for the intrinsic scatter, σ2,

and the estimates of the regression coefficients, γ, are statistically independent.

However, for the censored regression model, the estimates of the intrinsic scatter

and the coefficients are no longer statistically independent, and the bias in the

intrinsic scatter estimate also carries over to the coefficient estimates (Stapleton

& Young, 1984). These facts are confirmed by Monte Carlo simulations, which

have shown that the observed relationship between lX and lUV can differ from the

intrinsic relationship when the observed lX and lUV differ significantly from the

intrinsic lX and lUV (e.g., Yuan et al., 1998b). Since the UV and X-ray data are

measured with error, we are not fitting the intrinsic distribution of lX given lUV

and z, but rather the distribution of lX + εX at a given lUV + εUV and z, where εX
and εUV are random error terms. The errors for lUV are the usual measurement

errors from the continuum fitting and are very small in our analysis, with typical

values of σUV ≈ 0.001–0.01 dex. However, the errors for lX include the contribu-

tion from measurement errors and from variability. The errors from variability of

the X-ray emission arise from the fact that the X-ray and optical observations are
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not simultaneous. We are interested in the distribution of lX at a given lUV and z;

however, because the X-ray observations are not simultaneous with the optical,

we do not observe the value of lX given lUV for each source, but some value of

lX which has varied from the original X-ray luminosity at the time of the optical

observations.

Typical long-term X-ray variability for Seyfert 1s is 20%–40% with no obvious

trend with luminosity (Grupe et al., 2001; Uttley et al., 2002; Markowitz et al.,

2003). The measurement errors in lX for our sample are typically ∼ 0.07 dex.

Assuming X-ray variability amplitudes of 30% for the sources in our sample, this

implies typical uncertainties in the X-ray luminosity of ∼ 0.15 dex. Correcting the

scatter in αox for the contribution from X-ray variability and measurement error,

we find an implied intrinsic scatter in lX of σ ≈ 0.29 dex.

To assess whether the observed dependence of αox on z is the result of bias

arising from variability, we performed Monte Carlo simulations. Because we are

interested in testing if a spurious redshift dependence may occur due to this type

of bias, we simulate values of lX , given lUV , assuming LX ∝ L0.65
UV . Within the

framework of model Mt, this form corresponds to assuming γl = 0.134 and γt =

0, and therefore αox depends only on UV luminosity for these simulations. The

value of βl = 0.65 was chosen because a linear regression of lX on lUV found

LX ∝ L0.631±0.088
UV , consistent with the work of Avni & Tananbaum (1986), Wilkes

et al. (1994), Vignali et al. (2003b), Strateva et al. (2005), and Steffen et al. (2006).

The simulations were performed as follows. We first drew 164 values of lUV

and t(z) from a kernel estimate of their joint distribution (Silverman, 1986), after

removing the censored z < 1.5 sources. Then, we calculated values of lX , assum-

ing LX ∝ L0.65
UV . The random Gaussian scatter in lX about the lUV dependence

had a standard deviation of σ = 0.30 dex; this value was motivated by the re-
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gression results. To simulate the upper limits, we randomly censored 6 of the

values of lX , and increased their censored values by a small random amount. We

added random Gaussian noise to the uncensored values of lX to simulate the ef-

fects of variability and measurement error, where the standard deviation of this

noise was 0.15 dex. To simulate the effect of the measurement errors on lUV , we

also added random Gaussian noise of standard deviation 0.005 dex to the values

of lUV . We then performed censored regression on the simulated values. We re-

peated this procedure for 104 simulations, and calculated the average simulated

regression coefficients for model Mt, γ̄ = (γ̄l, γ̄t), and their covariance matrix, Σγ .

We calculate the χ2 of our regression coefficients for Mt estimated from our

sample, γ̂ = (0.233, 0.029), as χ2
2 = (γ̂ − γ̄)T Σ−1

γ (γ̂ − γ̄). Here, xT is the transpose

of x. We found a value of χ2
2 = 11.62; under the null hypothesis that γl = 0.134

and γt = 0, the probability of observing a χ2
2 this high or higher is ∼< 3 × 10−3.

Similar results were found by calculating the χ2 of the regression coefficients for

Ml+t. Therefore, our observed values of γt are highly unlikely to be a spurious

correlation resulting from variability and measurement error.

In summary, we argue that Malmquist-type biases from measurement error

or variability will induce a false correlation of αox with z in the opposite sense of

what is observed, and therefore are not causing our finding. We further showed

through simulations that measurement errors or variability for objects within the

sample are likewise not capable of inducing a false correlation between variables.

6.4.6 Rank Correlation Analysis

An alternative test for evolution of the X-ray emission for a given UV luminos-

ity is Kendall’s generalized partial τ (Akritas & Siebert, 1996). Kendall’s partial

τ has been used by Vignali et al. (2003b), Strateva et al. (2005), and Steffen et al.

(2006), where they did not find any evidence for a partial correlation between αox
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and z based on it, consistent with their parametric analysis. However, Kendall’s

partial τ has some undesirable properties that make it difficult to assess the sta-

tistical significance of the result (Nelson & Yang, 1988). In particular, conditional

independence between variables 1 and 2, given a third variable, does not neces-

sarily correspond to a value of τ = 0. Alternatively, conditional dependence of

two variables given a third does not necessarily correspond to a value of τ 6= 0.

Within the context of this work, this implies that a value of τ = 0 does not nec-

essarily correspond to the null hypothesis that αox (or LX) is independent of z at

a given LUV ; i.e., an expected value of τ = 0 does not necessarily result when

p(LX |LUV , z) = p(LX |LUV ).

In order to test the reliability of Kendall’s partial τ , we use Monte Carlo sim-

ulations to compare the distributions of τ under the assumption that αox only

depends on LUV , and under the assumption that αox depends on both LUV and

z. For each of the simulations, we calculated values of Kendall’s partial τ for αox

with z, ταz,l, and LX with z, τxz,l, controlling for the correlation between LUV and

z. We did this for two hypotheses. The ‘null’ hypothesis,H0, assumed LX ∝ L0.65
UV ,

and the alternative (i.e., ‘evolution’) hypothesis, H1, assumed LX ∝ L0.40
UV e

−t(z)/5.5.

The simulations under both hypothesis were performed in the same manner as

described in § 6.4.5. The results are shown in Figure 6.8.

Under the null hypothesis of no evolution, the expected values of τ for both

LX and αox are indeed non-zero. Using the sample average of the simulations

as an estimate of the expectation values, we find that the expected value of ταz,l

under the assumption that αox does not depend on z is 0.105. However, under

the assumption that αox does depend on z, the average simulated value of τ is

-0.001. Surprisingly, the expected value of τ for the αox–z partial correlation is

approximately equal to zero when αox depends on z, at least for the simulation
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Figure 6.8 Distribution of Kendall’s generalized partial τ for LX and z (top) and

αox and z (bottom) under the no-evolution hypothesis (solid line) and the evo-

lution hypothesis (dashed line). The vertical lines show the observed values of

τ for our sample. As can be seen, our value of τ is about as consistent with the

evolution model as with the no-evolution model. Also, note that τ 6= 0 under the

null hypothesis of no evolution (i.e., statistical independence of αox and z given

LUV ), and therefore it is incorrect to calculate significance levels with respect to

τ = 0.
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performed here. We investigate the behavior of Kendall’s partial τ further in

Appendix E.

For our quasar sample, we find a value of Kendall’s partial τ for LX and z

of τxz,l = 0.212, and for αox and z of ταz,l = 0.057. Our sample has a value of

Kendall’s regular τ between LUV and z of τlz = 0.686. As can be seen from the

distributions of the simulated τ , both of our observed values of τ are about as

equally consistent with evolution of the X-ray emission at a given LUV as with no

evolution. In fact, there is considerable overlap between the distributions of τ un-

der both hypotheses, thus making it difficult to distinguish between the two. Un-

fortunately, we are not able to decide in favor of either hypothesis using Kendall’s

generalized partial τ .

Based on the simulations, the lack of evidence for a significant correlation be-

tween αox and z based on Kendall’s generalized partial τ (Vignali et al., 2003b;

Strateva et al., 2005; Steffen et al., 2006) may be the result of an incorrect assump-

tion about the distribution of τ under the null hypothesis. However, it should be

noted that the parametric tests performed by Vignali et al. (2003b), Strateva et al.

(2005), and Steffen et al. (2006) also did not reveal any evidence for evolution of

αox. In addition, although we have shown that one can both incorrectly reject and

accept the null hypothesis based on the partial τ statistic, there has never been a

claimed rejection of the null hypothesis of no evolution in αox in previous studies.

6.5 RESULTS FOR ΓX

To investigate any dependence of the X-ray photon index, ΓX , on UV luminosity

and redshift, we performed a weighted linear regression of ΓX on lUV and log(1+

z) using all 157 detected sources. The weights are made up of a combination of
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the intrinsic scatter in ΓX and the measurement errors on ΓX . The results are

ΓX = −3.43(±3.879) + 0.125(±0.087)lUV − 0.678(±0.347) log(1 + z). (6.19)

Based on this regression, there is no significant evidence for a dependence of ΓX

on LUV or z, although the z dependence is marginally significant at ≈ 2σ.

Similar to αox, we experimented with parameterizing the z dependence using

t(z) and z. There was no noticeable difference between the different parameteri-

zations, although the log(1 + z) model gave slightly better results in the sense of

minimizing mean squared error. In addition, if any z dependence of ΓX is due

to a systematic hardening of the X-ray spectra at higher energies, then we might

expect the z dependence to be best parameterized using log(1 + z).

We show the joint confidence regions of the lUV and log(1 + z) coefficients in

Figure 6.9. While there is no significant evidence that ΓX is related to either LUV

or z, we note that the measurement errors on ΓX are large and contribute signf-

icantly to enlarging the confidence region of the regression coefficients. Because

the confidence region of the regression coefficients is large, the possibility that ΓX

is significantly correlated with both UV luminosity and redshift is also consistent

with our data.

Previous work by Gallagher et al. (2005) has found evidence for an anti-correlation

between ΓX and αUV . Motivated by their work, we also perform a linear regres-

sion of ΓX on αUV . We only included those z > 0.5 sources detected by Chandra,

leaving us with 136 sources. The redshift limit was imposed to ensure that an ad-

equate amount of the UV continuum was available for estimating αUV . We used

the FITEXY procedure (Press et al., 1992) with the Tremaine et al. (2002) modifica-

tion to account for the measurement errors in both ΓX and αUV , and the intrinsic

scatter about the regression. The result of the regression is:

ΓX = 2.21(±0.07) − 0.25(±0.07)αuv. (6.20)
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Figure 6.9 Confidence regions for the lUV and log(1 + z) coefficients in the regres-

sion of ΓX on lUV and log(1 + z). The cross denotes the best-fit value, and the

contours are the 68%, 95%, and 99.7% joint confidence regions.
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The αUV coefficient is significant at 3.5σ. The regression results are consistent with

the assumption that ΓX is linearly related to αUV , and the residuals are approx-

imately normally distributed. We also performed a Spearman and Kendall rank

correlation test between the two spectral slopes, and found an anti-correlation of

similar significance.

To test if including the UV red quasars affect our limits on the luminosity

and redshift dependencies, we also performed the regression after removing all

sources with αUV > 1.2. Removing these UV red quasars did not significantly

change the confidence regions shown in Figure 6.9.

6.6 COMPARISON WITH PREVIOUS STUDIES OF αox.

The parametric dependence of αox on LUV and z has been studied previously by

several authors (e.g., Avni & Tananbaum, 1982, 1986; Wilkes et al., 1994; Bechtold

et al., 2003; Vignali et al., 2003b; Strateva et al., 2005; Steffen et al., 2006). In this

analysis, we confirm the anti-correlation between αox and LUV seen previously,

but also find evidence for a correlation between αox and redshift. Most previous

studies have not found any significant evidence that αox is related to z, with the

exception of Bechtold et al. (2003). Yuan et al. (1998a) found evidence for a slight

dependence of αox with z for z < 0.5, but with opposite sign as that found here.

Using high-quality Chandra data, we find that αox is related to both LUV and z.

We perform a quantitative comparison between our results and those of Avni

& Tananbaum (1986), Wilkes et al. (1994), Strateva et al. (2005), and Steffen et al.

(2006). These authors have presented their results using a different parameteri-

zation for evolution, where they have fit a linear relationship of the form4

αox = Al(lUV − 30.5 − log νUV ) + Aτ (τ(z) − 0.5) + A. (6.21)
4The term log νUV arises because we define lUV to be the logarithm of νUV LUV
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Here, τ(z) is the cosmological look-back time in units of the present age of the

universe, and νUV is the frequency corresponding to 2500Å. We fit a relationship

of this form and findAl = 0.233±0.026 andAτ = −0.392±0.103,with a correlation

of Corr(Al, Aτ ) = −0.878. In Figure 6.10 we show the 95% joint confidence region

on our estimate of (Al, Aτ ), as well as the 95% confidence ellipses for AT86, W94,

S05, and S06. These authors do not report equations for their confidence regions,

so we matched them by eye. We compare with the results of AT86 obtained using

their entire sample, i.e., their BQS+BF+HET85 sample, and the results of W94

obtained using only the radio-quiet sources and assuming ΓX = 2 as displayed

in their Figure 14a. The results for the S05 sample are presented by S06.

Statistically, our results differ from the analysis of AT86 at the ≈ 4σ level, from

W94 at the ≈ 2σ level, from S05 at the ≈ 2.5σ level, and from S06 at the ≈ 3σ level.

However, there are a number of systematic differences between our analysis and

those of AT86, W94, S05, and S06, that, when taken into account, may introduce

an additional systematic component to the errors. The AT86 sample includes

both radio-quiet and radio-loud sources, and as noted in § 6.3, the radio-loud

sources can have an additional component in their X-ray emission from the jet.

To avoid this type of contamination, we have only included RQQs in our sample.

In addition, AT86 assumed a value of ΓX = 1.5 when calculating the 2 keV flux.

As has been found here and in many other studies, a value of ΓX ≈ 2 is more

typical for RQQs. Wilkes et al. (1994) calculated Aτ for both ΓX = 1.5 and ΓX = 2

and found that assuming ΓX = 2 had the effect of shifting Aτ towards more

negative values. If the assumption on ΓX affects the estimated Aτ for AT86 in the

same way as for W94, then one would expect assuming ΓX = 2 would shift the

AT86 confidence ellipse toward our estimate.

The largest systematic difference between our work and that of AT86, W94,
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S05, and S06 is in the differing levels of heterogeneity of the samples and the dif-

ferent instruments used to collect the X-ray data. The AT86 and W94 X-ray obser-

vations were done using the Einstein Observatory Imaging Proportional Counter

(IPC). About two-thirds of the X-ray data for the S06 sample was observed using

the ROSAT Position Sensitive Proportional Counter (PSPC), with the remaining

X-ray data from Chandra or XMM-Newton. S06 combined sources from the SDSS,

COMBO-17 survey (Wolf et al., 2004), Bright Quasar Survey (Schmidt & Green,

1983), a heterogeneous low-z Seyfert 1 sample, and a heterogenous high-z sample

similar to our high-z sample. The S06 sample is more heterogeneous than ours,

but probes a wider range in luminosity; the ranges in cosmic age probed by S06

and our sample are very similar. The S05 sample is a subset of the S06 sample,

and does not contain the COMBO-17 and BQS sources. The main SDSS sample of

S05 and S06 consists of 155 radio-quiet quasars that were selected from the SDSS

and contained within the inner 19′ of ROSAT PSPC pointings with exposure times

> 11 ksec. Thus, the S05 sample is very similar to ours in its heterogeneity, with

the exception of the additional low redshift Seyfert 1 sample; S05 perform their

analysis both with and without the Seyfert 1 sample. The AT86 and W94 sam-

ples are both more heterogeneous than the S06 sample. In addition, the redshift

ranges probed by the AT86 and W94 samples are smaller (z < 3.3) than that of

the S06 sample, the S05 sample, and our sample, probing a slightly smaller range

in cosmic time.

Our sample only consists of Chandra ACIS observations. Increased sensitivity

gives Chandra the ability to detect sources with rest-frame 2–10 keV flux down to

fHB ∼ 2× 10−15 ergs s−1 in a ∼ 20 ksec observation. In this work, we estimate the

Chandra 2 keV flux densities using data over a broader spectral range (0.3–7 keV)

than that probed by the Einstein IPC (0.4–4 keV) and the ROSAT PSPC (0.1–2.5
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keV). Our sample is also more homogeneous than those used previously, except

for the S05 SDSS + high-z sample, being made up almost entirely of SDSS sources

which had serendipitous Chandra observations; unfortunately this also results in

our sample probing a smaller range in luminosity. Similar to our work, the high-z

samples of S06 and S05 both consist of sources with Chandra and XMM data, and

the COMBO-17 sample of S06 also consists of Chandra data; both the S05 and S06

samples have slightly lower X-ray detection fractions than our sample.

Avni & Tananbaum (1986) and W94 estimate the 2500Å flux density from pub-

lished B- and V -band magnitudes assuming a constant spectral slope of α = 0.5.

The 2500Å flux density for many of the S05 and S06 sources were measured

directly from the SDSS spectra. However, the 2500Å flux densities for the 52

COMBO-17 sources of S06 were estimated by interpolation and extrapolation.

The 2500Å flux densities for the 46 BQS sources in S06 were estimated from the

3000Å flux assuming a constant spectral slope of α = 0.5. The dispersion in

quasar spectral slopes is large (≈ 0.3, Richards et al., 2001), and this large disper-

sion can result in a non-negligible error on lUV if one assumes a constant spectra

slope, especially if one is extrapolating over a large range in wavelength. These

issues are exacerbated when one fits αox instead of lX , as the errors on lUV con-

tribute to the errors on αox, thus not only increasing the scatter about the regres-

sion, but also correlating the errors on lUV and αox. In addition, as noted in § 6.4.5,

the X-ray variability can also bias the coefficients for censored regression. In par-

ticular, these issues will affect the AT84 and W94 results because of the larger

wavelength difference between 2500Å and the B- and V -bands for many of the

sources, and the lower detection fraction (∼ 60%). The analysis of S05 and S06

is unlikely to be significantly affected by these issues due to the high detection

fraction and large number of sources with directly measured 2500Å flux densi-



318

ties. Furthermore, these authors found consistent results when analyzing differ-

ent subsamples of their data.

Strateva et al. (2005) report values of Kendall’s generalized partial τ for a par-

tial correlation between αox and z, given LUV , for their main SDSS sample com-

bined with their high-z sample. Because the main + high-z sample of S05 is very

similar to ours in distribution of LUV and z and the number of sources, we expect

that the distribution of Kendall’s partial τ under the no-evolution and evolution

hypotheses should also be similar. Strateva et al. (2005) find a value of τ = 0.03,

where we have corrected for the sign difference between our definition of αox

and theirs. This value of τ is consistent with our value of τ = 0.057. Because

their value of τ is not significantly different than τ = 0, and because their para-

metric analysis gave similar results, S05 concluded that there is no evidence that

αox changes with redshift. However, as per the discussion in § 6.4.6, the expected

value of τ under the null hypothesis of no evolution in αox is in general not τ = 0,

and therefore it is inappropriate to calculate signficance levels with respect to

τ = 0. Comparison with Figure 6.8 implies that the value of τ = 0.03 found by

S05 is about as equally consistent with the evolution hypothesis as with the no-

evolution hypothesis. However, the parametric analysis by S05 still differs from

ours at the ≈ 2.5σ level.

Similar to Bechtold et al. (2003), we find that αox is correlated with both UV

luminosity and redshift. However, in contrast to Bechtold et al. (2003), we find

that αox depends more strongly on LUV than on z. In addition, we find that RQQs

are systematically more X-ray loud at higher redshift. Bechtold et al. (2003) found

that αox is larger (more X-ray quiet) for high-z sources, but found an overall trend

where αox becomes more X-ray loud as z increases. Bechtold et al. (2003) did not

perform a regression or partial correlation analysis, but we note that their ob-
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served marginal distribution of αox–z is such that αox becomes more X-ray loud

as z increases for z ∼< 2. This is opposite the trend seen in our data, where inspec-

tion of Figure 6.3 reveals that αox is observed to become more X-ray quiet with

increasing z, if one does not correct for the LUV –z correlation.

The source of this discrepancy is likely the values of ΓX used by Bechtold et al.

(2003) for their ROSAT sources. Bechtold et al. (2003) used ΓX values taken from

Yuan et al. (1998a), which were calculated using the two hardness ratios given

by the Standard Analysis Software System (SASS), to estimate the flux density at

2 keV. These values of ΓX steadily decrease from ΓX ∼ 2.6 at z ∼ 0, to ΓX ∼ 2

at z ∼ 2. However, values of ΓX ∼ 2.6 are steeper than is commonly seen in

RQQs, as has been found in this work and in other recent studies (e.g., Reeves

& Turner, 2000; Piconcelli et al., 2003). Therefore, assuming a power-law and

the values of ΓX obtained by Yuan et al. (1998a) may not provide an accurate

estimate of the 2 keV flux density, and thus αox. If ΓX ∼ 2, then assuming values

of ΓX ∼ 2.6 will systematically under-predict the 2 keV flux density for a given

0.1–2.4 keV flux, and consequently provide estimates of αox that are too large.

Furthermore, a steady decrease from ΓX ∼ 2.6 at z ∼ 0 to ΓX ∼ 2 at z ∼ 2

would produce a similar observed decrease in αox from z ∼ 0 to z ∼ 2, thus

increasing the magnitude of any αox–z anti-correlation. Considering that LUV

also increases with increasing z due to flux limits, this would also weaken any

observed correlation between αox and lUV , and thus lead Bechtold et al. (2003) to

conclude that αox is a stronger function of redshift. This is what is observed in the

Bechtold et al. (2003) data, where αox is observed to decrease from z ∼ 0 to z ∼ 2.

At z ∼ 2, the Yuan et al. (1998a) sources have values of ΓX that are more typical

of RQQs, ΓX ∼ 2. In addition, after z ∼ 2, the trend in αox is observed to change

sign, increasing with increasing z, consistent with the data presented here. This
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is also the redshift where the Bechtold et al. (2003) sample becomes dominated

by Chandra sources, and have 2 keV flux densities calculated assuming ΓX = 2.2.

6.7 DISCUSSION

In this paper we were able to separate the dependence of αox on the quasar lu-

minosity, LUV , from that of cosmic epoch, z, and we find that both dependencies

are present, though with opposite sign. From this, it follows that RQQs become

more X-ray quiet (increasing αox) with increasing UV luminosity, and become

more X-ray loud with increasing redshift. An analysis based on the Kullback-

Leibler information finds evidence that αox may depend nonlinearly on lUV at a

given t(z), with αox increasing more rapidly as lUV increases.

One may be able to find a better parameterization for the redshift dependence

than the one adopted here, but that would only strengthen our claims of evidence

for a dependence of αox on z. In addition, as argued in § 6.4.4, it is unlikely that

the observed redshift dependence can be explained by nonlinearity in the αox–lUV

relationship. However, expanding the model space to include other parameters

such as black hole mass or accretion rate may provide a better fit and be preferred

over models which contain only a redshift and LUV dependence. For example, a

dependence of αox on black hole mass, MBH , is predicted by some models for

accretion disk and hot corona (e.g., Janiuk & Czerny, 2000; Bechtold et al., 2003).

If such a correlation exists, than it may be that the the αox–t(z) relationship is

simply tracing the underlying evolution of the active black hole mass function,

which is then projected onto the αox-t(z) plane via an αox–MBH relationship. In

this case the statistical model that contains MBH would provide the best fit, and

there would be no need for an additional redshift dependence. However, in the

absence of such information, we find that the model that best describes our data
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is given in terms of a quadratic dependence on lUV and a linear dependence on

t(z).

6.7.1 K-Corrections and the αox–z Relationship

It may be suggested that the αox dependence on z is caused by a varying ΓX as the

observed Chandra spectral range shifts to harder rest-frame energies. If ΓX were

to steepen at higher energies, creating a softer X-ray continuum at these energies,

then we would be systematically over-estimating the 2 keV flux densities, thus

explaining the αox–z relationship. While we do not find any strong evidence for

a change in ΓX with z, the results from § 6.5 shown in Figure 6.9 suggest that

if there is spectral curvature, then ΓX likely flattens with increasing energy. A

flattening of the X-ray continua at higher energies is opposite the trend needed

to explain the αox–z relationship, and thus our result cannot be explained by a

systematic steepening of the intrinsic X-ray continuum at harder energies.

Because we do not fit an intrinsic absorber to most of our sources, it may

also be suggested that the observed redshift dependence of αox is caused by red-

shifting of soft X-ray absorption out of the observed spectral region. An intrinsic

absorber will more strongly absorb the softer X-rays, and therefore will more sig-

nificantly affect the observed X-ray continuum of lower redshift sources. This

could then cause a spurious anti-correlation between LX and t(z).

To test if the observed dependence of αox on t(z) is the result of soft X-ray

absorption shifting out of the observed band, we used SHERPA’s FAKEIT routine

to simulate observed X-ray spectra as a function of z. We assumed a power-law

continuum with ΓX = 2, and an intrinsic neutral absorber with column density

NH = 1021 cm−2. We argue in the next paragraph that a column density of NH =

1021 cm−2 is greater than the maximum NH allowed by the ΓX–z regression, and

thus we use NH = 1021 as an upper limit on the effect of unrecognized neutral
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intrinsic absorption on the αox–z relationship. The observed X-ray continuum

was simulated for a source at z = 0, 1, 2, 3, and 4, and the intrinsic luminosity of

the source was kept constant. We then fit each simulated spectrum with only a

power-law. This resulted in the inferred X-ray luminosity of z = 0 sources being a

factor of ∼ 2 lower than the z = 4 sources. Therefore, based on these simulations,

ignoring intrinsic absorption can result in a spurious decline in LX from z = 4 to

z = 0 by a factor of ∼ 2 when NH ∼ 1021 cm−2. However, the results of our αox

regression imply that the X-ray luminosity drops by a factor of ∼ 8 from z = 4

to z = 0, and therefore the observed αox–z relationship cannot be explained as a

spurious correlation resulting from unidentified intrinsic neutral absorption.

We can use our simulated spectra to constrain a typical value of NH for our

sources, assuming that NH remains roughly constant with redshift. The observed

photon index of the simulated spectra dropped from ΓX = 2 at z = 4 to ΓX ≈ 1.4

at z = 0. From Figure 6.9, we note that the 3σ limit on the maximal drop in

observed ΓX between z = 4 and z = 0 is ∆ΓX ≈ 0.35. This is considerable less

than the observed drop in ΓX from the simulations, and thus represents more

than the maximal amount of change in ΓX with redshift that is allowed by our

data. Therefore, assuming only neutral absorption, values of NH ∼> 1021 cm−2

would produce observed values of ΓX at z = 0 that are too flat, and thus NH ∼<

1021 cm−2 for most of our sources.

Because the redshift dependence of αox cannot be explained by a systematic

steepening of ΓX at higher energies, or by an unidentified intrinsic neutral ab-

sorber shifting out of the observed Chandra bandpass, we conclude that the αox–z

relationship is likely the result of evolution of the accretion mechanism and en-

vironment. However, more complex absorption models, such as an ionized or

partial covering absorber cannot be ruled out as causing the observed αox–z de-
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pendence, but investigation of such models is beyond the scope of this work.

6.7.2 ΓX Relationships

We do not find significant evidence for a correlation between the radio-quiet

quasar X-ray spectral photon index, ΓX , and UV luminosity or redshift. This is

consistent with results obtained using XMM observations of SDSS RQQs (Risaliti

& Elvis, 2005), ASCA observations of RQQs (Reeves & Turner, 2000), and fitting of

composite spectra of z > 4 RQQs (e.g., Vignali et al., 2003c, 2005; Shemmer et al.,

2006). However, this is in contrast with the work of Dai et al. (2004) and Bechtold

et al. (2003). Dai et al. (2004), found evidence for a correlation between ΓX and LX

using a small sample of gravitationally-lensed RQQs. Bechtold et al. (2003) used

Kendall’s generalized τ to assess the 2-dimensional correlations between ΓX and

both luminosity and z, and found evidence that ΓX is correlated with luminosity

and anti-correlated with z. In this work we have used linear regression to control

for the artifical correlation between luminosity and redshift, and find that there

is no significant evidence that ΓX varies with lUV and z. However, inspection of

Figure 6.9 reveals that if ΓX does depend on lUV and z, then the directions of these

trends are likely in agreement with the correlations seen by Bechtold et al. (2003).

In addition, a systematic flattening of ΓX with increasing z has also been seen in

XMM data by Page et al. (2003), and Vignali et al. (1999) found some evidence

that ΓX is flatter on average for z ∼ 2 RQQs than for lower z RQQs..

It is interesting to note that at z ∼ 2 the observed ROSAT band has shifted to

∼ 0.3–7.2 keV in the quasar rest-frame, overlapping with our rest-frame Chandra

band at z ∼ 0. Considering that the z ∼ 2 ROSAT sources of Yuan et al. (1998a)

have values of ΓX similar to those observed here with Chandra at z ∼ 0, and

noting that the source rest-frame energies are approximately the same in these

two observed spectra regions, this implies that the soft X-ray spectra of RQQs
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may be more complex than a simple power-law. In particular, the Yuan et al.

(1998a) sources may exhibit a soft excess at ∼< 0.3 keV, causing steeper hardness

ratios. Soft excesses have been seen in good-quality spectra of other low-z RQQs

(e.g., Gierliński & Done, 2004), but the origin of this component is still unclear.

If such additional complexity exists, it may be the cause of the steeper values of

ΓX seen in the low-z Yuan et al. (1998a) ROSAT sources, and thus the strong anti-

correlation between ΓX and z, and consequently αox and z, seen by Bechtold et

al. (2003).

Although, there is no significant evidence for a ΓX–z relationship, there is

marginally significant evidence (2σ) that ΓX flattens as z increases. While this

may be caused by evolution in ΓX , it may also represent a systematic flattening

of the X-ray continuum at harder energies or the result of a Compton reflection

component redshifting into the observed 0.3–7 keV band at higher z. Similarly, a

soft excess redshifting out of the observed band may also contribute.

An observed anti-correlation between ΓX and αUV may result from not fitting

an intrinsic absorber to most of the X-ray spectra. The sources with redder αUV

may have higher NH , which would result in a lower value of ΓX inferred from

the power-law spectral fit. To test this, we estimated the increase in NH between

αUV ∼ 0.1 and αUV ∼ 1.2 needed to produce the observed decrease in ΓX . We

used Sherpa’s FAKEIT command to simulate spectra assuming a value of ΓX = 2.2

and negligible intrinsic neutral absorption, NH = 1020 cm−2. A value of ΓX ∼ 2.2

is typical for the bluer sources, αUV ∼ 0.1. Based on the simulations, NH must

increase to ∼ 1021 cm−2 at αUV ∼ 1.2 to produce an observed decrease of ΓX from

ΓX ∼ 2.2 to ΓX ∼ 1.8. We fit an absorbed power-law for the ten reddest sources

with > 50 counts, and found that these sources typically had 3σ upper limits of

NH ∼< 5 × 1021 cm−2. Values of NH ∼ 1021 cm−2 are well within the limits on



325

NH at αUV ∼ 1.2, and therefore we cannot rule out the observed ΓX–αUV anti-

correlation as resulting from unidentified intrinsic absorption.

6.7.3 Expectation of Accretion Models

Sobolewska et al. (2004a) and Sobolewska et al. (2004b) explored the general pa-

rameter space available for accreting compact sources, and quasars in particular,

in respect to geometry of the disk and X-ray emitting region. They show that αox

is most sensitive to (1) the amount of energy dissipated in the corona or (2) the

size of the inner flow or a structure and outflow velocity of the coronal flares.

