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ABSTRACT 

We examine the nature of the boundary layer in a-viscous accretion disks. 

The boundary layer is the interface between the disk and the accreting central star 

or black hole. We develop two models for the boundary layer by expanding and 

generalizing the standard disk equations, and then solving our new set of equations 

numerically using a relaxation method. 

First, we use a model which includes a polytropic equation of state to examine 

the disk dynamics. This allows us to ignore the energetics and radiative transfer and 

simplifies the problem considerably. We find two types of boundary layer solutions 

with this model, depending on the rotation rate of the accreting star. One of these 

is a new type of solutions in which the angular momentum accretion rate can be 

small or negative. These solutions allow accretion to continue even after the star 

spins up to breakup speed. 

We apply a causally-limited viscosity prescription to our solutions, and find 

that it prevents the radial velocities from becoming supersonic in the boundary 

layer, thus preserving causality. We apply the same prescription to a model for disks 

around black holes, and find that it allows us to calculate solutions for reasonable 

values of a, where none existed before. 

We develop a more complete model, which includes the energetics and radia

tive transfer of the boundary layer, for comparison with observations. We apply 

this model to cataclysmic variables, and find that the nature of the boundary layer 

in these systems depends strongly on the optical depth, which in turn depends 

largely on the mass accretion rate and the rotation rate of the accreting star. The 



12 

dependence of our results on the accretion rate agrees well with X-ray observations 

of these systems. We also apply the model to accretion disks in pre-main sequence 

stars, such as T Tauri and FU Orionis stars, and find that the temperatures and 

radial widths of the boundary layer in our solutions agree well with those inferred 

from observations. 
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3. INTRODUCTION 

3.1 Accretion Disks in Astrophysics 

3.1.1 The Role of Accretion Disks in Astrophysics 

Accretion disks are produced when a relatively dense, compact object gravi

tationally attracts lower-density viscous gas (see Frank, King, & Raine 1985). This 

gas has some angular momentum relative to the dense object, and thus begins to 

revolve around it in an orbit. As the orbiting gas accumulates, viscosity spreads it 

into a disk and causes it to lose angular momentum, which is transported outward 

through the disk. As a result, the gas spirals inward, or accretes, onto the central 

dense object. Some of the gravitational potential energy lost by the infalling gas 

is dissipated by viscosity and subsequently radiated by the disk, often producing 

large luminosities. 

A wide variety of accreting systems have been observed in a variety of contexts 

in astrophysics. Usually, the dense central object which accretes matter is either 

a star or a stellar remnant, such as a white dwarf, neutron star, or black hole. 

The gas which accretes onto it often comes from a companion star; usually, this 

companion star overflows its Roche lobe and loses matter from its outer layers to 

the accreting star. Such a system is known as an accreting binary. In other cases, 

the accreting gas comes from the surrounding medium. One common example of 

this is the accreting pre-main sequence stars, which are generally thought to be 

accreting gas from the dense cloud from which they have recently formed. Another 
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example occurs in the active galactic nuclei, which have "central engines" which are 

thought to consist of a supermassive black hole which accretes nearby gas and even 

nearby stars, after disrupting them by tidal forces. 

Our own solar system is thought to have formed from an accretion disk similar 

to those seen in present-day pre-main sequence accretors. Accreting binaries have 

been observed throughout our galaxy and have contributed greatly to our under

standing of stellar evolution. Active galactic nuclei occur in some nearby galaxies, 

and extend throughout the observable universe; in fact, they are the most distant 

objects yet observed. Thus, accretion disks are fundamental to astrophysical pro

cesses occurring on a wide range of scales, including some of the most important 

topics of current astrophysical research. 

3.1.2 Past Theoretical Work on Accretion Disks 

Pringle (1981) and Shapiro & Teukolsky (1983) have reviewed the history 

of accretion disk theory. The earliest discussions of disks were motivated by the 

observation that the planets of the solar system lie in a plane, suggesting that they 

formed from a disk of matter. This "nebular hypothesis" was advanced by Laplace. 

The role of viscosity in the evolution of a disk of gas was studied by Peek (1942), 

von Wiezsacker (1943, 1948), and Lust (1952). These studies determined the basic 

dynamical behavior of such a disk: viscosity would cause the mass to flow inward 

toward the central object as angular momentum flowed outward. 

The motivation for using accretion disks in astronomy was the discovery and 

identification of several stellar X-ray sources in the 1960s. Shklovskii (1966) sug

gested that these X-rays might be produced by matter flowing from an ordinary 
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main-sequence star onto a neutron star. Prendergast & Burbidge (1968) showed 

that such matter would form a disk around the compact star. 

The modern theory of accretion disks appeared a few years later in work by 

Pringle & Rees (1972), Novikov & Thorne (1973), Lynden-Bell & Pringle (1974), 

and, most notably, Shakura & Sunyaev (1973). These papers developed the ba

sic accretion disk model, and by making several simplifying assumptions, arrived 

at analytic expressions for the radial variation of the basic disk properties such 

as temperature, thickness, and density. None of these papers managed to iden

tify the source of t.he viscosity responsible for accretion in the disk; it was sug

gested that poorly understood phenomena such as turbulence might be responsible. 

Nonetheless, Shakura & Sunyaev (1973) suggested a simple parametrization, the 

"a-prescription", for the viscosity coefficient, and showed that in fact the emission 

from the disk surface was largely independent of viscosity. The Shakura-Sunyaev 

model did not address the boundary layer, the interface between the accretion disk 

and the central accreting object. In fact, the analytic expressions derived for various 

disk quantities became unphysical if applied near the inner edge of the disk. This 

was a direct result of some of the assumptions made by Shakura and Sunyaev: III 

particular, the assumption that the rotation of the disk was purely Keplerian. 

In the years since the development of the basic disk model, the theory of 

accretion disks has advanced in various directions. Much effort has gone into the 

development of disk instability models to explain the outbursts observed in various 

accreting systems (Smak 1984, Lin & Shields 1986, Huang & Wheeler 1989, Clarke, 

Lin, & Pringle 1990). Other studies have examined how the spectra of accretion 

disks should differ from blackbody or stellar spectra (Wade 1984, 1988, Shaviv & 
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Wehrse 1989, Hubeny 1990). In the last few years, there has been renewed effort to 

explain the source of the viscosity in accretion disks (Balbus & Hawley 1991, 1992, 

Hawley & Balbus 1991, 1992, Ryu & Goodman 1992, Goodman 1993). Finally, a 

few authors have explored the nature of the boundary layer region; this work will 

be discussed in section 3.2. 

3.1.3 Observations of Accretion Disks 

Since the initial identification of stellar X-ray sources as accreting binaries 

by Shklovskii (1966) and Prendergast & Burbidge (1968), observations of accretion 

disks have advanced enormously. Much of this progress has been made through 

X-ray observations by HEAO-1, Einstein, EXOSAT, and ROSAT. Unlike a star, 

the surface of an accretion disk has a wide range of temperatures, so that it radi

ates at a wide range of wavelengths. Thus, the development of infrared detectors, 

and ultraviolet observations using IUE, have greatly enhanced our ability to study 

accreting systems. This has been particularly important in studying accreting sys

tems such as the pre-main sequence accretors, where the accreting star is not a 

compact stellar remnant, These increasing observational capabilities have led to the 

discovery of hundreds of new accreting systems, and allowed detailed study of their 

basic properties and behavior over time. 

The brightest X-ray sources in the sky are the X-ray binaries, accreting binary 

systems in which the accreting object is a neutron star or a black hole (see Watson & 

King 1991 for a review). Several classes of these systems have been recognized. Some 

systems have low-mass companions which are losing mass by Roche lobe overflow; 

others have high-mass companions which lose mass through a stellar wind. Some of 
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the neutron stars in these systems have strong magnetic fields on the order of 1012 

G; these include most of the neutron stars with high-mass companions and a few of 

those with low-mass companions. The presence of a strong magnetic field greatly 

alters the nature of the accretion onto these stars (Ghosh, Lamb, & Pethick 1977, 

Ghosh & Lamb 1979a,b). In general, the star's magnetosphere disrupts the inner 

portions of the accretion disk, and channels the accreting matter onto the magnetic 

poles. This produces bright polar caps which cause the system to appear to pulsate 

as the neutron star rotates. The variation of the pulsation period can then be 

used to examine the spin evolution of the neutron star. Other X-ray binaries show 

distinctive spectral features or dynamical evidence which suggest that they contain 

accreting black hole accretors (McClintock 1991). 

Another important class of accreting binaries is the cataclysmic variables 

(CVs) (see Horne 1991 for a review of CV observations). These systems consist 

of an accreting white dwarf and a low-mass companion which is losing mass via 

Roche lobe overflow. The mass accretion rates are generally inferred to range from 

10-11 M8 yr- 1 to 10-7 M8 yr-1 (Patterson 1984). Many CVs emit X-rays, usually 

in far smaller quantities than the X-ray binaries (Cordova and Mason 1983). Per

haps the most notable feature of the CV s is their wide variety of eruptive events 

and other time-variable behavior. These include classical and dwarf novae, each of 

which can be divided into several subtypes (Wade and Ward 1985). Some CVs also 

have white dwarfs with strong magnetic fields, which may disrupt part or all of the 

accretion disk. As with the magnetized neutron stars in X-ray binaries, the rotation 

rates of such systems can be observed. This is not true of the non-magnetized white 
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dwarfs in most CVs, which makes it difficult to study the spin evolution of these 

systems. 

Several other classes of accreting binaries also exist, some of which contain 

a main-sequence star which is accreting mass. These include some symbiotic stars 

(Kenyon 1986), in which a mass-losing giant star provides a very high accretion 

rate of around 10-4 M8 yr-1 , and Algol-type binaries, which consist of two main

sequence stars. 

Another major class of accreting systems is the pre-main sequence accretors, 

which are stars in the process of formation. Lynden-Bell & Pringle (1974) originally 

made the suggestion that the FU Orionis stars were accreting from a disk. This 

suggestion was confirmed by Hartmann & Kenyon (1985); later, Adams, Lada, & 

Shu (1987) and Kenyon & Hartmann (1987) also argued that T Tauri stars were disk 

accretors. T Tauri stars are low-mass stars with moderate accretion rates around 

10-7 M8 yr-1 (Basri & Bertout 1991). FU Orionis stars appear to be similar to 

T Tauri stars, but have higher accretion rates rv 10-4 M8 yr-1 , and seem to be 

undergoing outbursts which may be similar to the dwarf nova outbursts observed in 

many CV s (Hartmann et al. 1991). Herbig Ae/Be stars are thought to be a higher

mass analogue to the T Tauri stars, with accretion rates of around 10-5 M8 yr-1 

(Hillenbrand et al. 1992). 

The third major class of accreting systems are active galactic nuclei. These 

systems include the most luminous objects known in the universe. Nonetheless, 

many of them also show rapid variability, implying that the source of the luminosity 

is quite compact. These facts taken together have supported the view, originally 

proposed by Lynden-Bell (1969), that the luminosity of these systems is produced 
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by accretion. The accreting object is generally assumed to be a supermassive black 

hole, with a mass on the order of 108 M0 (Rees 1984). The accreting gas is supplied 

by the surrounding interstellar medium, or by stars which come close to the black 

hole and are ripped apart by its tidal forces (Rees 1988). The nature of the accretion 

process in these objects is not well understood. In this thesis, we limit our work to 

the first two classes of accreting objects: accreting binaries and accreting pre-main 

sequence stars. 

3.2 Boundary Layers in Accretion Disks 

3.2.1 The Importance of Boundary Layers to Studies of Accretion Disks 

The boundary layer is the interface between the accretion disk and the accret

ing central object. In general, the inner regions of the disk are rotating quite rapidly, 

but the central object may be rotating slowly or not at all. Thus, the rotational 

velocity of the accreting material must decrease rapidly as it moves through the 

boundary layer. The rapid rotation of the inner disk material supports it against 

the gravity of the central object. As the rotational velocity decreases, that support 

is lost, and the material must be supported by a radial pressure gradient, as in a 

star. 

As the accreting material moves through the disk, it dissipates only half of 

the gravitational potential energy it loses as it falls toward the central object. The 

remainder of the energy is retained in the material in the form of rotational kinetic 

energy; as the rotational velocity decreases, much of this rotational kinetic energy 

is rapidly lost in the boundary layer region. This energy is dissipated by viscosity 



20 

and radiated away, as in the rest of the disk. Thus, the small boundary layer region 

may radiate just as much energy as the much larger disk. 

The boundary layer imparts both mass and angular momentum to the central 

object. Of the gravitational potential energy lost by the accreting material, the 

portion which is not radiated away by the disk and boundary layer goes into spinning 

up the star. As the central object spins up, the rotating material loses less kinetic 

energy, and the boundary layer luminosity decreases substantially. The spin rate of 

the star also has important evolutionary implications. Some authors have suggested 

that when the star spins up to breakup speed, it cannot accrete any more mass; 

rather, this mass is ejected by some mechanism (Lynden-Bell & Pringle 1974, Shu ct 

al. 1988). This would limit the mass that can be added by accretion, which would 

have profound consequences for star formation, where it is often suggested that 

solar-type stars gain much of their mass by accretion through a disk. Also, many 

accreting white dwarfs might be unable to reach the Chandrasekhar limit, which 

would have important consequences for theories of production of Type I supernovae 

and formation of neutron stars by accretion induced collapse. 

Accreting systems are generally distinguished by their high-energy radiation 

and rapid temporal variations. In many cases, the boundary layer may be responsi

ble for these characteristics. The large release of energy in a relatively small region 

suggests that the boundary layer will be hotter than the disk, and will produce 

more high-energy radiation. The rapid variations experienced by the accreting ma

terial within the boundary layer make it the most likely region for the occurrence of 

instabilities and time-variable phenomena. The boundary layer region will also be 
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important in determining the spin evolution of accreting objects. These considera

tions make it clear that the boundary layer is likely to be quite complex, but also 

quite important to our understanding of accretion disks and accreting systems. 

3.2.2 Past Theoretical Work on Boundary Layers 

Despite the clear importance of the boundary layer to studies of accretion 

disks, there have been relatively few efforts to understand it. The first examination 

of the boundary layer was made by Lynden-Bell & Pringle (1974), who derived 

some approximate relations for the size and temperature of the region. They also 

discussed the spin-up of the central star and the consequences of spinning it up to 

breakup. 

In the following years, X-ray observations of cataclysmic variables motivated 

several studies of boundary layers in these systems. Most of these studies were based 

on a local analysis, and attempted to find approximate values for the boundary 

layer temperature and size. After a few CVs were detected in soft X-rays, Pringle 

(1977) estimated that a CV with a 1 Mev white dwarf accreting 1.6 X 10-8 Mev yr-1 

should have a boundary layer temperature of about 5 X 105 K. He assumed that 

the boundary layer in such a system would be optically thick, and estimated that 

the radial size of the boundary layer would then be about equal to its height, since 

this would be the distance over which radiation would diffuse before reaching the 

disk surface. 