Sobolewska et al. (2004b) suggest that the αox–LUV anti-correlation can be ex-

plained by differences in the structure of the X-ray emitting region. They point

out that in the framework of the truncated disk and hot inner flow geometry,

LUV increases when the disk extends further towards the last stable orbit, while

ΓX steepens, reducing the 2 keV emission. In the patchy corona geometry, the

αox–LUV relationship can be explained by changes in the fraction of gravitational

energy dissipated in the corona, where a lower fraction results in a weaker and

softer (higher ΓX) X-ray continuum.

The redshift dependence may similarly be explained as resulting from evo-

lution in the accretion geometry. This would imply that for a given LUV , the

high redshift sources have larger radii of the inner hot flow sphere or they gener-

ate more flares with higher outflow velocities. Both of these explanations imply

that ΓX is also correlated with UV luminosity and anti-correlated with redshift,

where ΓX steepens with increasing LUV and flattens with increasing z. We find

no statistically significant evidence for a correlation between ΓX and LUV , and

only marginally significant evidence for an anti-correlation between ΓX and z.

However, it should be noted that there is considerable uncertainty in the regres-

sion coefficients, and their joint confidence region is large. While values of zero
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for the regression coefficients cannot be ruled out, it is interesting to note that

the trends of ΓX with LUV and z implied by the regression are consistent with

the model predictions. So long as the accretion disk models do not predict too

strong of a relationship between ΓX and LUV , they may still be consistent with

our results.

A dual dependency of αox on both LUV and z must relate, in current scenar-

ios, to variations in MBH , ṁ, and chemical abundances, and their effects on the

accretion disk and corona. Unfortunately, the models do not yet predict a specific

relationship between αox and the model parameters, and thus quantitative com-

parison of our results with the models is difficult; this will be the subject of future

research. In addition, the discussion in this section has been model-dependent,

and hopefully magneto-hydrodynamic simulations will provide further insight

(e.g., De Villiers et al., 2003; Krolik et al., 2005).

6.7.4 Improving the αox Analysis

The main source of statistical uncertainty in γl and γt is the strong degree of cor-

relation between lUV and t(z). For ordinary least-squares regression, the standard

errors in the regression coefficients are inflated upwards by a factor of 1/
√

1 − r2,

where r is the correlation between lUV and t(z) (Fox, 1997). For our sample,

r = −0.878, and therefore the standard errors on the regression coefficients are

a factor of ≈ 2 higher than if lUV and t(z) were uncorrelated. Because the anti-

correlation between lUV and t(z) is so strong, even a small reduction in this corre-

lation can give a large reduction in the standard errors of γl and γt. For example,

selecting a sample to have r = −0.7 will result in a reduction in the standard de-

viations of γ by about 30%. Future αox studies should try to select samples that

minimize r, as has been done by S06. This, along with the larger sample size

and range in luminosity probed by S06, is likely the reason why their confidence
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regions are smaller (cf., Fig. 6.10).

Using the fact that the coefficient uncertainties are proportional to 1/
√

1 − r2,

we investigated whether targeting more faint z ∼ 4 RQQs with Chandra will

significantly reduce the standard errors in the regression coefficients. Unfortu-

nately, targeting a reasonable number of additional faint z ∼ 4 RQQs will not

significantly improve the estimates of γl and γt. Targeting 10 additional RQQs

uniformly distribution between 45.5 < log νLν(2500Å) < 46.5 and 3.7 < z < 5

will only result in a reduction in the standard errors of ∼ 8%. Including 30 addi-

tional faint, high-z RQQs reduces the standard errors by ∼ 18%, but about half of

this reduction is the result of the increased sample size.

6.8 SUMMARY

• There is a significant relationship between αox, LUV , and t(z), and we did

not find any evidence that αox depends on the UV spectral slope. If we

remove the 10 suspected BALs (z < 1.5 non-detections), the two best αox

regressions are

ᾱox = (−9.273 ± 1.241) + (0.233 ± 0.026)lUV + (2.870 ± 0.750) × 10−2t(z), σ = 0.125

ᾱox = (40.97 ± 27.34) − (1.949 ± 1.187)lUV + (2.370 ± 1.288) × 10−2l2UV + (6.22)

(2.263 ± 0.813) × 10−2t(z), σ = 0.124

Here, the notation ᾱox denotes the average αox at a given lUV and t(z), and

the intrinsic scatter in αox at a given lUV and t(z) has a dispersion of σ ≈

0.125 about ᾱox. Although the l2UV term is not ‘statistically significant’ in

the classical sense, an analysis based on the Kullback-Leibler information

found that this model is best supported by the evidence in our data. The

KLI analysis found that both models are preferred over a purely quadratic
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dependence of αox on lUV , and over models that parameterized the redshift

dependence as linear in z or log(1 + z).

• We used Monte Carlo simulations to show that the αox–z relationship is not

a spurious result caused by variability and measurement error. Based on

the simulations, we calculate the χ2
2 of our regression coefficients for model

Mt and find that the probability of observing a χ2
2 this high or higher is

∼< 3 × 10−3, under the assumption of no evolution in αox.

• We used Monte Carlo simulations to show that interpretation of Kendall’s

generalized partial τ is problematic. In particular, Kendall’s partial τ for

the αox–z correlation is not necessarily expected to be zero when αox is un-

related to z, given LUV . Moreover, Kendall’s partial τ is not necessarily

expected to be non-zero when αox is correlated with z, given LUV . This can

have a significant effect on the power of Kendall’s partial τ , and therefore

care must be taken when using τ to investigate whether αox evolves or not.

Based on our simulations, we are not able to decide for either evolution or

no evolution in αox using τ .

• The αox–z correlation cannot be explained as a result of a systematic steep-

ening of the X-ray continuum at higher energies, as this is inconsistent with

the regression of ΓX on z. Furthermore, the αox–z relationship is not the re-

sult of soft X-ray neutral absorption shifting out of the observed band. The

observed factor of ∼ 8 drop in LX from z = 4 to z = 0 is higher than the fac-

tor of ∼ 2 drop in LX that would result for an unidentified intrinsic neutral

absorber with NH ∼ 1021 cm−2. Higher values of NH are inconsistent with

the ΓX–z results.

• We do not find any evidence for a dependence of ΓX on UV luminosity, and
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only marginally significant evidence (2σ) for a dependence of ΓX on red-

shift. The ΓX–z relationship may be caused by a systematic flattening of the

X-ray continuum at higher energies, by redshifting of a Compton reflection

component into the observed 0.3–7 keV band, and/or by redshifting of a

soft excess out of the observable band.

• We find evidence for an anti-correlation (3.5σ) between ΓX and the UV spec-

tral slope, where the X-ray continuum hardens as the UV continuum soft-

ens. This may be the result of unidentified intrinsic absorption, with the UV

redder sources having higher intrinsic NH , thus causing a flatter inferred X-

ray continuum.
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CHAPTER 7

OBSERVATIONAL CONSTRAINTS ON THE DEPENDENCE OF RADIO-QUIET

QUASAR X-RAY EMISSION ON BLACK HOLE MASS AND ACCRETION RATE

7.1 CHAPTER ABSTRACT

In this work we use a sample of 318 radio-quiet quasars (RQQ) to investigate

the dependence of the ratio of optical/UV flux to X-ray flux, αox, and the X-ray

photon index, ΓX , on black hole mass, UV luminosity relative to Eddington, and

X-ray luminosity relative to Eddington. Our sample is drawn from the litera-

ture, with X-ray data from ROSAT and Chandra, and optical data mostly from the

SDSS; 153 of these sources have estimates of ΓX from Chandra. We estimate MBH

using standard estimates derived from the Hβ, Mg II, and C IV broad emission

lines. Our sample spans a broad range in black hole mass (106 ∼< MBH/M¯ ∼<

1010), redshift (0 < z < 4.8), and luminosity (1043 ∼< λLλ(2500Å)[erg s−1] ∼< 1048).

We find that αox increases with increasing MBH and LUV /LEdd, and decreases

with increasing LX/LEdd. In addition, we confirm the correlation seen in previ-

ous studies between ΓX and MBH and both LUV /LEdd and LX/LEdd; however,

we also find evidence that the dependence of ΓX of these quantities is not mono-

tonic, changing sign at MBH ∼ 3 × 108M¯. We argue that the αox correlations

imply that the fraction of bolometric luminosity emitted by the accretion disk, as

compared to the corona, increases with increasing accretion rate relative to Ed-

dington, ṁ. In addition, we argue that the ΓX trends are caused by a dependence

of X-ray spectral index on ṁ. We discuss our results within the context of accre-

tion models with comptonizing corona, and discuss the implications of the αox

correlations for quasar feedback. To date, this is the largest study of the depen-

dence of RQQ X-ray parameters on black hole mass and related quantities, and
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the first to attempt to correct for the large statistical uncertainty in the broad line

mass estimates.

7.2 CHAPTER INTRODUCTION

The extraordinary activity associated with quasars involves accretion onto a su-

permassive black hole (SMBH), with the UV/optical emission arising from a ge-

ometrically thin, optically thick cold accretion disk (Shakura & Syunyaev, 1973),

and the X-ray continuum arising from a hot, optically thin corona that Compton

upscatters the disk UV photons (e.g., Haardt & Maraschi, 1991). In highly accret-

ing objects, like quasars (0.01 ∼< Lbol/LEdd ∼< 1, e.g., Woo & Urry, 2002; Vester-

gaard, 2004; McLure & Dunlop, 2004; Kollmeier et al., 2006), the X-ray plasma

geometry is expected to be that of a hot, possibly patchy, ionized ‘skin’ that sand-

wiches the cold disk (e.g., Bisnovatyi-Kogan & Blinnikov, 1977; Liang & Price,

1977; Nayakshin, 2000). However, the evidence for this is not conclusive, and

relies on data from X-ray binaries and low-z sources (e.g., see the dicussion by

Czerny et al., 2003). Other geometries are possible, including an accretion disk

that evaporates into a hot inner flow (e.g., Shapiro et al., 1976; Zdziarski et al.,

1999), or a combination of a hot inner flow and a corona that sandwiches the

disk (e.g., Poutanen et al., 1997; Sobolewska et al., 2004a). Furthermore, radiation

pressure can drive an outflow from the disk into the corona if the two are cospa-

tial, thus altering the physics of the corona (Proga, 2005). Investigations of how

quasar X-ray parameters depend on black hole mass, MBH , and accretion rate rel-

ative to Eddington, ṁ, offer important constraints on models of the disk/corona

system.

There have been attempts to link the evolution of SMBHs to analytic and

semi-analytic models of structure formation (e.g., Kauffmann & Haehnelt, 2000;
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Hatziminaoglou et al., 2003; Bromley et al., 2004), where black holes grow by ac-

creting gas funneled towards the center during a galaxy merger until feedback

energy from the SMBH expels gas and shuts off the accretion process (e.g., Silk

& Rees, 1998; Fabian, 1999; Wyithe & Loeb, 2003; Begelman & Nath, 2005). This

‘self-regulated’ growth of black holes has recently been successfully applied in

smoothed particle hydrodynamics simulations (Di Matteo et al., 2005; Springel et

al., 2005). Within this framework, the AGN or quasar phase occurs during the

episode of significant accretion that follows the galaxy merger, persisting until

feedback from the black hole ‘blows’ the gas away (e.g., Hopkins et al., 2006a).

Hydrodynamic calculations have shown that line pressure is more efficient than

thermal pressure at driving an outflow (Proga, 2007), and therefore, the efficiency

of AGN feedback depends on the fraction of energy emitted through the UV/disk

component as compared to the X-ray/corona component. If the fraction of energy

emitted in the UV as compared to the X-ray depends onMBH or ṁ, then it follows

that the efficiency of AGN feedback will also depend on MBH and ṁ. This has

important consequences for models of SMBH growth, as the SMBH may become

more or less efficient at driving an outflow depending on its mass and accretion

rate. Studies of the dependence of quasar X-ray/UV emission on black hole mass

and accretion rate are therefore important as they allow us to constrain a MBH-

or ṁ-dependent feedback efficiency.

Numerous previous studies have searched for a luminosity and redshift de-

pendence of αox = −0.384 logLX/LUV , the ratio of X-ray to UV/optical flux (e.g.,

Avni & Tananbaum, 1982; Wilkes et al., 1994; Yuan et al., 1998a; Vignali et al.,

2003b; Strateva et al., 2005; Steffen et al., 2006; Kelly et al., 2007), and ΓX , the

X-ray spectra slope (e.g., Reeves & Turner, 2000; Bechtold et al., 2003; Dai et al.,

2004; Risaliti & Elvis, 2005; Grupe et al., 2006). Most studies have found a corre-
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lation between αox and UV luminosity, LUV , while the existence of a correlation

between αox and z is still a matter of debate (e.g., Bechtold et al., 2003; Vignali et

al., 2003b; Steffen et al., 2006; Just et al., 2007; Kelly et al., 2007). In addition, stud-

ies of ΓX have produced mixed results. Some authors have claimed a correlation

between ΓX and luminosity (e.g., Bechtold et al., 2003; Dai et al., 2004) or redshift

(e.g., Reeves et al., 1997; Vignali et al., 1999; Page et al., 2003), while, others find

no evidence for a correlation between ΓX and LUV or z (e.g., Vignali et al., 2005;

Risaliti & Elvis, 2005; Kelly et al., 2007).

A correlation between ΓX and the FWHM of the Hβ line has also been found

(e.g., Boller et al., 1996; Brandt et al., 1997), suggesting a correlation between ΓX

and black hole mass or Eddington ratio (e.g., Laor et al., 1997; Brandt & Boller,

1998). Recently, it has become possible to obtain estimates of MBH for broad line

AGN by calibrating results from reverberation mapping (Peterson et al., 2004;

Kaspi et al., 2005) for use on single-epoch spectra (Wandel et al., 1999; Vester-

gaard, 2002; McLure & Jarvis, 2002; Vestergaard & Peterson, 2006; Kelly & Bech-

told, 2007). This has enabled some authors to confirm a correlation between ΓX

and either MBH or Lbol/LEdd (e.g., Lu & Yu, 1999; Gierliński & Done, 2004; Por-

quet et al., 2004; Piconcelli et al., 2005; Shemmer et al., 2006), where the X-ray

continuum hardens with increasing MBH or softens with increasing Lbol/LEdd. In

addition, previous work has also found evidence for quasars becoming more X-

ray quiet as MBH or Lbol/LEdd increase (Brunner et al., 1997; Wang et al., 2004);

however, studies involving the dependence of αox on MBH or Lbol/LEdd have re-

mained rare compared to studies of ΓX . It is important to note that the correla-

tions inferred in previous work generally employ broad line mass estimates in

combination with a constant bolometric correction. Therefore, most of the corre-

lations found in previous work are, strictly speaking, between ΓX or αox and the
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estimates MBH ∝ Lγ
λFWHM 2 and Lbol/LEdd ∝ L1−γ

λ FWHM−2, where γ ∼ 0.5.

In this work, we investigate the dependence of αox and ΓX on black hole mass,

optical/UV luminosity relative to Eddington, and X-ray luminosity relative to

Eddington. We combine the main Sloan Digital Sky Survey (SDSS) sample of

Strateva et al. (2005) with the sample of Kelly et al. (2007), creating a sample of 318

radio-quiet quasars (RQQ) with X-ray data from ROSAT and Chandra, and optical

spectra mostly from the SDSS; 153 of these sources have estimates of ΓX from

Chandra. Because the X-ray emission in radio-loud sources can have an additional

component from the jet (e.g., Zamorani et al., 1981; Wilkes & Elvis, 1987), we focus

our analysis on the radio-quiet majority. Our sample has a detection fraction of

87% and spans a broad range in black hole mass (106 ∼< MBH/M¯ ∼< 1010), redshift

(0 < z < 4.8), and luminosity (1043 ∼< λLλ(2500Å)[erg s−1] ∼< 1048), enabling us to

effectively look for trends regarding αox and ΓX .

The outline of this paper is as follows. In § 7.3 we describe the construction of

our sample, and in § 7.4 we describe the procedure we used to fit the optical con-

tinuum and emission lines. In § 7.5 we describe how we obtain broad line mass

estimates, our bolometric correction, and argue that a constant bolometric correc-

tion provides a poor estimate of the bolometric luminosity. In § 7.6 we describe

the results from a regression analysis of αox on MBH , LUV /LEdd, and LX/LEdd,

and in § 7.7 we report evidence for a non-monotonic dependence of ΓX on either

MBH , LUV /LEdd, and LX/LEdd. In § 7.8 we discuss our results within the context

of AGN disk/corona models, and we discuss the implications for a dependence

of quasar feedback efficiency on black hole mass or accretion rate. In § 7.9 we

summarize our main results.

We adopt a cosmology based on the the WMAP best-fit parameters (h =

0.71,Ωm = 0.27,ΩΛ = 0.73, Spergel et al., 2003). For ease of notation, we de-
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fine LUV ν ≡ Lν(2500Å), LX ≡ νLν(2 keV), lUV ≡ log νLν(2500Å), and mBH ≡

logMBH/M¯.

7.3 SAMPLE CONSTRUCTION

In this analysis we combine 169 RQQs from Kelly et al. (2007, hereafter K07) with

149 RQQs from the main SDSS sample of Strateva et al. (2005, hereafter S05) to

create a sample of 318 RQQs. Out of these 318 sources, 276 (86.8%) are detected

in the X-rays. The z ∼< 4 sources from the K07 sample were selected by cross-

correlating the SDSS DR3 quasar catalogue (Schneider et al., 2005) with the Chan-

dra public archive as of 2005 February 22. The z ∼> 4 sources from the K07 sample

consist of targeted Chandra RQQs taken from the literature (Bechtold et al., 2003;

Vignali et al., 2001, 2003a), and new observations reported by K07. The sources

taken from S05 were selected from the SDSS to be contained within the inner 19′

of ROSAT PSPC pointings with exposure times > 11 ksec. The X-ray data for

both samples are as reported by S05 and K07.

Both the S05 and K07 samples consist only of radio-quiet quasars. We focus

our analysis on the radio-quiet majority because the radio-loud sources have an

additional component of X-ray emission arising from the jet (e.g., Zamorani et

al., 1981; Wilkes & Elvis, 1987; Worrall et al., 1987). In addition, both S05 and K07

omitted BAL QSOs when possible. It is necessary to remove the BAL QSOs be-

cause their high column density gives them the appearance of being X-ray weak

(e.g., Green et al., 2001; Gallagher et al., 2002, 2006), potentially biasing our anal-

ysis. However, neither S05 nor K07 were able to remove the high-ionization BAL

quasars for z < 1.5, as their identification requires observations of the C IV line.

In addition, low-ionization BALs can be identified at 0.45 < z < 2.25 based on

Mg II absorption. Reichard et al. (2003) found the fraction of BALs in the SDSS
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to be ∼ 14%, and therefore we expect there to be 25 ± 5 BALs in our sample at

z < 1.5. This number may be higher if one relaxes the definition of a BAL quasar

(Trump et al., 2006).

We exclude five sources from the S05 sample due to significant intrinsic nar-

row UV absorption or obvious host galaxy contamination: Source SDSS J103747.4-

001643.9 (z = 1.500) had significant C IV absorption, and sources SDSS J124520.7-

002128.1 (z = 2.354) and SDSS J103709.8+000235.2 (z = 2.679) had significant

absorption in both C IV and Lα. These three sources were omitted because the

absorption prohibits obtaining an accurate line width measurement, necessary

for broad line mass estimates, and to ensure that the X-ray emission under study

is not effected by the absorption. Sources SDSS J230440.6-082220.8 (z = 0.201)

and SDSS J023306.0+003856.4 (z = 0.244) have a significant host-galaxy compo-

nent in their spectra. In addition, we exclude source SDSS J144340.8+585653.2

(z = 4.278) from the K07 sample because it has significant UV absorption. We

removed source SDSS J142414.1+421400.1 (z = 1.608) from the K07 sample and

source SDSS J170441.4+604430.5 (PG 1704+608, z = 0.372) from the S05 sample,

as both sources are radio-loud.

We could not estimate black hole masses for sources SDSS J083206.0+524359.3

(z = 1.573), SDSS J144231.7+011055.3 (z = 4.507), and PC 0910+5625 (z = 4.035).

All three of these sources are from the K07 sample. The region containing the Mg

II emission line for SDSS J083206.0+524359.3 was missing from the SDSS spec-

trum, the emission lines are too weak for SDSS J144231.7+011055.3, and an optical

spectrum was not available for PC 0910+5625.
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7.4 OPTICAL/UV SPECTRAL FITS

Optical spectra were obtained for most sources from the SDSS. We also obtained

spectra for some of the high redshift quasars from Anderson et al. (2001), Péroux

et al. (2001), and Constantin et al. (2002). The values of LUV and α,Lν ∝ ν−α, for

the K07 sources are taken from K07. We processed the optical spectra for the S05

sources in the same manner as for the K07 sources. We do this for consistency

and because S05 did not correct for quasar iron emission.

7.4.1 Continuum Fitting

As described by K07, we corrected the optical spectra for Galactic absorption

using the E(B − V ) values taken from Schlegel et al. (1998), as listed in the

NASA/IPAC Extragalactic Database (NED), and the extinction curve of Cardelli

et al. (1989), assuming a value ofAV /E(B−V ) = 3.1. We model the continuum as

a power law of the form fν ∝ ν−α, and the Fe emission as a scaled and broadened

iron template extracted from I Zw I. The optical iron template was extracted by

Véron-Cetty et al. (2004), and the UV iron template was extracted by Vestergaard

& Wilkes (2001). The continuum and iron emission were fit simultaneously using

the Levenberg-Marquardt method for nonlinear χ2-minimization. Continuum

flux densities were then estimated using the power law parameters.

We were not able to use a power-law fit to calculate LUV for the z ∼< 0.4

sources, as the SDSS spectral range for these sources does not contain the rest-

frame UV continuum. Instead, we use the luminosity of the broad component of

the Hβ emission line, LHβ , as a proxy for LUV . It is preferable to use the broad Hβ

emission line luminosity over, say, the optical continuum luminosity as a proxy

forLUV because the broad Hβ emission line is not contaminated by emission from

the host galaxy, and thus should provide an approximately unbiased estimate of
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LUV . Host-galaxy contamination is likely negligible for all z > 0.4 sources, as

νL∗
ν ∼ 1044 ergs s−1 at 2500Å for galaxies (Budavári et al., 2005). We fit a power-

law relationship between LUV and LHβ using the 44 sources at 0.4 < z < 0.9

for which a measurement of both quantities if available. We used the linear re-

gression method of Kelly (2007), which allows for measurement errors in both

variables, and find

λLλ(2500Å)

1044 ergs s−1
= (1.556 ± 0.282)

(

LHβ

1042 ergs s−1

)0.768±0.086

. (7.1)

The intrinsic scatter about this relationship is ≈ 0.179 dex, implying a potential

uncertainty in lUV inferred from this relationship of the same magnitude. There

was no trend in the residuals with either z or LHβ , implying that Equation (7.1)

should give unbiased estimates of lUV for the z < 0.4 sources. Values of LUV were

estimated using Equation (7.1) for both the K07 and S05 z < 0.4 sources, a total of

42 sources.

The distributions of LUV and LX as a function of redshift are shown in Figure

7.1. We calculate the ratio of optical to X-ray flux (Tananbaum et al., 1979) as

αox = −0.384 log(f2keV/f2500), (7.2)

where f2keV and f2500 are the rest-frame flux densities at 2 keV and 2500Å, respec-

tively. If the flux density from 2500Å to 2 keV is a simple power law, then αox is

the spectral slope of this continuum, and thus αox may be thought of as a crude

estimate of the shape of the ionizing continuum. The parameter αox is an impor-

tant parameter for model comparison, as it summarizes the amount of energy

emitted in the X-ray region (most likely a Comptonized component), compared

with that emitted in the optical-UV (accretion disk component). The distribution

of αox as a function of LUV and z are also shown in Figure 7.1.
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noted by red arrows.
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The error on αox is the result of measurement errors on the UV and X-ray flux,

as well as error caused by quasar variability over the different epochs for the UV

and X-ray observations. In general, the measurement errors on lUV are negligible

compared to the error on lX . S05 estimates a error on the X-ray flux of ∼ 0.23 dex,

including both the contributions from measurement error and variability. Typical

long-term X-ray variability for Seyfert 1s is 20%–40% with no obvious trend with

luminosity (Grupe et al., 2001; Uttley et al., 2002; Markowitz et al., 2003). The

measurement errors in lX for the K07 sample are typically ∼ 0.07 dex. Assuming

X-ray variability amplitudes of 30%, this implies typical uncertainties in the X-

ray luminosity of ∼ 0.15 dex. Therefore, we estimate the uncertainty on αox to be

∼ 0.06 for the K07 sources and ∼ 0.09 for the S05 sources.

7.4.2 Line Profile Extraction and Fitting

We extracted the Hβ, Mg II, and C IV emission lines in order to use their widths

in our black hole mass estimates (e.g., Vestergaard, 2002; McLure & Dunlop, 2002;

Vestergaard & Peterson, 2006). These line were extracted by first subtracting the

continuum and Fe emission, interpolating over any narrow absorption features,

and modelling all lines within the extraction region as a sum of Gaussian func-

tions. Any nearby lines were then subtracted, leaving only the broad emission

line profile. In all cases the line profile extraction was done interactively and

every line fit was inspected visually.

For Hβ, we extracted the region within ±2×104 km s−1 of 4861Å, where we use

the standard convention that negative velocities are blueward of a given wave-

length. The Hβ profile was modeled as a sum of 2–3 Gaussian functions. The

[O III] λ4959Å and [O III] λ5007Å lines were modeled as a sum of 1–2 Gaussian

functions, depending on the signal-to-noise of the lines. A sum of two Gaussian

functions was used for the higher S/N lines because the [O III] line profiles are
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not exactly a Gaussian function; the individual Gaussian components are not con-

sidered to be physically distinct components. The widths of the narrow Gaussian

functions for Hβ and [O III] lines were fixed to be equal to eachother. The [O III]

lines and the narrow component of the Hβ line were then subtracted, leaving the

broad component of Hβ.

For Mg II, we extracted the region within ±2× 104 km s−1 of 2800Å. There are

no nearby non-iron emission lines that Mg II is blended with, so the extraction is

trivial after removing the Fe and continuum emission.

For C IV, we extracted the region within −2 × 104 km s−1 and 3 × 104 km s−1

of 1549Å. The C IV line was modeled as a sum of 2–3 Gaussian functions, and

He II λ1640 and O III] λ1665 were modeled as a sum of 1–2 Gaussian functions

each. After obtaining estimates of the He II and O III] profiles, we subtracted

these components. We did not model the N IV] λ1486 emission line as this line is

typically weak and lost in the C IV wings.

In order to estimate MBH , it is necessary to measure the FWHM of the emis-

sion lines. After extracting the line profiles, we estimate the FWHM for the Hβ,

Mg II, and C IV emission lines by fitting them to a sum of 1–5 Gaussian func-

tions, enabling us to obtain a smooth representation of each line. In contrast to

our profile extraction technique, we choose the number of Gaussian functions to

minimize the Bayesian Information Criterion (BIC, Schwartz, 1979). The BIC is

a common criterion to use for selecting the number of parameters in a model (e.g.,

see Hastie, Tibshirani, & Friedman, 2001); the model that minimizes the BIC is

approximately the model that is most supported by the data. For Gaussian er-

rors, as assumed in this work, the BIC is simply a modification to the standard χ2

statistic:

BIC = χ2 + 3K lnn, (7.3)
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where K is the number of Gaussian functions used, 3K is the number of free

parameters, and n is the number of data points used in the fit. Using the BIC to

‘fit’ the number of Gaussian functions thus allows us more flexibility in obtaining

a smooth representation of the line profile, as we are not choosing the number

of Gaussian functions arbitrarily. Once a smooth representation is obtained, we

automatically measure the FWHM directly from the best fit line profile.

The standard errors on FWHM are estimated using a bootstrap method. We

simulated 100 ‘observed’ emission lines by adding random Gaussian noise to the

best fit line profile with standard deviation equal to the noise level of the spec-

trum, including the propagated errors from the continuum and iron emission

fitting. We then fit each of the simulated emission lines, keeping the number

of Gaussian functions fixed at the number found from fitting the original pro-

file, and measured the FWHM for each simulated line. The standard error on

FWHM was then estimated as the standard deviation of the FWHM values

measured from the simulated line profiles.

7.5 ESTIMATING MBH

Recently, reverberation mapping studies of broad line AGN (e.g., Peterson et al.,

2004) established a correlation between the broad line region (BLR) size, R, and

the continuum luminosity (the R–L relationship, e.g., Kaspi et al., 2005; Bentz et

al., 2006). This has made it possible to estimate black hole virial mass MBH =

fv2R/G for individual sources, where the BLR velocity v is estimated from the

width of an emission line (e.g., Wandel et al., 1999; Vestergaard, 2002; McLure

& Dunlop, 2002; Vestergaard & Peterson, 2006). We choose the proportionality

constant to give broad line mass estimates consistent with the MBH–σ relation-

ship (Gebhardt et al., 2000a; Merritt & Ferrarese, 2001; Tremaine et al., 2002),
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f = 1.4 ± 0.45 (Onken et al., 2004). An estimate of the Eddington luminosity

can be computed as LEdd = 1.3 × 1038MBH/M¯ erg s−1.

7.5.1 Black Hole Mass Estimates from Hβ, Mg II, and C IV

In this work we estimate MBH from the Hβ, Mg II, and C IV emission lines. We

use the relationship of Vestergaard & Peterson (2006) to estimate MBH from the

Hβ and C IV emission lines, and the relationship of Vestergaard et al. (2008, in

preparation) to estimate MBH from the Mg II emission lines. These relationship

are:

mHβ = 6.67 + 2 log

[

FWHM(Hβ)

1000 km s−1

]

+ 0.63 log

[

L(Hβ)

1042 erg s1

]

(7.4)

mMgII = 6.86 + 2 log

[

FWHM(MgII)

1000 km s−1

]

+ 0.50 log

[

λLλ(3000Å)

1044 erg s1

]

(7.5)

mCIV = 6.66 + 2 log

[

FWHM(CIV)

1000 km s−1

]

+ 0.53 log

[

λLλ(1350Å)

1044 erg s1

]

, (7.6)

where we have used the notation thatmHβ is the Hβ-based estimate of logMBH/M¯,

and likewise for mMgII and mCIV. The calibration for the Mg II mass estimates

was calculated to ensure that they are consistent with the mass estimates based

on Hβ and C IV. We have 49 sources with both Hβ and Mg II mass estimates, and

73 sources with both C IV and Mg II mass estimates. Both samples show con-

sistent mass estimates between the different emission lines, within the intrinsic

uncertainty in the broad line mass estimates (∼ 0.4 dex).

We will denote the broad line mass estimates as M̂BL, and m̂BL ≡ log M̂BL/M¯.

It is important to distinguish between M̂BL and MBH , as M̂BL ∝ LγFWHM 2, γ ∼

0.5, is an estimate of MBH derived from reverberation mapping, and thus in gen-

eral M̂BL 6= MBH . The statistical uncertainty needs to be taken into account when

analyzing correlations involving derived quantities like M̂BL ∝ LγFWHM 2, as

they can bias the results (Kelly & Bechtold, 2007; Kelly, 2007).
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The uncertainty in f increases the formal statistical uncertainty in the broad

line estimates of MBH to ∼ 0.46 dex. Our adopted formal uncertainty of ∼ 0.46

dex is merely statistical, and additional systematic uncertainties in reverberation

mapping may contribute (Krolik, 2001; Collin et al., 2006). Because our adopted

uncertainty of ∼ 0.46 describes the scatter in broad line mass estimates about the

reverberation mapping estimates, as calibrated via the MBH–σ relationship, the

regression results found in this work should be understood as results that could

have been obtained if we had reverberation-based MBH for the sources in this

work. However, instead of reverberation-based mass estimates, we have broad

line mass estimates with ‘measurement error’ equal to ∼ 0.46 dex with respect to

the reverberation-based mass estimates, thus increasing the uncertainty from the

regression analysis.