Later, CVs were also observed in hard X-rays. Pringle & Savonije (1979) 

suggested that these hard X-rays could be produced by a boundary layer which was 

optically thin, and contained one or more shocks which produced the required high 
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temperatures. They noted that the boundary layer would have to be optically thin 

for the hard X-rays to escape, and that this would require a low accretion rate. 

Also, they suggested that in order to produce sufficiently hard X-rays, the shocks in 

the boundary layer would need to be quite strong, i.e., not too oblique to the flow. 

Tylenda (1981) proposed an alternate model for the production of hard X-rays. 

In his scenario, the high temperatures are produced in an optically thin boundary 

layer due to inefficient cooling, which for the most part is only by free-free emission. 

Nonetheless, this analysis, like all the other boundary layer studies up to this point, 

was based only on local considerations, rather than self-consistent calculations of 

the boundary layer structure and energetics. 

The first attempt to determine the radial structure of the boundary layer 

was made by Regev (1983), who used the method of matched asymptotic expan

sions. In this approach, one identifies a small parameter in the boundary layer, 

e.g. E = H/R*, and writes down the equations to leading order in E. One then 

solves the simplified equations in the boundary layer region and matches the solu

tion asymptotically to the star and the disk with appropriate boundary conditions. 

The method has been applied to cataclysmic variables (Regev and Hougerat 1988, 

Regev and Shara 1989) and to T Tauri stars (Bertout and Regev 1992). Although 

the matched asymptotic expansion method is reasonable in principle, in practice it 

seems to run into problems. For instance, in some cases with perfectly well-posed 

boundary conditions, the method fails to find any solution. Also, some of the solu

tions published so far have unphysical features such as a large radiative flux flowing 

into the star, or have required the authors to invoke ad hoc mass loss in order to 

get rid of some of the boundary layer luminosity. In Chapter 10, we compare our 
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models of boundary layers to those recently published by Bertout & Regev (1992), 

and discuss some of the problems of the matched asymptotic method. 

Numerical work on boundary layers began to appear in the mid-1980s. Pa

paloizou & Stanley (1986) used a polytropic equation of state to construct a model 

of the boundary layer dynamics. In general, they found that the radial velocity 

increases rapidly in the boundary layer, so that the surface density of the accreting 

material becomes rather low. They also found evidence for boundary layer oscil

lations, which they argued might well be the cause of the quasi-periodic intensity 

oscillations observed in some accreting systems. They also adopted a viscosity pre

scription modified from the standard a-prescription of Shakura & Sunyaev (1973). 

In the standard a-prescription, the disk vertical pressure scale height is used as the 

limiting value of the turbulent length scale. Papaloizou & Stanley replaced this 

length scale with a prescription that essentially uses the minimum of the vertical 

and radial pressure scale heights. This serves to reduce the viscosity in the bound

ary layer region, where the radial pressure scale height is quite small. The purpose 

of this reduction in viscosity was to reduce the radial velocity of the accreting ma

terial, which in many cases exceeds the local sound speed in the boundary layer. 

As first noted by Pringle (1977), the radial velocity in the boundary layer should 

be subsonic so that the disk does not lose causal contact with the central object. 

Nonetheless, even with the reduced viscosity, Papaloizou & Stanley found that the 

radial velocity still became supersonic in some cases. 

Kley (1989,1991) developed a two-dimensional (in the R - z plane), time

dependent simulation of a boundary layer. He used a constant viscosity coefficient 

rather than the a-prescription, and treated ra, \n transport in the flux-limited 
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diffusion approximation. After integrating for a few dynamical times, these cal

culations produce near-steady-state models. The models tend to have supersonic 

radial infall because of the large viscosity coefficient used. This can presumably 

be corrected by modifying the viscosity prescription, but it is not clear if the cal

culations will then be able to maintain adequate radial resolution to resolve the 

subsonic boundary layer. So far, only optically thick boundary layers have been 

simulated. Optically thin models would be most interesting, but these tend to be 

quite complex and may be difficult to resolve in a multi-dimensional simulation. 

3.2.3 Observations of Boundary Layers 

Boundary layers have proven to be almost as difficult to observe as they are to 

model. One reason for this is the large number of emitting regions which contribute 

to the spectra of accreting objects; these can include the accreting star, the disk, 

the "bright spot" at the outer edge of the disk, the mass-losing companion star, 

winds from the stars or the disk, and the boundary layer itself. Another problem 

is that in many cataclysmic variables (CVs), most of the boundary layer emission 

is in the form of extreme ultraviolet (EUV) radiation. Observations in the EUV 

are extremely difficult because the opacity of neutral hydrogen is very high at these 

wavelengths, so that observations are generally only possible in the solar neighbor

hood. Despite these difficulties, emission believed to arise from the boundary layer 

region has been observed both in CVs and pre-main sequence accretors. 

Many CVs were detected in both soft and hard X-rays by the HEAO-l and 

Einstein satellites; these observations were summarized by Cordova and Mason 

(1983). As discussed in section 3.2.2, the origin of both the soft and hard X-ray 
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emission was interpreted to be the boundary layer region (Pringle 1977, Pringle & 

Savonije 1979, Tylenda 1981). Ferland et al. (1982) argued that soft X-ray fluxes in 

CV s were substantially lower than expected, so that far fewer CV s than expected 

had actually been detected in soft X-rays. Patterson & Raymond (1985a), using 

observations of a large number of CV s, showed that the ratio of X-ray to optical 

flux was strongly anti-correlated with the mass accretion rate, so that systems with 

low accretion rates had large X-ray fluxes. They argued, based on the proposal 

by Tylenda (1981), that this correlation was due to a transition between optically 

thin boundary layers, which exist in systems with low accretion rates and have 

substantial hard X-ray fluxes, and optically thick boundary layers, which are in high 

accretion rate systems. In these systems, the large optical depth of the boundary 

layer converts the hard X-rays into very soft X-rays and EUV radiation. Patterson 

& Raymond (1985b) also argued that the small numbers of CVs detected in soft 

X-rays were approximately as predicted by boundary layer theory, and that the 

apparent discrepancy noted by Ferland et al. (1982) was due to inappropriate choices 

of boundary layer parameters. The soft X-ray flux is particularly sensitive to the 

boundary layer temperature because only the high-energy end of the boundary layer 

spectrum, where the flux is falling off rapidly, contributes to the soft X-rays. 

Emission attributed to the boundary layer has also been observed from T 

Tauri stars. In these stars this emission takes the form of "veiling" in the optical 

and ultraviolet spectra, excess continuum emission which fills in the absorption 

lines from the central star (Hartigan et al. 1989, 1991). This excess emission is 

substantially bluer than the stellar photospheric emission, and the ratio of the 

excess flux to the stellar flux ranges from rv 0.1 to rv 10. The source of the emission 
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has been modeled as a very simple boundary layer consisting of a slab of gas with a 

single temperature and density. These models have yielded estimates for the size and 

temperature of the boundary layers in several T Tauri systems; the temperatures 

generally range from rv 7000 to 10,000 K, and the sizes from about 1% to 10% of 

the stellar radius (Bertout et al. 1988, Basri & Bertout 1989, Hartigan et al. 1991). 

Observations of FU Orionis stars have shown less evidence for boundary layer 

emission. Kenyon et al. (1989) observed three FU Orionis stars in the ultraviolet 

and found no significant veiling of the stellar absorption lines, indicating that the 

emission from the boundary layer at these wavelengths is far weaker than expected. 

Boundary layer emission has also been observed in some symbiotic stars (Ken

yon et al. 1991, Mikolajewska and Kenyon 1992), which are binary systems where 

the accreting star is a main-sequence star. Accretion rates are quite large in these 

systems, rv 10-5 - 10-4 M0 yr- 1 , and the boundary layer appears to be quite hot, 

sometimes exceeding 100,000 K. 

3.3 Organization and Summary 

3.3.1 Spin-up in Accreting White Dwarfs 

The work presented in this dissertation began with a consideration of the spin 

evolution of accreting white dwarfs (Narayan & Popham 1989), which is presented 

in Chapter 4. Since disk accretion imparts both mass and angular momentum to 

the white dwarf, it should spin up steadily as it accretes. Eventually, if it continues 

to accrete, it should reach breakup. This may not happen if the white dwarf has a 
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substantial magnetic field, since the interaction of the field lines with the surround

ing disk will alter the normal steady spin-up rate. This mechanism was described 

by Ghosh & Lamb (1979a,b) with application to accreting magnetic neutron stars. 

As the star spins up, the disk slows down the field lines and exerts a braking torque 

on the star, which cancels some of the angular momentum added by the accreting 

material. Eventually the star spins up to an equilibrium spin rate, for which the 

two torques balance each other, allowing the star to accrete mass without spinning 

up any further. 

In Chapter 4, we present the results of a calcubtion in which we followed the 

spin-up of accreting white dwarfs of various initial masses and magnetic fields for 

specified values of the mass accretion rate. We integrated the net torque forward in 

time to follow the changes in the mass and angular momentum of the white dwarf. 

Throughout the evolution, we kept track of the structure of the white dwarf by 

interpolating from calculations of the structure of rotating white dwarfs made by 

Hachisu (1986), assuming that the white dwarf rotates rigidly. Eventually, the white 

dwarfs in the calculations either reached the Chandrasekhar limit and collapsed, or 

reached breakup rotation speed. Both results had some interesting implications; 

the collapse of the white dwarf might produce a Type I supernova explosion, or, 

in the case of an oxygen-neon-magnesium white dwarf, it might produce a neutron 

star by accretion-induced collapse (Nomoto 1987). The latter case would potentially 

provide a way to produce millisecond pulsars in close, circular binary systems, which 

would appear to be impossible if the neutron star were formed in the conventional 

way, by a Type II supernova explosion. Alternatively, if the white dwarf spun up 
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to breakup, its future evolution would be even less certain, since it was unknown 

whether accretion could continue in such a situation. 

We found that only white dwarfs with high magnetic fields B 2: 106 G, and 

those which have initial masses very close to the Chandrasekhar mass, can collapse 

before they spin up to breakup speed. If the magnetic flux and angular momentum 

are conserved in the collapse, these white dwarfs could produce neutron stars with 

magnetic fields B 2: 101lG and spin periods rv 0.15 - 100 ms. The minimum spin 

period for a neutron star is about 1 ms, so some of these white dwarfs would form 

"fizzlers" (Gold 1975, Shapiro & Lightman 1976); that is, they would be unable 

to collapse directly to neutron star densities without first losing additional angular 

momentum. 

The vast majority of accreting white dwarfs, those without high magnetic fields 

or very high initial masses, would reach breakup after accreting 0.1- 0.15 M0 . Their 

subsequent fate would be uncertain: if they could somehow continue to accrete mass 

without accreting additional angular momentum, they would eventually reach the 

Chandrasekhar mass and collapse. In fact, above about one solar mass, the breakup 

value of angular momentum for white dwarfs decreases as their mass increases. 

Thus, to continue accreting mass once it reaches breakup, a massive white dwarf 

would have to lose angular momentum. Some authors have suggested that continued 

accretion will be impossible, and that the mass which would have been accreted will 

instead be ejected in some fashion (Lynden-Bell & Pringle 1974, Shu et al. 1988). 

3.3.2 Dynamics of Boundary Layers Around Rotating Stars: Can Accretion Con

tinue onto a Star Rotating at Breakup? 
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This work (Popham & Narayan 1991), presented in Chapter 5, addressed the 

question raised in Chapter 4, namely, what happens when an accreting star reaches 

breakup? Clearly, the key to this question is the boundary layer region, where the 

disk encounters the rapidly rotating star. In order to examine the boundary layer 

structure, we set up the dynamical equations for the radial and angular momentum 

of the accretion flow. In the usual disk equations, it is assumed that gravity is 

balanced by centrifugal force, so that the radial momentum equation is simply 

n = ng. Since the angular velocity profile is known, the angular momentum 

equation is also quite simple, and generally assumes that the angular momentum 

accretion rate is just the Keplerian rate, which is simply the mass accretion rate 

multiplied by the Keplerian specific angular momentum at the stellar surface. 

Clearly, these assumptions are insufficient for a study of the boundary layer. 

Since the means of support against gravity changes from rotation to pressure gra

dient in the boundary layer region, we added a pressure gradient term to the radial 

momentum equation, along with a term to account for radial acceleration as the 

accreting material moves through the boundary layer. As in the standard disk 

model, the angular momentum equation includes two terms: angular momentum 

advected by the infalling material, and angular momentum transported by the vis

cous torque. However, since we were interested in how the angular momentum 

accretion rate varies as the star spins up, we did not assume that it is given by the 

Keplerian rate. Also, since we were not assuming n = ng, both the radial and 

angular momentum equations become differential equations. 

We then attempted to solve these coupled differential equations, providing 

boundary conditions which included a condition that the angular velocity match 
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the stellar rotation rate at the stellar surface. In order to simplify the problem, we 

confined ourselves to the dynamics of the flow by using a polytropic equation of 

state, which allowed us to write the dynamical equations in a fairly simple form, 

without including the energetics and radiative transfer. Also, rather than dividing 

the problem into various regions of disk, boundary layer, and star, we used the same 

equations to describe the entire accretion flow. We also assumed that the flow was 

axisymmetric and in a steady state. We found that in fact the differential equations 

were very stiff, and that they could not be solved using an initial-value integrator. 

Instead, we solved the equations as a boundary-value problem using a relaxation 

method. 

We found two basic types of solutions. For stars rotating below breakup speed, 

we found solutions which in most respects matched the conventional picture of the 

boundary layer. The angular velocity dropped from approximately Keplerian to the 

stellar rotation rate in a very narrow layer. The star accreted angular momentum at 

a rate very close to the Keplerian rate. One aspect of the solutions was surprising: 

the radial velocity of the accretion flow became supersonic for commonly used values 

of a, the factor in the viscosity coefficient. 

The second type of solution corresponds to stars rotating at breakup. Here 

the angular velocity never reaches a maximum, but simply becomes constant as 

the flow reaches the stellar surface. This allows viscosity to transport angular mo

mentum from the star out into the disk, which cannot occur in the first type of 

solution, since the maximum in the angular velocity between the disk and star is a 

point at which there is no shear and thus no viscous angular momentum transport. 