For most sources, measurement errors on FWHM and Lλ did not signifi-

cantly contribute to the uncertainty on MBH . If there were two emission lines

in the same spectrum we averaged the two mass estimates, where the average

was weighted by the uncertainties in the two estimates. The distribution of MBH

as a function of z for our sample is shown in Figure 7.2. The broad line masss

estimates for the sources in our sample are reported in Table 7.1.
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Figure 7.2 The distributions of estimatedMBH , Lbol, andLbol/LEdd, as a function of

z for our sample. The data points with error bars in the left two plots are fictitious

data points illustrating the typical error in M̂BL and L̂bol/L̂Edd.
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Table 7.1. Black Hole Parameters of the Sample

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

00 02 30.7 +00 49 59.0 1.352 9.20 ± 0.45 −2.43 ± 0.45 −1.44 ± 0.45

00 06 54.1 -00 15 33.4 1.725 9.08 ± 0.29 −2.58 ± 0.30 −1.07 ± 0.29

00 22 10.0 +00 16 29.3 0.574 7.96 ± 0.32 −2.73 ± 0.32 −1.11 ± 0.32

00 27 52.4 +00 26 15.7 0.205 7.35 ± 0.45 −2.42 ± 0.46 −1.26 ± 0.49

00 31 31.4 +00 34 20.2 1.735 9.17 ± 0.29 −2.66 ± 0.29 −1.31 ± 0.29

00 50 06.3 -00 53 19.0 4.331 9.61 ± 0.41 −2.89 ± 0.42 −1.19 ± 0.41

00 57 01.1 +14 50 03.0 0.623 8.66 ± 0.32 −3.79 ± 0.32 −1.66 ± 0.32

00 59 22.8 +00 03 01.0 4.178 9.21 ± 0.38 −2.28 ± 0.41 −0.74 ± 0.38

01 06 19.2 +00 48 22.0 4.437 9.18 ± 0.38 −1.96 ± 0.39 −0.46 ± 0.38

01 13 05.7 +15 31 46.5 0.576 9.39 ± 0.32 −3.47 ± 0.32 −2.46 ± 0.32

01 13 09.1 +15 35 53.6 1.806 9.19 ± 0.29 −2.32 ± 0.29 −1.13 ± 0.29

01 15 37.7 +00 20 28.7 1.275 9.25 ± 0.45 −2.75 ± 0.45 −1.81 ± 0.45

01 26 02.2 -00 19 24.1 1.765 8.96 ± 0.29 −2.58 ± 0.29 −1.01 ± 0.29

01 33 40.4 +04 00 59.0 4.150 9.52 ± 0.38 −2.37 ± 0.39 −0.65 ± 0.38

01 34 21.5 +33 07 56.6 4.530 9.60 ± 0.39 −2.53 ± 0.41 −0.61 ± 0.39

01 48 12.2 +00 01 53.3 1.704 9.59 ± 0.29 −3.08 ± 0.30 −1.41 ± 0.29

01 48 21.0 -00 02 25.8 0.930 8.33 ± 0.45 −2.10 ± 0.45 −1.05 ± 0.45

01 52 58.7 +01 05 07.4 0.647 7.90 ± 0.33 −2.17 ± 0.33 −1.11 ± 0.33

01 53 09.1 +00 52 50.1 1.161 9.05 ± 0.45 −3.11 ± 0.52 −1.67 ± 0.45

01 56 50.3 +00 53 08.5 1.652 8.63 ± 0.30 −2.11 ± 0.31 −0.73 ± 0.30
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

01 59 50.2 +00 23 40.8 0.162 8.05 ± 0.45 −2.30 ± 0.45 −1.34 ± 0.48

02 01 18.7 -09 19 35.8 0.660 8.58 ± 0.32 −2.58 ± 0.32 −1.30 ± 0.32

02 08 45.5 +00 22 36.1 1.885 9.72 ± 0.29 −3.05 ± 0.30 −1.15 ± 0.29

02 09 44.7 +05 17 14.0 4.140 10.5 ± 0.38 −3.47 ± 0.39 −1.44 ± 0.38

02 10 00.2 -10 03 54.3 1.960 9.32 ± 0.39 −2.33 ± 0.39 −1.69 ± 0.39

02 22 25.5 -09 02 58.5 0.224 7.68 ± 0.45 −3.70 ± 0.45 −1.90 ± 0.48

02 22 26.1 -08 57 01.3 0.166 7.10 ± 0.45 −1.81 ± 0.45 −1.12 ± 0.48

02 23 56.3 -08 57 07.8 1.576 8.92 ± 0.29 −2.90 ± 0.29 −1.45 ± 0.29

02 24 35.9 -09 00 01.3 1.611 8.93 ± 0.30 −2.57 ± 0.30 −1.43 ± 0.30

02 32 17.7 -07 31 19.9 1.163 8.44 ± 0.46 −2.61 ± 0.46 −1.32 ± 0.46

02 33 06.3 +00 46 14.5 2.290 8.65 ± 0.40 −2.12 ± 0.40 −1.39 ± 0.40

02 33 25.3 +00 29 14.9 2.017 8.67 ± 0.29 −1.89 ± 0.29 −0.70 ± 0.29

02 33 33.2 +01 03 33.1 2.058 9.64 ± 0.29 −3.43 ± 0.29 −1.51 ± 0.29

02 33 59.7 +00 49 38.6 2.522 9.67 ± 0.38 −2.73 ± 0.38 −1.13 ± 0.38

02 34 14.6 +00 57 07.9 0.269 7.07 ± 0.45 −2.20 ± 0.45 −1.25 ± 0.48

02 41 05.8 -08 11 53.2 0.978 8.09 ± 0.47 −2.51 ± 0.47 −1.34 ± 0.47

02 41 10.0 +00 23 01.4 0.790 8.65 ± 0.45 −3.12 ± 0.46 −2.21 ± 0.45

02 44 01.9 -01 34 03.0 4.053 10.1 ± 0.38 −3.56 ± 0.40 −1.02 ± 0.38

02 48 54.3 +18 02 49.9 4.430 9.85 ± 0.38 −2.39 ± 0.39 −1.00 ± 0.38

02 53 56.1 +00 10 57.5 1.699 8.95 ± 0.30 −2.60 ± 0.30 −1.39 ± 0.30
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

02 54 22.9 +00 07 58.8 1.213 8.31 ± 0.45 −2.16 ± 0.45 −1.10 ± 0.45

02 54 38.4 +00 21 32.8 2.463 9.14 ± 0.39 −2.58 ± 0.39 −1.35 ± 0.39

02 55 01.2 +00 17 45.5 0.359 7.33 ± 0.52 −1.50 ± 0.52 −1.43 ± 0.55

02 55 05.7 +00 25 23.2 0.353 8.42 ± 0.45 −2.38 ± 0.45 −1.84 ± 0.48

02 55 10.6 -00 07 12.9 1.686 9.22 ± 0.29 −2.97 ± 0.29 −1.72 ± 0.29

02 55 13.0 +00 06 39.5 1.882 8.76 ± 0.29 −2.14 ± 0.29 −1.12 ± 0.29

02 55 25.7 +00 21 09.9 0.526 7.68 ± 0.61 −2.85 ± 0.61 −1.81 ± 0.62

02 55 28.9 -00 02 19.1 1.435 9.16 ± 0.45 −2.75 ± 0.45 −1.77 ± 0.45

02 55 56.0 +00 14 57.4 0.863 8.48 ± 0.45 −3.33 ± 0.45 −1.66 ± 0.45

02 59 59.7 +00 48 13.6 0.892 9.03 ± 0.45 −3.24 ± 0.45 −2.03 ± 0.45

03 11 15.2 -17 22 47.3 4.000 10.2 ± 0.38 −3.39 ± 0.38 −1.13 ± 0.38

03 14 27.5 -01 11 52.3 0.387 7.94 ± 0.32 −2.26 ± 0.32 −1.19 ± 0.36

04 03 56.6 -17 03 24.1 4.236 8.74 ± 0.38 −1.84 ± 0.40 −0.23 ± 0.38

04 19 50.9 -57 16 13.1 4.460 9.82 ± 0.38 −3.05 ± 0.41 −0.73 ± 0.38

07 34 05.3 +32 03 15.4 2.082 8.96 ± 0.29 −2.87 ± 0.29 −1.41 ± 0.29

07 55 02.1 +22 03 46.9 0.399 8.38 ± 0.32 −3.07 ± 0.32 −1.87 ± 0.37

07 55 35.6 +40 58 03.0 2.417 9.55 ± 0.38 −3.11 ± 0.40 −1.50 ± 0.38

07 55 40.0 +41 11 19.1 0.967 9.33 ± 0.45 −3.90 ± 0.47 −1.66 ± 0.45

07 55 45.6 +40 56 43.6 2.348 9.26 ± 0.38 −2.80 ± 0.40 −1.35 ± 0.38

07 57 51.7 +37 45 54.3 1.242 8.75 ± 0.46 −2.74 ± 0.46 −1.17 ± 0.46
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

07 58 21.0 +37 55 33.2 0.859 8.47 ± 0.33 −2.54 ± 0.33 −1.61 ± 0.33

07 58 25.9 +37 46 28.8 1.500 8.68 ± 0.30 −2.39 ± 0.30 −1.44 ± 0.30

08 13 03.9 +45 57 13.4 0.297 8.25 ± 0.45 −3.04 ± 0.45 −2.35 ± 0.49

08 13 39.4 +46 03 41.3 1.986 9.37 ± 0.29 −2.71 ± 0.29 −1.20 ± 0.29

08 19 51.4 +36 49 50.8 0.736 8.03 ± 0.33 −1.97 ± 0.33 −1.15 ± 0.33

08 45 26.6 +34 31 02.0 2.046 8.83 ± 0.42 −2.36 ± 0.42 −1.35 ± 0.42

08 47 16.0 +37 32 18.1 0.453 8.06 ± 0.32 −1.68 ± 0.32 −1.56 ± 0.32

08 47 45.9 +37 53 59.1 1.908 9.06 ± 0.29 −2.46 ± 0.29 −1.08 ± 0.29

08 48 18.9 +37 40 09.1 0.307 8.12 ± 0.45 −2.59 ± 0.45 −1.78 ± 0.48

08 48 24.7 +37 31 14.1 1.567 9.08 ± 0.29 −2.96 ± 0.29 −1.46 ± 0.29

08 48 34.3 +37 23 34.1 1.741 8.95 ± 0.29 −2.63 ± 0.29 −1.31 ± 0.29

08 48 38.6 +37 45 41.7 2.618 8.96 ± 0.45 −2.09 ± 0.45 −0.83 ± 0.45

08 49 05.1 +44 57 14.8 1.259 8.68 ± 0.45 −2.56 ± 0.45 −1.71 ± 0.45

08 49 05.1 +44 57 14.8 1.259 8.66 ± 0.45 −2.63 ± 0.45 −1.69 ± 0.45

08 49 43.7 +45 00 24.3 1.592 9.01 ± 0.29 −2.52 ± 0.29 −1.19 ± 0.29

09 09 11.6 +54 09 52.6 0.142 7.53 ± 0.45 −2.77 ± 0.45 −1.83 ± 0.48

09 09 26.7 +42 42 28.5 0.240 7.53 ± 0.45 −2.38 ± 0.45 −1.47 ± 0.49

09 10 06.3 +43 08 59.3 0.740 8.29 ± 0.32 −2.73 ± 0.32 −1.36 ± 0.32

09 10 23.2 +42 45 54.9 1.303 8.68 ± 0.47 −2.69 ± 0.47 −1.16 ± 0.47

09 10 29.0 +54 27 19.0 0.525 8.55 ± 0.32 −2.54 ± 0.32 −1.82 ± 0.32
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

09 10 29.0 +54 27 19.0 0.525 8.58 ± 0.32 −2.57 ± 0.32 −1.85 ± 0.32

09 12 10.3 +05 47 42.1 3.240 10.0 ± 0.38 −3.45 ± 0.41 −1.37 ± 0.38

09 18 28.6 +51 39 32.1 0.185 8.25 ± 0.45 −3.61 ± 0.46 −2.08 ± 0.48

09 18 47.5 +06 47 04.7 0.821 8.65 ± 0.33 −2.73 ± 0.33 −1.55 ± 0.33

09 32 59.0 +55 04 33.6 1.512 8.69 ± 0.29 −2.25 ± 0.29 −1.67 ± 0.29

09 33 59.3 +55 15 50.7 1.863 8.89 ± 0.30 −2.54 ± 0.30 −1.18 ± 0.30

09 33 59.3 +55 15 50.8 1.863 8.91 ± 0.30 −2.18 ± 0.30 −1.20 ± 0.30

09 35 30.1 +61 36 50.0 1.292 9.10 ± 0.45 −2.64 ± 0.45 −1.19 ± 0.45

09 35 31.2 +61 29 02.1 1.865 8.92 ± 0.29 −2.57 ± 0.29 −1.34 ± 0.29

09 36 39.1 +61 19 18.1 1.329 8.86 ± 0.45 −3.18 ± 0.45 −1.44 ± 0.45

09 41 33.7 +59 48 11.3 0.967 9.31 ± 0.45 −2.53 ± 0.45 −1.14 ± 0.45

09 42 31.9 +47 11 21.4 1.788 9.21 ± 0.29 −3.02 ± 0.29 −1.49 ± 0.29

09 43 45.2 +46 51 54.7 1.246 8.53 ± 0.45 −2.31 ± 0.45 −0.82 ± 0.45

09 50 24.0 +56 19 46.7 1.912 9.24 ± 0.39 −2.90 ± 0.40 −2.16 ± 0.39

09 51 30.2 +59 40 37.1 1.056 9.06 ± 0.45 −2.94 ± 0.45 −1.74 ± 0.45

09 51 51.6 +59 44 30.0 2.338 9.17 ± 0.38 −2.79 ± 0.39 −1.68 ± 0.38

09 52 40.2 +51 52 50.0 0.553 8.36 ± 0.32 −2.50 ± 0.32 −1.50 ± 0.32

09 52 43.0 +51 51 21.1 0.861 9.05 ± 0.45 −2.64 ± 0.45 −1.58 ± 0.45

09 55 05.6 +59 35 17.6 0.912 8.26 ± 0.45 −2.40 ± 0.45 −1.30 ± 0.45

09 55 11.3 +59 40 32.2 4.340 9.57 ± 0.39 −2.73 ± 0.41 −0.93 ± 0.39
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

09 55 42.1 +41 16 55.3 3.420 9.47 ± 0.39 −2.81 ± 0.40 −1.43 ± 0.39

09 55 48.1 +41 09 55.3 2.307 9.56 ± 0.38 −2.86 ± 0.39 −1.58 ± 0.38

09 56 40.4 +41 10 43.5 1.887 8.91 ± 0.32 −3.08 ± 0.33 −1.74 ± 0.32

09 58 20.5 +07 34 36.1 1.885 9.26 ± 0.31 −1.97 ± 0.33 −1.28 ± 0.31

09 58 22.6 +07 47 47.7 3.218 8.53 ± 0.39 −2.08 ± 0.40 −0.83 ± 0.39

09 58 36.6 +07 45 56.3 1.487 9.21 ± 0.45 −2.68 ± 0.45 −1.86 ± 0.45

10 02 05.4 +55 42 57.9 1.151 9.28 ± 0.45 −3.20 ± 0.45 −1.63 ± 0.45

10 03 52.8 +47 36 53.4 2.934 8.89 ± 0.39 −2.40 ± 0.40 −1.12 ± 0.39

10 09 09.2 +53 51 02.4 1.761 8.67 ± 0.29 −2.58 ± 0.29 −1.15 ± 0.29

10 09 21.9 +53 49 25.7 0.387 8.40 ± 0.32 −2.79 ± 0.32 −2.31 ± 0.36

10 09 26.7 +53 34 24.4 1.730 9.37 ± 0.38 −2.52 ± 0.38 −1.89 ± 0.38

10 09 46.0 +52 34 41.2 0.174 7.36 ± 0.45 −2.07 ± 0.45 −1.45 ± 0.48

10 10 37.5 +52 37 22.5 1.245 8.99 ± 0.45 −2.62 ± 0.45 −1.70 ± 0.45

10 13 14.9 -00 52 33.6 0.275 7.39 ± 0.45 −1.95 ± 0.45 −0.96 ± 0.48

10 16 44.3 +59 21 34.6 1.118 9.22 ± 0.45 −2.61 ± 0.45 −2.03 ± 0.45

10 17 30.6 +59 30 42.2 1.047 8.48 ± 0.45 −2.55 ± 0.45 −1.86 ± 0.45

10 17 37.7 +59 22 27.7 0.887 8.74 ± 0.45 −2.58 ± 0.45 −1.41 ± 0.45

10 17 50.2 +59 28 03.2 2.316 9.28 ± 0.38 −2.69 ± 0.38 −1.46 ± 0.38

10 17 57.5 +59 21 08.8 1.676 9.08 ± 0.29 −3.05 ± 0.29 −1.89 ± 0.29

10 18 11.8 +59 39 28.5 1.300 8.89 ± 0.45 −2.87 ± 0.45 −1.81 ± 0.45
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

10 19 02.0 +47 37 14.6 2.944 9.54 ± 0.38 −3.04 ± 0.39 −1.61 ± 0.38

10 19 39.2 +52 46 27.9 2.169 9.54 ± 0.29 −2.97 ± 0.29 −1.20 ± 0.29

10 19 43.7 +52 57 21.3 0.841 8.07 ± 0.32 −2.08 ± 0.32 −1.10 ± 0.32

10 20 23.3 +52 45 10.0 1.543 8.86 ± 0.31 −2.74 ± 0.31 −1.45 ± 0.32

10 23 50.9 +04 15 42.0 1.809 8.88 ± 0.29 −2.50 ± 0.29 −1.34 ± 0.29

10 30 31.6 +05 24 54.9 1.182 8.95 ± 0.45 −3.61 ± 0.46 −1.21 ± 0.45

10 32 27.9 +57 38 22.5 1.968 8.61 ± 0.29 −1.95 ± 0.29 −1.57 ± 0.29

10 32 36.2 +58 00 34.0 0.686 7.76 ± 0.32 −3.35 ± 0.32 −1.32 ± 0.32

10 36 23.8 -03 43 20.0 4.509 9.79 ± 0.38 −2.75 ± 0.40 −0.81 ± 0.38

10 37 03.1 -00 18 54.8 0.287 7.12 ± 0.53 −2.04 ± 0.53 −1.43 ± 0.56

10 38 08.7 +47 27 34.9 1.047 8.95 ± 0.45 −3.68 ± 0.46 −1.52 ± 0.45

10 42 30.7 +01 00 01.6 1.400 9.11 ± 0.45 −2.71 ± 0.46 −1.38 ± 0.45

10 44 54.9 +59 21 34.1 1.291 8.83 ± 0.45 −2.76 ± 0.45 −1.50 ± 0.45

10 47 23.5 +54 04 06.9 1.508 8.84 ± 0.29 −2.82 ± 0.29 −1.26 ± 0.29

10 49 21.5 +57 50 36.6 1.106 8.41 ± 0.45 −2.43 ± 0.46 −1.11 ± 0.45

10 50 15.6 +57 02 55.7 3.273 9.39 ± 0.38 −2.61 ± 0.39 −1.58 ± 0.38

10 50 50.1 +57 38 20.0 1.281 8.75 ± 0.45 −2.54 ± 0.45 −1.48 ± 0.45

10 52 39.6 +57 24 31.5 1.111 8.93 ± 0.45 −2.54 ± 0.45 −1.28 ± 0.45

10 52 39.6 +57 24 31.4 1.111 9.18 ± 0.45 −2.71 ± 0.45 −1.53 ± 0.45

10 53 16.8 +57 35 50.8 1.204 8.44 ± 0.45 −1.81 ± 0.49 −1.26 ± 0.45
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

10 54 04.1 +57 40 19.8 1.100 8.86 ± 0.45 −2.93 ± 0.46 −1.25 ± 0.45

10 54 22.6 +57 20 31.0 2.972 9.09 ± 0.38 −2.27 ± 0.38 −1.29 ± 0.39

10 55 18.1 +57 04 23.6 0.695 8.09 ± 0.32 −2.27 ± 0.32 −1.28 ± 0.32

10 56 44.5 +57 22 33.5 0.286 8.07 ± 0.46 −3.52 ± 0.46 −2.09 ± 0.49

10 57 56.4 +45 55 52.0 4.100 10.1 ± 0.38 −2.85 ± 0.39 −0.62 ± 0.38

11 02 05.7 +60 38 36.7 0.638 8.56 ± 0.32 −3.00 ± 0.32 −1.87 ± 0.32

11 02 50.1 +60 56 25.8 2.363 9.45 ± 0.38 −2.76 ± 0.38 −1.46 ± 0.38

11 03 07.8 +60 52 17.8 1.067 8.40 ± 0.45 −2.94 ± 0.45 −1.71 ± 0.45

11 03 08.8 +60 47 46.6 0.809 7.92 ± 0.45 −2.70 ± 0.45 −1.62 ± 0.45

11 03 49.8 +61 04 12.6 0.851 8.06 ± 0.45 −2.49 ± 0.45 −1.52 ± 0.45

11 09 05.3 +09 00 48.7 1.674 8.29 ± 0.30 −2.20 ± 0.31 −0.81 ± 0.30

11 11 32.1 +55 32 40.3 1.004 8.75 ± 0.45 −2.76 ± 0.45 −1.36 ± 0.45

11 14 52.8 +53 15 31.7 1.213 8.22 ± 0.45 −1.95 ± 0.50 −1.04 ± 0.45

11 15 20.7 +53 09 22.1 0.877 8.95 ± 0.45 −3.93 ± 0.45 −1.53 ± 0.45

11 29 43.9 -01 37 52.3 1.294 9.24 ± 0.45 −2.68 ± 0.45 −1.64 ± 0.45

11 29 51.2 -01 50 37.3 1.784 8.82 ± 0.29 −2.36 ± 0.30 −1.78 ± 0.29

11 32 19.7 +63 53 46.9 1.752 8.28 ± 0.29 −2.30 ± 0.29 −1.14 ± 0.29

11 36 21.2 +01 59 27.9 0.766 8.71 ± 0.32 −2.86 ± 0.32 −1.87 ± 0.32

11 36 31.9 +01 58 01.1 1.470 9.11 ± 0.45 −3.42 ± 0.47 −1.12 ± 0.45

11 36 33.1 +02 07 47.7 0.239 8.61 ± 0.45 −3.86 ± 0.45 −2.34 ± 0.48
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

11 36 34.9 +61 06 20.4 2.029 8.45 ± 0.29 −1.82 ± 0.29 −1.09 ± 0.29

11 38 29.1 +61 10 21.2 1.489 8.90 ± 0.47 −3.12 ± 0.47 −1.34 ± 0.47

12 01 14.4 -03 40 41.0 0.019 6.52 ± 0.45 −2.71 ± 0.45 −1.56 ± 0.48

12 02 26.8 -01 29 15.3 0.150 6.82 ± 0.54 −1.84 ± 0.54 −1.36 ± 0.57

12 03 29.6 -03 44 10.7 1.191 8.99 ± 0.45 −3.08 ± 0.45 −1.64 ± 0.45

12 03 53.9 -03 33 02.4 1.591 9.15 ± 0.30 −3.03 ± 0.30 −1.44 ± 0.30

12 04 15.2 -03 34 29.3 3.814 9.59 ± 0.38 −2.70 ± 0.38 −1.11 ± 0.38

12 04 31.4 -03 31 15.6 0.966 8.93 ± 0.45 −2.85 ± 0.45 −1.73 ± 0.45

12 04 36.6 +01 50 25.6 1.927 9.38 ± 0.29 −3.00 ± 0.29 −1.56 ± 0.29

12 04 50.6 +02 21 18.5 2.884 8.62 ± 0.38 −1.90 ± 0.38 −1.03 ± 0.38

12 04 52.9 -03 26 26.0 0.296 8.26 ± 0.45 −2.68 ± 0.45 −1.95 ± 0.48

12 05 23.7 -03 36 18.2 1.494 9.38 ± 0.45 −3.24 ± 0.45 −1.93 ± 0.45

12 05 43.0 +01 48 27.2 1.590 9.39 ± 0.29 −2.50 ± 0.29 −1.83 ± 0.29

12 06 30.4 +01 58 08.4 1.551 8.75 ± 0.45 −2.74 ± 0.45 −1.86 ± 0.45

12 08 29.6 +00 16 42.7 1.063 8.94 ± 0.45 −2.91 ± 0.45 −1.84 ± 0.45

12 13 43.0 +02 52 48.9 0.641 7.92 ± 0.32 −2.77 ± 0.32 −1.39 ± 0.32

12 14 15.2 +00 55 11.5 0.395 7.80 ± 0.32 −2.10 ± 0.32 −1.23 ± 0.36

12 15 40.5 -00 34 33.8 0.757 8.67 ± 0.33 −2.71 ± 0.34 −2.10 ± 0.33

12 18 36.1 +05 46 28.1 0.795 9.05 ± 0.32 −2.81 ± 0.32 −2.29 ± 0.32

12 18 36.1 +05 46 28.1 0.795 9.14 ± 0.32 −3.39 ± 0.32 −2.37 ± 0.32
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

12 19 25.8 +04 10 12.9 0.912 8.67 ± 0.45 −2.37 ± 0.45 −1.69 ± 0.45

12 19 42.5 +03 45 30.3 0.794 8.60 ± 0.45 −2.72 ± 0.45 −1.63 ± 0.45

12 19 48.9 +05 45 31.7 0.113 6.83 ± 0.45 −2.76 ± 0.45 −1.40 ± 0.48

12 19 55.3 +03 41 04.0 1.492 8.47 ± 0.45 −1.97 ± 0.45 −1.16 ± 0.45

12 20 04.4 -00 25 39.1 0.421 7.36 ± 0.32 −1.29 ± 0.32 −1.12 ± 0.32

12 23 07.5 +10 34 48.2 2.747 9.10 ± 0.42 −2.26 ± 0.42 −0.86 ± 0.42

12 26 52.0 -00 11 59.6 1.175 8.74 ± 0.45 −2.23 ± 0.45 −1.06 ± 0.45

12 26 56.5 +01 31 24.4 0.731 7.89 ± 0.47 −2.30 ± 0.47 −2.00 ± 0.47

12 27 23.7 +01 48 06.0 2.880 9.87 ± 0.38 −3.33 ± 0.38 −2.08 ± 0.38

12 27 24.6 +01 39 30.5 0.334 8.44 ± 0.46 −3.82 ± 0.46 −2.20 ± 0.50

12 27 43.0 +01 34 38.4 1.279 9.24 ± 0.45 −3.21 ± 0.45 −1.83 ± 0.45

12 28 05.6 +01 41 19.2 1.777 9.58 ± 0.29 −3.12 ± 0.29 −1.38 ± 0.29

12 28 18.0 +44 13 02.0 0.662 8.21 ± 0.32 −3.81 ± 0.32 −1.04 ± 0.32

12 28 53.7 +44 11 52.9 1.276 8.97 ± 0.45 −2.87 ± 0.45 −1.47 ± 0.45

12 30 05.8 +03 02 04.2 1.604 9.35 ± 0.29 −2.98 ± 0.30 −1.74 ± 0.29

12 30 25.9 +03 05 35.4 1.055 8.61 ± 0.45 −2.47 ± 0.45 −1.65 ± 0.45

12 30 27.4 +03 06 27.5 0.628 8.69 ± 0.32 −2.60 ± 0.32 −1.82 ± 0.32

12 30 39.9 +03 08 57.3 1.843 9.12 ± 0.30 −2.84 ± 0.33 −1.60 ± 0.30

12 30 54.7 +03 05 37.2 0.427 7.94 ± 0.32 −2.92 ± 0.33 −1.78 ± 0.32

12 35 14.9 +00 47 40.7 1.874 9.13 ± 0.29 −2.83 ± 0.29 −1.47 ± 0.29
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

12 35 52.7 +00 50 29.8 2.240 9.00 ± 0.39 −2.61 ± 0.39 −1.18 ± 0.39

12 36 22.9 +62 15 26.6 2.587 8.43 ± 0.41 −2.60 ± 0.41 −1.01 ± 0.41

12 36 59.9 +00 42 12.2 2.368 9.38 ± 0.38 −2.63 ± 0.38 −1.40 ± 0.38

12 37 16.0 +62 03 23.4 2.068 9.04 ± 0.30 −2.94 ± 0.30 −1.49 ± 0.30

12 37 29.8 +00 54 33.5 3.282 9.17 ± 0.39 −2.20 ± 0.39 −0.80 ± 0.39

12 42 14.1 +02 42 24.2 1.603 9.01 ± 0.29 −2.62 ± 0.29 −1.62 ± 0.29

12 42 19.2 +02 31 18.3 0.479 8.43 ± 0.32 −2.75 ± 0.32 −2.07 ± 0.32

12 42 20.1 +02 32 57.6 2.224 9.16 ± 0.29 −2.59 ± 0.29 −0.92 ± 0.29

12 42 44.6 +02 29 54.4 0.937 9.12 ± 0.45 −3.10 ± 0.45 −1.38 ± 0.45

12 42 55.3 +02 49 57.0 1.458 9.02 ± 0.45 −2.63 ± 0.45 −1.55 ± 0.45

12 42 55.3 +02 49 57.0 1.458 8.99 ± 0.45 −2.63 ± 0.46 −1.52 ± 0.45

12 43 20.0 +02 52 56.2 0.086 6.71 ± 0.52 −1.97 ± 0.52 −1.41 ± 0.55

12 45 24.6 -00 09 38.0 2.084 9.59 ± 0.29 −3.02 ± 0.29 −1.27 ± 0.29

12 45 41.0 -00 27 44.8 1.693 9.56 ± 0.29 −2.50 ± 0.29 −1.71 ± 0.29

12 45 41.0 -00 27 44.9 1.693 9.54 ± 0.29 −2.55 ± 0.30 −1.69 ± 0.29

12 45 55.1 -00 37 35.3 1.042 8.98 ± 0.45 −2.77 ± 0.45 −1.37 ± 0.45

12 55 35.1 +56 52 39.6 1.803 9.17 ± 0.29 −2.82 ± 0.29 −1.54 ± 0.29

12 55 36.2 +56 50 00.1 1.373 8.52 ± 0.45 −3.63 ± 0.45 −1.41 ± 0.45

12 58 49.8 -01 43 03.3 0.967 9.08 ± 0.45 −2.39 ± 0.45 −1.17 ± 0.45

12 59 43.6 +01 02 55.0 0.394 7.75 ± 0.33 −2.90 ± 0.33 −1.20 ± 0.38
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