In the breakup solutions, the viscous torque can remove large amounts of angular 
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momentum which can cancel or exceed the angular momentum added by the accret

ing material, allowing solutions in which the central star accretes mass while losing 

angular momentum. Clearly, these are exactly the solutions required to solve the 

problem posed in Chapter 4. The existence of these solutions means that accreting 

white dwarfs, or other accreting stars, can continue to accrete even after they have 

spun up to breakup. This implies that accreting white dwarfs can collapse even if 

they do not have the high magnetic fields or initial masses required to keep them 

from reaching breakup. Another important implication is that accreting protostars 

can accrete arbitrarily large amounts of mass from the surrounding medium with

out ever encountering any sort of angular momentum barrier. Paczynski (1991) 

independently reached the same conclusion. 

We found that the angular momentum accretion rate varies as a function of 

the rotation rate of the central star, and that this variation differs greatly between 

the two types of solutions. For the slowly rotating solutions, the angular momentum 

accretion rate, in units of the Keplerian rate at the stellar surface, remains nearly 

constant as the star spins up, and always stays slightly larger than the Keplerian 

rate. Note that the equatorial radius of the star increases as the star spins up, 

so that the Keplerian angular momentum accretion rate at the stellar surface also 

increases. It should also be noted that our definition of the stellar surface is fairly 

arbitrary; we take the stellar radius to be the point at which the disk height is 

one tenth of the radius. In the breakup solutions, the angular momentum accretion 

rate decreases very rapidly as the star spins up, and quickly becomes negative. This 

means that there should be a tightly defined rotation rate for which the star can 

accrete without spinning up or down. For most stars, this would be the rotation 
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rate at which the star accretes little or no angular momentum; however, the star is 

also gaining mass, which may produce changes in its moment of inertia, requiring 

a nonzero angular momentum accretion rate. For instance, massive white dwarfs 

would be contracting rapidly as they gained mass, which would tend to spin them 

up, so that a negative angular momentum accretion rate would be required. 

Finally, we found that these results do not depend on the fact that the breakup 

solutions have subsonic radial velocities in the boundary layer, while the slowly 

rotating solutions have supersonic radial velocities. In order to demonstrate this, 

we calculated solutions using a = 10-4 , and found that both types of solutions then 

remained subsonic. Nonetheless, the other characteristics of the solutions remained 

very similar to the solutions calculated with a = 0.1. 

3.3.3 Supersonic Radial Velocities and Causally Limited Viscosity 

Although the basic nature of our slowly rotating solutions appears not to 

depend on whether the radial velocities in the boundary layer are subsonic or su

personic, the presence of supersonic radial velocities for conventional values of a 

presents a problem with regard to causality. The disk must be aware of the star 

and its characteristics, since our formulation of the problem uses the stellar rotation 

rate as a boundary condition, and assumes that the angular momentum accretion 

rate is the same at all radii in the disk. The existence of a supersonic zone be

tween the disk and star would prevent communication between the two regions. 

This constraint on boundary layer radial velocities was first pointed out by Pringle 

(1977). 

We found that the problem of supersonic velocities was caused by the viscosity 

prescription and its lack of any provision for causality (Popham & Narayan 1992); 
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our solution to this problem is persented in Chapter 6. Shear viscosity in accretion 

disks is usually assumed to arise through turbulent diffusion of angular momentum. 

The standard diffusion equation includes no causal limit comparing the bulk flow 

velocity to the maximum velocity of the diffusive elements. The usual a-viscosity 

prescription sets the viscosity coefficient v = aCsH, where Cs is the sound speed, 

assumed to be the highest transport speed for the turbulent fluid elements, and H 

is the disk height, assumed to be the largest length scale over which the turbulent 

elements travel. Note that this prescription also contains no causal limit. 

In order to enforce causality, we introduced a factor (1 - Vh/V;)2 into the 

viscosity coefficient, where Vt is the velocity of the turbulent elements. This cor

rection factor is analogous to that used by Levermore & Pomraning (1981) in their 

flux-limited diffusion theory, which has become widely accepted in radiative transfer 

applications. The form of the factor was derived by Narayan (1992), who studied a 

simple steady-state system of particles with a distribution of velocities undergoing 

diffusion in a moving medium. The factor serves to reduce the viscosity coefficient 

as the radial velocity approaches the turbulent transport speed. 

We also added an additional factor to the expression for the viscosity coef

ficient. Rather than using the disk height H, which is the vertical pressure scale 

height, as the limiting turbulent length scale, this factor, 1/(1/ H + 1/ Hp), es

sentially uses the lesser of the radial and vertical pressure scale heights, where 

Hp = P/ldP/dRI is the radial pressure scale height. This factor was proposed and 

used by Papaloizou & Stanley (1986) in an effort to solve the problem of supersonic 

radial velocities; it failed to do so in some cases. 
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Introducing both factors into our viscosity coefficient, we calculated slowly 

rotating solutions for Vt = D.8cs and for Vt = 1.2cs . We found that the radial 

velocities in these solutions always stayed below the turbulent transport speed Vt, 

even when values of a as large as unity were used. Thus, the solutions always 

maintained viscous communication between the star and the disk, even though 

some of the solutions for Vt = 1.2cs had radial velocities exceeding the sound speed. 

This resolved the causality problems found in the earlier slowly rotating solutions. 

In other respects, the new solutions were quite similar to the earlier solutions; 

in particular, the relation between the angular momentum accretion rate and the 

stellar rotation rate remained almost identical to its earlier form. 

3.3.4 Black Hole Accretion with Causally-Limited Viscosity 

In Chapter 7, which has just been completed and has not yet been submitted 

for publication, we incorporate the causally-limited viscosity introduced in Chapter 

6 into polytropic models of accretion disks around black holes. The black hole 

disks discussed in this chapter are rather different from the disks examined in the 

other chapters, which have a central accreting star. Unlike a star, a black hole 

does not require the accreting gas to match its rotation rate at its surface. Instead, 

the infalling gas accelerates until it reaches a sonic point, where its radial velocity 

exceeds the sound speed, and from this point on, the gas basically falls freely into 

the black hole. 

The Shakura & Sunyaev (1973) disk model was intended for black hole disks, 

but it assumed that a purely Keplerian disk extended all the way in to the black 

hole event horizon. Later, Paczynski and Bisnovatyi-Kogan (1981) and Muchotrzeb 
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and Paczynski (1982) added pressure gradients and radial acceleration to the radial 

momentum equation, and also expanded the energy equation used by Shakura and 

Sunyaev to include radial transport of energy. These "slim disk" equations provided 

a much more realistic model for the accretion flow, particularly in the region near 

the sonic point. These authors obtained solutions for the flow in which the sonic 

point was just inside the radius of the last stable orbit at R = 3Rg = 6GM/c2 ; 

however, they were unable to obtain solutions with values of ct, the parameter used 

in the viscosity coefficient, larger than rv 0.03 (Muchotrzeb 1983). This was a serious 

problem, since the best indications of the value of ct, in CV disks where dwarf novae 

outbursts have occurred, suggest values of ct rv 0.1 - 1. Thus, up to now, no self

consistent models of black hole accretion have been found when "reasonable" values 

of ct are used. 

We have created simple polytropic models of disk accretion onto black holes, 

using the disk equations presented in Chapter 5. We have incorporated into these 

models the causally-limited viscosity prescription presented in Chapter 6. This pre

scription was able to solve the problem of supersonic radial velocities in the bound

ary layer region in standard accretion disks around stars. We do not use the full 

general relativistic equations; instead, we adopt the pseudo-Newtonian "Paczynski 

potential" <I> = -GM/(R - Rg) introduced by Paczynski and Wiita (1980). This 

potential was used to approximate general relativistic effects in the previous work 

on the subject, and so we retain it here in order to allow comparison with that 

work. 

Using our causally limited viscosity, we have been able to find solutions for 

black hole disks for values of a up to and including a = 1. Like the earlier solutions 
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of Muchotrzeb & Paczynski (1982), these solutions have sonic points inside 3Rg • Our 

causally limited viscosity prescription reduces the viscosity as the radial velocity of 

the gas approaches the sound speed. At the sonic point, and inside it, the viscosity is 

assumed to be zero, and the gas basically free-falls down to the event horizon while 

conserving angular momentum. We believe that these are the first self-consistent 

solutions for disks around black holes calculated using the generally accepted values 

of a near uni ty. 

3.3.5 Boundary Layer Models Including Energetics and Radiative Transfer: Model

zng Cataclysmic Variables 

Although our polytropic models were excellent tools for understanding the 

dynamics of boundary layers, they also illustrated that it should be possible to con

struct a complete boundary layer model, including energetics and radiative trans

fer, for comparison with observations of various types of accreting systems. Such 

a model (Narayan & Popham 1993) is presented in Chapter 8. It allows us to find 

temperatures, sizes, and optical depths, and to synthesize continuum spectra for 

comparison with observations. It also allows us to examine how the observable 

boundary layer parameters vary as the accretion rate, stellar mass, radius, and 

rotation rate change. 

In order to construct such a model, we must first abandon the polytropic 

equation of state and replace it with a more standard equation of state which 

includes gas pressure and radiation pressure. In addition, we must include an energy 

equation, which describes the balance of sources and losses of energy at each radius 

in the disk. The standard disk equations use a simple energy equation in which 
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energy dissipated by viscosity is radiated by the disk surface at the same disk 

radius at which it was dissipated. In the boundary layer, one cannot be so certain 

that such a local balance will exist. The boundary layer region dissipates a huge 

amount of energy, up to half of the total accretion energy, and yet it may do so 

in a very narrow region, the radial extent of which may in fact be smaller than its 

height. Thus, much of the boundary layer energy may be radiated in the radial 

direction rather than vertically. Also, if the accreting material falls inward rapidly, 

it may carry with it a substantial amount of energy. Thus, we use the "slim disk" 

energy equation of Muchotrzeb & Paczynski (1982) and Abramowicz et al. (1988), 

which includes terms for radial radiative and advective energy transport, as well as 

the usual viscous dissipation and vertical radiation terms. 

In general, we cannot assume that the disk will be optically thick, so that the 

standard diffusion approximation to the radial and vertical fluxes must be replaced 

by some more explicit radiative transfer equations. We adopt a simple two-stream 

approximation for the radial radiative transfer; this prescription includes both ab

sorption and scattering of radiation. In the vertical direction, we adopt a relation 

between the vertical flux and the disk midplane temperature and optical depth 

derived by Hubeny (1990). This relation basically reduces to the diffusion approx

imation for optically thick regions, but also gives the appropriate flux in optically 

thin regions. 

The addition of the energy equation and two equations describing the radial 

radiative transfer increases the number of coupled differential equations to five. We 

solve these equations using a relaxation code, and specifying the stellar mass, radius, 

rotation rate, and effective temperature, and the mass and angular momentum 
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accretion rates. In this chapter we present solutions for a cataclysmic variable, 

where the accreting star is a white dwarf. We use a single set of white dwarf 

parameters: a 1 M0 white dwarf with a radius of 5 x 108 cm, and an effective 

temperature of 20, 000 K. This corresponds to a fairly massive, compact white 

dwarf. We then calculate boundary layers for four accretion rates: 10-7 .5 , 10-8 .5 , 

10-9 .5 , and 10-10 .5 M0 yr-1 , which span the wide range of accretion rates inferred 

from observed cataclysmic variables. 

At high accretion rates, 10-7.5 and 10-8.5 M0 yr-1 , we find that the boundary 

layer is optically thick in the vertical direction. The effective temperature of the 

boundary layer region in these solutions is in the 100, 000 - 300, 000 K range. The 

boundary layer really has two radial widths; the angular velocity decreases rapidly 

over a fairly narrow region which we call the "dynamical width" of the boundary 

layer. The boundary layer energy is also dissipated in this narrow zone, but much 

of it is radiated outward in the radial direction, and then radiated from the disk 

surface farther from the star. For observational purposes, the boundary layer is 

thus substantially wider than the dynamical width; we refer to this larger region 

from which the energy is radiated as the "thermal width" of the boundary layer. 

For these accretion rates, the dynamical width is about 1 % of the stellar radius, 

while the thermal width is closer to 10% of the stellar radius. Both widths increase 

with larger accretion rates. 

At low accretion rates, 10-9 .5 and 10-10 .5 M0 yr-1 , the boundary layer be

comes optically thin. This has a profound effect on the character of the region. 

The cooling, by free-free emission, is quite ineffective, and the gas becomes very 

hot. This effect was predicted by Tylenda (1981), who made a local analysis of the 
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boundary layer energetics using the standard disk assumption that dissipated en

ergy is radiated locally. We find that in addition to the effects of inefficient cooling, 

the energy transport terms play an important role in the boundary layer region. 

Much of the energy dissipated in the boundary layer goes directly into the entropy 

of the gas, and this energy is finally released when the gas reaches the stellar sur

face, where it condenses and cools rapidly. Again, most of the energy then goes into 

outward radial flux, which travels across the optically thin boundary layer zone, 

and is absorbed by the optically thick material just outside of the boundary layer, 

where it is subsequently radiated from the disk surface. The optically thin boundary 

layers are thus substantially more complex than their optically thick counterparts. 

The central temperature in these solutions reaches 1 - 2 X 108 K, in the optically 

thin region, but the effective temperature in the same region is less than 100,000 

K because the cooling is so inefficient. The high boundary layer temperatures and 

correspondingly high viscosity coefficients result in a very wide boundary layer; in 

these solutions the angular velocity decreases gradually over a dynamical width of 

about 0.2 - 0.5 stellar radii. The thermal width is only about 50% larger than 

the dynamical width, since the zone which radiates most of the energy sits at the 

outer edge of the extensive optically thin region. Finally, in these solutions, the 

boundary layer width increases as the accretion rate decreases, since the boundary 

layer continues to get hotter and wider as the optical depth gets even smaller. 

These results correspond quite well to X-ray observations of cataclysmic vari

ables (CVs), which were analyzed and discussed by Patterson & Raymond (1985a,b). 

They found that the ratio of X-ray to optical flux was anti-correlated with the in

ferred accretion rate in a large sample of CVs observed with the Einstein satellite. 



40 

They also argued that a transition between optically thin boundary layers at low 

accretion rates and optically thick boundary layers at high accretion rates could 

account for such a correlation. This argument was based on the Tylenda (1981) 

analysis and on simple estimates for the accretion rate at which such a transition 

might take place. Our results provide a self-consistent model of the boundary layer 

which includes the dynamics, energetics, and radiative transfer, and which appears 

to account for the correlation quite well. In our solutions, the transition to a hot 

optically thin boundary layer occurs at an accretion rate around 10-9 .5 M0 yr-1 , 

which agrees reasonably well with the observations. 