13 10 55.6 -01 27 24.5 1.002 8.71 ± 0.45 −3.09 ± 0.45 −1.47 ± 0.45

13 11 08.5 +00 31 51.7 0.429 7.65 ± 0.32 −2.66 ± 0.34 −0.95 ± 0.32

13 11 31.0 -01 03 32.4 1.303 8.79 ± 0.45 −2.96 ± 0.45 −1.28 ± 0.45

13 12 08.7 -01 07 10.2 0.804 8.94 ± 0.32 −2.88 ± 0.32 −1.99 ± 0.32

13 17 43.2 +35 31 31.1 4.360 9.26 ± 0.42 −2.12 ± 0.42 −0.84 ± 0.42

13 21 10.8 +00 38 22.0 4.716 9.19 ± 0.39 −2.63 ± 0.41 −0.71 ± 0.40

13 29 48.5 -02 00 28.4 1.356 9.20 ± 0.45 −2.79 ± 0.45 −1.62 ± 0.45

13 30 27.5 -01 42 03.2 1.268 8.68 ± 0.45 −2.05 ± 0.45 −1.21 ± 0.45

13 31 02.5 -01 50 14.5 0.561 8.32 ± 0.32 −2.56 ± 0.32 −1.79 ± 0.32

13 31 11.3 -02 06 12.3 2.026 9.14 ± 0.30 −2.67 ± 0.30 −1.44 ± 0.30

13 31 35.2 -01 44 30.3 1.461 8.95 ± 0.46 −2.48 ± 0.46 −1.28 ± 0.46

13 31 39.3 -02 06 02.2 2.043 9.72 ± 0.29 −3.15 ± 0.29 −1.79 ± 0.29

13 31 41.0 -01 52 12.4 0.145 6.38 ± 0.45 −1.46 ± 0.45 −0.67 ± 0.49

13 42 33.7 -00 11 48.1 0.515 8.63 ± 0.32 −3.47 ± 0.32 −2.12 ± 0.32

13 43 25.8 -00 16 12.2 1.513 8.94 ± 0.45 −3.09 ± 0.45 −1.41 ± 0.45

13 43 51.1 +00 04 34.8 0.073 6.86 ± 0.50 −3.72 ± 0.50 −1.47 ± 0.53

13 44 25.9 -00 00 56.2 1.095 8.76 ± 0.46 −3.34 ± 0.47 −1.41 ± 0.46

13 44 26.0 -00 00 56.1 1.095 8.76 ± 0.45 −2.71 ± 0.45 −1.41 ± 0.45

13 44 59.5 -00 15 59.5 0.244 7.56 ± 0.45 −2.20 ± 0.45 −1.23 ± 0.48

13 58 54.5 +62 39 13.3 1.228 8.58 ± 0.46 −1.95 ± 0.46 −1.06 ± 0.46
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

13 59 32.3 +62 35 46.4 0.522 8.46 ± 0.32 −2.84 ± 0.32 −2.05 ± 0.32

14 00 37.1 +62 21 32.9 0.075 7.58 ± 0.45 −3.43 ± 0.45 −2.17 ± 0.48

14 00 41.1 +62 25 16.2 1.877 9.02 ± 0.30 −2.91 ± 0.30 −1.58 ± 0.30

14 00 45.0 +62 18 14.6 0.542 8.39 ± 0.32 −2.70 ± 0.32 −1.90 ± 0.32

14 11 04.1 +52 17 55.6 2.882 8.93 ± 0.42 −2.30 ± 0.42 −0.88 ± 0.42

14 11 04.9 +52 05 16.8 1.083 8.53 ± 0.46 −2.94 ± 0.50 −1.34 ± 0.46

14 11 51.5 +59 23 49.1 1.179 8.51 ± 0.45 −2.77 ± 0.45 −0.98 ± 0.45

14 12 18.5 +58 59 18.0 2.026 9.06 ± 0.45 −2.32 ± 0.45 −1.03 ± 0.45

14 12 39.7 +59 21 31.4 0.980 8.76 ± 0.45 −2.94 ± 0.45 −1.61 ± 0.45

14 12 41.5 +58 52 56.5 1.608 9.04 ± 0.30 −3.10 ± 0.30 −1.48 ± 0.30

14 13 15.3 +00 00 32.0 4.078 8.52 ± 0.38 −2.05 ± 0.40 −0.17 ± 0.38

14 17 00.8 +44 56 06.4 0.113 7.87 ± 0.46 −2.77 ± 0.46 −1.57 ± 0.49

14 19 51.9 +47 09 01.4 2.288 9.74 ± 0.38 −2.67 ± 0.38 −1.03 ± 0.38

14 24 36.0 +42 10 30.5 2.217 9.44 ± 0.30 −2.35 ± 0.30 −1.00 ± 0.30

14 32 44.4 -00 59 15.2 1.026 9.45 ± 0.45 −2.38 ± 0.45 −1.69 ± 0.45

14 33 35.3 +02 27 18.3 2.072 8.80 ± 0.38 −2.26 ± 0.40 −1.37 ± 0.38

14 34 07.5 +02 27 04.6 1.710 8.79 ± 0.29 −2.40 ± 0.30 −1.30 ± 0.29

14 38 42.0 +03 41 10.4 1.737 9.09 ± 0.29 −2.58 ± 0.29 −1.05 ± 0.29

14 38 59.1 +03 35 47.5 0.733 8.58 ± 0.32 −2.77 ± 0.32 −1.51 ± 0.32

14 44 28.7 -01 23 44.0 4.179 9.83 ± 0.38 −3.37 ± 0.40 −1.31 ± 0.38
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

14 45 54.8 +01 29 03.3 1.845 8.94 ± 0.29 −2.55 ± 0.30 −1.44 ± 0.29

14 48 53.4 +47 38 21.3 2.894 9.69 ± 0.38 −3.23 ± 0.40 −1.51 ± 0.38

14 48 56.7 +00 15 10.3 0.832 8.61 ± 0.45 −2.73 ± 0.46 −1.55 ± 0.45

14 49 13.5 +00 24 06.9 0.440 7.68 ± 0.32 −2.22 ± 0.32 −1.24 ± 0.32

14 52 15.6 +43 04 48.7 0.296 7.67 ± 0.51 −2.81 ± 0.51 −1.70 ± 0.54

14 52 40.9 +43 08 14.4 1.704 9.30 ± 0.29 −2.71 ± 0.30 −1.79 ± 0.29

14 53 00.6 +33 52 06.0 4.191 8.74 ± 0.38 −2.09 ± 0.39 −0.63 ± 0.38

15 05 43.9 +55 49 36.2 0.708 8.78 ± 0.32 −2.67 ± 0.32 −1.62 ± 0.32

15 07 30.6 +55 37 10.9 4.499 9.06 ± 0.38 −1.69 ± 0.38 −0.65 ± 0.45

15 11 26.5 +56 59 34.8 1.031 9.07 ± 0.45 −2.99 ± 0.45 −1.38 ± 0.45

15 14 53.9 +56 10 32.0 1.286 8.69 ± 0.45 −2.77 ± 0.45 −1.47 ± 0.45

15 15 04.9 +55 21 07.3 1.844 8.44 ± 0.29 −2.40 ± 0.34 −1.26 ± 0.29

15 15 10.1 +56 28 34.8 0.723 8.00 ± 0.35 −2.13 ± 0.35 −1.63 ± 0.35

15 15 30.7 +56 01 32.5 0.571 7.57 ± 0.32 −1.98 ± 0.32 −1.07 ± 0.32

15 39 47.6 +43 13 41.6 0.347 7.68 ± 0.45 −2.16 ± 0.45 −1.42 ± 0.48

15 43 16.4 +54 05 26.1 0.245 7.59 ± 0.45 −2.48 ± 0.45 −1.55 ± 0.48

15 45 30.2 +48 46 09.1 0.399 8.13 ± 0.33 −2.18 ± 0.33 −0.93 ± 0.37

16 05 17.8 -01 09 55.5 1.572 8.91 ± 0.30 −2.17 ± 0.30 −1.17 ± 0.30

16 18 34.0 +34 56 25.6 1.922 9.28 ± 0.29 −2.94 ± 0.31 −1.29 ± 0.29

16 32 57.0 +41 58 29.0 1.469 9.05 ± 0.45 −3.23 ± 0.45 −1.53 ± 0.45
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

16 33 37.5 +42 06 52.8 0.402 7.92 ± 0.32 −2.13 ± 0.32 −1.89 ± 0.32

16 40 25.0 +46 44 49.1 0.537 8.40 ± 0.32 −2.96 ± 0.32 −1.45 ± 0.32

16 41 10.6 +46 49 11.9 0.695 8.44 ± 0.32 −2.75 ± 0.32 −1.76 ± 0.32

16 41 54.2 +40 00 33.1 1.002 9.13 ± 0.45 −3.22 ± 0.45 −1.52 ± 0.45

16 56 27.3 +62 32 26.7 0.184 8.13 ± 0.45 −4.08 ± 0.45 −2.03 ± 0.48

16 57 13.2 +35 24 39.4 2.328 9.00 ± 0.38 −2.19 ± 0.38 −1.27 ± 0.38

16 57 13.2 +35 24 39.4 2.328 8.98 ± 0.38 −2.69 ± 0.40 −1.25 ± 0.38

16 57 39.8 +35 04 26.9 1.953 9.51 ± 0.29 −3.30 ± 0.29 −1.35 ± 0.29

16 59 03.6 +35 24 23.6 1.218 9.06 ± 0.45 −3.15 ± 0.45 −2.22 ± 0.45

17 01 00.6 +64 12 09.1 2.735 10.2 ± 0.38 −2.87 ± 0.38 −0.98 ± 0.38

17 01 00.6 +64 12 09.0 2.735 10.2 ± 0.38 −3.21 ± 0.38 −0.96 ± 0.38

17 02 24.5 +34 05 39.0 2.038 9.04 ± 0.30 −3.18 ± 0.30 −1.14 ± 0.30

17 03 55.8 +60 45 11.8 0.284 7.21 ± 0.45 −2.08 ± 0.45 −1.25 ± 0.49

17 03 55.8 +60 45 11.7 0.284 7.02 ± 0.48 −1.87 ± 0.48 −1.39 ± 0.51

17 04 06.1 +60 47 53.9 1.361 8.98 ± 0.45 −2.29 ± 0.45 −1.30 ± 0.45

17 08 17.9 +61 54 48.6 1.414 9.41 ± 0.45 −2.41 ± 0.45 −1.49 ± 0.45

17 12 24.5 +33 17 21.1 1.622 9.07 ± 0.29 −3.06 ± 0.29 −1.95 ± 0.29

17 19 27.3 +27 32 46.8 1.446 9.20 ± 0.45 −2.51 ± 0.45 −1.59 ± 0.45

17 20 26.5 +26 38 16.0 1.141 8.50 ± 0.45 −2.51 ± 0.47 −1.28 ± 0.45

17 35 51.9 +53 55 15.7 0.955 9.03 ± 0.45 −2.49 ± 0.45 −1.52 ± 0.45
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7.5.2 Eddington Ratio Estimates

A constant bolometric correction has been used in most previous studies involv-

ing the AGN Eddington ratio. However, recent work by Vasudevan & Fabian

(2007) has suggested that bolometric corrections show a large spread with no

obvious dependence on luminosity. Furthermore, these authors found evidence

that the bolometric correction depends on the Eddington ratio. This implies that

the error in the bolometric correction is correlated with Eddington ratio, which

therefore implies that the error in the estimated Eddington ratio is correlated with

the actual Eddington ratio. An Eddington ratio-dependent error in the bolomet-

ric correction my cause problems when using the estimated Eddington ratios to

infer correlations.

Further difficulties with a constant bolometric correction are illustrated with

Figure 7.3. In 7.3 we plot αox as a function of LUV /L̂Edd and LX/L̂Edd, where

we estimate the Eddington luminosity from the broad line mass estimates as

L̂Edd = 1.3 × 1038M̂BL/M¯ erg s−1. As with M̂BL, we use the notation L̂Edd to

emphasize that L̂Edd is an estimate of the true LEdd based on the broad line mass

estimates, and therefore L̂Edd ∝ LγFWHM 2. Constant bolometric corrections are

often applied to either the optical/UV or X-ray luminosity. If a constant bolo-

metric correction was valid for both LUV and LX , then we would expect that

LUV /L̂Edd ∝ LX/L̂Edd ∝ Lbol/LEdd. However, while a correlation between αox

and both LUV /L̂Edd and LX/L̂Edd is apparent, they are of opposite sign. Because

the correlations are of opposite sign, it cannot be true that both LUV /L̂Edd and

LX/L̂Edd are proportional to the Eddington ratio, Lbol/LEdd.

Because of the current significant uncertainty regarding RQQ bolometric cor-

rections, we take the conservative approach and merely compare αox and ΓX

with LUV /LEdd and LX/LEdd. The estimated values of LUV /LEdd and LX/LEdd
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Table 7.1—Continued

α (J2000) δ (J2000) log M̂BL/M¯ logLX/L̂Edd
a logLUV /L̂Edd

b

17 37 16.6 +58 28 39.5 1.775 9.06 ± 0.30 −2.49 ± 0.31 −1.37 ± 0.30

17 38 36.2 +58 37 48.6 1.279 8.81 ± 0.45 −3.26 ± 0.47 −0.95 ± 0.45

21 56 21.8 +01 03 30.6 1.353 9.11 ± 0.45 −3.14 ± 0.45 −1.34 ± 0.45

21 56 47.1 +01 05 02.7 1.036 8.51 ± 0.45 −2.81 ± 0.45 −1.32 ± 0.45

22 15 27.1 -16 11 33.0 3.990 8.90 ± 0.38 −1.96 ± 0.40 −0.20 ± 0.38

22 38 19.8 -09 21 06.0 3.259 10.3 ± 0.38 −2.91 ± 0.38 −1.72 ± 0.38

22 38 54.7 -09 37 36.2 1.472 9.12 ± 0.45 −2.06 ± 0.45 −1.66 ± 0.45

22 39 17.3 -09 33 40.9 1.817 9.34 ± 0.29 −2.15 ± 0.29 −1.62 ± 0.29

22 49 03.3 -08 08 41.7 0.457 7.97 ± 0.32 −2.22 ± 0.32 −1.98 ± 0.32

23 13 04.3 +13 53 03.5 3.026 9.70 ± 0.38 −2.98 ± 0.38 −1.73 ± 0.38

23 14 07.9 +14 07 36.6 3.772 9.64 ± 0.38 −2.82 ± 0.38 −1.55 ± 0.39

23 37 18.1 +00 25 50.7 2.053 9.03 ± 0.29 −2.64 ± 0.31 −1.27 ± 0.29

23 37 22.0 +00 22 38.9 1.376 8.72 ± 0.45 −2.99 ± 0.47 −1.35 ± 0.45

23 37 39.1 +00 26 56.2 1.703 8.93 ± 0.31 −2.14 ± 0.32 −1.20 ± 0.31

23 48 40.1 +01 07 53.5 0.718 8.57 ± 0.32 −2.67 ± 0.32 −1.49 ± 0.32

23 54 19.7 -10 07 18.5 1.745 9.14 ± 0.29 −2.61 ± 0.29 −1.17 ± 0.29

23 55 00.9 -10 31 01.3 0.284 7.72 ± 0.48 −2.39 ± 0.48 −1.77 ± 0.51

23 57 18.3 +00 43 50.0 4.362 8.86 ± 0.40 −2.25 ± 0.41 −0.43 ± 0.40

aLogarithm of the ratio of νLν [2 keV] to L̂Edd, where L̂Edd is calculated from the

broad emission line estimate of MBH , M̂BL.
bLogarithm of the ratio of νLν [2500Å] to L̂Edd, where L̂Edd is calculated from the

broad emission line estimate of MBH , M̂BL.
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Figure 7.3 The distribution of αox as a function of LUV /LEdd (top) and LX/LEdd

(bottom). The opposite dependence of αox on LUV /LEdd and LX/LEdd suggests

that at least one of these quantities is not proportional to Lbol/LEdd. As such, we

do not employ bolometric corrections in this work, and instead compare directly

with LUV /LEdd and LX/LEdd.

.
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for the sources in our sample are reported in Table 7.1. We can write LUV /LEdd ∝

fUVLbol/LEdd and LX/LEdd ∝ fXLbol/LEdd, where fUV and fX are the inverses of

the bolometric corrections for LUV and LX , respectively. The quantities fUV and

fX are proportional to the fraction of the bolometric luminosity emitted at 2500Å

and 2 keV. Then, correlations between either αox or ΓX and LUV /LEdd will result

if αox or ΓX is correlated with fUV , the Eddington ratio, or both, and likewise for

fX .

While we do not use an estimate of the Eddington ratio in our analysis, it

is helpful to estimate the distribution of Eddington ratios probed by our sam-

ple. We assume the bolometric correction described in Hopkins et al. (2007) for

the z < 1.5 sources, and constant bolometric described in Vestergaard (2004) of

Lbol = 4.62λLλ(1350Å) at z > 1.5. In Figure 7.2 we also show the distribution

of estimated Eddington ratios as a function of z. Because the distribution of esti-

matedLbol/LEdd is the true distribution ofLbol/LEdd broadened by the distribution

of errors in the estimates, our sample likely probes a smaller range in Eddington

ratio than that inferred from Figure 7.2. Therefore, at most our sample probes

RQQs with Eddington ratios 0.03 ∼< Lbol/LEdd ∼< 2.

7.6 DEPENDENCE OF αox ON MBH , LUV /LEdd, and LX/LEdd

We used our sample of 318 sources with estimates of MBH to investigate the de-

pendence of αox at a given black hole mass, LUV /LEdd, and LX/LEdd. We use

linear regression analysis in order to understand how αox varies with respect to

these parameters. We use the method of Kelly (2007) to estimate the regression

parameters. The method of Kelly (2007) accounts for measurement errors, non-

detections, and intrinsic scatter. In addition, Kelly (2007) adopts a Bayesian ap-

proach, computing the posterior probability distribution of the parameters, given
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the observed data. Thus the uncertainties on the regression coefficients have a

straight-forward interpretion, and do not rely on large-sample approximations.

Many other methods, such as traditional maximum-likelihood, assume that the

errors in the regression parameters follow a Gaussian distribution, which is valid

as the sample size approaches infinity. However, this assumption is not neces-

sarily valid for our finite sample size, especially in the presence of censoring (i.e.,

presence of upper/lower limits) and significant measurement error. The method

of Kelly (2007) directly estimates the probability distribution of the regression

parameters, and is therefore preferred.

We assess the simple 2-dimensional correlations between αox andMBH , LUV /LEdd,

and LX/LEdd, and compare with the αox–LUV correlation. The results from the re-

gressions are

αox = −3.91+1.04
−1.01 + (0.12+0.02

−0.02) logLUV , σαox = 0.14+0.02
−0.01, ρ = 0.57+0.09

−0.10 (7.7)

αox = 0.05+0.39
−0.42 + (0.17+0.05

−0.04) logMBH , σαox = 0.14+0.02
−0.02, ρ = 0.53+0.12

−0.13 (7.8)

αox = 2.90+0.71
−0.43 + (0.99+0.50

−0.31) logLUV /LEdd, σαox = 0.05+0.05
−0.03, ρ = 0.95+0.04

−0.16(7.9)

αox = −0.03+0.25
−0.34 − (0.57+0.09

−0.12) logLX/LEdd, σαox = 0.03+0.04
−0.03,

ρ = −0.98+0.06
−0.02 (7.10)

where σαox is the intrinsic dispersion in αox at a given LUV ,MBH , LUV /LEdd, or

LX/LEdd, ρ is the linear correlation coefficient for αox and the respective inde-

pendent variables, and the errors are quoted at the 95% (2σ) level. All four rela-

tionships are significant, with RQQs becoming more X-ray quiet as LUV ,MBH , or

LUV /LEdd increases, and more X-ray loud as LX/LEdd increases. Because we have

attempted to correct for the intrinsic statistical scatter in the broad line mass es-

timates, Equations (7.7)–(7.10) refer to the intrinsic relationships involving MBH ,

barring any systematic errors in reverberation mapping, and are not simply cor-
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Figure 7.4 Ratio of optical/UV to X-ray flux as a function of LUV ,MBH , LUV /LEdd,

and LX/LEdd. The solid lines denote the best fit, and the shaded regions contain

95% (2σ) of the probability on the regression line. The data points with error bars

in the plots of αox as a function of MBH , LUV /LEdd, and LX/LEdd are fictitious and

illustrate the typical errors in each direction.

relations between αox and the broad line mass estimates. The estimated distri-

butions of αox as a function of LUV ,MBH , LUV /LEdd, and LX/LEdd are shown in

Figure 7.4, along with the regression results.

The intrinsic dispersion in αox quantifies the magnitude of scatter in αox at a

given LUV ,MBH , LUV /LEdd, or LX/LEdd. Because we have attempted to account

for contribution to the scatter in αox resulting from measurement error and vari-

ability, σαox represents the dispersion in the real physical scatter in αox over the

population of RQQs. This ‘residual’ scatter represents the amount of variation in
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αox that is not ‘explained’ by variations in LUV ,MBH , LUV /LEdd, or LX/LEdd, re-

spectively. This intrinsic scatter in αox may be due to variations in accretion rate,

viscosity, column density, and other quantities not included in our regression.

In § 7.3 we estimate that there are 25±5 BAL quasars in our sample at z < 1.5.

Because these objects have the appearance of being X-ray weak, and because red-

shift is artificially correlated with luminosity and MBH in a flux limited sample,

we expect that the presence of unidentified BALs at z < 1.5 will produce an

excess of X-ray weak objects at low LUV and MBH , thus flattening the inferred

slopes. Inspection of the plot of αox and z in Figure 7.1 suggests an excess of X-

ray weak objects at z < 1.5 and αox ∼> 1.8, implying these objects are BAL quasars.

We removed these 10 objects and refit the regressions. Omission of these objects

resulted in a steepening of the slopes for the LUV and MBH regression, and a

flattening of the slope for the LUV /LEdd regression. In addition, the intrinsic dis-

persion in αox decreased for the LUV and MBH regressions, while it remained

the same for the LUV /LEdd regression. These changes were small (∼ 10%) and

have no effect on our conclusions. There was no difference in the results for the

LX/LEdd regression.

Once can use Equation (7.2) to express the regression results (Eq. [7.7]–[7.10])

in the alternate form

νLν(2500Å)

νLν(2 keV)
= 1.17+0.08

−0.07 × 104

(

νLν(2500Å)

1046ergs−1

)0.31±0.03

, (7.11)

νLν(2500Å)

νLν(2 keV)
= 9.81+0.65

−0.63 × 103

(

MBH

109M¯

)0.43±0.06

, (7.12)

νLν(2500Å)

νLν(2 keV)
= 3.51+15.6

−2.58 × 107

(

νLν(2500Å)

LEdd

)2.57±0.45

, (7.13)

νLν(2500Å)

νLν(2 keV)
= 0.85+1.02

−0.52

(

νLν(2 keV)

LEdd

)−1.48±0.14

, (7.14)

where the intrinsic dispersion in logLUV /LX at a given LUV ,MBH , LUV /LEdd, and
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LX/LEdd is ∼ 0.356, 0.375, 0.133, and 0.089 dex, respectively. In contrast to Equa-

tions (7.7)–(7.10), we quote the 68% (1σ) uncertainties on the constants of pro-

portionality, and the posterior standard deviations on the exponents. Equations

(7.11)–(7.14) may be more physically interpretable and allow easier comparison

with models.

7.7 NONMONOTONIC DEPENDENCE OF ΓX , LUV /LEdd, and LX/Lbol

Recent work has suggested a correlation between quasar X-ray spectral slope,

αX = ΓX − 1, fν ∝ ν−αX , and quasar Eddington ratio as inferred from broad line

mass estimates based on the Hβ emission line (e.g., Porquet et al., 2004; Picon-

celli et al., 2005; Shemmer et al., 2006). The Kelly et al. (2007) sample contains

measurements of ΓX for 157 sources, and we were able to estimate black hole

masses for 153 of them. In this section we use these 153 RQQs to investigate the

dependence of ΓX on MBH , LUV /LEdd, and LX/LEdd.

7.7.1 Regression Analysis

The distributions of ΓX as a function of estimated black hole mass, LUV /LEdd,

and LX/LEdd are shown in Figure 7.5 for the entire sample, and in Figure 7.6

seperately for each emission line. While there does not appear to be a monotonic

trend between ΓX andMBH , LUV /LEdd, orLX/LEdd when using the entire sample,

there is evidence for a trend between ΓX and these quantities when using the Hβ

line, and an opposite trend between ΓX and these quantities when using the C IV

line.

We performed a linear regression of ΓX on logMBH , logLUV /LEdd, and logLX/LEdd

seperately for each emission line. As before, we used the method of Kelly (2007)

when performing the regression in order to correct for the intrinsic statistical un-
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Figure 7.5 Distribution of the X-ray photon index as a function of estimatedMBH ,

LUV /LEdd, and LX/LEdd. For clarity, error bars are only shown on ΓX , and we cut-

off the one data point with estimated ΓX > 4. While no obvious trends between

ΓX and MBH , LUV /LEdd, or LX/LEdd exist for the whole sample, there is evidence

of opposite trends in ΓX for the Hβ and C IV samples.
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Figure 7.6 Distribution of the X-ray photon index as a function of estimatedMBH ,

LUV /LEdd, and LX/LEdd for the individual emission lines. For clarity, error bars

have been omitted, and we omit the one data point with estimated ΓX > 4. While

no obvious trends exist for the whole sample, there is evidence of opposite trends

for the Hβ and C IV samples.
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certainty in the broad line estimates of MBH . The results for MBH are

ΓX = 5.69+7.32
−4.29 −

(

0.44+0.53
−0.91

)

logMBH , σ = 0.43+0.17
−0.17,

ρ = −0.45+0.53
−0.44, (Hβ) (7.15)

ΓX = −19.0+46.0
−68.0 −

(

1.92+7.73
−5.18

)

logMBH , σ = 0.27+0.12
−0.20,

ρ = −0.62+1.23
−0.36, (MgII) (7.16)

ΓX = −2.79+5.22
−10.8 +

(

0.52+1.17
−0.56

)

logMBH , σ = 0.22+0.11
−0.14,

ρ = 0.53+0.42
−0.58, (CIV) (7.17)

the results for LUV /LEdd are

ΓX = 3.96+2.28
−1.15 +

(

1.23+1.48
−0.75

)

logLUV /LEdd, σ = 0.26+0.23
−0.21,

ρ = 0.87+0.13
−0.50, (Hβ) (7.18)

ΓX = 5.13+10.8
−14.4 +

(

2.14+7.28
−9.94

)

logLUV /LEdd, σ = 0.28+0.12
−0.22,

ρ = 0.54+0.44
−1.40, (MgII) (7.19)

ΓX = 0.85+0.78
−2.00 −

(

0.95+0.65
−1.69

)

logLUV /LEdd, σ = 0.17+0.13
−0.13,

ρ = −0.81+0.53
−0.18, (CIV) (7.20)

and the results for LX/LEdd are

ΓX = 4.24+2.58
−1.43 +

(

0.85+1.01
−0.56

)

logLX/LEdd, σ = 0.33+0.19
−0.21,

ρ = 0.76+0.22
−0.46, (Hβ) (7.21)

ΓX = 7.26+16.2
−7.13 +

(

1.97+5.96
−2.71

)

logLX/LEdd, σ = 0.23+0.15
−0.18,

ρ = 0.77+0.22
−0.90, (MgII) (7.22)

ΓX = −0.54+4.05
−5.69 −

(

0.96+1.52
−2.17

)

logLX/LEdd, σ = 0.21+0.13
−0.15,

ρ = −0.65+0.90
−0.34(CIV). (7.23)

In these equations we have quoted the errors at 95% (2σ) confidence. The proba-

bility distributions of the slope and intrinsic dispersion are shown in Figure 7.7.
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Figure 7.7 Posterior probability distributions of the slope (top) and intrinsic dis-

persion (bottom) from a linear regression of ΓX on logMBH , logLUV /LEdd, and

logLX/LEdd. The solid lines mark the posterior for the regression using the Hβ

sample, the dashed-dotted lines mark the posterior for the regression using the

Mg II sample, and the dashed lines mark the posterior for the regression using

the C IV sample.

The larger uncertainty in the results for the Mg II sample is likely caused by the

more narrow range in LUV , LX , and MBH probed.

There are formally no significant linear correlations for the ΓX–MBH relation-

ship. However, there is a statistically significant difference between the Hβ and

C IV slopes, with ≈ 99.3% of the posterior probability at βCIV
m > βHβ

m , where βm

denotes the ΓX–logMBH regression slope. The probability distribution for the dif-

ference in slopes from the MBH regression is shown in Figure 7.8. The significant
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difference in the slope for the Hβ and C IV sample implies a nonlinear relation-

ship between ΓX and mBH , in spite of the fact that the Hβ and C IV correlations

themselves are not ‘statistically significant’. Results similar to the ΓX–logMBH

regressions were found for the ΓX–LUV /LEdd and ΓX–LX/LUV regressions, but

with opposite sign and higher statistical significance.

We performed monte carlo simulations as a consistency check on our inferred

non-monotonicity of the ΓX relationships. While we have attempted to account

for the significant statistical uncertainty on the broad line mass estimates, we em-

ploy these monte carlo simulations to ensure that the observed non-monotonic

behavior is not a spurious result caused by the uncertainty on MBH . We per-

formed 105 simulations under two null hypotheses: (1) that ΓX is independent

of LUV /LEdd, and (2) that ΓX depends linearly on logLUV /LEdd. For both cases

we simulated black hole mass estimates derived from Hβ and C IV seperately.

We first simulated ‘true’ values of MBH for each emission line from a normal

distribution with means equal to the observed mean of the two respective sub-

samples, and variances equal to the difference between the observed variance

of the subsamples and the average intrinsic variance in the broad line mass es-

timates. To simulate the uncertainty in the mass estimates, we added random

Gaussian errors to these ‘true’ values of MBH with standard deviation equal to

the uncertainty in the mass estimates, ∼ 0.4 dex. For the case where ΓX was as-

sumed to be independent of LUV /LEdd, we simulated values of ΓX from a normal

distribution with mean equal to the sample mean of ΓX and variance equal to the

difference between the observed variance in ΓX and the average of the variance in

the measurement errors. For the case where ΓX was assumed to depend linearly

on logLUV /LEdd, we simulated values of ΓX according to our best fit relationship

to the Hβ subsample, given by Equation (7.18). Finally, for both cases we added
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Figure 7.8 Posterior distribution for the difference in slopes between the C IV

and Hβ regressions of ΓX on mBH . While there is no significant evidence that

either the Hβ or C IV regression slope is different from zero, there is significant

evidence that they are not the same, implying a nonmonotonic trend between ΓX

and MBH .

.
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random Gaussian errors to the simulated values of ΓX by randomly reshuffling

the dispersions in the measurement errors in ΓX .

For each of the 105 simulated samples, we selected those samples that dis-

played a non-monotonic trend, i.e., those sample where the slope for the Hβ-

based regression had a different sign from the slope of the C IV-based regression.

Under the hypothesis that ΓX is independent of LUV /LEdd, only 3 of the 105 sim-

ulated samples had both a non-monotonic trend and an absolute value of the dif-

ference in slopes between the Hβ and C IV regression that were larger than that

observed for our actual sample. Under the hypothesis that ΓX depends linearly

on logLUV /LEdd, none of the 105 simulated samples exhibited a non-monotonic

trend. Therefore, the observed non-monotonic trend in ΓX with Eddington ratio

is not a spurious result caused by the statistical uncertainty in the broad line mass

estimates, in agreement with our Bayesian regression results.

In order to investigate whether the non-monotonicity in the dependence of

ΓX on Eddington ratio depends on MBH , we performed a linear regression of

ΓX simultaneously on logLUV /LEdd and logMBH . This also allows us to quantify

whether the Eddington ratio is the driver behind the ΓX–MBH relationship. In

particular, the ΓX–MBH relationship is weak compared to the Eddington ratio

relationships, and therefore it is reasonable to conclude that Eddington ratio is

the primary driver in these relationships. We applied the multiple regression

technique of Kelly (2007) seperately to both the Hβ and C IV subsamples. The

results are:

ΓX = 2.58+4.81
−3.80 +

(

0.18+0.60
−0.61

)

logMBH +
(

1.32+1.45
−0.80

)

logLUV /LEdd,

σ = 0.28+0.22
−0.22, (Hβ) (7.24)

ΓX = −4.26+6.45
−15.6 +

(

0.56+1.44
−0.61

)

logMBH −
(

0.84+0.75
−2.16

)

logLUV /LEdd,

σ = 0.17+0.14
−0.14, (CIV) (7.25)
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Here, we have quoted the errors at 95% significance. There is no statistically

significant evidence that ΓX depends on MBH at a given LUV /LEdd, and therefore

we conclude that the primary driver in the ΓX relationships is Eddington ratio.

However, this does not rule out the possibility that the non-monotonic trends

with Eddington ratio are the result of a discontinuous change in the slopes at a

‘critical’ MBH , as discussed in the next two sections.

7.7.2 Is the Sign Change in the Correlations Caused by the Different Emission

Lines Used to Estimate MBH?

The opposite correlations for Hβ and C IV are intriguing but may represent prob-

lems with the broad line mass estimates. In particular, it is possible that the error

in the broad line mass estimates is correlated with ΓX , but in opposite ways for

Hβ and C IV. The most likely source of such a spurious correlation would be a

correlation between ΓX and the scatter about the R–L relationship for Hβ and C

IV, respectively. For example, if one were to systematically overestimate R with

increasing ΓX for the C IV emitting region, then one would infer a larger MBH

from C IV, and thus one would infer a spurious correlation between MBH and

ΓX . However, the Hβ line is only available at z ∼< 0.8 and the C IV line is only

available at z ∼> 1.6, and thus the change in sign for the ΓX–MBH correlations

could be due to different spectral components shifting into or out of the observ-

able X-ray spectral region (0.3–7.0 keV). In Figure 7.9, we show the distribution

of MBH as a function of z for the Hβ and C IV samples. As is clear from Figure

7.9, the C IV line is probing sources with MBH ∼> 3 × 108M¯, while the Hβ line

is probing sources with MBH ∼< 3 × 108M¯. Therefore, the change in sign for the

ΓX correlations could also be due to something more physically interesting, such

as a change in the structure of the corona that occurs at some critical black hole

mass or accretion rate.
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Figure 7.9 Distribution of estimated MBH as a function of z for the Hβ sample

(stars) and the C IV sample (open diamonds). The Hβ sample probes sources

with lower MBH and z, while the C IV sample probes sources with higher MBH

and z. To break the degeneracy between emission line, MBH , and z, we have

collected a sample of Hβ test sources (red asterisks) at high MBH and z, and a

sample of C IV test sources (open blue triangles) at low MBH and z.
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We can test if the change in sign for the ΓX correlations is the result of prob-

lems with the mass estimates for either Hβ or C IV, or if it is the result of the dif-

ferences in z and MBH probed by the two lines. While the ΓX–MBH relationship

is weak compared to the Eddington ratio dependencies, we can use the ΓX–MBH

relationship to test whether the non-monotonic dependency of ΓX on Edding-

ton ratio is a spurious result caused by systematic difference in the broad line

mass estimates. This is because the Eddington ratios are inferred from the broad

line mass estimates, and any systematic differences between the Eddington ratio

inferred from Hβ as compared to C IV should also manifest themselves in the

weaker ΓX–MBH relationship. This is true irregardless of whether the difference

in slopes between the Hβ and C IV ΓX–MBH relationships is ‘statistically signifi-

cant’ or not.

We compiled five sources from the literature at z > 1.3 with Hβ-based mass

estimates of MBH > 5× 109M¯. In addition, we compiled five more sources from

the literature at z < 0.2 and C IV-based mass estimates of MBH < 108M¯. This

‘test sample’ of 10 sources is listed in Table 7.2. Then, we test whether the Hβ test

sources are better described by the Hβ regression or by the C IV regression, and

likewise for the C IV test sources. If the change in sign for the ΓX correlations is

due to problems with the broad line mass estimates, then we would expect the

Hβ-based mass estimates to be better described by the Hβ regression. However,

if the change in sign is due to the difference in redshift and MBH probed by the

two regressions, then we would expect the Hβ test sources to be better described

by the C IV regression, as the Hβ test sources are at high-z and have high-MBH .

A similar argument applies to the C IV test sources, since they are at low-z and

have low black hole masses.

Figure 7.10 compares ΓX andMBH for Hβ and C IV for both the sources in our
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Table 7.2. Sources with Hβ and C IV Used for Testing the ΓX–MBH

Correlations

Quasar Name α δ z Line log M̂BL L̂bol/L̂Edd Opt. Ref.a ΓX X-ray Ref.b

(J2000) (J2000) M¯

PG 0026+129 00 29 13.7 +13 16 03.8 0.142 C IV 7.789 1.768 1 1.96c 5

Fairall 9 01 23 45.7 -58 48 21.8 0.046 C IV 7.760 0.265 1 1.83 ± 0.06 6

PG 1202+281 12 04 42.2 +27 54 12.0 0.165 C IV 7.855 0.359 1 1.76 ± 0.07 7

PG 1211+143 12 14 17.7 +14 03 12.3 0.080 C IV 7.559 1.380 1 2.06 ± 0.05 8

PG 1247+267 12 50 05.7 +26 31 07.7 2.038 Hβ 10.41 0.379 2 2.23 ± 0.10 9

Q1346-036 13 48 44.1 -03 53 25.0 2.370 Hβ 9.946 0.609 3 2.02 ± 0.17 3

MRK 478 14 42 07.5 +35 26 22.9 0.077 C IV 7.890 0.498 1 2.41 ± 0.07 7

PG 1630+377 16 32 01.1 +37 37 50.0 1.476 Hβ 9.762 0.569 4 2.20 ± 0.30 10

PG 1634+706 16 34 28.9 +70 31 33.0 1.334 Hβ 10.27 0.734 4 2.19 ± 0.05 10

HE 2217-2818 22 20 06.8 -28 03 23.9 2.414 Hβ 10.12 0.807 3 1.97 ± 0.06 3

aReference for the rest frame optical/UV data.

bReference for the X-ray data.

cO’Neill et al. (2005) do not report an error on ΓX .

References. — (1) Kelly & Bechtold (2007) (2) McIntosh et al. (1999) (3) Shemmer et al. (2006) (4) Nishihara et al. (1997) (5) O’Neill

et al. (2005) (6) Nandra et al. (1997) (7) Brocksopp et al. (2006) (8) Reeves & Turner (2000) (9) Page et al. (2004) (10) Piconcelli et al.

(2005)
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main sample and the test sources, as well as the best fit regression lines for the Hβ

and C IV samples, respectively. The high-z, high-MBH Hβ test sources appear to

be better described by the high-z, high-MBH C IV-based regression, and likewise

the low-z, low-MBH C IV test sources appear to be better described by the low-z,

low-MBH Hβ-based regression.

We can quantify this result by calculating the probability that the Hβ test

sources ‘belong’ to the Hβ-based regression, as compared to the probability that

the Hβ test sources ‘belong’ to the C IV-based regression. Assuming that the test

sources are as equally likely to belong to either regression a priori, this ratio of

probabilities is simply the ratio of the likelihood functions of the test sources for

each regression relationship, where the likelihood functions are given by Equa-

tion (24) in Kelly (2007); this ratio is called the ‘Bayes Factor’ (e.g., Congdon,

2006). In order to incorporate our uncertainty in the regression parameters, we

use the value of the likelihood function averaged over the probability distribu-

tion of the regression parameters. We find that the Hβ test sources are ≈ 250

times more likely to ‘belong’ to the C IV-based regression, and that the C IV test

sources are ≈ 140 times more likely to ‘belong’ to the Hβ-based regression. Be-

cause the test sources are independent, it follows that the test sources are ∼> 104

times more likely to be described by the regression fit using the opposite emission

line sample. This is further evidence that ΓX and MBH are not statistically inde-

pendent; if ΓX andMBH were independent, then the test sources would not show

a strong preference for either regression. Based on this analysis, we conclude that

the change in sign of the ΓX correlations is not due to problems associated with

the use of the Hβ and C IV emission lines, but rather due to the different range of

z and MBH probed by the two subsamples.
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Figure 7.10 X-ray photon index as a function of estimated MBH for low-z sources

with MBH derived from the Hβ line, high-z test sources with MBH derived from

the Hβ line, low-z test sources with MBH derived from the C IV line, and high-z

sources with MBH derived from the C IV line. The symbols are the same as in

Figure 7.9. Also shown is the best fit regression using the Hβ sample (solid line)

and the C IV sample (dashed line). The high-z Hβ sources are better described

by the high-z C IV regression, and the low-z C IV sources are better described by

the low-z Hβ regression, implying that the difference in slopes between the Hβ

and C IV samples is not due to systematic differences in mass estimates derived

from either line.
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7.7.3 Is the Sign Change in the Correlations Caused by the Different Redshift

Ranges Probed?

While it appears that ΓX has a nonmonotonic dependence on MBH , LUV /LEdd,

and LX/LEdd, it is unclear as to whether the sign change in the correlations is

dependent on z or MBH . However, we can test this in the same manner as was

used to test if the sign change is due to problems with the Hβ- or C IV-based

mass estimates. In this case, we need a sample of high-z, low-MBH sources in

order to break the degeneracy between MBH and z. If the sign change in the

correlation is redshift dependent, then we would expect the test sources to be

better described by the high-z, high-MBH C IV-based regression; but, if the sign

change is black hole mass dependent, then we would expect the test sources to

be better described by the low-z, low-MBH Hβ-based regression.

Our test sample consists of nine z > 1, M̂BL < 3×108M¯ quasars from the Cos-

mic Evolution Survey (COSMOS, Scoville et al., 2007), with optical spectra from

Magellan (Trump et al., 2007) and X-ray spectra from XMM-Newton (Mainieri et

al., 2007). Black hole masses for these objects (Trump et al., 2008, in preparation)

were estimated from the Mg II and C IV emission lines in the same manner as

above. The objects are summarized in Table 7.3, and their location in the MBH–

z plane are shown in Figure 7.11. The COSMOS sources break the degeneracy

between MBH and z present in our SDSS sample, and are therefore adequate to

test for a redshift dependence in the slope of the ΓX–MBH relationship. In Figure

7.12 we compare the COSMOS test sources with the Hβ- and C IV-based regres-

sions. As can be seen, the high-z, low-MBH COSMOS sources are better described

by the low-z, low-MBH regression. We can quantify this in the same manner as

described in § 7.7.2 by averaging the likelihood function of the test sources over

the posterior probability distribution. We find that the COSMOS test sources are
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Table 7.3. Test Sources from COSMOS

α δ z Line log M̂BL L̂bol/L̂Edd ΓX

(J2000) (J2000) M¯

09 58 48.8 +02 34 42.3 1.551 C IV 8.276 0.131 2.01 ± 0.11

09 59 02.6 +02 25 11.8 1.105 Mg II 7.612 0.025 2.17 ± 0.28

09 59 49.4 +02 01 41.1 1.758 C IV 8.108 0.719 2.51 ± 0.16

10 00 50.0 +02 05 00.0 1.235 Mg II 7.692 0.501 2.50 ± 0.13

10 00 51.6 +02 12 15.8 1.829 Mg II 7.807 0.131 2.14 ± 0.17

10 00 58.9 +01 53 59.5 1.559 C IV 8.346 0.172 2.04 ± 0.17

10 02 19.6 +01 55 36.9 1.509 C IV 8.333 0.177 2.19 ± 0.23

10 02 34.4 +01 50 11.5 1.506 C IV 7.991 0.941 2.25 ± 0.12

10 02 43.9 +02 05 02.0 1.234 Mg II 7.817 0.303 1.97 ± 0.29

∼> 105 times more likely to be better described by the Hβ-ΓX regression, and thus

the sign change in the ΓX correlations is not due to the difference in redshifts

probed by the Hβ and C IV samples.

7.8 DISCUSSION

Previous work has found evidence for a correlation between αox and both MBH

(Brunner et al., 1997) and Lbol/LEdd (Wang et al., 2004), and for a correlation be-

tween ΓX and both MBH (e.g., Porquet et al., 2004; Piconcelli et al., 2005) and

Lbol/LEdd (e.g., Lu & Yu, 1999; Gierliński & Done, 2004; Shemmer et al., 2006), in

aggreement with the results found in this work. However, our study differs from

previous work in that we study a large sample of RQQs (318 sources with αox,

153 with ΓX) over a broad range in black hole mass (106 ∼< MBH/M¯ ∼< 1010) and

redshift 0 < z < 4.8; to date, this is the largest study of the dependence of the

X-ray properties of RQQs on MBH , LUV /LEdd, and LX/LEdd. In addition, this the

first study of its kind to correct for the intrinsic statistical uncertainty in broad line
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ter described by the low-z, low-MBH regression, implying that the difference in

slopes between the Hβ and C IV samples is due to the difference in MBH probed

by the two samples, and not due to the redshift differences.



386

mass estimates when quantifying the intrinsic trends between the X-ray emission

and MBH , LUV /LEdd, and LX/LEdd.

Currently, there are two main types of geometries being considered for the

comptonizing corona. The first of these is that of a ‘slab’-type geometry, possi-

bly patchy, that sandwiches the disk (e.g., Bisnovatyi-Kogan & Blinnikov, 1977;

Galeev et al., 1979; Nayakshin, 2000; Sobolewska et al., 2004b), and the second is

that of a hot spherical inner advection dominated flow (e.g., Shapiro et al., 1976;

Zdziarski et al., 1999); hybrids between the two geometries have also been con-

sidered (e.g., Poutanen et al., 1997; Sobolewska et al., 2004a). There is a growing

body of evidence that the advection dominated hot inner flow does not exist in

objects with Eddington ratios Lbol/LEdd ∼> 0.01, as inferred from the existence

of a relativistically broadened iron line (e.g., Mineo et al., 2000; Lee et al., 2002;

Fabian et al., 2002), relativistically broadened reflection of ionized material (Ja-

niuk et al., 2001), and by analogy with galactic black holes (e.g., Esin et al., 1997;

Nowak et al., 2002). The range in Eddington ratios probed by our study is at

most 0.03 ∼< Lbol/LEdd ∼< 2, with a mean of Lbol/LEdd ∼ 0.25. Therefore, the RQQs

in our study are likely to have disks that extend approximately down to the last

marginally stable orbit, and thus should only have the ‘slab’ type geometries.

7.8.1 Dependence of αox on MBH

In this work we have found that RQQs become more X-ray quiet as MBH in-

creases, and confirmed the well-established relationship between αox and LUV .

Because LUV increases with MBH and the accretion rate relative to Eddington, ṁ,

the well-known αox–LUV correlation is likely driven by the αox–MBH and αox–ṁ

correlations. A correlation between αox and MBH is expected even if the fraction

of the bolometric luminosity emitted by the disk is independent of MBH , as the

effective temperature of the disk depends on MBH . As MBH increases, the effec-
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tive temperature of the disk decreases, thus shifting the peak of the disk emission

toward longer wavelengths. Because the flux density at 2500Å lies redward of the

peak in the disk SED over most of the range MBH probed by our study, this shift

in the disk SED toward longer wavelengths produces an increase in LUV relative

to LX .

We can use the standard thin disk solution to assess the evidence that the

fraction of energy emitted by the corona depends on MBH . We assume a sim-

ple model where the spectrum for the disk emission is that expected for an ex-

tended thin accretion disk, and the spectrum for the corona emission is a simple

power-law with exponential cutoffs at the low and high energy end. According

to Wandel (2000), the spectrum from a radially extended thin accretion disk can

be approximated as

fD
ν ≈ AD

(

ν

νco

)−1/3

e−ν/νco , (7.26)

where AD is the normalization and νco is the cut-off frequency. In this work, we

choose the normalization to ensure that Equation (7.26) integrates to unity, and

therefore fD
ν gives the shape of the disk emission. For a Kerr black hole, Malkan

(1991) finds that the cut-off frequency is related to MBH as

hνco = (6eV)ṁ1/4(MBH/10
8M¯)−1/4. (7.27)

We assume that the X-ray emission from the corona can be described by a simple

power law with an exponential cutoff at the high and low end:

fC
ν = ACν

−(ΓX−1)e−ν/νhighe−νlow/ν . (7.28)

Here, AC is the corona spectrum normalization, νhigh is the high energy cutoff,

and νlow is the low energy cutoff. We choose the low energy cutoff to be νlow =

20 eV, and we choose the high energy cutoff to be νhigh = 200 keV (e.g., Gilli et al.,
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2007). As with Equation (7.26), we choose the normalization in Equation (7.28) to

be equal to unity.

Denoting fD to be the fraction of bolometric luminosity emitted by the disk,

our model RQQ spectrum is then

Lν ≈ Lbol

[

fDf
D
ν + (1 − fD)fC

ν

]

. (7.29)

We computed Equation (7.29) assuming a value of ṁ = 0.2 and fD = 0.85. We

chose the value of the ṁ = 0.2 because it is representative of the RQQs in our

sample, and we chose the value fD = 0.85 because it gives values of αox typical of

the RQQs in our sample. We vary MBH but keep fD and ṁ constant because we

are interested in investigating whether there is evidence that assuming indepen-

dence between MBH and both fD and ṁ is inconsistent with our αox results.

We compute Equation (7.29) for two forms of the dependence of ΓX on MBH .

For the first model, we assume a constant value of ΓX = 2. For the second model,

we assume that ΓX depends on MBH according to our best fit regression results,

where ΓX depends on MBH according to Equation (7.15) for MBH ∼< 3 × 108M¯,

and ΓX depends on MBH according to Equation (7.17) for MBH ∼> 3 × 108M¯.

We ignore the intrinsic dispersion in ΓX . In Figure 7.13 we show the spectra

computed from Equation (7.29) for RQQs with MBH/M¯ = 107, 108, 109, and 1010.

The dependence of the location of the peak in the disk emission onMBH is clearly

illustrated.

In Figure 7.14 we compare the αox–MBH regression results with the depen-

dence of αox on MBH expected from Equation (7.29) for both ΓX–MBH models.

Under the thin disk approximation, a correlation is expected between αox and

MBH , even if the fraction of bolometric luminosity emitted by the disk is inde-

pendent of MBH . However, our data are inconsistent with the assumption that

fD and MBH are independent, given the thin disk approximation. Under the as-
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Figure 7.13 Model RQQ spectra computed from Equations (7.26)–(7.29), assum-

ing ΓX = 2 (top) and a varying ΓX withMBH (bottom). The spectra are computed

for a RQQ with MBH/M¯ = 107 (thick solid line), 108 (dashed line), 109 (dashed-

dotted line), and 1010 (thin solid line). In all cases we assume ṁ = 0.2 and that

fD = 85% of the bolometric luminosity is emitted by the disk. The vertical lines

mark the locations of 2500Å and 2 keV. The dependence of the location of the

peak in the disk emission on MBH is apparent, producing a correlation between

αox and MBH even if the fraction of bolometric luminosity emitted by the disk is

independent of MBH .

.
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sumption that fD and MBH are independent, the αox–MBH correlation is too flat,

and a increase in the fraction of bolometric luminosity emitted by the disk with

increasing MBH is needed to match the steeper observed dependence of αox on

MBH . Alternatively, if fD increases with increasing ṁ, as we argue in § 7.8.2,

then a steeper αox–MBH correlation also results if MBH and ṁ are correlated. In

this case, if fD increases with increasing ṁ, and if MBH increases with increas-

ing ṁ, then fD will also increase with increasing MBH , thus producing a steeper

observed αox–MBH correlation.

To the extant that Equations (7.26)–(7.29) accurately approximate the spectral

shape of RQQs, our data imply that either the fraction of bolometric luminosity

emitted by the disk increases with increasing MBH , that MBH and ṁ are cor-

related, or both. Some theoretical models have suggested that the fraction of

bolometric luminosity emitted by the disk should depend on ṁ, but be relatively

insensitive to MBH (e.g., Czerny et al., 2003; Liu et al., 2003). Therefore, while

a significant dependence of fD on MBH is not predicted by these disk/corona

models, these models are still consistent with the interpretation that a MBH–ṁ

correlation is driving the steeper αox–MBH correlation. Unfortunately, without

accurate estimates of ṁ we are unable to distinguish between these two possibil-

ities.

A shift in the peak of the disk SED withMBH may also explain the dependence

of αox on redshift observed by K07. K07 speculated that the observed hardening

of αox with increasing z at a given LUV may be due to a correlation between αox

and MBH , manifested through a MBH–z correlation. At a given LUV , an increase

in MBH will result in an increase in LX relative to LUV , assuming that ṁ is not

strongly correlated with MBH . This is because an increase in MBH decreases the

temperature of the disk, shifting the peak in the disk SED toward the red, and
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Figure 7.14 Dependence of αox on MBH computed from Equations (7.26)–(7.29),

assuming ΓX = 2 (blue dashed line) and a varying ΓX withMBH (blue dot-dashed

line). As with Figure 7.13, we compute Equations (7.26)–(7.29) assuming ṁ = 0.2

and fD = 0.85. The predictions from the model RQQ spectra are compared with

our observed data and the regression results, where the symbols and lines have

the same meaning as in Figure 7.4. The αox–MBH relationships predicted from

assuming that fD is independent of MBH are inconsistent with the observed αox–

MBH relationship.



392

thus increasing the luminosity at 2500Å. However, since K07 investigated the de-

pendence of αox on z at a given LUV , the luminosity at 2500Å is held constant.

Therefore, the overall disk emission must decrease in order to keep the luminos-

ity at 2500Å constant despite the increase inMBH . As a result, an increase inMBH

at a given LUV will result in an increase in the X-ray luminosity relative to the lu-

minosity at 2500Å. Because MBH and z are correlated in our flux limited sample

(e.g., see Figure 7.2), an increase in z will probe RQQs with higher MBH . As a

result, RQQs will become more X-ray loud with increasing z, at a given 2500Å

luminosity. Consequently, deeper surveys that probe a greater range of MBH

should not see as strong of a correlation between MBH and z, thereby reducing

the magnitude of a αox–z correlation. Indeed, investigations based on samples

that span a greater range in luminosity do not find evidence for a correlation be-

tween αox and z (e.g., Steffen et al., 2006; Just et al., 2007), qualitatively consistent

with our interpretation of a αox–z correlation.

7.8.2 Dependence of αox on ṁ

We have found that αox increases with increasing LUV /LEdd, and decreases with

increasing LX/LEdd. The mere existence of these correlations is not particularly

interesting, as we would expect that the ratio of optical/UV luminosity to X-

ray luminosity would increase as the fraction of optical/UV luminosity relative

to Eddington increases, and vice versa for an increase in LX/LEdd. However, the

relative magnitude of these dependencies carries some information regarding the

dependence of αox on ṁ. A correlation between αox and LUV /LEdd implies that

LUV /LX increases as the quantity fUV ṁ increases, where fUV is the fraction of

bolometric luminosity emitted at 2500Å. Likewise, an anti-correlation between

αox and LX/LEdd implies that LUV /LX decreases as the quantity fXṁ increases,

where fX is the fraction of bolometric luminosity emitted at 2 keV. If the fraction
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of the bolometric luminosity emitted by the disk, as compared to the corona, in-

creases with increasing ṁ, then we would expect a strong increase in LUV /LX

with the product fUV ṁ, resulting from the dual dependency of LUV /LX on fUV

and ṁ. Furthermore, because the fraction of bolometric luminosity emitted by

the disk should decrease with increasing fX , then, if the fraction of bolometric

luminosity emitted by the disk increases with increasing ṁ, we would expect

a weaker dependence of LUV /LX on the quantity fXṁ. This is because an in-

crease in ṁ causes an increase in the disk emission relative to the corona emis-

sion, which will then work against the decrease in disk emission relative to the

corona that results from an increase in fX . The end result is a weaker depen-

dence of LUV /LX on the product fXṁ. Indeed, this is what we observe, where

LUV /LX ∝ (LUV /LEdd)
2.5 and LUV /LX ∝ (LX/LEdd)

−1.5. Therefore, we conclude

that the disk emission relative to the corona emission increases with increasing ṁ.

This is in agreement with some models of corona with a slab geometry (e.g., Cz-

erny et al., 1997; Janiuk & Czerny, 2000; Merloni & Fabian, 2002; Liu et al., 2003),

where the αox–ṁ correlation arises due to a dependency of the size of the corona

on ṁ.

Our result that αox is correlated withLUV /LEdd and anti-correlated withLX/LEdd

is inconsistent with a constant bolometric correction to both the optical/UV and

X-ray luminosities. Instead, an increase inLUV /LX with increasing ṁ implies that

the bolometric correction depends on ṁ. Because we conclude that the fraction of

bolometric luminosity emitted by the disk increases with increasing ṁ, this im-

plies that the bolometric correction to the optical/UV luminosity decreases with

increasing ṁ, while the bolometric correction to the X-ray luminosity increases

with increasing ṁ. The direction of this trend is consistent with the results of

Vasudevan & Fabian (2007), who find that the bolometric correction to the X-ray
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luminosity increases with increasing Lbol/LEdd. Similarly, we have found evi-

dence that the fraction of bolometric luminosity emitted by the disk depends on

MBH , therefore implying that the bolometric correction also depends on MBH .

Even if the fraction of bolometric luminosity emitted by the disk is independent

of MBH , the bolometric correction will still depend on MBH because the location

of the peak in the disk emission will shift toward longer wavelengths as MBH in-

creases. As MBH varies, the luminosity at 2500Å probes a different region of the

quasi-blackbody disk emission, thereby producing a dependence of bolometric

correction on MBH .

7.8.3 Implications for Black Hole Feedback

A significant amount of recent work suggests that radiative and mechanical feed-

back energy from AGN plays an important part in galaxy and supermassive black

hole coevolution (e.g., Fabian, 1999; Wyithe & Loeb, 2003; Di Matteo et al., 2005).

Within the context of these models, a nuclear inflow of gas, possibly the result of

a galaxy merger, feeds the SMBH, thus igniting a quasar. The SMBH grows until

feedback energy from the quasar is able to drive out the accreting gas, thus halt-

ing the accretion process. Hydrodynamic calculations of accretion flows have

shown that the efficiency of the quasar in driving an outflow depends on the

fraction of energy emitted through he UV/disk component as compared to the X-

ray/corona component (Proga, 2007). The disk component produces luminosity

in the UV, which is responsible for driving an outflow via radiation pressure on

lines, whereas the corona component produces luminosity in the X-rays, which is

responsible for driving an outflow via thermal expansion. Calculations by Proga

(2007) have shown that radiation driving produces an outflow that carries more

mass and energy than thermal driving. If the efficiency of black hole feedback de-

pends on the quasar SED, any dependence on MBH and ṁ of the fraction of AGN
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energy emitted in the UV as compared to the X-ray has important consequences

for models of black hole growth.

Because we have found evidence that the fraction of bolometric luminosity

emitted by the disk increases with increasing ṁ and MBH , this implies that black

holes becomes more efficient at driving an outflow with increasing ṁ and MBH .

However, the αox–MBH correlation may be due to the combination of both a cor-

relation between MBH and ṁ, and a dependence of the location peak in the disk

SED on MBH . If the fraction of energy emitted by the disk only depends weakly

on MBH , as some theoretical models have suggested (e.g., Czerny et al., 2003;

Liu et al., 2003), the fraction of energy emitted in the UV will still decrease with

increasing MBH becuase the peak of the disk emission will shift away from the

UV. In this case, at a given ṁ we would expect that black holes will become less

efficient at driving an outflow with increasing MBH .

7.8.4 Dependence of ΓX on MBH and ṁ

In this work we have also found evidence that ΓX and MBH , LUV /LEdd, and

LX/LEdd are not statistically independent. Moreover, the dependence of ΓX on

black hole mass or Eddington ratio appears to follow a non-monotonic form, al-

though the ΓX–MBH trend is weak compared to the dependency of ΓX on Ed-

dington ratio. For the ΓX–MBH relationship, the X-ray continuum hardens with

increasing black hole mass until MBH ∼ 3 × 108M¯, after which the X-ray con-

tinuum softens with increasing black hole mass. The opposite is true for the ΓX–

LUV /LEdd and ΓX–LX/LEdd trends, and further work is needed to confirm this

result. Previous studies have not seen this non-monotonic trend because they

have only employed the Hβ emission line, and therefore their samples have been

dominated by low-z, low-MBH sources.
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7.8.4.1 Selection Effects

It is unlikely that the dependence of ΓX on MBH , LUV /LEdd, or LX/LEdd is due to

redshifting of the observable spectra range. If this were the case, then as MBH in-

creases, so does z due to selection effects, and thus we would observe a decrease

in ΓX as the ‘soft excess’ shifts out of the observed 0.3–7 keV spectral range, while

the compton reflection component shifts into the observed spectral range. How-

ever, there are lines of evidence that suggest that the ΓX correlation are not due

to redshifting of the observable spectral region, and that at least some of the ob-

served dependency of ΓX onMBH , LUV /LEdd, and LX/LEdd is real. First, in § 7.7.3

we tested whether a sample of nine z > 1 test sources with MBH ∼< 3 × 108M¯

were better described by a regression fit using the z > 1.5,MBH ∼> 3 × 108M¯

sources, or by a regression fit using the z < 1,MBH ∼< 3 × 108M¯ sources. We

found that the test sources were better fit using the regression of similar MBH ,

and therefore that the difference in the ΓX–MBH correlations primarily depends

onMBH . Second, similar trends at low redshift between ΓX andMBH or Lbol/LEdd

have been seen in other studies that only analyze the hard X-ray spectral slope

(typically 2–12 keV, e.g., Piconcelli et al., 2005; Shemmer et al., 2006), and thus

these studies are not effected by the soft excess. Third, the compton reflection

hump is unlikely to shift into the observabable spectral range until z ∼ 1. How-

ever, the contribution to the inferred ΓX from compton reflection at z ∼> 1 is likely

weak, if not negligible, as our z ∼> 1 sources have MBH ∼> 108M¯ and are highly

luminous, and therefore are expected to only have weak reflection components

(Mineo et al., 2000; Ballantyne et al., 2001; Bianchi et al., 2007).

There are two scenarios in which the non-monotonic behavior of ΓX withMBH

or Eddington ratio may be artificially caused by selection. We will focus on the

Eddington ratio dependency, as it is the strongest; however, our argument also



397

applies to MBH . First, the intrinsic dependency of ΓX on Eddington ratio could

be linear with increasing intrinsic scatter at high Lbol/LEdd. Then, an inferred non-

monotonic trend would occur if we were to systematically miss quasars with high

Lbol/LEdd and steep X-ray spectra. Alternatively, there could be no intrinsic de-

pendency of ΓX on Eddington ratio. In this case, we would infer a non-monotonic

trend if we were to systematically miss quasars with steep X-ray spectra at low

and high Lbol/LEdd, and quasars with flat X-ray spectra at moderate Lbol/LEdd.

We do not consider it likely that the observed non-monotonic dependence of

ΓX on Eddington ratio is due solely to selection effects. K07 describes the sample

selection for sources with ΓX . With the exception of some of the z > 4 quasars, all

sources from K07 were selected by cross-correlating the SDSS DR3 quasars with

public Chandra observations. Almost all SDSS sources in K07 had serendipitious

Chandra observations, and therefore were selected without regard to their X-ray

properties. K07 estimated ΓX for all sources that were detected in X-rays at the

level of 3σ or higher. Therefore, the only additional criterion beyond the SDSS

selection imposed by K07 is the requirement that the source had to be detected

in X-ray, which was fulfilled by 90% of the quasars; the undetected sources were

slightly more likely to be found at lower redshift, probably due to the presence

of unidentified BAL quasars. As a result, the K07 sample selection function is

essentially equivalent to the SDSS quasar selection function. Because the SDSS

selects quasars based on their optical colors, the most likely cause of selection

effects is the optical color selection. There is evidence that ΓX is correlated with

the slope of the optical continuum, where the X-ray continuum flattens (hardens)

as the optical continuum steepens (softens) (Gallagher et al., 2005, K07). The

SDSS selection probability is lower for red sources (Richards et al., 2006), so we

might expect to systematically miss sources with smaller ΓX . However, for the
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two scenarios described above, this is opposite the trend needed to explain the

ΓX–LX/LEdd relationship, where we need to at least systematically miss sources

with larger ΓX . Furthermore, the drop in SDSS selection efficiency with optical

spectral slope only occurs at 2 < z < 4 (Richards et al., 2006), thus we would

expect a redshift dependence for this selection effect. As we have argued above,

and in § 7.7.3, the non-monotonic trends for ΓX cannot be completely explained

as the result of different redshift ranges being probed.