3.3.6 Optically Thick Boundary Layers in Cataclysmic Variables 

Chapter 9, which consists of unpublished work, supplements the cataclysmic 

variable boundary layer solutions presented in Chapter 8. It examines optically 

thick boundary layers around white dwarfs, and discusses three major topics. All 

of the boundary layer solutions calculated for this chapter have an accretion rate of 

10-7 .5 M0 yr-1 , and a white dwarf of mass 1 M0 and radius 5 x 108 cm, rotating 

at about half of breakup speed. 

The first topic examined in Chapter 9 is the dependence of the boundary 

layer structure upon the stellar parameters of the accreting star, such as the mass, 

radius, and rotation rate. In this case, the accreting star is a white dwarf, so the 

mass and radius vary in a well-defined way, and can be treated as a single parameter. 

Since this is a preliminary version of this work, we have used approximate radii at 

each value of the white dwarf mass. We calculated solutions for masses of 0.6 -

1.0 M0 , with corresponding radii of 9 - 5 X 108 cm, and found that as the mass 
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decreases and the radius increases, the boundary layer becomes cooler, but shows 

no real qualitative changes. The rotation rate of the accreting star produced more 

significant changes, due in part to the dramatic effect it has on the boundary layer 

luminosity. Our solution for a nonrotating star had a large luminosity and a wider 

boundary layer than the solutions for more rapidly rotating stars. On the other 

hand, our solution for a star rotating at its maximum speed showed only a very 

small boundary layer luminosity, with a correspondingly small peak in the effective 

temperature in the boundary layer region. 

Next, Chapter 9 examines the "breakup branch" of boundary layer solutions, 

which were discussed in Chapter 5 for the polytropic disk solutions, but were not 

discussed in Chapter 8 with full disk solutions including an energy equation. We 

show that the breakup branch does exist when the full disk equations are used, 

and that they are quite similar to the breakup branch solutions from Chapter 5. In 

particular, they include solutions with small and even negative values of the angular 

momentum accretion rate, which allow stars to continue accreting even after they 

have spun up to breakup. A very interesting aspect of these solutions is that the 

effective temperature increases substantially as the angular momentum accretion 

rate decreases; this occurs because energy which was going into spinning up the 

star is now being dissipated and radiated by the disk. Also, the breakup branch 

solutions have large surface densities in the boundary layer region and are optically 

thick, even for accretion rates as low as 10-10 .5 M0 yr-1 . 

Finally, this chapter addresses the energetics of the boundary layer region. 

First, we discuss the energy balance in the boundary layer region. In the dynamical 

boundary layer, radiation in the radial direction removes most of the boundary layer 
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luminosity and carries it outward. The luminosity is subsequently absorbed and 

reradiated from the disk surface in the thermal boundary layer; thus the dominant 

energy terms here are the radial flux, which is a source of energy, and the vertical 

flux, which radiates that energy away. Next, we examine the total luminosity of the 

boundary layer and disk. The commonly used expression for the boundary layer 

luminosity has been shown by Kluzniak (1987) to be incorrect, since it neglects 

the energy that goes into spinning up the star. In Chapter 9 and Appendix C, we 

derive the correct expression for the luminosity of the boundary layer. The total 

luminosity of the disk and boundary layer taken together depends on the mass and 

radius of the accreting star, the stellar rotation rate, and the accretion rates of 

both mass and angular momentum. We compare the predicted values of the total 

luminosity to the values from our solutions, and find that they agree well, and that 

the boundary layer luminosity does depend on the stellar rotation rate and angular 

momentum accretion rate as predicted by the new expression. 

3.3.7 Boundary Layer Models Including Energetics and Radiative Transfer: Model

ing Pre-Main Sequence Stars 

This work (Popham et al. 1993), presented in Chapter 10, applies the same 

disk and boundary layer model used in Chapters 8 and 9 to boundary layers around 

accreting pre-main sequence stars. The only major difference in the modeling pro

cedure is that whereas the CV boundary layer models used a simple Kramers opac

ity along with electron scattering, the pre-main sequence models use a tabulated 

opacity which includes Hand H- free-free and bound-free absorption and electron 

scattering. This is necessary because we expect the pre-main sequence boundary 

layers to be substantially cooler than those in CV s. 
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The stellar parameters and accretion rates used in this work are chosen to re

semble the values estimated from observational studies of T Tauri and FU Orionis 

stars. These studies have generally estimated masses around 1 M0 , radii ranging 

from 2 - 7 R0 , surface temperatures of 3000 - 5000 K, and mass accretion rates of 

about 10-7 M0 yr-1 in T Tauri stars and 10-4 M0 yr-1 in FU Ori stars. As in 

Chapter 8, the goal of this chapter is to explore the basic structure of boundary lay

ers around stars with these parameters, and to examine how that structure depends 

on the accretion rate. Accordingly, we calculate models for accretion rates of 10-7 , 

10-6 , 10-5 , and 10-4 M0 yr-1 • All of these models use stellar radii of 2 - 2.5R0 

except the 10-4 M0 yr-1 solution, which uses a star with a radius of about 4.5R0 . 

All of these solutions used G = 0.1; we also calculated a solution at 10-4 M0 yr-1 

with G = 0.001, which had a stellar radius of about 6.5R0 . 

We find that the boundary layers in all of these solutions are optically thiclc 

The effective temperature of the boundary layer ranges from about 8500 K in the 

10-7 M0 yr-1 solution to about 17,000 K in the 10-5 and 10-4 M0 yr-1 solutions. 

In the 10-4 M0 yr-1 , G = 0.001 solution, the boundary layer is cooler, around 

7000 - 10,000 K. As in the optically thick CV solutions, the boundary layers have 

distinct dynamical and thermal widths, and these widths increase as the accretion 

rate increases. In the 10-7 M0 yr-1 solution, the dynamical width is about 2% of 

the stellar radius, while the thermal width is about 20% of the stellar radius. In the 

10-4 M0 yr-1 solution, the dynamical width has reached about 30% of the stellar 

radius, and the thermal width is so large that it is difficult to distinguish from the 

disk. Finally, in the 10-4 M0 yr-1 , G = 0.001 solution, even the dynamical width 

has become larger than the stellar radius. 



44 

We also calculate spectra for the various solutions. These are simple blackbody 

spectra calculated using the effective temperature at each radius in the boundary 

layer and disk. In general, as the accretion rate increases, the boundary layer and 

disk get hotter, and the spectrum gets bluer. The interesting feature in the spectra is 

that as the accretion rate increases, the boundary layer and disk components become 

more difficult to distinguish. The spectrum of the 10-7 Me:> yr-1 solution clearly 

has two components with an inflection between them, but the distinction between 

the two components fades as the accretion rate increases, until at 10-4 Me:> yr- 1 , 

they seem to have merged into one. The 10-4 Me:> yr-1 , a = 0.001 spectrum also 

has just one component, but has very little ultraviolet flux, since the boundary layer 

is cooler. 

These results agree reasonably well with observations. Basri & Bertout (1989) 

and Hartigan et al. (1991) estimated boundary layer temperatures of 7000 to 10,000 

K and boundary layer widths of 1-10% of the stellar radius from spectra of T Tauri 

stars. Our 10-7 Me:> yr- 1 boundary layer has a maximum effective temperature of 

about 8500 K, and has a thermal width of about 20% of the stellar radius; however, 

the portion of the thermal boundary layer with an effective temperature above 7000 

K is only a few percent of a stellar radius wide. For FU Orionis stars, maximum 

temperatures of rv 7000J( have been estimated from observations (Kenyon, Hart

mann, & Hewett 1988). Thermal instability models for the outbursts of these stars 

suggest that a ~ 0.001. Our 10-4 Me:> yr-1 , a = 0.001 solution has a boundary 

layer temperature of about 7000 K; it is interesting that the 10-4 Me:> yr- 1 , a = 0.1 

model has a much hotter boundary layer, suggesting that small values of a are 

favored, although this may depend strongly on our other choices of parameters. 
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3.4 Plans for Future Work 

This work began with an examination of spin-up in accreting white dwarfs 

(Chapter 4), which led us to explore the dynamics of the boundary layer and the 

importance of the viscosity prescription (Chapters 5, 6, and 7). More recently, 

we have developed a more complete model of the boundary layer which includes 

energetics and simple radiative transfer, and applied it to cataclysmic variables and 

pre-main sequence accretion disks (Chapters 8, 9, and 10). None of these studies 

has led us to a dead end; rather, each has answered some old questions and raised 

some new ones, which we hope to answer in the near future. We also hope to apply 

our boundary layer solution method to other kinds of accreting systems. Finally, we 

hope to expand the method itself to make it applicable to different types of physical 

situations. 

One immediate goal for the near future is to refine the calculations presented 

in Chapter 9. For the most part, this involves using more accurate white dwarf 

masses and radii, rather than the approximate values we have used in the current 

calculations. This should have only a small effect on the solutions. This work pro

vides more information about the optically thick boundary layer solutions presented 

in Chapter 8; we subsequently hope to do something similar with our optically thin 

solutions, which are more difficult to calculate, but also more interesting. 

Another objective is to try to apply some of our results to modeling individual 

accreting stars, both cataclysmic variables and pre-main sequence stars. Our work 

so far has been oriented toward finding solutions and examining how they vary as 

a function of the mass accretion rate and the stellar parameters. It would be inter

esting to see how well we can match the boundary layer emission from individual 
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systems and constrain the system parameters. One difficulty is that the rotation 

rates of nonmagnetic CV s and some pre-main sequence stars are unknown. 

We would also like to expand our work beyond CVs and pre-main sequence 

stars to include systems with neutron star and black hole accretors, such as X-ray 

binaries and possibly active galactic nuclei. In particular, the black hole solutions 

presented in Chapter 7 may constitute a significant step forward in that they may 

resolve a problem which has hindered progress in the field for more than a decade. 

We hope to find black hole solutions using the full disk equations and including the 

effects of general relativity and radiation forces. Such solutions would be valuable 

for understanding black hole binaries, where it might help in distinguishing them 

from neutron star systems, and active galactic nuclei. Another area which deserves 

further exploration includes main-sequence accretors such as the symbiotic stars 

and possibly some Algol-type systems. 

Finally, we would like to improve upon the model for the boundary layer 

which is presented in this work. One area which we have already explored briefly 

is the inclusion of the vertical disk structure in our calculations. We do this by 

calculating the vertical structure at each radial grid point, and using it to adjust 

the approximate relations used to describe the vertical structure in the standard 

vertically-averaged disk equations. Also, a better knowledge of the vertical radiative 

transfer allows us to calculate more accurate spectra for comparison with observa

tions. Of course, a more complete approach to understanding the combined radial 

and vertical structure of the boundary layer and disk is to perform a two-dimensional 

calculation. This would be computationally demanding because of the high resolu

tion which would be required in the boundary layer, particularly in optically thin 
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solutions. 

Another important area for future work might be the development of a time

dependent model of the boundary layer region. This would allow us to study the 

effects of a sudden increase in the mass transfer rate upon the boundary layer. It 

would also allow us to examine the transition from the slowly-rotating branch of 

solutions to the breakup branch in greater detail. Finally, it might also be useful in 

looking for boundary layer instabilities which could be responsible for some of the 

rapid brightness variations seen in all types of accreting systems. 

A final area into which our models could be expanded would be the inclusion of 

magnetic fields. This would significantly increase the complexity of the calculations, 

but it would also permit study of a number of interesting types of accreting systems. 
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4. ANGULAR MOMENTUM OF ACCRETING WHITE DWARFS: 

IMPLICATIONS FOR MILLISECOND PULSAR FORMATION 

Abstract 

We examine the evolution of the angular momentum and angular velocity of 

uniformly rotating magnetized white dwarfs (WDs) accreting at a constant rate 

from a thin disk. Depending on the initial mass of the WD, its field strength, and 

mass accretion rate, the end result is one of the following. Case I: The central 

density of the WD exceeds the critical density for collapse and a rapidly rotating 

neutron star is formed directly. Case II: The WD collapses first to a "fizzIer", and 

later becomes a neutron star. Case III: The WD attains the maximum angular 

momentum allowed for its mass; in order to accrete any more mass and collapse 

the WD must lose angular momentum, but the mechanism by which it might do 

this is not clear. The number of systems that lead to low-field short-period neutron 

stars, similar to the known millisecond pulsars, is small, unless Case III can produce 

collapse. 

4.1 Introduction 

Neutron stars with low-mass companions ( ;S 1 M8 ) are common in the Galaxy. 

There are I"VI05 millisecond pulsars (MSPs) and related low-mass binary pulsars in 

the disk of the Galaxy (Kulkarni & Narayan 1988) and I"VI02 low-mass X-ray bi

naries. There may be even greater numbers, relative to the mass content, in the 

globular clusters (e.g. Grindlay & Bailyn 1988). The formation of these systems 

is difficult to understand in a standard Type II supernova scenario. Because the 
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companion has a low mass, the supernova explosion will normally eject more than 

half the total mass of the pre-explosion system, and the binary will be disrupted. 

Moreover, even if the system remains bound, it will still receive a substantial veloc

ity, ~ 100 km s-l, both from the recoil and from any asymmetry in the explosion 

(e.g. Dewey & Cordes 1988). The binary would then move to much higher z in the 

disk than is observed. 

An attractive alternative method for forming low-mass binary neutron stars 

involves the accretion-induced collapse (AIC) of an oxygen-neon-magnesium white 

dwarf (WD), or possibly a carbon-oxygen WD (van den Heuve11977, Helfand, Ru

derman, & Shaham 1983, Chanmugam & Brecher 1987, Nomoto 1987). Because 

very little mass is lost during AIC, the binary is not disrupted, nor does it receive a 

significant recoil velocity. Along with mass, an accreting WD also acquires angular 

momentum, but the effect of this has only been discussed qualitatively (e.g. Grind

lay and Bailyn 1988). We have carried out a quantitative calculation to determine 

the spin history of accreting WDs for a variety of conditions. 

4.2 Input Physics 

4.2.1 Torque on a White Dwarf from an Accretion Disk 

We use the model developed by Ghosh & Lamb (1979a,b) and improved by 

Wang (1987), where the torque consists of two parts. There is a material torque, 

which always tends to spin up the WD, given by the mass accretion rate M mul

tiplied by the specific angular momentum at the inner edge of the disk. The inner 

edge occurs at the stellar surface when the WD field is weak, but is farther out 
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when the field is strong. An additional magnetic torque results from the interaction 

of the disk and the magnetic field of the WD. Field lines that penetrate the disk 

outside the corotation radius are swept backward and slow the star down, and those 

that pass inside the corotation radius spin the star up. The net magnetic torque 

can be positive or negative, depending on the angular velocity of the WD. 

4.2.2 Structure of Rotating White Dwarfs 

Hachisu (1986) has investigated the structure of rotating Chandrasekhar WDs 

for three assumed rotation laws, viz. constant n, constant nR, and constant nR2 , 

where R is the radius in cylindrical coordinates. For each law, he has calculated 

the mass M, angular momentum J, angular velocity n, and equatorial radius R c , 

as functions of the central density and the rotational flattening. We use the results 

corresponding to constant n, i.e. uniform rotation. This is likely to be a good 

description of WDs with strong fields since the field will probably eliminate internal 

shears. For weak fields, the accretion disk will extend down to the surface of the 

star and the angular momentum will be deposited directly in the outer equatorial 

layers. Consequently, the outer regions of the star may spin faster than the inside. 

The closest approximation to this in Hachisu's models is the one with constant n. 

Uniformly rotating WDs are possible only for M and J that lie within a 

bounded area in the lvI - J plane. At each lvI, there is a maximum value of J at 

which the outer equatorial layers of the WD are supported entirely by centrifugal 

forces and the star is on the verge of break-up. We refer to this limit as "critical 

rotation." In addition, an O-Ne-Mg WD will collapse if the central density reaches 

the electron capture threshold for Mg at pc = 109 .5 g cm-3 (Shapiro & Teukolsky 
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1983); this places a limit on M at each value of J, which we refer to as the "colla.pse 

line". These two limits are shown in Figure 4.1. 

4.2.3 Restrictions on Initial M, M, and B 

Oxygen-neon-magnesium WDs are formed with masses in the range 1.2 -

1.37 Mev from 8 - 10 Mev progenitors (Nomoto 1984). These WDs can potentially 

become neutron stars through AIC if the mass accretion rate lies within one of the 

ranges M < 10-9 Mev yr-1 or M > 4 X 10-8 Mev yr-1 (Nomoto 1987); intermediate 

rates, 10-9 Mev yr-1 < M < 4 X 10-8 Mev yr-1 , produce off-center helium detona

tion, leading to a "dim" Type I supernova. Furthermore, if M < 10-9 Mev yr- 1 , 

the accreted mass may be ejected in novae or similar eruption events (Paczynski & 

Zytkow 1978). Thus, it is possible that AIC occurs only when the accretion rate 

exceeds 4 X 10-8 Mev yr- 1 • Such large M may occur with a secondary of around 

1 Mev ascending the giant branch (Webbink, Rappaport, & Savonije 1983). In our 

calculations, we consider, for completeness, mass loss rates ranging from 10-10 to 

10-7 Mev yr-1 , and assume that none of the mass or angular momentum is lost from 

the system. 

We specify the WD field strength by the magnetic flux, BR~, which we assume 

to be conserved during the evolution and collapse. We consider fluxes in the range 

1021 -5 X 1024 G cm2 , corresponding to WD fields of about 104 to 5 X 107 G and 

neutron star fields of 109 to 5 X 1012 G for radii of 108 .5 cm and 106 cm, respectively. 
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4.3 Results 

Each of our calculations is specified by three parameters, the initial mass 

of the WD, Mi, the magnetic flux BR~, and the accretion rate M. The initial 

angular velocity of the WD is taken to be zero. Rather than Mi, a more useful 

parameter is the initial mass deficit from the critical mass for collapse (for J = 0), 

viz. ~M = 1.39 - Mi. According to Nomoto (1984), O-Ne-Mg WDs can have 

~M '" 0 - 0.17 Mev; we have considered three representative values in this range, 

~M = 0.15, 0.03, 0.01 Mev. 

At the end of each calculation the WD reaches either the collapse line (Cases I, 

II) or critical rotation (Case III). We subdivide the systems which collapse according 

to their final angular momentum. If J < 6 X 1048 g cm2 s-1 = J*, a neutron 

star is directly formed (Case I), while if J > J*, the collapse is halted midway 

by centrifugal forces (Case II) in a state called a "fizzIer" (Gold 1975, Shapiro & 

Lightman 1976). Our assumed value of J* corresponds to a neutron star moment 

of inertia of 1045 g cm2 and a limiting neutron star spin period of 1 ms. 

For most of the allowed range of ~M of O-Ne-Mg WDs, the evolution is similar 

to the case ~M = 0.15 Mev shown in Fig. 4.1 and Table 1. If the field is weak, the 

WD undergoes Case III evolution, reaching critical rotation after accreting ",0.1-

0.15 Mev of material. If the field is sufficiently strong, then the WD reaches the 

collapse line either in Case I or II. The magnetic torque starts off positive, since the 

star is spinning more slowly than most of the disk, but quickly becomes negative; the 

star actually loses angular momentum during most of the accretion. The stronger 

the field, the lower the final J of the WD at collapse; the final J is essentially 

independent of ~M. This is because for strong fields the WD quickly reaches 
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Fig. 4.1-(a) The solid lines show the evolutionary tracks in the M-J plane for 
accreting WDs that have initial 6.M = 0.15 M0 for IV! = 10-7 M0 yr-1 • Each 
curve is labeled by the conserved magnetic flux BR~ in units of G· cm2 • The 
short-dashed line shows the "collapse line" and the long-dashed line corresponds to 
"critical rotation". The dotted line represents the marginal angular momentum J* 
that separates case I evolution from case II. Of the seven fluxes shown, 2 X 1024 

corresponds to case I, 1024 and 5 X 1023 lead to case II, and all the others to case 
III. (b) Variation of angular velocity with time for the cases shown in Fig. 4.1 (a). 
The horizontal axis has been scaled so as to correspond exactly to the mass axis in 
Fig. 4.1 (a). For cases I and II the labels give the flux as well as the rotation period 
of the resulting neutron star. Case II, where the collapse fizzles due to centrifugal 
forces, is expected to occur for periods less than 1 ms. 
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TABLE 1 

SUMMARIZED RESULTS OF THE END STATES 
OF ACCRETING WHITE DWARFS1 

I::1M M BR2 = 1021 2 X 1021 5 X 1021 1022 2 X 1022 5 X 1022 

0.15 10-10 c:0.100 c:0.103 c:0.053 f:0.30 f:0.73 n:1.84 
0.15 10-9 c:0.097 c:0.098 c:0.102 c:0.099 f:0.16 f:0.50 
0.15 10-8 c:0.097 c:0.097 c:0.098 c:0.099 c:0.103 c:0.079 
0.15 10-7 c:0.097 c:0.097 c:0.097 c:0.097 c:0.098 c:0.101 

0.03 10-10 c:0.003 c:0.001 f:0.25 f:0.40 f:0.75 n:1.84 
0.03 10-9 f:0.24 c:0.002 c:O.003 f:0.19 f:0.28 f:0.56 
0.03 10-8 f:0.27 f:0.26 f:0.22 c:0.003 c:0.003 f:0.23 
0.03 10-7 f:0.27 f:0.27 f:0.26 f:0.25 f:0.20 c:0.003 

0.01 10-10 f:0.74 f:0.56 f:0.48 f:0.59 f:0.74 n:1.85 
0.01 10-9 n:1.03 f:0.76 f:0.63 f:0.50 f:0.49 f:0.72 
0.01 10-8 n:1.09 n:1.07 f:0.98 f:0.80 f:0.59 f:0.48 
0.01 10-7 n:1.10 n:1.09 n:1.08 n:1.04 f:0.95 f:0.67 

I::1M M BR2 = 1023 2 X 1023 5 X 1023 1024 2 X 1024 5 X 1024 

0.15 10-10 n:3.44 n:6.28 n:12.3 n:19.7 n:32.2 n:64.2 
0.15 10-9 n:1.09 n:2.13 n:4.79 n:8.47 n:13.6 n:25.7 
0.15 10-8 f:0.25 f:0.61 n:1.59 n:3.00 n:5.50 n:11.0 
0.15 10-7 c:0.101 c:0.052 f:0.41 f:0.93 n:1.85 n:4.19 

0.03 10-10 n:3.44 n:6.28 n:12.3 n:19.7 n:32.2 n:64.2 
0.03 10-9 n:1.10 n:2.13 n:4.79 n:8.47 n:13.6 n:25.7 
0.03 10-8 f:0.36 f:0.65 n:1.59 n:3.00 n:5.50 n:11.0 
0.03 10-7 f:O.17 f:0.25 f:0.49 f:0.94 n:1.85 n:4.19 

0.01 10-10 n:3.44 n:6.28 n:12.3 n:19.7 n:32.2 n:64.2 
0.01 10-9 n:1.17 n:2.14 n:4.79 n:8.47 n:13.6 n:25.7 
0.01 10-8 f:0.55 f:0.79 n:1.62 n:3.00 n:5.50 n:11.0 
0.01 10-7 f:0.52 f:0.48 f:0.66 n:1.04 n:1.86 n:4.19 

1 For each combination of I::1M, !VI and BR2, the final state is indicated by a letter 
and a number, with the following meanings: 

c: White dwarf reaches critical rotation; the number refers to 1.467 M0 -
l\IIfinal, which is the mass that the white dwarf needs to accrete to reach the 
intersection of the collapse line and critical rotation line. 

f: White dwarf collapses to a fizzIer; the number refers to the rotation "period" 
in ms if a standard neutron star could form directly. 

n: White dwarf collapses to a neutron star; the number refers to the rotation 
period in ms. 
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and follows a track for which the material and magnetic torques cancel each other. 

This situation is similar to the equilibrium period reached by neutron stars. The 

variation of angular velocity n with time is shown in Figure 4.1 (b). Interestingly, 

even while J is d':!creasing, n continues to increase because the moment of inertia 

of the WD decreases with increasing mass. 

The dependence on magnetic field is somewhat different for smaller values of 

f:!.M. For f:!.M rv 0.025 - 0.035 Mev, low and high field WDs reach the collapse line, 

but intermediate field WDs attain critical rotation (Figure 4.2 (a)j Table 1). For 

f:!.JvI ;S 0.025 Mev, all WDs reach the collapse line (Fig. 4.2 (b); Table 1). 

4.4 Discussion 

Of the possible outcomes for accreting O-Ne-Mg WDs, Case I, where AIC leads 

directly to a neutron star, is probably the easiest to understand. However, as we see 

from Table 1, unless f:!.M is very small, this occurs for only a small subset of highly 

magnetized WDs, producing neutron stars with correspondingly strong fields. The 

combination of strong field and millisecond period in these neutron stars will lead to 

a rapid loss of rotational energy, producing a luminosity rv 4 X 1043 BI2/ P~s rv 1039
-

1044 erg s-l in magnetic dipole radiation for a time rv 30P~s/ BI2 rv 10-105 yr, where 

B12 = B/1012 G and Pms = P/1 ms. For instance, a WD with BR2 = 1024 G cm2 

accreting at a rate of M = 10-7 Mev yr-1 will produce a neutron star with a period 

of rv1 ms and a magnetic field of rv1012 G. Such a star will lose the bulk of its kinetic 

energy in about 30 yrs with a luminosity> 1043 erg s-l. The resulting "supernova" 

remnant will be quite spectacular and may be visible even in distant galaxies. 
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In Case II, the collapse is halted to form a "fizzIer". According to Tohline 

(1984), the details of the collapse and further evolution depend both on the value of 

the initial ratio of kinetic to potential energy, and on the variation of the adiabatic 

exponent r with density. Fizzlers will lose angular momentum through magnetic 

dipole radiation and very likely also through gravitational radiation driven by un

stable nonaxisymmetric distortions. Thus, fizzlers ultimately become neutron stars 

with spin periods close to the limiting value rv 1 ms. 

Case III, where the WD reaches critical rotation, is probably the least under

stood outcome. At critical rotation, the WD is on the verge of losing mass due to 

centrifugal forces, but more mass is being added by the continuing accretion. It is 

not clear how the star will respond to this situation. It may develop an extended 

envelope like a red giant, or it may eject mass, or it may manage to continue ac

creting more mass. The last option may be possible if angular momentum can be 

pumped back through the disk; the WD may thus slide down the critical line in the 

M - J plane until it reaches the critical central density and collapses as a fizzIer. 

Case III will probably be the most common situation since the majority of 

WDs have weak fields (Schmidt 1989). What would a binary WD look like when 

it has attained critical rotation? Since the rotation rates of the star and disk join 

smoothly, there will be no boundary-layer emission, as indeed may be the case with 

many cataclysmic variables. Moreover, because of the weak field, there may not be 

any rotation-induced luminosity modulation, making the rotation rate difficult, if 

not impossible, to determine observationally. It is possible that some of the known 

accreting WDs are critically rotating but have not been recognized as such. 
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MSPs and low-mass X-ray binaries in the Galaxy are characterized by low 

fields ('" 108 
- 109

.
5 G) and long lifetimes ('" 109 yr). If they are formed by AIC, 

then our results have some interesting implications. 

In the simplest scenario, the collapsed neutron star directly becomes a MSP 

(Chanmugam & Brecher 1987) with fast rotation and low field. The progenitor then 

has to be a low-field WD. However, we find from our calculations that only a fraction 

of such WDs, those with small 6.M, reach the collapse line. Furthermore, our 

calculations are probably optimistic because of our assumption of uniform rotation. 

More likely, the outer layers of the WD would spin faster than the center and the 

critical rotation limit would be reached at much smaller J than we have assumed; 

the range of 6.M that hit the collapse line would then be even smaller. It may be 

that Cases I and II will not provide enough progenitors to make all the MSPs in 

the Galaxy, and it may be necessary to invoke AIC in the Case III systems. 

In an alternative scenario (e.g. Taam & van den Heuvel 1986), the collapsed 

neutron star does not directly make a MSP but undergoes field decay and accretion 

spin-up before it is seen as a MSP. Here, even strong-field WDs can make MSPs 

and our calculations show that such WDs undergo Case I or II even for large 6.M. 

However, a basic requirement in this scenario is that the accretion must continue 

for a long enough time for the field to decay to its final value. This may be a 

problem since, for reasons discussed in §IIc, AIC is believed to be possible only 

when M 2: 4 X 10-8 M0 yr-1. The accretion timescale in such systems will be less 

than ten million years, which is much shorter than the time needed (> 50 million 

yr) for a strong initial field of '" 1012 G to decay to < 109 G. Once again, either 
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one must restrict oneself to low-field low-~M WDs, in which case there may not 

be enough progenitors, or find a way to induce collapse in Case III systems. 

It is thus important, in either scenario, to address the evolution of critically

rotating accreting WDs. 
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5. DOES ACCRETION CEASE WHEN A STAR APPROACHES 

BREAKUP? 