7.8.4.2 Implications for Accretion Physics

The dependence of ΓX on LUV /LEdd and LX/LEdd is likely due to a dependence

of ΓX on ṁ. If these ΓX correlations were due to a dependence of ΓX on fUV

or fX , then we would expect opposite trends for LUV /LEdd and LX/LEdd, as fUV

and fX should be anti-correlated. The fact that the regression results for the ΓX–

LUV /LEdd and ΓX–LX/LEdd relationships are similar implies that ΓX depends on

ṁ, and at most only weakly on fUV or fX .

A non-monotonic dependence of ΓX on ṁ is predicted from the accreting

corona model of Janiuk & Czerny (2000), as well as a non-monotonic dependence

of ΓX on the viscosity (Bechtold et al., 2003). In addition, ΓX is expected to steepen

with increasing optical depth (e.g., Haardt & Maraschi, 1991, 1993; Czerny et al.,

2003). One could then speculate that the dependence of ΓX on MBH or ṁ is due

to a non-monotonic dependence of the corona optical depth on ṁ, which may

indicate a change in the structure of the disk/corona system at ∼ 3 × 108M¯ or

some critical ṁ. Recent work also suggests a non-monotonic dependence of the

optical/UV spectral slope, αUV , on ṁ (Bonning et al., 2007; Davis et al., 2007).

From this work, it has been inferred that the optical/UV continuum becomes

more red with increasing ṁ until Lbol/LEdd ≈ 0.3, after which the optical/UV

continuum becomes more blue with increasing ṁ. Assuming the bolometric cor-
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rections described in § 7.5.2, the turnover in the ΓX–Lbol/LEdd relationship also

occurs at Lbol/LEdd ≈ 0.3. Bonning et al. (2007) suggested that the turnover in

spectral slope at Lbol/LEdd ∼ 0.3 may be due to a change in accretion disk struc-

ture, where the inner part of the accretion disk becomes thicker due to increased

radiation pressure (Abramowicz et al., 1988). Bonning et al. (2007) performed

a simple approximation to this ‘slim disk’ solution and found that it is able to

produce a non-monotonic trend between optical color and Eddington ration. If

the inner disk structure changes at high ṁ, this change could alter the corona

structure, producing the observed trend between ΓX and Eddington ratio.

Unfortunately, current models for corona geometry make a number of simpli-

fying assumptions, and do not yet predict a specific relationship between αox,ΓX ,MBH ,

and ṁ. Ideally, full magneto-hydrodynamic simulations (e.g., De Villiers et al.,

2003; Turner, 2004; Krolik et al., 2005) that include accretion disk winds (e.g.,

Murray et al., 1995; Proga & Kallman, 2004) should be used to interpret the re-

sults found in this work. However, MHD simulations have not advanced to the

point where they predict the dependence of αox and ΓX on quasar fundamen-

tal parameters, but hopefully recent progress in analytical descriptions of the

magneto-rotational instability (Pessah et al., 2006, 2007) will help to overcome

some of the computational difficulties and facilitate further advancement.

7.9 SUMMARY

In this work we have investigated the dependence of αox and ΓX on black hole

mass and Eddington ratio using a sample of 318 radio-quiet quasars with X-ray

data from ROSAT (Strateva et al., 2005) and Chandra (Kelly et al., 2007), and op-

tical data mostly from the SDSS; 153 of these sources have estimates of ΓX from

Chandra. Our sample spans a broad range in black hole mass (106 ∼< MBH/M¯ ∼<
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1010), redshift (0 < z < 4.8), and luminosity (1043 ∼< λLλ(2500Å)[erg s−1] ∼< 1048).

To date, this is the largest study of the dependence of RQQ X-ray parameters on

MBH , LUV /LEdd, and LX/LEdd. Our main results are summarized as follows:

• We show that αox is correlated withLUV /LEdd and anti-correlated withLX/LEdd.

This result is inconsistent with a constant bolometric correction being appli-

cable to both the optical/UV luminosity and the X-ray luminosity. This re-

sult, when taken in combination with recent work by Vasudevan & Fabian

(2007), implies that constant bolometric corrections can be considerably un-

reliable and lead to biased results. Instead, we argue that LUV /LX increases

with increasing ṁ and increasing MBH , therefore implying that the bolo-

metric correction depends on ṁ and MBH .

• We performed a linear regression of αox on luminosity, black hole mass,

LUV /LEdd, and LX/LEdd, and found significant evidence that αox depends

on all four quantities: LUV /LX ∝ L0.31±0.03
UV , LUV /LX ∝M0.43±0.06

BH , LUV /LX ∝

(LUV /LEdd)
2.57±0.45, and LUV /LX ∝ LX/L

−1.48±0.14
Edd . The dependence of αox

on LUV may be due to the dual dependence of αox on MBH and ṁ. Because

we have attempted to correct for the statistical uncertainties in αox and the

broad line estimates of MBH , these results refer to the intrinsic relationships

involving αox and MBH , and are not merely the relationships between αox

and the broad line mass estimates, M̂BL ∝ LγFWHM 2.

• A correlation between αox and MBH is expected from the fact that the peak

in the disk emission will shift to longer wavelengths asMBH increases, even

if the fraction of the bolometric luminosity emitted by the disk does not

change withMBH . Using a simple model for RQQ spectra, we argue that the

observed αox–MBH correlation is steeper than that expected if both ṁ and
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the fraction of bolometric luminosity produced by the disk are independent

of MBH . The observed αox–MBH relationship therefore implies that either

the fraction of bolometric luminosity emitted by the disk increases with in-

creasing MBH , that MBH is correlated with ṁ, or both.

• A correlation between αox and ṁ is predicted from several models of ‘slab’-

type corona. We argue that the weaker dependence of αox on LX/LEdd im-

plies that LUV /LX increases with increasing ṁ. Considering that the effi-

ciency of quasar feedback energy in driving an outflow may depend on the

ratio of UV to X-ray luminosity, a correlation between αox and both MBH

and ṁ has important consequences for models of black hole growth. In

particular, if supermassive black holes become more X-ray quiet at higher

ṁ, they will become more efficient at driving away their accreting gas, thus

halting their growth.

• Because of a possible nonlinear dependence of ΓX on MBH , LUV /LEdd, or

LX/LEdd, we performed seperate regressions for the black hole mass esti-

mates obtained from each emission line. We confirmed the significant de-

pendence of ΓX on LUV /LEdd and LX/LEdd seen in previous studies as in-

ferred from the broad line mass estimates based on the Hβ line; however,

we also find evidence that the ΓX correlations change direction when in-

cluding the C IV line. In particular, for the Hβ sample, the X-ray continuum

hardens with increasing MBH , while for the C IV sample, the X-ray con-

tinuum softens with increasing MBH . Similar but opposite trends are seen

with respect to LUV /LEdd and LX/LEdd, and we conclude that these rela-

tionships can be interpreted as resulting from a correlation between ΓX and

ṁ. Results obtained from the Mg II line were too uncertain to interpret.
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We analyzed two test samples to argue that this non-monotonic behavior

is not due to the different redshifts probed by the two samples, or to prob-

lems with the estimates of MBH derived from the two lines; the different

trends may be due to the difference in MBH probed by the two samples. A

non-monotonic dependence of ΓX on MBH and/or ṁ may imply a change

in the disk/corona structure, although a non-monotonic dependence of ΓX

on ṁ and the viscosity is predicted by some models of ‘slab’-type coronal

geometries.
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CHAPTER 8

DEPENDENCE OF QUASAR OPTICAL VARIABILITY AMPLITUDE AND

CHARACTERISTIC TIME SCALE ON BLACK HOLE MASS

8.1 CHAPTER ABSTRACT

We analyze a sample of optical light curves for 100 quasars, 70 of which have

black hole mass estimates. The sources in our sample have z < 2.8, 1042 ∼<

λLλ(5100Å) ∼< 1046, and 106 ∼< MBH/M¯ ∼< 1010. We model the light curves

as a continuous time stochastic process, providing a natural means of modeling

the characteristic time scale and amplitude of quasar variations. We employ a

Bayesian approach to estimate the characteristic time scale and amplitude of flux

variations; our approach is not affected by biases introduced from finite sampling

effects. We find that the characteristic time scales stongly correlate with black

hole mass and luminosity, and are consistent with disk orbital or thermal time

scales. In addition, the amplitude of short time scale variations is significantly

anti-correlated with black hole mass and luminosity. We interpret the luminosity

variations as resulting from thermal fluctuations that are driven by an underlying

stochastic process, such as turbulence driven by a time-varying magnetic field. In

addition, the intranight variations in optical flux implied by our stochastic model

are ∼ 0.01 mag, consistent with current studies. Our stochastic model is therefore

able to unify both long and short time scale optical variations. Our sample is the

largest and broadest used yet for modeling quasar variability.

8.2 CHAPTER INTRODUCTION

It is widely accepted that the extraordinary activity associated with quasars in-

volves accretion onto a supermassive black hole, with the UV/optical emission
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arising from a geometrically thin, optically thick cold accretion disk. Aperiodic

variability across all wavebands is ubiquitous in AGN, with the most rapid vari-

ations occuring in the X-rays (for a review, see Ulrich et al., 1997). The source of

quasar variability is unclear, and several models have been proposed for describ-

ing the optical variability of quasars, including accretion disk instabilities (e.g.,

Kawaguchi et al., 1998), supernovae (e.g., Aretxaga et al., 1997), microlensing

(Hawkins, 2000), and more general Poisson process models (e.g., Cid Fernandes

et al., 2000). However, recent results from reverberation mapping have shown

that the broad emission lines respond to variations in the continuum emission

after some time lag (e.g., Peterson et al., 2004), implying that the continuum vari-

ations are dominated by processes intrinsic to the accretion disk. Variability is

therefore a potentially important and powerful probe of the quasar central en-

gine and accretion disk physics.

A successful model for quasar X-ray variability describes the X-ray varia-

tions on long time scales as being the result of perturbations in the accretion rate

that occur outside of the X-ray emitting region (e.g., Lyubarskii, 1997; Mayer &

Pringle, 2006; Janiuk & Czerny, 2007). These accretion rate perturbations then

travel inward, modulating the X-ray emitting region. It has been suggested that

the origin of such perturbations is the result of a magnetic field randomly varying

in time, and may be related to the appearance of an outflow (King et al., 2004). If

this model for the X-ray variability is correct, we would expect to also see varia-

tions in the optical luminosity, whose origin lies in the disk at radii farther from

the central source. Therefore, understanding the origin of quasar optical varia-

tions will not only lead to a better understanding of accretion disk physics, but

may also lead to a better understanding of the origin of quasar X-ray variability,

possibly unifying the source of variability in the two bands.
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There have been numerous previous investigations of quasar optical variabil-

ity. However, because of the difficulty in obtaining high quality, well sampled

light curves that cover a long time span, most previous work has involved ensem-

ble studies of quasars, or analysis of simple correlations involving variability am-

plitude. The most well known result from is a tendency for AGN to become less

variable as their luminosity increases (e.g., Hook et al., 1994; Garcia et al., 1999;

Giveon et al., 1999; Geha et al., 2003; Vanden Berk et al., 2004; de Vries et al., 2005,

and references therein). There have also been claims of a variability–redshift cor-

relation (e.g., Cristiani et al., 1990; Cid Fernandes et al., 1996; Cristiani et al., 1996;

Trèvese & Vagnetti, 2002), although the sign of this correlation varies between

studies (e.g., see the list in Giveon et al., 1999). If real, the variabilty–redshift cor-

relation is most likely caused by the fact that quasars are more variable at shorter

wavelengths (e.g., Cutri et al., 1985; di Clemente et al., 1996; Helfand et al., 2001;

Vanden Berk et al., 2004), corresponding to regions in the disk closer to the cen-

tral black hole. Recently, a correlation between optical variability and black hole

mass has been claimed (Wold et al., 2007). While many of these correlations are

formally statistically signficant, they often exhibit considerable scatter when one

measures variability for individual objects.

A few previous studies have employed spectral techniques, such as power

spectra and structure functions, in the analysis of quasar optical light curves.

From these studies it has been inferred that quasar optical light curves generally

have variations of ∼ 10% on timescales of months, and that the power spectra of

optical light curves is well described as P (f) ∝ 1/f 2 (Giveon et al., 1999; Collier

& Peterson, 2001); power spectra of this form are consistent with random walk,

or more generally, autoregressive processes. In addition Collier & Peterson (2001)

analyzed a sample of optical light curves from 8 low-z Seyfert 1 galaxies. They
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found that the characteristic time scales of optical variations for the AGN in their

sample are ∼ 10–100 days and correlate with black hole mass, consistent with

disk orbital or thermal time scales.

Motivated by the potential of variability for increasing our understanding

of the structure of quasar accretion disks, we have compiled a sample of well-

sampled optical light curves from the literature. We directly model the quasar

optical light curves as a stochastic process, in contrast to previous work based on

more traditional Fourier (i.e., spectral) techniques. Our method allows us to de-

scribe quasar light curves with three free parameters: a characteristic time scale,

amplitude of short time scale variability, and the mean value of the light curve.

In addition, our method enables us to estimate the characteristic time scale of

quasar variations without the windowing effects that can plague spectral ap-

proaches. Our sample consists of 100 AGN, 70 of which have black hole mass

estimates. The sources in our sample have z < 2.8, 1042 ∼< λLλ(5100Å) ∼< 1046,

and 106 ∼< MBH/M¯ ∼< 1010, making this by far the largest sample yet used for

this kind of study.

In this work we adopt a cosmology based on the WMAP results (h = 0.71,Ωm =

0.27,ΩΛ = 0.73, Spergel et al., 2003).

8.3 DATA

In this work we analyze a sample of 100 quasar optical light curves, compiled

from the literature. Our sample consists of 55 AGN from the MACHO survey

(Geha et al., 2003), 37 Palomar Green (PG) quasars from the sample of Giveon

et al. (1999), and 8 Seyfert galaxies from the AGN Watch1 database. We were

able to obtain black hole mass estimates for 71 of the AGN, where MBH has been
1http://www.astronomy.ohio-state.edu/ agnwatch/
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estimated for 20 of them from reverberation mapping (Peterson et al., 2004), and

MBH is estimated for the remaining 51 AGN from the broad emission lines using

standard scaling relationships (e.g., Vestergaard & Peterson, 2006).

8.3.1 Macho Quasars from Geha et al.(2003)

We collected R band light curves from AGN selected by the MACHO survey (Al-

cock et al., 1997, 1999). The motivation for the MACHO survey was to study

Galactic microlensing events behind the Magellanic Clouds. However, the sur-

vey was also able to select quasars via their variability, producing 59 quasars with

well-sampled light curves over a broad range in redshift (0.1 ∼< z ∼< 2.8) (Geha et

al., 2003). The quasar light curves span ∼ 7.5 years, and have a typical sampling

interval of ∼ 2–10 days, although much longer gaps exist for some light curves.

In general, the MACHO light curves are the highest quality in our sample, often

being frequently and regularly sampled. See Geha et al. (2003) for more details of

the MACHO quasar catalogue.

Spectra for the MACHO quasars are presented in Geha et al. (2003), and spec-

tra for 27 of these quasars were kindly provided to us by Marla Geha. We cal-

culated black hole mass estimates from the source luminosity and the FWHM

of the Hβ, Mg II, or C IV broad emission line using standard scaling relation-

ships (e.g., Vestergaard & Peterson, 2006; Vestergaard et al., 2008). However, the

spectra are not flux-calibrated, so the luminosities at 1350, 3000, and 5100Å were

estimated from the photometric data, assuming a power-law continuum with

α = 0.5, fν ∝ ν−α (Richards et al., 2001). Typical uncertainties on the broad line

mass estimates are ∼ 0.4 dex (e.g., Vestergaard & Peterson, 2006). When com-

bined with the measurement error in the FWHM measurements, and the uncer-

tainty due to the intrinsic scatter in quasar spectral slopes (∼ 0.3, Richards et al.,

2001), our typical adopted uncertainty in MBH was ∼ 0.45 dex for the MACHO
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quasars.

8.3.2 PG Quasars from Giveon et al.(1999)

Giveon et al. (1999) report B and R photometric light curves for 42 PG quasars

spanning ∼ 7 years with a typical sampling interval of ∼ 40 days. These quasars

are all bright (B < 16 mag) and nearby (z < 0.4). Peterson et al. (2004) report

estimates of MBH and Lλ(5100Å) calculated from reverberation mapping for 12

of these quasars. Estimates of MBH and Lλ(5100Å) were taken from Vestergaard

& Peterson (2006) for the remaining Giveon et al. (1999) quasars. See Giveon et

al. (1999) for further details.

8.3.3 Seyfert Galaxies from AGN Watch Database

The light curves for the remaining 8 AGN in our sample are from the AGN watch

project. The optical light curves for the Seyfert Galaxies AKN 564, Fairall 9, MRK

279, MRK 509, NGC 3783, NGC 4051, NGC 4151, NGC 5548, and NGC 7469

were taken from the AGN watch website. In general, we used the light curves at

5100Å, with the exception of AKN 564, for which we used theR-band light curve.

We excluded 3C390.3 from our analysis because it is a classified as an optically-

violent variable, and thus may experience a different variability mechanism than

the other AGN in our sample. Black hole masses and 5100Å luminosities were

taken from Peterson et al. (2004). Although the AGN Watch sample is small com-

pared to the other two, these sources are particularly important in our analysis

because they help to anchor the low-L and low-MBH end of the correlations ana-

lyzed in § 8.5.

8.4 THE STATISTICAL MODEL: CONTINUOUS AUTOREGRESSIVE PROCESS

The previous analysis of Giveon et al. (1999) and Collier & Peterson (2001) sug-

gests that the optical variability can be well-described by a power-law power
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spectrum with slope ∼ 2. The power spectra of the MACHO quasars have not

been analyzed for individual objects, although Hawkins (2007) investigated the

power spectra of the ensemble of objects. In Figure 8.1 we show the geomet-

ric mean R-band power spectra for the MACHO quasars, along with the 90%

confidence region on the geometric mean. The power spectra for the MACHO

sources are well described by a power law of slope ∼ 2, consistent with previ-

ous work. The lack of any peaks in the power spectra, as well as the aperiodic

and noisy appearance of quasar light curves, suggests that quasar light curves

are best modelled as a stochastic process.

8.4.1 Description of Autoregressive Processes

Power spectra of the form P (f) ∝ 1/f 2 are consistent with a first order autore-

gressive (AR(1)) process. The AR(1) process is a well-studied stochastic process

(e.g., see Scargle, 1981, and references therein), generated according to

xi = αxi−1 + εi, (8.1)

where εi is a normally-distributed random variable with zero mean and variance

σ2
AR, and the data xi are observed at regular time intervals. The parameters of the

AR(1) model are α and σ2
AR, and α is usually constrained as |α| < 1 in order to

ensure stationarity. The case α = 1 corresponds to a random walk. For the case

of quasar light curves, the n observed data points x1, . . . , xn correspond to the

observed fluxes at times t1, . . . , tn, for ti = t1 + (i− 1)∆t.

The discrete AR(1) process is only defined for regularly sampled time series.

However, astronomical time series are rarely regularly sampled, and often large

gaps in time can exist. Furthermore, the AR(1) process is a discrete process, but

the underlying physical process that gives rise to the observed flux is continuous.

Because of these two considerations, we instead model the quasar light curves as
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Figure 8.1 The geometric mean power spectrum (solid noisy line) for the R-band

light curves of the MACHO quasars, along with 90% confidence region (shaded

region). The thick solid line is a power spectrum of the form P (f) ∝ 1/f 2 with

an additive measurement error contribution. The optical light curves for the MA-

CHO quasars are well described by a 1/f 2 power spectrum, consistent with other

samples of quasars. Power spectra of the form 1/f 2 are suggestive of random

walk and related stochastic processes.
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a first order continuous autoregressive (CAR(1)) process. The CAR(1) process is

described by the following stochastic differential equation2 (e.g., Browkwell &

Davis, 2002):

dX(t) = −1

τ
X(t)dt+ σ

√
dtε(t) + b dt, τ, σ, t > 0. (8.2)

Here, τ is called the ‘relaxation time’ of the process X(t), and ε(t) is a white noise

process with zero mean and variance equal to one. Throughout this work we will

assume that the white noise process is also Gaussian. As we will show below,

τ can be interpreted as the time required for the time series to become roughly

uncorrelated, and σ can be interpreted as describing the variability of the time

series on very short time scales. In the physics literature, Equation (8.2) is often

referred to as an Ornstein-Uhlenbeck (O-U) process, and plays a central role in

the mathemematics of Brownian motion; see Gillespie (1995) for a review of the

O-U process. Within the context of this work, X(t) is the quasar light curve.

The solution to Equation (8.2) is

X(t) = e−t/τX(0) + bτ(1 − e−t/τ ) + σ
∫ t

0
e−(t−s)/τdB(s). (8.3)

Here, X(0) is a random variable describing the initial value of the time series,

dB(s) is a temporally uncorrelated normally distributed random variable with

zero mean and variance dt. Strictly speaking, dB(t) is an interval of Brownian

motion, and the integral on the right side represents the stochastic component of

the time series. The mean value of X(t) is bτ and the variance is τσ2/2. From

Equation (8.3) it can be seen that if σ = 0, i.e., if there is no stochastic component,

and if X(0) represents a random perturbation, X(t) relaxes to it’s mean value

with an e-folding time scale τ ; hence the identification of τ as the relaxation time.
2Strictly speaking, the stochastic differential equation is complicated by the fact that white

noise does not exist as a derivative in the usual sense. However, we ignore the mathematical
technicalities for ease of interpretation of Equation (8.2)
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If σ > 0, then the path that X(t) takes will vary randomly about the expected

exponential relaxation. Within the context of quasar light curves, it is tempting to

associate τ with a characteristic time scale, such as the time required for diffusion

to smooth out local accretion rate perturbations, and σ to represent the variability

resulting from local random deviations in the accretion disk structure, such as

caused by turbulence and other random magneto-hydrodynamic (MHD) effects.

The expected value of X(t) given X(s) for s < t is

E(X(t)|X(s)) = e−∆t/τX(s) + bτ(1 − e−∆t/τ ) (8.4)

and the variance in X(t) given X(s) is

V ar(X(t)|X(s)) =
τσ2

2

[

1 − e−2∆t/τ
]

(8.5)

where ∆t = t − s. If 2∆t/τ ¿ 1, then Equation (8.5) implies that the variance on

short time scales is ≈ σ2∆t. Therefore, σ2 can be interpreted as representing the

variance in the light curve on short time scale, as stated above. In addition, one

can show that when the time sampling is regular with ∆t = 1, then the CAR(1)

process reduces to an AR(1) process with α = e(−1/τ) and σ2
AR = τσ2(1−e−2/τ )/2.

In astronomical time series analysis it is common to interpret a light curve in

terms of its autocorrelation function and power spectrum. The autocovariance

function at time t′ is defined to be the expected value of the product of X(t) and

X(t + t′), and the autocorrelation function is calculated by dividing the autoco-

variance function by the variance of the time series. The autocorrelation function

of the CAR(1) process is

ACF (t′) = e−t′/τ . (8.6)

Equation (8.6) states that the correlations in CAR(1) light curve fall off exponen-

tially with lag t′, with an e-folding time equal to the relaxation time, τ . Following
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Gillespie (1995), the power spectrum of a process is computed from the autoco-

variance function rX(t′) as

PX(f) = 4
∫ ∞

0
rX(t′) cos(2πft′) dt′, f ≥ 0. (8.7)

For a CAR(1) process, rX(t′) = τσ2e−t′/τ/2, from which if follows that the power

spectrum of a CAR(1) process is

PX(f) =
2σ2τ 2

1 + (2πτf)2
. (8.8)

From Equation (8.8) we infer that there are two important regimes for PX(f):

PX(f) ∝ 1/f 2 for f ∼> (2πτ)−1 and PX(f) ∝ 1 for f ∼< (2πτ)−1. Therefore, the

CAR(1) process has a power spectrum that falls off as 1/f 2 at time scales short

compared to the relaxation time, and flattens to white noise at time scales long

compared to the relaxation time. Because ‘characteristic’ time scales of quasar

light curves are often defined by a break in the power spectrum, this is an addi-

tional justification of associating τ with a characteristic time scale. In addition,

because the power spectra of quasar optical light curves are well described by

PX(f) ∝ 1/f 2, it suggests that a CAR(1) process should provide a good descrip-

tion of the light curves, with τ being on the order of the length of the light curves

or longer.

To illustrate the CAR(1) process, we simulate four CAR(1) light curves. The

light curves were simulated by first simulating a random variable from a nor-

mal distribution with mean τb and variance τσ2/2; note that this is the mean and

variance of the CAR(1) process. Then, from this random initial value, we simu-

lated the rest of the light curve using Equations (8.4) and (8.5). These simulated

light curves span a length of 7 yrs and are sampled every 5 days. The simulated

light curves span a period in time similar to the quasar light curves analyzed in

this work, but are better sampled than most of the quasar light curves. Collier
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& Peterson (2001) list four characteristic time scales of interest for quasars: the

light crossing time, the ADAF accretion timescale (Manmoto et al., 1996), the gas

orbital time scale, and the accretion disk thermal time scale. These time scales are

tlc = 1.1 ×
(

MBH

108M¯

)

(

R

100RS

)

days (8.9)

tacc = 16 ×
(

MBH

108M¯

)

(

R

100RS

)3/2

days (8.10)

torb = 104 ×
(

MBH

108M¯

)

(

R

100RS

)3/2

days (8.11)

tth = 4.6 ×
(

α

0.01

)−1
(

MBH

108M¯

)

(

R

100RS

)3/2

yrs, (8.12)

where MBH is the mass of the black hole, R is the emission distance from the

central black hole, RS = 2GMBH/c
2 is the Schwarzschild radius, and α is the

standard disk viscosity parameter. For the simulated quasar light curves, we use

MBH = 108M¯, α = 0.01, and R = 100RS , and set τ equal to each of these four

time scales. In addition, we use b = 0 and σ = 1. The simulated light curves

are shown in Figure 8.2, and their corresponding power spectra are shown in

Figure 8.3. The increased amount of variation on long time scales with increasing

τ is apparent. In addition, because tlc is smaller than the time sampling, the

first simulated light curve is only sampling frequencies on the flat part of the

power spectrum, giving it the appearance of white noise. In contrast, the two

simulated light curves with the longest time scales are sampled on the 1/f 2 part

of the power spectrum, giving them more of a ‘red noise’ appearance. In addition,

‘red noise’ leak affects the estimated power spectrum of the light curve with τ =

4.6 yrs, evidenced by the constant offset between the true power spectrum and

the estimated one. Red noise leak occurs when power from time scales longer

than the span of the time series ‘leaks’ into the shorter time scales, biasing the

power spectrum when estimated as the modulus of the discrete Fourier transform
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(e.g., van der Klis, 1997).

8.4.2 Estimating the Parameters of a CAR(1) Process

The parameters for a CAR(1) process are commonly estimated by maximum-

likelihood directly from the observed time series. This is an advantage over non-

parameteric approaches, such as the discrete power spectrum or the structure

function. The observed power spectrum and structure function can both suffer

from windowing effects caused by the finite duration and sampling of the light

curve, whereby power from high frequencies can leak to low frequencies (alias-

ing), and power at low frequencies can leak to high frequencies (e.g., red noise

leak). For ground based optical observations, an additional complication is the

regularity enforced in the sampling caused by the Earth’s rotation around the

sun, as objects are only observable during certain times of the year. For exam-

ple, this periodic sampling can be seen in the light curve for the MACHO source

shown in Figure 8.4. All of these effects can bias the power spectrum or struc-

ture function when estimated directly from the light curve in a non-parameteric

fashion. In contrast, estimating a ‘characteristic’ time scale and variance directly

from the observed time series, instead of from the observed power spectrum or

structure function, has the advantage of being free of windowing effects, giving

unbiased estimates of τ and σ2. Of course, this requires one to assume a param-

eteric model for the time series, but as we will show below the CAR(1) process

provides a good description of most of the AGN light curves analyzed in this

work. Furthermore, higher-order terms can be added to Equation (8.2) to allow

additional flexibility (e.g., Browkwell & Davis, 2002), but this is beyond the scope

of the current work.

When the data are measured without error, the likelihood function for the

CAR(1) process may be derived from Equations (8.4) and (8.5), and noting that
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Figure 8.2 Light curves simulated from a CAR(1) process for four different charac-

teristic time scales, assuming typical parameters for quasars (see Eq.[8.9]–[8.12]).

From top to bottom, these are the light crossing time, τ = 1.1 days, the ADAF ac-

cretion time scale, τ = 16 days, the disk orbital time scale, τ = 104 days, and the

disk thermal time scale, τ = 4.6 yrs. The stochastic nature of the CAR(1) process

is apparent, and the light curve exhibits more variability on longer time scales as

the characteristic time scale increases.
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Figure 8.3 Power spectra for the simulated CAR(1) light curves shown in Fig-

ure 8.2. The actual power spectra are shown with a solid line, and the empirical

power spectra estimated directly from the light curves are the noisy curves. The

power spectra are flat on the ‘white noise’ part of the curve, corresponding to

frequencies f ∼< (2πτ)−1, and fall off as 1/f 2 on the ‘red noise’ part of the curve,

f ∼> (2πτ)−1. As τ increases, the break in the power spectra, marked with a ver-

tical line, shifts toward shorter frequencies. For the CAR(1) process with τ = tth,

red noise leak biases the power spectrum estimated directly from the simulated

light curve.
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Figure 8.4 Light curves and best fit CAR(1) processes for NGC 5548 (top left),

MACHO source 013.05717.0178 (top right), and PG 0804+761 (bottom). The top

panels show the light curves (data points) along with the best fit CAR(1) process

(solid line), the middle panels show the standardized residuals (Eq.[8.21]) as a

function of time (data points) and a moving average estimate (dashed line), and

the bottom panels compare a histogram of the standardized residuals with the

expected standard normal distribution. The AGN light curves are well described

by a CAR(1) process.



419

the initial value of the light curve follows a normal distribution with mean bτ

and variance σ2τ/2. However, it is almost always the case that the observed

fluxes are measured with error. The likelihood function can then be calculated

using Equations (8.4) and (8.5) in combination with a ‘state-space’ representa-

tion of the time series (e.g., Browkwell & Davis, 2002). Denoting the measured

fluxes as x1, . . . , xn, observed at times t1, . . . , tn with measurement error variances

σ2
1, . . . , σ

2
n, the likelihood function is

p(x1, . . . , xn|b, σ, τ) =
n
∏

i=1

[

2π(Ωi + σ2
i )
]−1/2

exp

{

−1

2

(x̂i − x∗i )
2

Ωi + σ2
i

}

(8.13)

x∗i = xi − bτ (8.14)

x̂0 = 0 (8.15)

Ω0 =
τσ2

2
(8.16)

x̂i = aix̂i−1 +
aiΩi−1

Ωi−1 + σ2
i−1

(

x∗i−1 − x̂i−1

)

(8.17)

Ωi = Ω0

(

1 − a2
i

)

+ a2
i Ωi−1

(

1 − Ωi−1

Ωi−1 + σ2
i−1

)

(8.18)

ai = e−(ti−ti−1)/τ . (8.19)

The maximum-likelihood estimate is then found by maximizing Equation (8.13)

with respect to b, τ, and σ.

In this work we employ a Bayesian approach in order to directly compute the

probability distribution of b, τ, and σ, given our observed light curves. The prob-

ability distribution of the parameters, given the observed data (i.e., the posterior

distribution), is calculated as the product of the likelihood function with a prior

probability distribution. In this work we assume a uniform prior on b and σ. For

deriving a prior on τ , we note that when the data are regularly sampled, then the

CAR(1) process reduces to the AR(1) process described by Equation (8.1) with

α = e−1/τ . In this work we assume a uniform prior on α. For an AR(1) process,

α gives the correlation of xi and xi−1. Therefore, we consider it reasonable to as-
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sume that any value of α is a priori likely, i.e., we do not assume anything a priori

about the correlations between subsequent data points, and therefore we assume

a uniform prior on α from 0 to 1. This prior is non-informative in the sense that all

of the information on α comes from the data. Because p(τ)dτ = p(α)dα, this cor-

responds to taking the prior on τ to be p(τ) ∝ τ−2e−1/τ . Therefore, the probability

distribution of the parameters, given the observed data, is

p(b, σ, τ |x1, . . . , xn) =
1

τ 2
e−1/τp(x1, . . . , xn|b, σ, τ), (8.20)

where the likelihood function is given by Equation (8.13).

The accuracy of the fit can be assessed by comparing the residuals of the light

curve with the values expected under the assumption of a CAR(1) process. From

Equation (8.13) it is apparent that if the CAR(1) process provides a good model of

the observed data, then the residuals should be uncorrelated and follow a normal

distribution:

χ ≡ x∗i − x̂i
√

Ωi + σ2
i

∼ N(0, 1). (8.21)

Here, the notation χ ∼ N(0, 1) means that χ is distributed according to a normal

distribution with mean equal to zero and variance equal to one. The goodness of

fit can then be assessed by inspecting a plot of the residuals with time to ensure

that they are uncorrelated, and by comparing a histogram of the residuals with

the expected standard normal distribution.

8.4.3 Fitting the Quasar Light Curves

In this work we model the logarithm of the flux as following a CAR(1) process,

or equivalently the apparent magnitudes. We do this because the assumption

of a Gaussian white noise process in Equation (8.2) produces both positive and

negative values of X(t), while flux is a strictly positive quantity. The logarithm

maps a strictly positive quantity to the interval (−∞,∞), and therefore Equation
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(8.2) is likely to be a better description of the light curve for the source apparent

magnitude, as opposed to the source flux.

An additional correction is needed to correct for cosmological time dilation.

Because the quasars are fit in the observed frame, and time scales decrease as

(1 + z), spurious correlations may arise if one does not correct to the quasar rest

frame. This is particularly problematic when dealing with flux limited samples,

which create an artificial correlation between z and both luminosity and MBH .

Noting that dtobs = (1 + z)dtrest, Equation (8.2) can be expressed in the forms

dX(t) = − 1

τobs

X(t)dtobs + σobs

√

dtobsε(t) + bobs dtobs (8.22)

= −1 + z

τobs

X(t)dtrest + σobs

√

(1 + z)dtrestε(t) + (1 + z)bobs dtrest (8.23)

= − 1

τrest

X(t)dtrest + σrest

√

dtrestε(t) + brest dtrest. (8.24)

From Equations (8.22)–(8.24) it is apparent that the observed and rest frame pa-

rameters are related as

τrest = (1 + z)−1τobs (8.25)

σrest = (1 + z)1/2σobs (8.26)

brest = (1 + z)bobs. (8.27)

Noting that the mean of the CAR(1) process is bτ , and that the variance is τσ2/2,

Equations (8.25)–(8.27) imply that the mean and variance of a CAR(1) process are

unaffected by cosmological time dilation. However, the variance observed from

a light curve with a finite duration and sampling is still affected by time dilation,

as the observed variance over a time interval ∆t is the integral of Equation (8.8)

over that time interval. In what follows, the quantities τ, σ, and bwill always refer

to the quasar rest frame quantities, unless specified otherwise.
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Random draws of b, τ, and σ from the posterior probability distribution are ob-

tained using a Metropolis-Hastings algorithm. We calculated an estimate of each

parameter as the median of the posterior, and the posterior medians, standard

deviations, and 95% (2σ) confidence intervals are computed using these random

draws. In general the posterior median values were not significantly different

from a maximum likelihood fit. The goodness of fit for the light curves was de-

termined by examining a histogram of the residuals and a plot of the residuals

against time, as described in § 8.4.2. Occasionally outlying values of the flux are

present for the light curves with more data points, possibly due to unidentified

systematic error. These outlying data points were removed and the light curves

were refit. In Figure 8.4 we show the light curve and best fit CAR(1) model for

the most densely sampled object in our sample, NGC 5548, for a representative

light curve from the MACHO sample, and for a representative light curve from

the PG sample of Giveon et al. (1999). In general, the CAR(1) model provided a

good fit to the quasar light curves analyzed in this work, and we only flagged

9 out of 109 light curves as having a bad fit. The 9 objects for which the fit was

deemed unacceptable are not used in the regression analysis.

8.5 RESULTS

The distribution of σ, τ, and light curve standard deviations for our sample are

shown in Figure 8.5. The light curve standard deviation is calculated as the

square root of the light curve variance, s = σ
√

τ/2. The best fit quasar relax-

ation times have a median value of 540 days and a dispersion of 0.64 dex, and

show typical long time scale optical variations of 3–30 per cent. However, the un-

certainties on τ are large and make a considerable contribution to the observed

scatter. Correcting for the contribution from the uncertainties implies an intrinsic
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Figure 8.5 Distribution of the best fit CAR(1) process parameters for the quasars

in our sample. The characteristic time scales of AGN optical light curves are

10 ∼< τ ∼< 104 days, the amplitudes of short time scale scale variations are σ ∼<

0.02 mag day−1/2, and the amplitudes of long time scale variations are ∼< 40%. The

uncertainties on the characteristic time scales are large, and the true dispersion in

τ is likely ∼ 0.3 dex.

dispersion in relaxation time of ∼ 0.3 dex.

In order to look for correlations of quasar variability properties on luminos-

ity, redshift, black hole mass, and Eddington ratio, we used the linear regression

method of Kelly (2007). The method of Kelly (2007) takes a Bayesian approach

to linear regression, and accurately accounts for intrinsic scatter in the regression

relationships, as well as measurement errors in both the dependent and indepen-

dent variables. Measurement errors can be large for both the estimates of τ and
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MBH , and thus can have a significant effect on the observed correlations (e.g.,

Kelly et al., 2007). Therefore, it is necessary to correct for the measurement errors

when attempting to recover any underlying trends.

8.5.1 Dependence of Quasar Variability on Luminosity and Redshift

In order to investigate whether quasar variability properties depend on lumi-

nosity, redshift, or both, we performed a regression analysis. Throughout this

section, the luminosity will always be taken to be λLλ at 5100Å. There has been

considerable debate over whether quasar variability is correlated with luminos-

ity or redshift, and the artificial correlation between the two has made it difficult

for previous work to uncover the true intrinsic correlation. However, because we

perform a linear regresion of variability properties on both L and z simultane-

ously, we are able to break the degeneracy between L and z. This is because the

multiple linear regression describes how variability depends on L at a given z,

and likewise for z at a given L.

In Figure 8.6 we show the relaxation time τ as a function of luminosity and

redshift, and in Figure 8.7 we show σ as a function of luminosity and redshift.

The results of the regressions for τ are

log τ = (−10.29 ± 3.76) + (0.29 ± 0.08) log λLλ [days] (8.28)

log τ = (2.32 ± 0.10) + (1.12 ± 0.41) log(1 + z) [days] (8.29)

log τ = (−8.13 ± 0.12) + (0.24 ± 0.12) log λLλ +

(0.34 ± 0.58) log(1 + z) [days], (8.30)

and the results of the regression for σ are

log σ = (4.73 ± 2.34) − (0.19 ± 0.05) log λLλ [R mag2/day] (8.31)

log σ = (−3.84 ± 0.06) − (0.32 ± 0.25) log(1 + z) [R mag2/day] (8.32)
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log σ = (8.00 ± 3.29) − (0.27 ± 0.07) log λLλ +

(0.47 ± 0.33) log(1 + z) [R mag2/day]. (8.33)

There is a statistically significant correlation between τ and both L and z, where

the light curve relaxation time increases with increasing L and z. In addition,

there is a statistically significant anti-correlation between σ and both L and z,

implying that the short time scale variance decreases with increasing L and z.

However, the multiple regression results show that the luminosity trends are the

dominant ones, and that there is no significant trend between either τ or σ and

z, at a given L. This therefore implies that the observed trends with redshift

are caused by the artificial correlation between L and z resulting from selection

effects.

We also looked for trends of the light curve variance, τσ2/2, with L and z and

found statistically significant evidence for a correlation between the variance of

the light curve and z. Both the Spearman and Kendall rank correlation statis-

tic was significant at 3σ, althought there is considerable scatter in the correlation.

This correlation is most likely a reflection of the well-known fact that quasar emis-

sion at shorter wavelengths is more variable (Vanden Berk et al., 2004, e.g.,[)

8.5.2 Dependence of Quasar Characteristic Time Scale and Variability on MBH

We also looked for trends in quasar variability properties with MBH and the Ed-

dington ratio, L/LEdd. In this work we assume a constant bolometric correction

of Cbol = 10 to the luminosity at 5100Å(Kaspi et al., 2000). However, we stress

that a constant bolometric correction can introduce significant error in the Ed-

dington ratio (e.g., Vasudevan & Fabian, 2007; Kelly et al., 2008), and that our

use of Cbol = 10 is only suggestive. Strictly speaking, what is being used in the

following regressions is the ratio λLλ(5100Å)/MBH , and in general this will not
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Figure 8.6 The characteristic time scale of the optical light curves for the AGN

in our sample as a function of optical luminosity, redshift, black hole mass, and

estimated Eddington ratio. For clarity, we only show error bars for a random

fraction of the data points in the top two panels, and we only show the error bars

for the sources with MBH estimated from reverberation mapping in the bottom

two panels. The straight lines denote the best fit linear regression. There is a

significant trend for τ to increase with increasingMBH , and less significant trends

between τ and λLλ or z. There is no significant trend between τ and L/LEdd.
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Figure 8.7 Same as Figure 8.6, but for the variance in the short time scale varia-

tions, σ2. There is a significant trend for σ to decrease with increasing MBH , and

a similar but less significant trend between σ and λLλ.
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equal the true Eddington ratio. In Figure 8.6 we also show τ as a function of MBH

and L/LEdd, and in Figure 8.7 we also show σ as a function of MBH and L/LEdd.

The results of the regressions for τ are

log τ = (−2.29 ± 1.17) + (0.56 ± 0.14) logMBH [days] (8.34)

log τ = (2.50 ± 0.24) − (0.06 ± 0.27) logL/Lbol [days]. (8.35)

and the results of the regression for σ are

log σ = (0.33 ± 0.73) − (0.52 ± 0.08) logMBH [R mag2/day] (8.36)

log σ = (−4.33 ± 0.19) − (0.25 ± 0.22) logL/LEdd [R mag2/day]. (8.37)

Based on these regression results, there is a statistically significant correlation

between τ and MBH , where the relaxation time increases with increasing MBH .

In addition, there is significant evidence that σ decreases with increasing MBH .

However, there is no evidence for a dependence of τ or σ on the Eddington ratio.

Due to the correlation between L and MBH , it is unclear whether the observed

dependency of τ and σ on these quantities is real for both L andMBH , or whether

one correlation is simply a reflection of the other. Similar to breaking the L–z

degeneracy, we can investigate which correlation is the fundamental one, or if

both are, by performing a multiple regression of τ and σ on L and MBH . The

results are

log σ = (−3.83 ± 0.17) − (0.09 ± 0.19) log

(

λLλ

1045 erg s−1

)

− (0.25 ± 0.24) log

(

MBH

108M¯

)

[R mag2/day] (8.38)

τ = (80.4+66.9
−35.8)

(

λLλ

1045 erg s−1

)−0.42±0.28 (
MBH

108M¯

)1.03±0.38

[days] (8.39)

Here, we have expressed τ as a function ofL andMBH instead of log τ for more di-

rect comparison with the characteristic time scales described by Equations (8.9)–

(8.12). The joint probability distributions of the slopes are shown in Figure 8.8
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for both regressions. It is unclear whether σ depends on solely MBH , solely L, or

both MBH and L, although the data favor a dependence on MBH over one on L.

However, there is significant evidence that the relaxation time scale depends on

at least MBH , and possibly on L as well. In fact, the dependence of τ on MBH has

steepened, and the relationship described by Equation (8.41) is similar to that for

the orbital or thermal time scale, assuming a viscosity parameter of α ∼ 10−3.

8.6 DISCUSSION

8.6.1 Comparison with Previous Work

Most previous work on quasar optical variability has been based on analysis of

structure functions or power spectra, either of individual quasars or an ensem-

ble of quasars. From these studies, an anti-correlation between variability and

luminosity has often emerged (e.g., Hook et al., 1994; Garcia et al., 1999; Van-

den Berk et al., 2004; Wilhite et al., 2008), while results on a variability–redshift

correlation have remained mixed. Our result that long-term quasar variability is

uncorrelated with luminosity may appear to be in conflict with previous work.

However, the evidence for a variability–luminosity correlation is considerably

weaker in the studies that have computed variability measures for individual ob-

jects. Indeed, studies that have compared variability with luminosity for individ-

ual objects have noted the signficant scatter in the relationship, producing a very

weak correlation, often leading to a detection of ‘moderate’ statistical significance

at best. Ensemble studies, on the other hand, cannot investigate the scatter in the

relationship and therefore cannot assess the strength of the correlation. Instead,

ensemble studies simply look for an average trend in variability properties, and,

given enough quasars, are able to detect even a weak trend of variability with

luminosity. Furthermore, quasars exhibit a range in characteristic time scale and
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Figure 8.8 Probability distribution for the values of the coefficients in a linear

regression of the characteristic time scale of quasar optical variations, τ , (top)

and the magnitude of short time scale variations, σ, (bottom) as a function of

MBH and λLλ (see Eq.[8.40] and [8.41]). The contours correspond to approximate

50%, 75%, and 95% joint confidence regions. While there is significant evidence

that τ depends on at least MBH , it is unclear is there is an additional dependence

on luminosity. In addition, while it is clear that σ depends on either MBH or λLλ,

it is unclear whether the dependency is on MBH , λLλ, or both.
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variability amplitude at a given luminosity or black hole mass, and it is unclear

how this affects an ensemble structure function or power spectrum.

Recently Wold et al. (2007) have reported a correlation between optical vari-

ability and MBH on time scales t > 100 days, but no correlation is seen on shorter

time scales. In contrast, we observed an anti-correlation between MBH and short

time scale variability, but no correlation between MBH and long time scale vari-

ability. The Wold et al. (2007) result is unexpected, since MBH and L are corre-

lated (e.g., Peterson et al., 2004), and previous studies have found that variabil-

ity is anti-correlated with L, even on long time scales. The Wold et al. (2007)

result is based on an ensemble structure function, and the uncertainties on the

structure function for the high MBH bins are large. Furthermore, the time sam-

pling of the Wold et al. (2007) sample for the high MBH bins is worse than for the

low MBH bins, and windowing effects due to the finite length of the time series

may be at work here. When considering variability measurement of individual

sources, Wold et al. (2007) still find a positive correlation between variability and

MBH . However, while this correlation is statistically significant, it is very weak

and exhibits considerable scatter. We performed a Kendall and Spearman rank

correlation test between long time scale variability and the estimated black hole

mass, and also find a marginally significant correlation, but the significance dis-

appeared when we accounted for the uncertainty in the mass estimates.

Collier & Peterson (2001) calculated structure functions of optical light curves

for 12 low-z AGN with reverberation mapping data. Consistent with our work,

they find a correlation between MBH and characteristic time scale, where a char-

acteristic time scale was defined as the location of a break in the structure func-

tion. The time scales found by Collier & Peterson (2001) were consistent with

dynamical or disk thermal time scales, although they tended to be somewhat
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shorter than those derived in this work. This difference may be explained by

somewhat different definitions of ‘characteristic’ time scale between their work

and our, and systematic errors in the estimated structure functions caused by fi-

nite time sampling effects.

8.6.2 Connection with Accretion Physics

In this work we have found that both the characteristic time scale of quasar light

curves, and the magnitude of the short time scale variations, depend on black

hole mass. This, in combination with the evidence from reverberation mapping,

strongly argues that the source of quasar optical variability is intrinsic to the ac-

cretion disk. In addition, we have found that the characteristic time scales of

quasar light curves are similar to what would be expected for disk dynamical or

thermal time scales, assuming a viscosity parameter of α ∼ 10−3. Recent MHD

simulations have radiation-dominated AGN accretion disks have found that the

thermal time scale is shorter than that implied by the standard α-prescription

(Turner, 2004), making the association of τ with thermal time scales more consis-

tent. This implies that on time scales shorter than torb or tth, the accretion disk has

difficulty generating variations in optical flux in response to random variations of

some input process, such as, for example, a time varying magnetic field. Instead,

these short time scale variations get ‘smoothed out’, creating 1/f 2 power spec-

trum for frequencies higher than ∼ 1/torb or ∼ 1/tth. While the quasar character-

istic time scales are consistent with both orbital and thermal time scales, we find

it more appropriate to associate these time scales with tth, as we would expect

some sort of periodic activity in the light curves if the flux variations were driven

by orbital motion. In addition, quasar optical emission is thought to be thermal

emission from an optically thick accretion disk (e.g., Krolik, 1999a; Frank, King,

& Raine, 2002), and quasars tend to be bluer as they brighten (e.g., Giveon et al.,
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1999; Trèvese et al., 2001), suggesting that the flux variations are due to thermal

variations.

In order to interpret the CAR(1) process in terms of accretion disk physics, we

rewrite Equation (8.2) as

d logL(t) = −1

τ
(logL(t) − µ)dt+ σ[B(t+ dt) −B(t)]. (8.40)

Here, L(t) denotes the luminosity of the quasar at time t, µ = τb is the mean value

of the quasar light curve, and B(t) denotes Brownian motion. In Equation (8.42)

we have used the fact that the derivative of Brownian motion is white noise, i.e.,

ε(t) = dB(t) = B(t+dt)−B(t). Brownian motion is a non-stationary random walk

process that has a power spectrum P (f) ∝ 1/f 2, and is described by Equation

(8.2) in the limit τ → ∞. In addition, Equation (8.42) implicitly assumes that the

variance in the random variable dB(t) = B(t+ dt) −B(t) is V ar(dB(t)) = dt.

Writing the Equation for a CAR(1) process as Equation (8.42) reveals a num-

ber of interesting properties of this process. First, we note that the first term on

the right side is what keeps the time series stationary. Considering only this term

(i.e., σ = 0), d logL(t)/dt is negative when the value of L(t) is brighter than the

mean, and d logL(t)/dt is positive when L(t) is fainter than the mean. Therefore,

the first term on the right side stabilizes the process by always driving L(t) to-

ward its mean value, while the second term generates random perturbations to

d logL(t)/dt that cause L(t) to deviate from its expected path. For highly accret-

ing objects like quasars, the accretion disks are expected to be radiation pressure

dominated. Under the standard α-prescription for the viscosity, where the vis-

cous torque is assumed to be proportional to the total pressure, a radiation pres-

sure dominated disk is unstable to perturbations in the heating rate (e.g., Shakura

& Sunyaev, 1976; Krolik, 1999a). The fact that the quasar light curves in our sam-

ple are described well by a CAR(1) process with relaxation times similar to disk
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thermal time scales rules out instabilities in the disk that grow as ∼ tth, consistent

with results obtained from full MHD simulations (e.g., Turner, 2004).

From Equation (8.42) it is apparent that the stochastic input into the differen-

tial equation, which drives the random variations in L, is itself a stochastic pro-

cess that should resemble brownian motion. In particular, a random deviation in

the input process, B(t), over a time interval dt causes a random perturbation to

the change in logL(t) expected over the interval dt, with σ controlling how sen-

sitive d logL(t)/dt is to dB(t)/dt. It is not essential that the mechanism driving

the stochastic variations be Brownian motion, but rather that the process ‘looks’

like Brownian motion on time scales much longer than the relaxation time scale

of Equation (8.42). A CAR(1) process satisfies this requirement so long as the re-

laxation time for the input process is long compared to the relaxation time of the

quasar light curve. For example, the input process could be due to variations in

accretion rate, or perturbations caused by a time-varying magnetic field. Indeed,

recently some authors have modelled quasar variability as being driven by vari-

ations in a magnetic field, with the magnetic field density being modelled as an

AR(1) process (e.g., King et al., 2004; Mayer & Pringle, 2006; Janiuk & Czerny,

2007).

If the variations in L(t) are driven by variations in the accretion rate, Ṁ(t),

then the accretion rate variations will propagate on a viscous time scale, tv, with

the shorter time scale variations being smoothed out. Because the viscous time

scale is much longer than the relaxation time scales of our sample, the variations

in accretion rate will look like brownian motion on time scales t¿ tv if the power

spectrum of Ṁ(t) is ∼ 1/f 2 on time scales smaller than the viscous time scale. A

CAR(1) process for Ṁ(t) with τṀ = tv satisfies this requirement, but other pro-

cesses may as well. In this case, while the random short time scale variations



435

in Ṁ are damped, they still exist. If the relaxation time of quasar light curves

is associated with the thermal time scale, this therefore implies that the damped

short time scale variations in Ṁ randomly alter the heat content of the disk. The

random variations in heat content then create random variations in L(t), but be-

cause the disk cannot react to changes in heat content on time scales less than the

thermal time scale, the shorter time scale variation in flux are smoothed out. In

this sense, short time scale variations are correlated because the disk has not had

time to completely react to the change in heat content. However, on time scales

t ∼> tth, the disk has had time to adjust to the heat content variations, thereby ‘for-

getting’ about the previous perturbations in heat content. The result is a red noise

power spectrum on time scales t ∼< tth, and a white noise power spectrum on time

scales t ∼> tth. A similar argument applies if a time-varying magnetic field drives

the random variations in flux, so long as the characteristic time scale of the mag-

netic field is long compared to the relaxation time scale of the quasar light curve.

Whatever the physical process is that can be associated with the stochastic input

into Equation (8.42), the anti-correlation between σ and MBH we have found im-

plies that the magnitude of the random variations in d logL(t)/dt produced by

the stochastic input process must decrease as MBH increases.

Modelling quasar variability as a stochastic process provides an opportunity

to unify both short and long time scale variability as the result of a single process.

The source of variations in optical luminosity over time scales of hours (so-called

‘microvariability’ or ‘intranight variability’) has remained a puzzle, although re-

processing of X-rays or a weak blazar component have been suggested (Czerny

et al., 2008). In general, microvariability in radio-quiet quasars is not detected

above the photometric uncertainty (e.g., Gupta & Joshi, 2005; Carini et al., 2007);

however, for those sources for which it is detected the standard deviation in the
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variability over the course of a night is ∼ 0.01 mag (Gopal-Krishna et al., 2003;

Stalin et al., 2004, 2005; Gupta & Joshi, 2005). As noted above, for a CAR(1) pro-

cess the standard deviation of short time scale variations is ≈ σ
√

∆t. As can be

seen from figure 8.5, assuming a CAR(1) process for quasar light curves predicts

variations of ∼ 0.01 mag over the course of a night, consistent with has has been

observed. Therefore, it is not necessary to invoke an additional physical mecha-

nism to explain the short time scale variations, as the CAR(1) process is able to

explain both short and long time scale variations as being driven by the same pro-

cess. Furthermore, microvariability is known to be stronger in radio-loud quasars

(e.g., Gupta & Joshi, 2005). If a single underlying stochastic process drives both

short and long time scale variability, then the increased microvariability of radio-

loud objects may be a clue in understanding jet formation. In particular, if a time-

varying magnetic field is what drives the optical variations, then the increased

microvariability in radio-loud objects may be due to a more turbulent magnetic

field, which may make it easier for these objects to form powerful outflows or

jets.

8.7 SUMMARY

In this work we have modelled quasar light curves as a type of stochastic process

called a first-order continuous autoregressive process. This statistical model has

three free parameters: the characteristic time scale for the process to ‘forget’ about

itself, τ , the magnitude of the small time scale variations, σ, and the mean of the

time series, µ. We used this model to fit 100 quasar light curves at z < 2.8, includ-

ing 70 quasars with black hole mass estimates. Our conclusions are summarized

as follows:

• Quasar optical light curves are often well described by a continuous au-
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toregressive process (CAR(1)). For the quasars in our sample, the long time

scale variations are typically ∼ 3–30%, consistent with previous work. The

characteristic time scales of the quasar light curves vary between ∼ 10 days

and ∼ 10 yrs and are consistent with accretion disk orbital or thermal time

scales, assuming a viscosity parameter of α ∼ 10−3. In addition, the short

time scale variations are ∼< 0.02 mag day−1/2.

• The characteristic time scales of quasar optical light curves are correlated

with MBH and luminosity, while the magnitude of the short time scale vari-

ations are anti-correlated withMBH and luminosity. We did not find any ev-

idence for an additional redshift correlation. A multiple regression analysis

suggested that the primary correlation is with MBH . At a given luminosity,

the characteristic time scales depend on MBH as

τ = (80.4+66.9
−35.8)

(

λLλ

1045 erg s−1

)−0.42±0.28 (
MBH

108M¯

)1.03±0.38

[days] (8.41)

where the errors are quoted at 68% confidence (1σ).

• For the CAR(1) process, the random perturbations to d logL(t)/dt are caused

by a time varying stochastic process that is well described by a power spec-

trum P (f) ∝ 1/f 2 on time scales long compared to the characteristic time

scale of the quasar light curves. This stochastic input process may be a

time-varying magnetic field or accretion rate variations that propagate on a

viscous time scale. Variations in the input process over an interval dt cre-

ate variations in L(t) which are smoothed out on an orbital or thermal time

scale.

• The fact that quasar optical light curves can be well fit by a CAR(1) model

suggest that it is not necessary to invoke an an additional physical mech-

anism to describe short time scale variations. Instead, within the CAR(1)
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model, both short and long time scale variations are driven by an under-

lying stochastic process that causes random white noise perturbations to

d logL(t)/dt. This is supported by the fact that the intranight variations pre-

dicted by our best fit CAR(1) processes are ∼ 0.01 mag in R, consistent with

studies of intranight variability.

Before concluding, we stress that the CAR(1) model is a statistical model and

not a physical model. Quasar light curves are stochastic in nature, and the de-

pendence of luminosity on the time-varying properties of the disk is complex.

In this sense, the randomness in the stochastic model is not due to that fact that

the physical processes themselves are not deterministic, but rather is a reflection

of our lack of knowledge of the complex physical processes that generate varia-

tions in flux. While a physical model is needed in order to interpret the stochastic

model in terms of accretion disk physics, and thus lead to a proper understand-

ing of quasar light curves, the stochastic model is sufficient for modeling the data,

given our current knowledge. Furthermore, much of the mathematical formalism

of accretion physics is in the language of differential equations, suggesting that

stochastic differential equations are a natural choice for modeling quasar light

curves.

The field of stochastic processes is a rich field with well-developed method-

ology, predominantly because of its important in financial and economic model-

ing. We have utilized the CAR(1) model because of its simplicity, and because

it allows us to perform statistical inference without having our results biased by

the irregular sampling, measurement errors, and finite span of the time series.

However, the CAR(1) model is the simplest of stationary continuous autoregres-

sive processes, and additional flexibility may be achieved through the addition

of higher order derivatives to Equation (8.2). This provides a rich and flexible
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method of modeling the power spectra of quasar light curves without suffering

from the windowing effects that can bias traditional Fourier and structure func-

tion techniques. For example, quasi-periodic oscillations can be modeled through

the addition of second order derivatives to Equation (8.2), as has been done in the

analysis of the frequency of sun spot numbers (Phadke & Wu, 1974). In addition,

Equation (8.2) can be generalized to a vector form, allowing the simultaneous

modelling of quasar light curves accross multiple observing wavelengths, and

thus introducing additional constraints on physical models of quasar variability.

Both the use of higher order terms and multiwavelength modelling of quasar

light curves will be the subject of future research.
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CHAPTER 9

CONCLUDING REMARKS AND FUTURE WORK

In this thesis I have attempted to further our understanding of the structure

of the quasar central engine through investigating trends in quasar SEDs and

lightcurves with luminosity, redshift, black hole mass, and Eddington ratio. In

addition, I have developed new statistical methods for dealing with the signifi-

cant statistical uncertainty in estimates ofMBH based on the broad emission lines,

as well as correcting for the presence of a selection function and non-detections. I

used these new statistical methods to analyze correlations involvingMBH and the

ratio of optical/UV flux or spectral slope of the X-ray continuum (see Chapter 7),

and the characteristic time scale and variability of quasar optical lightcurves (see

Chapter 8). In addition, I also use my new methods to estimate the z < 0.5 SMBH

mass function for broad line AGN, based on quasars from the Bright Quasar Sur-

vey. Among my results, the most noteworthy are:

• The statistical uncertainty in the broad line mass estimates can lead to sig-

nificant artificial broadening of the inferred distribution ofMBH . This there-

fore causes one to overestimate the number of AGN with large values of

MBH and small values ofMBH , and underestimate the number of AGN with

average values of MBH . In addition, the large statistical uncertainties in

MBH ‘blur out’ correlations involving MBH , reducing their observed mag-

nitude and statistical significance. It is important to correct for the statistical

uncertainty inMBH estimates in order to infer the intrsinic distributions and

correlations.

• The z = 0.2 broad line quasar black hole mass function (BHMF) falls off
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approximately as a power law with slope ∼ 2 for MBH ∼> 108M¯. There

is some evidence for evolution in the local quasar BHMF, with the BHMF

shifting toward higher values ofMBH as z increases, and possibly flattening

at the high MBH end at z ∼> 0.3. In addition, my statistical model implies

that at a given MBH , z < 0.5 broad line quasars have a typical Eddington

ratio of L/LEdd ∼ 0.4, with a dispersion of ∼< 0.5 dex. However, these es-

timates are based on the assumption of a Gaussian distribution in L/LEdd,

and the estimated dispersion in L/LEdd likely biased toward smaller values

if the true distribution of L/LEdd exhibits significant skew toward smaller

values.

• There is evidence for a correlation between αox and optical/UV luminosity,

redshift, MBH , and Eddington ratio. These correlations imply that radio-

quiet quasars become more X-ray quiet as their LUV , MBH , and L/LEdd in-

crease, and become more X-ray loud as z increases at a given LUV . The

correlations involving LUV and z are most likely driven by correlations in-

volvingMBH and L/LEdd. These correlations imply that radio-quiet quasars

emit a larger fraction of their bolometric luminosity through the accretion

disk component, as compared to the corona component, as MBH and ṁ in-

crease. In addition, because radio-quiet quasars become more X-ray quiet

as MBH and ṁ increase, these correlations imply that quasars become more

efficient at injecting feedback energy into the ambient gas as MBH and ṁ

increase, and are thus able to drive more powerful outflows.