Abstract 

We model a steady-state thin accretion disk around a uniformly-rotating un

magnetized star using a two-dimensional fluid with a polytropic equation of state 

and a-viscosity. We explicitly include gradients in the radial velocity and the pres

sure, and numerically solve for the angular velocity profile. We treat the specific 

angular momentum, j, added to the star as an eigenvalue of the problem that is 

determined through the boundary conditions. We find that there is a mapping be

tween j and the stellar rotation rate, fl*, with the following properties. When fl* 

is somewhat less than the breakup rotation rate of the star, flmax , we find a class 

of solutions where the angular velocity of the disk attains a maximum close to the 

star and then decreases rapidly in a boundary layer to match fl*. For a thin disk 

with thickness rv 0.01 times the radius and a = 0.1, the radial flow of the accreting 

material briefly becomes supersonic in the boundary layer before being decelerated 

in a radial shock. For a thicker disk (thickness rvO.1 times radius) with much smaller 

viscosity (a = 0.0001), the flow is subsonic throughout. In either case, j is almost 

independent of !1* and is approximately equal to the Keplerian specific angular 

momentum at the stellar surface. This agrees with the standard picture of angular 

momentum transport in thin disks. However, if fl* is near break-up, then we find a 

second class of solutions where the disk angular velocity has no maximum at all but 

increases monotonically all the way down to the stellar surface; the flow remains 

subsonic for all choices of disk thickness and a. For these solutions, j decreases 
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extremely rapidly with increasing n* and even takes on fairly large negative values. 

Because of this, the spin-up of an accreting star slows down and eventually stops at 

a rotation rate near break-up. Beyond this point, the star can continue to accrete 

any amount of matter without actually breaking up. This result has applications 

in star formation and in the theory of cataclysmic variables. It also eliminates one 

of the objections to the accretion-induced collapse scenario for the formation of 

low-mass binary neutron stars. 

5.1 Introduction 

Accretion disks deliver both mass and angular momentum to their central 

accreting stars (see Pringle 1981 for a review). In the case of accreting magnetized 

stars such as the binary x-ray pulsars (cf. Lewin & van den Reuvel 1984 and 

references therein), one sees direct evidence for the addition of angular momentum 

in the spin-up of the stars. A feature of these systems is that there is a maximum 

rotation rate to which the stars are spun-up. Once the star has achieved this 

rotation, mass accretion can still continue but there is no additional spin-up. This 

phenomenon has been modeled by Ghosh & Lamb (1979b) who showed that there is 

a cancellation between the positive torque due to the angular momentum carried in 

by the accreting material and a negative torque due to the interaction between the 

stellar magnetic field and the fluid in the accretion disk. The existence of negative 

feedback from the magnetic torque thus ensures that an accreting magnetized star 

asymptotically approaches, but does not exceed, a stable "equilibrium" rotation 

rate. 
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The situation is less clear in the case of accretion by an unmagnetized object. 

In this case it is generally assumed that the central star receives specific angular 

momentum from the disk at a rate corresponding approximately to the Keplerian 

angular momentum at the surface of the star. Further, in the standard picture, 

there is no opposing torque or negative feedback mechanism. One therefore ex

pects that if accretion were to continue long enough the star would be spun up to 

and possibly even beyond its maximum allowed rotation rate, nmax , the so-called 

"break-up" rate, where the equatorial centrifugal force just balances the force of 

gravity. What happens beyond this point is not known. Since the star is appar

ently unable to accept any more mass from the accretion disk, because it cannot 

accommodate the angular momentum that goes with it, one might imagine that ei

ther the accumulating material is ejected through a wind or via jets, or the matter 

builds up to form a relatively independent envelope around the central star. 

The question of what happens when there is continued accretion onto an 

unmagnetized star close to break-up has become relevant as a result of two recent 

studies. Shu ct al. (1988) investigated star-forming disks and argued that the central 

objects would be quickly spun-up to nmax • They proposed that such a system would 

then eject a wind from the circumferential cusp that forms around the rapidly

spinning star. This wind may be collimated to produce the outflows that are seen in 

star-forming regions. In another study, we (Narayan & Popham 1989) investigated 

the spin history of accreting white dwarfs and found that unmagnetized white dwarfs 

attain nmax after accreting as little as ",0.1 M0, assuming that there is no mass loss 

through nova ejection. Since white dwarfs in cataclysmic variables are thought to 

accrete several tenths of a solar mass during the course of their evolution, it seems 
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likely that many of these systems should achieve a spin rate close to nmax • A 

question we were unable to answer in the earlier study, and which we pursue in 

this paper, is: What does an accreting unmagnetized white dwarf, or any other 

unmagnetized star, do when its spin rate approaches nmax? 

This question is particularly interesting in the case of massive accreting white 

dwarfs. In these objects, the angular momentum corresponding to break-up, Jmax , 

decreases with increasing mass, M (e.g. Hachisu 1986), because of the steep inverse 

mass-radius relation. This means that once the white dwarf has achieved a spin 

rate rv nmax , it must actually lose angular momentum in order to accrete any 

more mass. At first glance, it appears impossible for an accretion disk to remove 

angular momentum from a star while at the same time supplying mass to it - as 

we mentioned above, the current wisdom is that there is a certain fixed amount 

of positive angular momentum that is associated with any accreted matter. The 

main purpose of the present paper is to demonstrate that disks can indeed remove 

angular momentum from the accreting object. 

We construct here steady axisymmetric accretion disk models where we allow 

the specific angular momentum, j, added to the central star to be a free parameter. 

We show that j behaves like an eigenvalue that is self-consistently determined by 

the various boundary conditions that the disk must satisfy. The most important 

of the boundary conditions is that the rotation rate of the the star, n*, should 

match that of the disk at the boundary between the two. As a consequence of 

this condition we find that there is a precise mapping between n* and j. This 

mapping is such that j is approximately equal to the Keplerian specific angular 

momentum at the equator of the star whenever n* is somewhat less than nmax • 
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This result is in agreement with conventional wisdom. However, we find that j 

becomes much smaller, and even takes on (quite large) negative values, when n* 

is close to nmax . Because of the existence of such negative j solutions, there is a 

natural negative feedback mechanism, and the central star can continue to accrete 

any amount of matter even when it approaches Qmax. In this sense, accretion 

onto an unmagnetized star behaves exactly as in the magnetized case; the only 

difference is that the "equilibrium" rotation rate here is of order Qmax, whereas in 

the magnetized systems it is determined by the Keplerian Q at the magnetospheric 

radius. 

Our results confirm previous work by Pringle (1989) who argued that, even 

when a star is rotating exactly at break-up, accretion is not prevented. In Pringle's 

view only a star with Q* > Qmax can stop accreting. The present work advances 

these ideas in two ways. First, we construct models that reveal the explicit con

nection between the stellar rotation rate Q* and the accreted specific angular mo

mentum j. Thus, in a sense, we have quantified Pringle's argument. Secondly, we 

show that solutions with negative j are possible. Thus, a star can lose angular 

momentum - quite a lot of it if necessary - while at the same time continuing to 

accrete. We are not aware of any previous work that anticipated this result. 

After we had completed this study, we discovered that Paczynski (1991) had 

independently carried out a similar investigation. Although using a somewhat dif

ferent approach, Paczynski agrees with most of our conclusions. In particular, he 

too finds that accretion is not inhibited when a star approaches break-up. 
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5.2 Theory 

5.2.1 Fluid Model 

A key feature of our approach is that we treat the accretion disk, the boundary 

layer and the accreting star all as a single fluid system, described by the same set 

of equations. In order to simplify the analysis, we further assume that the fluid 

properties can be integrated in the vertical direction, i.e. the direction parallel 

to the rotation axis, so that the system can be described in terms of an effective 

two-dimensional fluid. This approximation is routinely made in the theory of thin 

accretion disks and is clearly valid in the outer parts of our model. It is less clear 

that the approximation is allowed in the central regions. However, as we show 

below, the model does represent the star reasonably well, at least near the disk-star 

interface, and so there is no serious error from this assumption. In any case, we feel 

that the two-dimensional approximation will not affect the qualitative features of 

our results. 

Assuming that the fluid attains an axisymmetric steady state, its surface den

sity profile is described by a function ~(R), where R is the radial distance from the 

center of the star. We use the equatorial radius of the star as our unit of length so 

that R = 1 represents the equatorial boundary of the star. As we discuss below, the 

exact position of the boundary is hard to locate since there is a smooth transition 

from the star to the disk. We use a particularly simple definition for the edge of 

the star, viz. that the vertical half-thickness is H = 0.1 at R = 1 (see equation [18] 

below). We are confident that the main results are not influenced by this choice. 
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We take the outer edge of the disk at some large radius, typically Rout = 100. We 

have verified that the results are quite insensitive to the choice of Rout. 

The motion of the fluid is described by an angular velocity profile, nCR), and 

a radial velocity, vn(R). The latter is taken to be positive when pointed outwards 

and is therefore negative for accretion. We take our unit of frequency to be such 

that the Keplerian angular velocity, ng(R), is unity at R = 1, i.e. 

(1) 

We assume that the two-dimensional fluid satisfies a polytropic equation of 

state, 

P = ]('2]7, (2) 

where P is the height-integrated pressure, and ]( and, are constants. In principle, 

we could solve our equations for any choice of ,. However, in an attempt to be 

realistic we have selected , = 2 for most of our computations. As we show in 

Appendix A, this produces the best match between our results and those of a 

standard thin accretion disk around a white dwarf. 

For a steady accretion rate M, mass conservation gives 

(3) 

Using this, the sound speed, Cs , of the fluid may be written as 

(4) 

The parameter Co describes a combination of M and the fluid constants ]( and ,. 

In our calculations we usually selected Co such that the sound speed at the outer 
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edge was a fixed fraction X of the local Keplerian velocity, i.e. 

(5) 

Since a typical cataclysmic variable has csln/( R rv 0.01 at the outer edge (cf. Frank, 

King, & Raine 1985), we set X = 0.01 in most of our calculations. As we see from 

equation (13) below, X is a measure of the relative thickness of the disk. 

5.2.2 Eq1wtions of Motion 

The continuity equation has been absorbed into our mapping between Cs and 

v R in equation (4), and we do not need an energy equation because of the poly-

tropic assumption. Therefore, the dynamics are completely described by the two 

components of the equation of motion. 

In steady state, the radial equation of motion gives 

dVR (2 2 1 dP 
VR-= n -n/()R---

dR 2j dR' 

which may be rewritten as 

dVR 

dR 
vR[(n1( - n2)R2 - c;] 

R(c; - vh) 

(6) 

(7) 

The form of the denominator alerts us to the possibility of obtaining a sonic point in 

the solution. By including pressure terms in the radial equation, we have thus gone 

beyond the standard theory of thin accretion disks; in fact, an equation similar to 

eq. (7) is used in the theory of so-called "slim" accretion disks (Abramowicz et al. 

1988, see also Paczynski & Bisnovatyi-Kogan 1981, Muchotrzeb & Paczynski 1982). 
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Next we obtain a differential equation for !1 by considering the tangential 

equation of motion. Let the disk transport angular momentum inwards at a steady 

rate j, and let us define 

j = jiM. (8) 

By our choice of units, j is expressed in units of the Keplerian angular momentum 

at the defined edge of the star. Going back to our discussion in sect. 5.1, the usual 

assumption is that j rv 1, regardless of the rotation of the star, for disks around un-

magnetized stars. We avoid this assumption and treat j as an adjustable parameter 

- an eigenvalue - whose value is determined by the boundary conditions. 

Consider now the angular momentum flow across some radius R in the system. 

The accreting fluid carries angular momentum inwards at the rate M!1R2. At the 

same time, there is an outward flux of angular momentum because of the viscous 

stress. If the kinematic coefficient of viscosity is v, then we have the following 

relation, 

• 2 2 dn . 
MnR + 27l'R vER dR = J. (9) 

Substituting equation (3) for E and using equation (8), this can be rewritten as 

(10) 

For the viscosity, we use the standard a-prescription of Shakura & Sunyaev 

(1973), which we write in the form 

(11) 

We assumed a = 0.1 in most of the calculations. 
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The differential equations (7) and (10), coupled with the relations (4) and 

(11), allow us to solve for vR(R), Q(R) and cs(R), given appropriate boundary 

conditions. The equations are, however, very stiff and cannot be integrated by 

any of the standard initial-value integrators. All our results were obtained using a 

relaxation method (cf. Press et al. 1986). Apart from overcoming the stiffness of 

the equations, the relaxation method was also particularly convenient for handling 

sonic points in equation (7). 

A derived quantity of particular interest is the thickness of the disk, H(R). 

To calculate this, we obviously need to abandon the two-dimensional approximation 

and make some assumption regarding the three-dimensional properties of the fluid. 

This question is discussed in Appendix A, where we show that, for a polytropic fluid 

with a particular choice of polytropic indices ("'f = 2, "'f3 = 3), we have the relation 

(12) 

The form of the relation between Hand C s is robust, but the particular coefficient, 

V2, is not to be taken seriously since it depends on somewhat arbitrary assumptions. 

A relation very similar to eq. (12) was used by Papaloizou & Stanley (1986). 

5.2.3 Outer Boundary Conditions 

Equations (5) and (12) combine to give one of the boundary conditions at the 

outer edge, viz. 

H(Rout) = J2 X. 
Rout 

(13) 

For our standard choice, X = 0.01, the disk is clearly quite thin at the outside. 

Moreover, for our value of"'f = 2, we have H/R ex: R1/ 8 (see Appendix A) and so 
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we are assured that, as we move in to smaller radii, the disk remains thin all the 

way down to the transition zone near the star. 

As a second boundary condition at the outer edge, we set 

(14) 

so that the disk is constrained to have the rotation rate appropriate to a standard 

thin disk. In practice, it turned out that the solutions are not sensitive to the choice 

of Q(Rout ). If a somewhat different choice was made for Q(Rout}, the solution would 

settle down to a near-Keplerian Q(R) within a short distance from Rout and then 

track Qg(R) except in the region close to the star at R rv 1. 

Because of the above comment, Q(R) is quite accurately Keplerian near the 

outer edge. Coupled with equations (4), (10) and (11), this permits us to calculate 

the infall velocity at the outer edge as well as the constant Co, 

3 v 1 
VR ="2 R (1-j/Rl/2) ' (15) 

( 
3 R3/2/2) (,-1)/2 C = (-R )(,-1)/2 = X'R-,/2 0:' 

o Cs v R -1---)-'j-'-R"""""'I---:/'-2' (16) 

Note that the radial velocity is quite subsonic at the outer edge of the disk. 

5.2.4 Inner B01Lndary Conditions 

One obvious condition here is that Q(R) should equal the rotation rate of the 

star, Q*, at R = 1, i.e. 

R=1. (17) 

Presumably, in a good solution, Q( R) will be essentially independent of Rand 

remain equal to Q* for R < 1, in order to represent the interior of a rigidly-rotating 
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star. This then brings up a rather subtle point: how do we define the exact location 

of the boundary between the disk and the star? Unfortunately, there appears to be 

no unique answer to this since we are treating the disk and the star as a single fluid 

system. 

For the sake of simplicity, we have taken the edge of the star to be defined 

as that radius where the relative thickness reaches a particular (arbitrarily-chosen) 

value, viz. 

H(R) = 0.1, R=l. (18) 

The particular value, 0.1, was chosen so as to be larger than the accretion disk 

thickness by a reasonable factor. Obviously, we do not claim that the point at 

which H / R = 0.1 represents the true stellar edge. We are merely selecting it as a 

convenient fiducial marker that is likely to be reasonably close to any other better

defined stellar edge. See sect. 5.3.3 for further discussion of this point. 

5.3 Results 

5.3.1 Two Solution Branches 

By numerical solution of the equations for the particular choice of parameters, 

'Y = 2, X = 0.01, a = 0.1, we discovered two distinct branches of solutions with the 

following characteristics: 

(i) Supersonic Solutions: These solutions have the characteristics of standard thin 

disks at large R. However, close to the star, they have a sonic radius, R s , where 

the conditions Cs = Ivnl = (Q1( - Q2)1/2 R are satisfied (see equation [7]). For 
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R < R s , the flow becomes supersomc. In order to match on to the star, the 

supersonic regime is terminated in a radial standing shock at a shock radius, Rsh, 

inside of which the flow adopts the character of a settling solution and merges with 

the star. Solutions in this branch usually correspond to stellar rotation rates n* 

somewhat below unity. The run of n, VR and H of a typical solution of this type is 

shown in Figure 5.1. This solution corresponds to j = 1.004, Q* = 0.5796, and has 

Rs = 1.00777, Rsl! = 1.00763. Supersonic solutions can match on to the star only 

if Rs ;::: 1. Because of this requirement, we find that they exist only for j > 1.0005 

(for the assumed" X, a). 

(ii) Subsonic Solutions: These solutions again behave like thin disks at large R but 

remain subsonic all the way into the star. They make a fairly abrupt (but contin

uous) transition from a Keplerian rotation profile, n(R) ~ QJ((R), to the constant 

stellar rotation, Q(R) = n*, at a radius outside our defined stellar edge. These solu

tions usually correspond to n* close to unity (the break-up stellar rotation). Figure 

5.2 shows a typical member of this solution type and corresponds to j = 1.004, 

Q* = 0.9142. Subsonic solutions exist for a range of values of j, including quite 

large negative values. 

The two solutions shown in Figures 5.1 and 5.2 both have the same eigenvalue 

J and satisfy the same boundary conditions at R = 1 and R = Rout, but have 

very different stellar rotations, Q*. The topological relation between these two 

branches is revealed by relaxing our inner boundary condition, equation (18), and 

considering instead a range of values for the height H(R = 1) at the stellar edge. 

We then obtain Figure 5.3, where we show n* as a function of H(R = 1) for the 

two solution branches. We find that the two branches meet at a mathematical cusp. 
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Fig. 5.l-Shows the radial dependence of n, VR, and H for a supersonic disk 
solution corresponding to X = 0.01, a = 0.1, Rout = 100, j = 1.004, and n* = 
0.5796. a) n vs. R; note the abrupt decrease of n in a boundary layer from a 
near-Keplerian value to n*. b) VR vs. R; IVRI increases slowly in the Keplerian 
part of the disk, rises rapidly in the supersonic region, peaks at the shock position, 
and finally decreases rapidly as the material settles onto the star. c) H vs. R; the 
disk height decreases gradually in the Keplerian disk, then more rapidly to reach 
a minimum at the shock position; in the settling region the height increases as the 
disk joins the star; the dashed line shows H vs. R for a uniformly rotating star in 
a point-mass potential with the same n*. d)-f) Show the same quantities as a)-c), 
but with the radial scale expanded to show the structure of the boundary layer; the 
circles show the position of the sonic point and the squares show the shock. The 
two squares used for v Rand H show the values on either side of the shock; n is 
continuous across the shock, but dn/ dR is not. 
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Fig. 5.2-Shows the radial dependence of Q, VR, and H for a subsonic disk solution 
corresponding to X = 0.01, a = 0.1, Rout = 100, j = 1.004, and n* = 0.9142. a) Q 
vs. Rj the angular velocity is nearly Keplerian until it reaches n*, and then stays 
nearly constant in to the stellar surface. b) VR vs. R; IVRI reaches a maximum 
close to the star and decreases in to the stellar surface, but both the maximum and 
subsequent decrease are far less abrupt than in the supersonic solution shown in Fig. 
5.1. c) H vs. R; the disk height reaches a minimum and then increases as the disk 
meets the star; again the minimum and subsequent rise are less abrupt than their 
supersonic counterparts; the dashed line shows H vs. R for a uniformly-rotating 
star in a point-mass potential with the same Q*. d)-f) Show n, VR, and H in the 
region close to the stellar surface. Unlike the supersonic disk in Fig. 5.1, all three 
quantities and their gradients are continuous. 
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Fig. 5.3-Shows the disk height, H, at the stellar surface, R = 1, as a function of 
the stellar rotation rate !1*, for supersonic and subsonic solutions with X = 0.01, 
a = 0.1, Rout = 100, and j = 1.004. Note that the two physically distinct solution 
branches meet at a sharp cusp. Our boundary condition, H = 0.1 at R = 1, 
corresponds to the dashed line. The solutions shown in Figures 5.1 and 5.2 are 
marked by squares. 

The solution corresponding to the tip of the cusp may be interpreted either as the 

last subsonic solution, that barely avoids the sonic point, or as the first supersonic 

solution, with an infinitesimally weak shock immediately following the sonic point. 

This particular solution has the smallest allowed value of H(R = 1) for the given 

value of j. As we move away from the cusp point in Figure 5.3 along the supersonic 

branch, the solutions have an increasingly larger separation between Rs and Rsh, 

the shock increases in strength, and the stellar rotation rate n* decreases. In fact, 

even solutions with negative !1* (backward-spinning star) are possible. 
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Fig. 5.4-Shows the disk height at the stellar surface H(R = 1) as a function of the 
stellar rotation rate n* for supersonic and subsonic solutions for X = 0.01, a = 0.1, 
Rout = 100, and various values of j. For j > 1.0005, both supersonic and subsonic 
branches of solutions exist; the two branches meet at a cusp point, which moves to 
lower n* and higher disk height for larger values of j. For j < 1.0005, only subsonic 
solutions exist; the solutions corresponding to different j are very close together 
and are not resolved in this diagram. 

5.3.2 Spin History of an Accreting Star 

Figure 5.4 is similar to Figure 5.3, but shows the supersonic and subsonic 

branches for a range of values of j. Both branches exist for j > 1.0005, but only 

the subsonic branch is possible for j < 1.0005. 

The dashed line in Figure 5.4 corresponds to our boundary condition, H(R = 

1) = 0.1 (equation [18]). An accreting star that begins with no rotation traverses 

this line starting at n* = 0 and moving to the right. At each value of n*, there 

is a unique value of j of the accretion disk, i.e. there is a unique rate at which 
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the star accretes angular momentum. The mapping between Q* and j is shown in 

Figure 5.5. For most of the range of n*, the flow corresponds to the supersonic 

branch, and the value of j is relatively insensitive to n*. However, when as a 

result of spin-up n* exceeds 0.914, the solution switches from the supersonic to the 

subsonic branch. Immediately, the nature of the Q* vs. j mapping also changes 

dramatically. Now the curves corresponding to different j crowd together in Figure 

5.4 and, consequently, a small increase in n* causes a large decrease in j. 

The fact that j plummets to large negative values as n* approaches unity 

implies that any star will be able to continue accreting indefinitely without ever 

encountering an angular momentum barrier. Consider, for instance, the situation 

we mentioned in sect. 5.1, namely accretion on to an unmagnetized massive white 

dwarf. This is a case where the maximum angular momentum Jrnax of the star 

decreases as its mass M increases. This means that when such a star approaches 

the critical rotation it will require a disk with negative j in order to continue to 

accrete. From Hachisu's (1986) results we estimate that a white dwarf close to the 

Chandrasekhar limit may need j rv -1. As we have shown above (Figure 5.5), 

subsonic solutions with negative j are available and the star can indeed continue 

accreting. 

Figure 5.6 shows in detail the solution corresponding to j = -10. It will be 

noted that this solution is rather similar to the subsonic solution with j = 1.004 

shown in Figure 5.2. Thus, the negative j solutions are not different or peculiar 

in any way. They are quite reasonable solutions which may be expected to occur 

whenever the conditions require them. 
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Fig. 5.5-Shows the variation of the specific angular momentum j with the stellar 
rotation rate fl* for X = 0.01, a = 0.1, Rout = 100, and our inner boundary 
condition, H(R = 1) = 0.1. The scale is expanded in the lower panel. For Q* < 
0.914, the solutions are supersonic and j tv 1, as in the standard picture of a disk 
and boundary layer. The specific angular momentum is j '" 1.003 at Q* = 0, 
and increases very slowly with fl*, then more rapidly until it peaks at j ~ 1.03 at 
fl* = 0.914. The peak in j corresponds to the transition between supersonic and 
subsonic solutions. Note that these values are expressed in our dimensionless units; 
the physical j actually increases more rapidly with fl* due to rotational flattening 
of the star. For Q* > 0.914, the solutions are subsonic, and j decreases very rapidly 
for only a slight increase in fl*. 
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Fig. 5.6-Shows n, v R, and H for a subsonic disk solution corresponding to X = 
0.01, a = 0.1, Rout = 100, j = -10, and n* = 0.915. Note the close similarity to 
the solution of Fig. 5.2 which corresponds to a more standard angular momentum 
accretion rate of j = 1.004; as in Fig. 5.2, all quantities are continuous, and the 
dashed line shows H vs. R for a uniformly-rotating star in a point-mass potential 
with the same n*. 
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5.3.3 Location of the Stellar Edge 

A somewhat unsatisfactory feature of our analysis is that we are unable to 

identify uniquely the boundary between the star and the disk. Figures 5.1, 5.2 and 

5.6 show that our particular choice (based on equation [18]) is not unreasonable 

since (i) nCR) is very nearly constant interior to our defined boundary at R = 1 

and varies rapidly outside it, (ii) the vertical thickness of the fluid increases rapidly 

interior to R = 1 as it would in a star, and (iii) the infall velocity IVRI decreases 

rapidly for R < 1. All these criteria suggest that the "real" stellar edge is not very 

far from our defined edge. 

In order to demonstrate that the fluid at R < 1 does represent the star fairly 

well, we show by dashed lines in Figures 5.1,5.2,5.6, and 5.7, the shape of a rigidly

rotating polytropic star in a point-mass potential with a rotation rate n*. We see 

that the H(R) profiles obtained from our solutions track those of the model stars 

reasonably well. (The small mismatch in Figure 5.1£ occurs because the "star" in 

our solution spins faster in its outer layers.) Despite the satisfactory agreement 

between our solutions and the model stars, the smooth transition from disk to star 

makes it difficult to identify uniquely the radius of the star. 

This uncertainty regarding the stellar radius in turn makes it difficult to answer 

the simple question: what is the ratio of the maximum or "equilibrium" rotation, 

(n*)max, achieved by an accreting star to its break-up rotation, n max ? We have 

expressed n* in terms of the Keplerian nJ( at the edge of the star, defined as the 

radius where H/R = 0.1. In these units, we see from Figure 5.6 that (n*)max = 

0.9157 for a star that requires j = -10 at equilibrium. More normally, j is probably 

;:: 0 at equilibrium and (n*)max ~ 0.9145. An isolated uniformly rotating polytropic 
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star with H = 0.1 at R = 1 breaks up if n* > 0.9141. If we use this as our definition 

of Dmax (cf. Paczynski 1991), then we see that the cases with j = -10 and 0 

mentioned above are both spinning faster than break-up. Of course, the stars do 

not actually break up because they spin more slowly on the outside. 

5.3.4 The Role of the Supersonic Solutions 

In the calculations reported above, we found a sudden change in the character 

of the solutions, as well as in the j vs n* mapping, between the supersonic and 

subsonic branches. This might lead one to suspect that it is the existence of the 

supersonic branch that leads to the particular nature of the mapping. In fact, this 

turns out not to be the case. 

Papaloizou & Stanley (1986) showed that supersonic flows occur in disk bound-

ary layers only if the viscosity is high. By using a lower viscosity coefficient in 

the boundary layer, where the pressure scale height becomes smaller than the disk 

thickness, they could find completely subsonic flows even with slowly-rotating stars. 

Appendix B presents an analysis of our fluid equations in the region of the boundary 

layer which confirms this result. We find that for, = 2, fully subsonic solutions 

should be possible if the following condition is satisfied, viz. 

(19) 

where X is defined at Rout = 100 (see eq. 5). The constant C is estimated to be 

rvO.4 and may be up to a factor rv2 smaller. 

The calculations presented so far have used X = 0.01, a = 0.1. Since these 

parameters violate the above constraint by a large factor, we obtained supersonic 



82 

1.2 1.2 

1 1 

.8 .8 

c:: .6 c:: .6 

.4 .4 

.2 .2 

0 
2 3 4 1.0021.0041.0061.0081.01 

R R 
-2 -2 

....... -4 ? -4 off 
I I 
~ ~ 

en 
-6 

en 
-6 .Q .Q 

-8 
2 3 4 1.0021.0041.0061.0081.01 

R R 
0 0 

-1 -1 

J: J: 
Cl -2 Cl -2 
.Q .Q 

-3 -3 

-4 
2 3 4 1.0021.0041.0061.0081.01 

R R 

Fig. 5.7-Shows n, Vn, and H for a subsonic disk solution corresponding to X = 0.1, 
a = 0.0001, Rout = 100, j = 1.0110, and n* = O. Note the broad similarity to the 
supersonic solution of Fig. 5.1, except that this solution does not have a sonic point 
or shock, and there are no discontinuities in the quantities or their derivatives. The 
dashed line shows H vs. R for a uniformly-rotating star in a point-mass potential 
with the same n*. 
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Fig. 5.S-Similar to Fig. 5.4, but for X = 0.1, a = 0.0001, Rout = 100. All the 
branches here are subsonic, in contrast to the case in Fig. 5.4, and the sharp cusps 
of Fig. 5.4 are rounded off here. 

solutions for a wide range of n*. To test this further, we have repeated our calcu-

lations for the parameter values, X = 0.1, a = 0.0001, which satisfy the constraint 

in equation (19). For these parameters, we do find subsonic solutions for all n*, 

as expected. Figure 5.7 shows the profiles of n, Vn and H of the solution corre-

sponding to n* = o. This solution looks rather similar to the supersonic solution of 

Figure 5.1, except that it is entirely subsonic. A plot of H / R vs n* for various j is 

shown in Figure 5.8. Again, rather surprisingly, this looks quite similar to Figure 

5.4, except that whereas there is a true cusp connecting the two branches in Figure 

5.4, there is a rounded transition in Figure 5.8. The similarity between Figures 5.4 

and 5.8 means that the mapping between j and n* in the present case will be very 
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similar to the behavior shown in Figure 5.5. We thus conclude that the main results 

of this paper are valid for quite a wide range of the disk thickness parameter X and 

viscosity parameter a. The occurrence of supersonic solutions for astronomically 

relevant ranges of X and a is quite interesting, but is not crucial to the argument. 