• There is no evidence for a correlation between the spectral slope of the X-ray

continuum, ΓX , and luminosity or redshift. However, there is evidence for

a significant trend between ΓX and L/LEdd. In addition, the trend between
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ΓX and L/LEdd is non-monotonic, where the X-ray continuum softens with

increasing Eddington ratio until L/LEdd ∼ 0.3, and then hardens with in-

creasing Eddington ratio. A similar trend has been seen between the spec-

tral slope of the optical/UV continuum and Eddington ratio (Bonning et al.,

2007; Davis et al., 2007), and this non-monotonic behavior may be caused

by a change in the structure of the accretion disk at L/LEdd ∼ 0.3, where the

inner part of the accretion disk becomes thicker due to increased radiation

pressure (Abramowicz et al., 1988).

• Many quasar optical light curves are well describes for a first order con-

tinuous autoregressive process (CAR(1)). The CAR(1) process is a type of

stochastic process with a 1/f 2 power spectra on time scales short compared

to some characteristic time scale, τ , and a flat power spectra on time scales

long compared to τ . I found significant evidence that the characteristic time

scales of quasar optical flux variations increases with increasing MBH , and

that the amplitude of short time scale variability decreases with increasing

MBH . Both the magnitude of our estimated characteristic time scales and

the trend with MBH are consistent with disk orbital or thermal time scales.

I interpret quasar optical light curves as being driven by thermal fluctua-

tions, which in turn are driven by some other underlying stochastic process

with characteristic time scale long compared to the disk thermal time scale.

In addition, the CAR(1) stochastic model is able to explain both long and

short time scale variations, thus eliminating the need to invoke seperate

physical mechanisms to explain both.

There are a few natural directions for future research that build on the con-

clusions and methods of this thesis. First, understanding how and when SMBHs

grow is currently of central importance in extragalactic astronomy. Currently,
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it is unclear to what degree mergers of gas rich galaxies are important, as op-

posed to quiescent accretion of ambient gas. At this time, the rough picture that

is emerging is that gas rich mergers are important for growing the most massive

black holes at high redshift, where bright quasars dominate the AGN population,

while lower mass black holes (e.g., Seyfert galaxies) grow more slowly through

accretion of ambient gas, such as cold molecular clouds or the hotter IGM.

The broad line quasar BHMF offers a step forward in understanding black

hole growth. By comparing the local quiescent BHMF with the integrated broad

line quasar BHMF, we can place constraints on how much black hole growth oc-

curs in broad line AGN. In addition, the local quiescent BHMF can be seperated

into the quiescent BHMF for early and late type galaxies, where early type galax-

ies dominate the local BHMF at MBH ∼> 107M¯, and late type galaxies dominate

at MBH ∼< 107M¯ (e.g., Shankar et al., 2004). If the largest SMBHs grow during

bright quasar phases, then we would expect that the integrated broad line AGN

BHMF should roughly match the local BHMF for early type galaxies, modulo the

additional SMBH growth that occurs in these AGN before entering quiescence.

Any systematic differences between the two mass functions may also shed light

on the importance of obscured (Type II) AGN for black hole growth, and whether

the difference between obscured and unobscured AGN is an evolutionary or ori-

entation effect. However, in order to accomplish these tasks, it is necessary to

properly correct for a selection function and the large statistical uncertainty in

broad line mass estimates, as was done in Chapter 5 of this thesis.

Using the broad line AGN BHMF to help understand how the local quiescent

BHMF was built up also has important implications for methods that attempt to

map black hole growth at z > 0 based on the argument of Soltan (1982). These

methods assume that the local BHMF was built up by accretion during quasar
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phases. Under this assumption, black hole growth is mapped by stepping back-

wards from the local BHMF, using the quasar luminosity function as a constraint

(e.g., Yu & Tremaine, 2002; Marconi et al., 2004); however if this assumption is

shown to be only partially true, than this will imply that mapping black hole

growth is more complicated, and some modifications must be made to this tech-

nique. Furthermore, is calls into question the accuracy of estimated quasar accre-

tion efficiencies derived from these methods.

An additional avenue for further research is to apply the methods of Chapter 8

to modeling the X-ray lightcurves of quasars. X-ray variability studies have been

dominated by spectral analysis, where parameteric forms are often fit to the em-

pirical power spectra obtained from a variety of missions that sample X-ray light

curves at various time scales (e.g., Markowitz et al., 2003; Markowitz & Edelson,

2004; McHardy et al., 2004; Uttley et al., 2002). These studies have found that the

X-ray power spectra can be modeled as a broken power-law, where the power

spectrum is P (f) ∝ 1/f 2 on time scales shorter than some break frequency, and

P (f) ∝ 1/f on time scales longer than the break frequency. Most interestingly,

the break frequency is inversely proportional to MBH .

The existence of long time scale variations has been a problem for interpreting

AGN X-ray variations. In particular, it is unclear how long time scale variations,

presumably caused by processes in the accretin disk outside of the X-ray emit-

ting region, can survive in the X-ray lightcurve. As a result, X-ray variability has

most often been interpreted in terms of models of inwardly-propagating accre-

tion rate fluctuations (e.g., Lyubarskii, 1997; King et al., 2004; Mayer & Pringle,

2006). Within the context of these models, perturbations in the accretion rate oc-

cur in the outer edges of the accretion disk and then propagate inward. Upon

reaching the X-ray emitting region, they modulate the X-ray flux, creating a 1/f
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power spectrum. The break in the X-ray power spectrum is interpreted as cor-

responding to a size of the X-ray emitting regin, where variations get ‘smoothed

out’ on time scales shorter than the characteristic time scale of the flux from the

X-ray emitting region. The anti-correlation of the break frequency with MBH has

been interpreted as evidence that the size of the X-ray emitting region is corre-

lated with MBH , with the X-ray emitting region becoming larger with increasing

MBH .

Similar to the case of optical variability studies, spectral analysis has only

been applied to X-ray lightcurves of a handful of low redshift Seyfert 1 galaxies.

This is largely because of the difficulty in obtaining enough X-ray photons to

create a binned lightcurve with both adequate time sampling and Gaussian error

bars. However, the methods of Chapter 8, where the quasar lightcurve is directly

modeled as a stochastic process, can be applied to Poisson distributed data (i.e.,

photon counts) as well (e.g., Browkwell & Davis, 2002). This therefore opens up

the possibility of analyzing X-ray lightcurves for a large sample of quasars over a

broad range in luminosity, redshift, and black hole mass. Furthermore, modeling

the lightcurves directly as a stochastic process has the advantage that the analysis

is not biased by finite time sampling effects, and that quantities of interest, such

as characteristic time scales, are estimated directly from the observed lightcurve,

as opposed to indirectly from the empirical power spectrum. Analysis of X-ray

lightcurves for a large sample of quasars will shed light on the physical source

of the X-ray fluctuations, and will enable further constraints on the disk/corona

structure.
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APPENDIX A

MAXIMUM-LIKELIHOOD VS BAYESIAN INFERENCE

In this section we compare the maximum likelihood approach with the Bayesian

approach. We do this for readers who are unfamiliar with some of the more

technical aspects of the two approaches, with the hope that the discussion in this

section will facilitate interpretation of our results in the main body of the paper.

In maximum-likelihood analysis, one is interested in finding the estimate that

maximizes the likelihood function of the data. For a given statistical model, pa-

rameterized by θ, the likelihood function, p(x|θ), is the probability of observ-

ing the data, denoted by x, as a function of the parameters θ. The maximum-

likelihood estimate, denoted by θ̂, is the value of θ that maximizes p(x|θ). Under

certain regularity conditions, θ̂ enjoys a number of useful properties. In particu-

lar, as the sample size becomes infinite, θ̂ becomes an unbiased estimate of θ. An

unbiased estimator is an estimator with expectation equal to the true value, i.e.,

E(θ̂) = θ0, where θ0 is the true value of θ. Therefore, on average, an unbiased

estimator will give the true value of the parameter to be estimated.

Because the maximum likelihood estimate is a function of the data, θ̂ has a

sampling distribution. The sampling distribution of θ̂ is the distribution of θ̂ un-

der repeated sampling from the probability distribution of the data. Under cer-

tain regularity conditions, the sampling distribution of θ̂ is asymptotically nor-

mal with covariance matrix equal to the average value of the inverse of the Fisher

information matrix, I(θ), evaluated at θ0. The Fisher information matrix is the ex-

pected value of the matrix of second derivatives of the log-likelihood, multiplied

by −1. Formally, this result states that as n→ ∞, then

θ̂ ∼ Np(θ0, I
−1(θ0)), (A.1)
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I(θ) = −E
(

∂2

∂θ2
ln p(x|θ)

)

, (A.2)

where p is the number of parameters in the model, and the expectation in Equa-

tion (A.2) is taken with respect to the sampling distribution of x, p(x|θ0). Because

we do not know θ0, it is common to estimate I−1(θ0) by I−1(θ̂). In addition, it is

common to estimate I(θ) as the matrix of second derivatives of the log-likelihood

of one’s data, since the sample average is a consistent estimate for the expectation

value. Qualitatively, Equation(A.1) states that as the sample size becomes large, θ̂

approximately follows a normal distribution with mean θ0 and covariance matrix

I−1(θ̂). This fact may be used to construct confidence intervals for θ.

While the asymptotic results are useful, it is not always clear how large of a

sample is needed until Equation (A.1) is approximately true. The maximum like-

lihood estimate can be slow to converge for models with many parameters, or if

most of the data is missing. Within the context of luminosity function estimation,

the maximum-likelihood estimate will be slower to converge for surveys with

shallower flux limits. In addition, Equation (A.1) does not hold if the regularity

conditions are not met. In general, this is not a concern, but it is worth noting

that the asymptotics do not hold if the true value of θ lies on the boundary of the

parameter space. For example, in the case of a Schechter luminosity function, if

the true value of the shape parameter, α (see [4.14]), is α0 = −1, then Equation

(A.1) does not hold, since α > −1. If α0 ≈ −1, then Equation (A.1) is still valid,

but it will take a large sample before the asymptotics are valid, as α0 lies near the

boundary of the parameter space.

In Bayesian analysis, one attempts to estimate the probability distribution of

the model parameters, θ, given the observed data x. The probability distribution
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of θ given x is related to the likelihood function as

p(θ|x) ∝ p(x|θ)p(θ). (A.3)

The term p(x|θ) is the likelihood function of the data, and the term p(θ) is the prior

probability distribution of θ; the result, p(θ|x) is called the posterior distribution.

The prior distribution, p(θ), should convey information known prior to the anal-

ysis. In general, the prior distribution should be constructed to ensure that the

posterior distribution integrates to one, but to not have a significant effect on the

posterior. In particular, the posterior distribution should not be sensitive to the

choice of prior distribution, unless the prior distribution is constructed with the

purpose of placing constraints on the posterior distribution that are not conveyed

by the data. The contribution of the prior to p(θ|x) becomes negligible as the sam-

ple size becomes large.

From a practical standpoint, the primary difference between the maximum

likelihood approach and the Bayesian approach is that the maximum likelihood

approach is concerned with calculating a point estimate of θ, while the Bayesian

approach is concerned with mapping out the distribution of θ. The maximum

likelihood approach uses an estimate of the sampling distribution of θ̂ to place

constraints on the true value of θ. In contrast, the Bayesian approach directly

calculates the probability distribution of θ, given the observed data, to place con-

straints on the true value of θ. It is illustrative to consider the case when the prior

is taken to be uniform over θ; assuming the posterior integrates to one, the pos-

terior is then proportional to the likelihood function, p(θ|x) ∝ p(x|θ). In this case,

the goal of maximum likelihood is to calculate an estimate of θ, where the esti-

mate is the most probable value of θ, given the observed data. Then, confidence

intervals on θ are derived from the maximum likelihood estimate, θ̂, usually by

assuming Equation (A.1). In contrast, the Bayesian approach is not concerned
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with optimizing the likelihood function, but rather is concerned with mapping

out the likelihood function. Under the Bayesian approach with a uniform prior,

confidence intervals on θ are derived directly from likelihood function, and an

estimate of θ can be defined as, for example, the value of θ averaged over the like-

lihood function. So, the maximum likelihood attempts to obtain the ‘most likely’

value of θ, while the Bayesian approach attempts to directly obtain the proba-

bility distribution of θ, given the observed data. Because the Bayesian approach

directly estimates the probability distribution of θ, and because it does not rely

on any asymptotic results, we consider the Bayesian approach to be preferable

for most astronomical applications.
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APPENDIX B

DERIVATION OF THE MARGINAL POSTERIOR DISTRIBUTION FOR

TRUNCATED DATA

Here, we give a derivation of the posterior probability distribution of θ, given by

Equation (4.12). If we assume a uniform prior on logN , then this is equivalent to

assuming the prior p(θ,N) ∝ N−1p(θ). In this case, the posterior distribution is

given by

p(θ,N |Lobs, zobs) ∝ N−1p(θ)CN
n [p(I = 0|θ)]N−n

∏

i∈Aobs

p(Li, zi|θ). (B.1)

The marginal posterior distribution of θ is obtained by summing the joint poste-

rior over all possible values of N . For the choice of prior p(θ, logN) ∝ p(θ), the

marginal posterior of θ is

p(θ|Lobs, zobs) ∝ p(θ)





∏

i∈Aobs

p(Li, zi|θ)




∞
∑

N=n

N−1CN
n [p(I = 0|θ)]N−n (B.2)

∝ p(θ) [p(I = 1|θ)]−n





∏

i∈Aobs

p(Li, zi|θ)




×
∞
∑

N=n

CN−1
n−1 [p(I = 0|θ)]N−n [p(I = 1|θ)]n , (B.3)

where we arrived at the second Equation by multiplying and dividing the first

Equation by p(I = 1|θ)n and noting that CN
n = CN−1

n−1 (N/n). The term within

the sum is the mathematical expression for a negative binomial distribution as a

function of N (see Eq.[C.1]). Because probability distributions must be equal to

unity when summed over all possible values, the sum is just equal to one. We

therefore arrive at Equation (4.12) by replacing the summation in Equation (B.3)

with the value of one.
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APPENDIX C

SOME PROBABILITY DISTRIBUTIONS USED IN THIS WORK

In this chapter of the appendix we briefly describe some probability distribution

that we employ, but may be unfamiliar to some astronomers.

C.1 Negative Binomial

The negative binomial distribution is closely related to the binomial distribution.

The binomial distribution gives the probability of observing n ‘successes’, given

that there have been N trials and that the probability of success is p. In contrast,

the negative binomial distribution gives the probability of needing N trials be-

fore observing n successes, given that the probability of success is p. Within the

context of this work, the binomial distribution gives the probability of detecting

n sources, given that there are N total sources and that the detection probability

is p. The negative binomial distribution gives the probability that the total num-

ber of sources is N , given that we have detected n sources and that the detection

probability is p. The negative binomial distribution is given by

p(N |n, p) = CN−1
n−1 p

n(1 − p)N−n, N ≥ n. (C.1)

A random draw from the negative binomial distribution with parameters n

and p may be simulated by first drawing n random values uniformly distributed

on [0, 1], u1, . . . , un ∼ Uniform(0, 1). Then, calculate the quantity

m =
n
∑

i=1

⌊

log ui

log(1 − p)

⌋

, (C.2)

where b·c is the floor function, i.e., bxc denotes the greatest integer less than or

equal to x. The quantity N = n + m will then follow a negative binomial distri-

bution with parameters n and p.
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C.2 Dirichlet

The Dirichlet distribution is a multivariate generalization of the Beta distribution,

and it is commonly used when modelling group proportions. Dirichlet random

variables are constrained to be positive and sum to one. The Dirichlet distribution

with argument θ1, . . . , θk and parameters α1, . . . , αk is given by

p(θ1, . . . , θk|α1, . . . , αk) =
Γ(α1 + . . .+ αk)

Γα1 · · ·Γαk

k
∏

i=1

θαi−1
i , θ1, . . . , θk ≥ 0, α1, . . . , αk > 0,

k
∑

i=1

θi = 1.

(C.3)

To draw a random value θ1, . . . , θk from a Dirichlet distribution with parameters

α1, . . . , αk, first draw x1, . . . , xk independently from Gamma distributions with

shape parameters α1, . . . , αk and common scale parameter equal to one. Then, set

θj = xj/
∑k

i=1 xi. The set of θ will then follow a Dirichlet distribution.

C.3 Multivariate Student-t and Cauchy Distribution

The Student-t distribution is often used as a robust alternative to the normal

distribution because it is more heavily tailed than the normal distribution, and

therefore reduces the effect of outliers on statistical analysis. A t distribution

with ν = 1 degree of freedom is referred to as a Cauchy distribution, and it is

functionally equivalent to a Lorentzian function. A p-dimensional multivariate t

distribution with p-dimensional argument x, p-dimensional mean vector µ, p× p

scale matrix Σ, and degrees of freedom ν is given by

p(x|µ,Σ, ν) =
Γ((ν + p)/2)

Γ(ν/2)νp/2πp/2
|Σ|−1/2

[

1 +
1

ν
(x − µ)T Σ−1 (x − µ)

]−(ν+p)/2

. (C.4)

The 1-dimensional t distribution is obtained by replacing matrix and vector op-

erations in Equation (C.4) with scalar operations.

Although we do not simulate from a t distribution in this work, for complete-

ness we include how to do so. To simulate a random vector t from a multivariate
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t distribution with mean vector µ, scale matrix Σ, and degrees of freedom ν, first

draw z from a zero mean multivariate normal distribution with covariance ma-

trix Σ. Then, draw x from a chi-square distribution with ν degrees of freedom,

and compute the quantity t = µ + z
√

ν/x. The quantity t is then distributed

according to the multivariate t distribution.

C.4 Wishart and Inverse Wishart

The Wishart distribution describes the distribution of the p × p sample covari-

ance matrix, given the p × p population covariance matrix, for data drawn from

a multivariate normal distribution. Conversely, the inverse Wishart distribution

describes the distribution of the population covariance matrix, given the sample

covariance matrix, when the data are drawn from a multivariate normal distri-

bution. The Wishart distribution can be thought of as a multivariate extension

of the χ2 distribution. A Wishart distribution with p × p argument S, p × p scale

matrix Σ, and degrees of freedom ν is given by

p(S|Σ, ν) =

[

2νp/2πp(p−1)/4
p
∏

i=1

Γ
(

ν + 1 − i

2

)

]−1

|Σ|−ν/2|S|(ν−p−1)/2 exp
{

−1

2
tr(Σ−1S)

}

,

(C.5)

where the matrices S and Σ are constrained to be positive definite. An inverse

Wishart distribution with p× p argument Σ, p× p scale matrix S, and degrees of

freedom ν is

p(Σ|S, ν) =

[

2νp/2πp(p−1)/4
p
∏

i=1

Γ
(

ν + 1 − i

2

)

]−1

|S|ν/2|Σ|−(ν+p+1)/2 exp
{

−1

2
tr(Σ−1S)

}

,

(C.6)

where the matrices S and Σ are constrained to be positive definite.

To draw a p× p random matrix from a Wishart distribution with scale matrix

Σ and ν degrees of freedom, first draw x1, . . . ,xν from a zero mean multivariate

normal distribution with p× p covariance matrix Σ. Then, calculate the sum S =
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∑ν
i=1 xix

T
i . The quantity S is then a random draw from a Wishart distribution.

Note that this technique only works when ν ≥ p. A random draw from the

inverse Wishart distribution with scale matrix S and degrees of freedom ν may

be obtained by first obtaining a random draw W from a Wishart distribution

with scale matrix S−1 and degrees of freedom ν. The quantity Σ = W−1 will then

follow an inverse Wishart distribution.
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APPENDIX D

THE KULLBACK-LEIBLER INFORMATION

The Kullback-Leibler Information (KLI, Kullback & Leibler, 1951) is a common

method for comparing models and their representation of data. The KLI may

be thought of as representing the information lost when a parametric model is

used to approximate the true distribution that gave rise to the (Anderson et al.,

2000). This approach is appealing because it attempts to find the model that is

‘closest’ to the true distribution. This approach differs from the classical method

of statistical hypothesis testing, in that the KLI looks for the model that best de-

scribes the data, without assuming that the true model is among the set of models

considered. Furtermore, the KLI allows for the comparison of both nested and

nonnested models. This is important, because the parametric models considered

in Equations (6.3)–(6.7) are idealizations that are unlikely to be completely true,

and do not form a set of nested parametric forms. However, among these ideal-

izations, we can attempt to find the model that best describes the observed data,

while fully admitting that such a model is unlikely to be true exactly. In con-

trast, the classical approach assumes that some null hypothesis is correct, and

then tests whether the model parameters are compatible with this null hypothe-

sis at some set significance level. The significance level is usually set such that, if

the null hypothesis is true, then one would incorrectly reject it with low probabil-

ity. In other words, the classical approach assumes that a ‘null’ model is correct,

and then looks for overwhelming evidence to the contrary. However, a compar-

ison of models based on the KLI does not make any a priori assumptions about

which model is correct, but rather assesses which (flawed) model best describes

the observed data; i.e., is ‘closest’ to the true probability density that generated
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the data. In this sense, the KLI evaluates the evidence for the models considered,

whereas the classical approach only evaluates the evidence against some assumed

null model. In addition, comparing models based on the KLI has the advantage

that all models may be compared simultaneously, whereas the classical approach

can only compare two models at a time.

Problems with the classical approach to statistical hypothesis testing and model

selection have been known for some time, and many authors have proposed us-

ing the KLI as an alternative (e.g., Akaike, 1974). There is a large literature on

these issues; see Anderson et al. (2000) and references therein for a more thorough

discussion of the problems with classical hypothesis testing and the advantages

of the information-theoretic approach.

The KLI measures the discrepancy between the model distribution for the

data, p(y|θ), parameterized by θ, and the true distribution of the data f(y); note

that p(y|θ) is the likelihood function for y. The KLI may be thought of as the

relative entropy of a statistical model, and is given by

H(θ) =
∫

log

(

f(y)

p(y|θ)

)

f(y)dy. (D.1)

The difference in KLI between two statistical models, pj(y|θj) and pk(y|θk), is then

H(θj) −H(θk) =
∫

[log pk(y|θk) − log pj(y|θj)]f(y)dy. (D.2)

As is apparent from Equation (D.2), the difference in KLI between two statistical

models is the expectation of the difference in their log-likelihoods, multiplied

by -1. The Kullback-Leibler information describes the information lost when a

statistical model, p(y|θ), is used to approximate the true distribution, f(y).

For this work y = αox, and the true sampling distribution of αox is denoted

as f(αox|lUV , z). The distribution is made conditional on (lUV , z) because we are

interested in how αox is distributed at a given lUV and z.
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In order to choose the model that minimizes the KLI, it is necessary to find the

values of the model parameters, θ, that minimize Equation (D.1). Unfortunately,

this requires knowledge of the unknown sampling density, f(αox|lUV , z). How-

ever, the maximum likelihood estimate of θ, θ̂, provides a good estimate of the

θ that minimizes the KLI, and in fact converges to it as the sample size becomes

large (e.g., Shibata, 1997). Furthermore, for non-censored Gaussian data, θ̂ corre-

sponds to the θ that minimizes the squared error between the data and the model

predictions, and thus finding the model that minimizes the KLI is asymptotically

equivalent to finding the model that minimizes the expected squared error. In this

work the amount of censoring is small, and the censored data only contribute to

the log-likelihood at the ≈ 5% level. Because the residuals from the αox regres-

sions are approximately Gaussian, and because the amount of censoring is small,

we expect our statistical models to behave similarly to the usual uncensored case

for Gaussian data. Therefore, finding the parameterization that minimizes the

KLI has the straight-forward interpretation of finding the parameterization that

approximately minimizes the expected squared error.

Because the difference in KLI between two models is the expected difference

in their log-likelihoods, one can estimate H(θ̂j) − H(θ̂k) for a single data point

using the sample mean of the difference in log-likelihoods, evaluated at the max-

imum likelihood estimates of θ. However, this produces a biased estimate of

H(θj) − H(θk), as we use the same data to fit the model as to estimate its KLI.

Akaike (1974) showed that this bias is on the order of the number of free pa-

rameters in the statistical model. This led him to define the Akaike Information

Criterion (AIC):

AIC = −2 log p(y|θ̂) + 2d. (D.3)

Here, log p(y|θ̂) is the log-likelihood of the data evaluated at the maximum-likelihood
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estimate of θ, and d is the number of free parameters in the model. The differences

in AIC between models may then be used as estimates of the differences in KLI

between the models. The model with the best estimated KLI is the model that

minimizes the AIC.
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APPENDIX E

KENDALL’S PARTIAL τ

To further assess the behavior of Kendall’s partial τ we performed additional

simulations, varying the degree of correlation between LUV and z. We drew 165

values of lUV and log z from a multivariate normal density for 1000 simulations,

with correlations between lUV and log z of ρ = 0.0, 0.3, 0.6, and 0.9. The remainder

of the simulations were performed in an identical manner to those described in

§ 6.4.5 and § 6.4.6, with the exception that we did not include the effects of vari-

ability and measurement error. For each of these cases, we calculated the average

values of τxz,l and ταz,l under both the null and alternative hypotheses. From the

notation of § 6.4.6, τxz,l denotes the value of Kendall’s partial τ between LX and

z, controlling for LUV , and ταz,l denotes the value of Kendall’s partial τ between

αox and z, controlling for LUV .

In addition, we also calculate the power of the test when using either τxz,l and

ταz,l under both hypotheses; the power of a statistical test is the probability of

choosing for the alternative hypothesis. We have chosen a significance level of

0.05, meaning that we reject the null hypothesis, H0, when |τ − E(τ |H0)|/στ >

1.96, where στ is the standard deviation in τ . Here, the notation E(x|H) denotes

the conditional expectation value of x, given hypothesis H . Using this signifi-

cance level, we would expect to incorrectly reject the null hypothesis ≈ 5% of the

time. To illustrate the effect of incorrectly assuming that E(τ |H0) = 0, we calcu-

late the power assuming E(τ |H0) = 0. Therefore, the null hypothesis is rejected

when the observed value of τ falls within the region, |τ | > 1.96στ .

The results of our simulations are shown in Table E.1. As can be seen, incor-

rectly assuming E(τ |H0) = 0 has a significant effect on the conclusions drawn
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Table E.1. Behavior of Kendall’s Generalized Partial τ From Simulation

H0 : LX ∝ L0.65
UV H1 : LX ∝ L0.4

UV e−t(z)/5.5

ρa τlz
b τxz,l

c pow(τxz,l|H0)d ταz,l
e pow(ταz,l|H0)f τxz,l

c pow(τxz,l|H1)d ταz,l
e pow(ταz,l|H1)f

0.9 0.715 0.153 0.988 0.105 0.845 0.290 1.000 0.011 0.061

0.6 0.412 0.101 0.696 0.074 0.390 0.338 1.000 -0.126 0.935

0.3 0.197 0.048 0.196 0.038 0.126 0.329 1.000 -0.204 1.000

0.0 0.000 0.000 0.050 0.000 0.050 0.299 1.000 -0.258 1.000

aThe correlation between lUV and log z used for the simulation.

bThe average value of Kendall’s τ between LUV and z.
cThe average value of Kendall’s generalized partial τ between LX and z, controlling for LUV . The left value of τxz,l

corresponds to when the null hypothesis, H0, is true, and the right value corresponds to when the alternative hypothesis, H1,

is true.
dThe power of the test when τxz,l is used and the null hypothesis H0 is true (left) or the alternative hypothesis H1 is true

(right).
eSame as τxz,l, but when using αox instead of LX .

fSame as pow(τxz,l|·), but when using τaz,l instead of τxz,l.

from Kendall’s generalized partial τ . This is particularly notable when the corre-

lation between the two ‘independent’ variables is high, in this case between LUV

and z. For high correlations between LUV and z, one incorrectly rejects the null

hypothesis with probability p ≈ 0.988 when using τxz,l, and p ≈ 0.845 when us-

ing ταz,l. Furthermore, when LUV and z are highly correlated and one is using

ταz,l, one rarely (p ≈ 0.061) rejects the null hypothesis if the alternative hypothe-

sis is true. However, one does reject the null hypothesis when the alternative is

true with near certainty when using τxz,l. These problems are ameliorated when

the degree of correlation between the independent variables is reduced; however,

even when ρ = 0.3 one still incorrectly rejects the null hypothesis with probability

a factor of ∼ 2–4 times higher than the expected 5%.
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We also performed our simulations experimenting with different sample sizes.

We did not notice any dependence of E(τ |H0) on the sample size. This results in

the seemingly paradoxical behavior that, as the sample size increases, the null

hypothesis is rejected with increasing probability even if it is true, if one assumes

E(τ |H0) = 0. While the expected value of τ under the null hypothesis does not

appear to depend on sample size, the variance in τ , σ2
τ , does, decreasing as the

sample size increases. Thus, as the sample size increases, στ decreases, and the

observed values of τ become more concentrated around E(τ |H0). As a result, if

one incorrectly assumes E(τ |H0) = 0, it becomes more likely that τ falls inside of

the region where |τ | > 1.96στ , and thus one is more likely to incorrectly reject the

null hypothesis as the sample size increases.

Similar results using Monte Carlo Simulations were found by Steffen et al.

(2006). S06 concluded that their results implied that spurious but false correla-

tions between LX and z result when there is a high degree of correlation between

LUV and z. However, the results do not imply that spurious but false correlation

arise when there is a high degree of correlation between LUV and z, but rather the

simulations show that the expected value of τ under the null hypothesis varies as

the degree of correlation between LUV and z varies. This may then result in ap-

parently significant correlations because one is incorrectly assumingE(τ |H0) = 0.

This incorrect assumption can also result in apparently insignificant correlations,

even if such correlations are significant. Our simulations clearly show this, since

they were constructed to ensure that under the null hypothesis αox is independent

of z, given LUV ,, independent of the distribution of LUV and z.

Akritas & Siebert (1996) also performed simulations to assess the behavior of

Kendall’s partial τ . They investigated the power of the test and found that the

test becomes more powerful as the departure from the null hypothesis increases.
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They also found that when the null hypothesis is true, and when the two inde-

pendent variable are statistically independent, the probability of rejecting H0 is

equal to the chosen significance level. Similar to us, they also use a significance

level of 0.05 (1.96σ). However, when investigating the probability of incorrectly

rejecting the null hypothesis, they only used simulations where the two indepen-

dent variables (LUV and z in this work) are statistically independent. We have

confirmed this result here, but have also expanded upon it, showing that the null

hypothesis can be incorrectly rejected with high probability when the two inde-

pendent variables have a moderate to high correlation. Furthermore, Akritas &

Siebert (1996) concluded that the Kendall’s partial τ test can become more pow-

erful when the alternative hypothesis is far from the null hypothesis, rejecting

the null hypothesis with high probability. However, we have shown here that

this is not always true, and that the power of the test depends on the degree of

correlation between the two independent variables. Indeed, when LUV and z are

highly correlated, and when one is investigating the partial correlation between

αox and z, one almost always incorrectly claims that the data are consistent with

a null hypothesis of no evolution in αox.

It should be noted that these results only apply to Kendall’s partial τ , and not

to the usual Kendall’s τ . Both Kendall’s τ and the partial linear correlation have

values of zero under the null hypothesis of statistical independence between the

variables of interest (Nelson & Yang, 1988).

Our simulations show that the expected value of Kendall’s partial τ under the

null hypothesis depends on the distributional properties of the sample, and that

this can significantly effect the power of the test. Unfortunately, we know of no

way in which to analytically calculate the expected value of τ under the null hy-

pothesis, and it must likely be calculated using simulation. However, one must
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likely employ parametric methods in order to simulate data, and this undermines

the nonparametric nature of Kendall’s partial τ . We also note that these results

are not meant to be a complete dismissal of the use of Kendall’s generalized par-

tial τ , but rather to point out the problems that can arise when using Kendall’s

partial τ . If one does not know E(τ |H0), then one is not able to calibrate the par-

tial τ statistic against a physically meaningful null hypothesis, therefore making

statistical hypothesis testing based on it suspect.
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P. M., & Santos-Lleó, M. 2005, A&A, 432, 15
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