5.4 Discussion 

The main result of this paper is that we have found a branch of accretion disk 

solutions that transfer little, no, or even negative amounts of, angular momentum 

to the accreting star. These fully subsonic disk configurations (e.g. Figures 5.2, 

5.6) are available whenever the star spins at a rate near its "break-up" rate, n max . 

Thus, by selecting the solution with the appropriate j, a rapidly-rotating star can 

continue to accrete without spinning up any further. The star thus achieves an 

"equilibrium" spin rate, (n*)max' This is possible even in the extreme case of an 

accreting massive white dwarf, which has to lose angular momentum in order to 

accrete mass. 

We have not been able to calculate precisely the ratio of the maximum or 

"equilibrium" spin rate, (n* )max, to the "break-up" spin rate, f2max . This question 

is discussed in sect. 5.3.3. The problem is that nrnax can be estimated only if the 

outer edge of the star can be identified, and we have been unable to do this in 

a unique way. For most of the calculations, we have defined the edge of the star 

to be the point at which the vertical half-thickness of the fluid is a tenth of the 

radius. This arbitrary choice is quite adequate for most of the purposes of this 

paper, but it fails to provide an estimate of n rnax . Using a polytropic stellar model 
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to define n max , it could be argued that the "equilibrium" spin rate (n*)max exceeds 

break-up. Of course, the star is saved from actually breaking up because it rotates 

differentially on the outside, where it merges with the disk. In the discussion below 

we ignore the question of whether (n*)max is greater or less than n max , and refer 

to the branch of solutions under discussion as merely being "near" break-up. 

The wide range of j allowed in the solutions near break-up may seem para

doxical, but is actually easily understood. As shown by equation (9), at any R 

in the disk there is angular momentum flow in opposite directions due to different 

causes. Angular momentum is advected inwards by the accreting fluid, but at the 

same time angular momentum is also moved outwards by shear stresses. The net 

flow, j = jN!, is the difference of these two quantities, and can, in principle, have 

either sign and a range of magnitudes. There is a constraint, however, if the central 

star is rotating slowly. In that case, nCR) must reach a maximum somewhere close 

to the stellar surface, so that dn/dR = 0, and the shear stress vanishes (see Figures 

5.1 and 5.7). Consequently, j is directly equal to the advected angular momentum 

at this radius and is constrained to be positive. Indeed, since the transition zone 

(the boundary layer) is usually narrow and occurs just outside the stellar surface, 

the value of j is constrained to have a value /"VI (in our units). In contrast, the solu

tions that match on to a rapidly rotating star are very different. Here, dn/dR < 0 

at all R and so there is an outward shear-induced flow of angular momentum at 

every point. By adjusting ~(R) (or equivalently vn(R) through equation [3]), the 

outward angular momentum flow can be made larger or smaller than the advected 

flow, and so there is no constraint on either the magnitude or sign of J. 
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An important feature of the solutions near break-up is that there is a smooth 

transition from a near-Keplerian thin disk to the rapidly-rotating star. Conse

quently, there is no separate entity such as a "boundary layer" separating the two; 

in particular, there is no component of additional luminosity from the boundary 

layer. It has been a long-standing problem that most cataclysmic variables show 

no evidence for the strong x-ray emission expected from the boundary layer (e.g. 

Ferland et al. 1982). It is tempting to speculate that most of these systems may be 

spinning near break-up and therefore no longer have distinct boundary layers. 

In an earlier paper (Narayan & Popham 1989, Chapter 4) we had argued 

against the accretion-induced-collapse (AIC) scenario for the formation of binary 

neutron stars, on the grounds that a white dwarf that has been spun up close to 

break-up will be unable to accrete any further. As we have shown in the present 

paper, this argument is false, and AIC is not limited by any barrier due to angular 

momentum. Also, although the winds and outflows produced by protostars may 

arise in the boundary-layer region, there is no necessity for such winds because of 

any barrier to accretion, as proposed by Shu et al. (1988). 

The second branch of solutions that we have discovered corresponds to slowly

rotating stars, with n* ranging from zero to a little below break-up. These solutions 

agree more closely with the standard picture of thin accretion disks (see Figures 5.1 

and 5.7). They have a narrow transition zone just outside the star where n(R) 

falls rapidly from nearly Keplerian to nearly the stellar rate n*. A substantial 

fraction of the total luminosity of the system is produced in this boundary layer. 

In these solutions, the specific angular momentum accreted by the star corresponds 
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to j '" 1, as in the standard picture, and this value is only weakly dependent on n* 

(see Figure 5.5). 

An interesting feature of this branch of solutions is that the flow mayor may 

not become supersonic close to the star, depending on the parameters of the disk. 

If the inequality of equation (19) is satisfied, the flow remains entirely subsonic, but 

if it is violated the flow must become supersonic at least for some range of Q*. 

Standard disk parameters corresponding to cataclysmic variables, viz. relative 

disk thickness X '" 0.01, viscosity parameter <l '" 0.1, violate the condition (19) 

by a large factor and so supersonic flow is indicated in these systems. We note 

that Kley (1989) also obtained supersonic flow in a two-dimensional calculation of 

a boundary layer including radiation processes. Rather surprisingly, the character 

of the mapping between j and n* does not seem to depend on whether the flow is 

subsonic or supersonic (see sect. 5.3.4). In those cases where there is supersonic flow, 

there is also a radial shock where most of the kinetic energy of free-fall is thermalized. 

The existence of this shock may possibly be identified observationally, thus providing 

a diagnostic to distinguish between subsonic and supersonic boundary layers. 

We must mention, however, a potentially serious problem with the supersonic 

solutions. Since the supersonic zone between Rs and Rsh in these solutions acts like 

an isolating element between the star and the disk, no sound waves can travel back 

to the disk across the supersonic zone to convey information about the accreting 

star, and one wonders how the disk will know what j to choose in order to match 

the inner boundary condition. A resolution of this question is beyond the scope of 

the present analysis. However, we note that, within the assumptions of our analysis, 

and for reasonable choices of X and <l and a wide range of stellar rotation rates 
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n*, the supersonic solutions are the only ones that are allowed - there just are no 

other solutions that can match all the boundary conditions. 

As we saw in sect. 5.3.4, the supersonic solutions can be avoided by reducing 

a significantly and using a large value of X. We do not consider this alterna

tive particularly attractive since our choice of these parameters is quite reasonable 

according to standard disk models (though Papaloizou & Stanley [1986] make the 

plausible argument that the boundary layer is likely to have a much smaller effective 

a than the rest of the disk.) Another possibility is that the disk may violate either 

the steady-state or axisymmetric assumptions. It is conceivable that a time-variable 

or non-axisymmetric (e.g. spiral shocks, cf. Spruit 1987) solution may contrive to 

match the boundary conditions while at the same time remaining radially subsonic. 

Any such solution will, in a time/azimuthally-averaged sense, probably be similar 

to our supersonic solutions. 

It seems likely that the spectra of accretion disks around rapidly-rotating stars, 

particularly disks with negative j, will be different from the spectra of standard 

models of thin disks. In order to calculate realistic spectra for comparison with 

observations one should solve a more complete set of equations than we have done 

here, including an energy equation and radiative transfer. We are currently working 

on this. 
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6. SUPERSONIC INFALL AND CAUSALITY IN ACCRETION DISK 

BOUNDARY LAYERS 

Abstract 

Previous studies of accretion disk boundary layers have indicated the presence 

of supersonic radial inflows. Such flows are troubling since they would presumably 

break causal contact between the accreting central star and the disk, thus calling 

into question the physical self-consistency of the solutions. We identify certain 

non-physical aspects of the standard a-viscosity prescription as the cause of this 

paradoxical behavior. We attempt to come up with a more physically realistic 

description of viscosity by making modifications to the a-prescription, and check to 

see whether these modifications eliminate the non-causal behavior. We first modify 

the viscosity coefficient to account for the reduced radial pressure scale height in the 

boundary layer. This reduces the radial velocities but, as noted by previous workers, 

does not eliminate supersonic infall for large values of a. We then include a second 

factor to allow for the fact that the viscosity coefficient must vanish when the 

steady-state radial velocity of the flow reaches the maximum speed of the diffusive 

particles (in this case, turbulent fluid blobs) that produce the viscosity. When this 

modification is used, we find causally connected, physically self-consistent solutions 

for all choices of parameters. We thus conclude that information flow between the 

star and the disk can be maintained in all accreting systems in steady-state. 
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6.1 Introduction 

The boundary layer, where an accretion disk meets the central accreting ob

ject, is important to observations of accreting systems, since up to half the accretion 

luminosity can be released there. This vital region presents a substantial challenge 

to modelers of accretion flows, since the standard approximations used in the disk 

break down. The angular velocity n generally reaches its peak value in the bound

ary layer, and subsequently drops from a near-Keplerian value to match the stellar 

angular velocity [2*. In the process, pressure gradient replaces centrifugal force as 

the primary means of radial support for the accreting material. The radial velocity 

also generally reaches its maximum value in this region, making it the most likely 

location for the occurrence of supersonic radial infall. 

The question of whether the radial velocities will be supersonic in the boundary 

layer has been the subject of some discussion. Pringle (1977) argued on physical 

grounds that a supersonic region cannot exist because information from the central 

star will not be able to cross such a region and reach the disk. Such information 

transfer is vital for the self-consistency of accretion disk flows since the amount 

of angular momentum that a steady-state disk transfers inwards depends on the 

properties of the central star (Pringle 1981, Popham & Narayan 1991). It is difficult 

to understand how a disk will be able to select the appropriate amount of angular 

momentum to transfer without any feedback from the star. 

Despite Pringle's persuasive argument, several numerical studies of the bound

ary layer have found that supersonic flows can occur, particularly when the viscosity 

coefficient is large enough. Papaloizou & Stanley (1986) modeled the boundary layer 

using a simple polytropic equation of state and reduced the viscosity coefficient by 
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modifying the standard a-prescription of Shakura & Sunyaev (1973) to include the 

influence of the radial pressure gradient. Despite this modification, they found 

that supersonic radial infall still occurred in some of their models. Kley (1989) 

constructed a more sophisticated two-dimensional model and included radiative 

transfer, but used a fairly large constant value for the viscosity coefficient. He too 

found radial velocities in excess of the sound speed. 

In our previous paper (Popham & Narayan 1991, Chapter 5), we constructed 

a simple model which treated the disk, boundary layer and star as a single two

dimensional fluid system governed by a polytropic equation of state. We used the 

standard a-viscosity prescription with a = 0.1, and found solutions which attained 

supersonic radial velocities in the boundary layer. From an analysis of the flow 

equations, we derived an approximate condition which showed that either a very 

small value of a or a large relative disk thickness was required for subsonic ra

dial infall. Disk models which satisfied this condition were indeed fully subsonic; 

however, for normal thin disk parameters, the value of a required, a rv 10-4, was 

unacceptably small. Paczynski (1991) used a model similar to that in Chapter 5, 

but assumed subsonic radial flow by making an effective hydrostatic approximation. 

He found that this assumption would be violated for some of his solutions unless a 

was very small. 

All of these results suggest that we may be missing some important ingredient 

in our understanding of accretion disks. Pringle's argument is simple and com

pelling, and yet most efforts to model the boundary layer have resulted in solutions 

which violate his consistency requirement. The purpose of this paper is to resolve 

this paradoxical situation. 
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We begin by making an important qualitative point. A steady-state axisym

metric thin disk has motions that are essentially two-dimensional and therefore has 

two components to the equation of motion. The pressure gradient contributes to the 

radial equation and therefore this equation is strongly influenced by sound waves. 

On the other hand, the azimuthal, or tangential, equation of motion is dominated 

by viscosity, which is a diffusive process. The viscous transport of angular momen

tum is usually modeled through the standard diffusion equation, which implicitly 

propagates information at infinite speed (cf. Narayan 1992 for a discussion of this 

point). Therefore, even when the radial flow is supersonic in the boundary layer, 

the tangential motions in the disk could still be coupled to the star through the 

viscous interaction. One could thus circumvent Pringle's consistency condition by 

saying that there is viscous communication even across supersonic regions, so that 

the supersonic solutions are formally self-consistent. 

This, however, is a very unsatisfactory resolution of the paradox because it de

pends on an unphysical feature in the mathematical modeling of viscous transport. 

In real fluids, particularly those with turbulent diffusion, transport is mediated by 

blobs of fluid, and it is likely that diffusive information transfer will be limited to 

some speed comparable to the sound speed. In such a situation, will an accreting 

star be able to maintain causal contact with the surrounding disk? The calculations 

we report here provide an answer to this question. 

In the following sections, we attempt to describe the viscosity in a more re

alistic way by making two modifications to the a-viscosity prescription. We then 

perform calculations using the model of Chapter 5 to examine the effects of these 

modifications on the radial velocity in the boundary layer. First, we introduce a 
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prescription similar to the one used by Papaloizou & Stanley (1986) to account 

for the reduced mean free path in regions where the pressure scale height in the 

radial direction is substantially smaller than that in the vertical direction. We con

firm Papaloizou and Stanley's result that this modification alone cannot eliminate 

supersonic flows under all conditions. Next, we invoke the concept of a causally lim

ited viscosity as described by Narayan (1992). This involves introducing a factor 

which reduces the viscosity coefficient as the radial velocity approaches the maxi

mum speed of the diffusive particles. With this change, we find causally connected 

solutions for all reasonable choices of parameters, thus resolving the paradox. 

The remainder of the paper is divided into three sections. Section 6.2 summa

rizes our simple disk model and discusses the modifications to the viscosity prescrip

tion. Section 6.3 presents the results of our calculations and illustrates the effects 

of the modifications discussed in sect. 6.2. Section 6.4 discusses the implications of 

the results and possible improvements to the model. 

6.2 Theory 

6.2.1 The Role of Viscosity 

Standard theory (Shakura & Sunyaev 1973, Pringle 1981) shows that the 

outward appearance of an accretion disk does not depend strongly on the magnitude 

of the viscosity coefficient v. As long as v is large enough to prevent the self-gravity 

of the disk from becoming important, the surface density E of the disk will adjust 

itself to provide the appropriate mass accretion rate M, so that the energy dissipated 

per unit area will be independent of viscosity. 
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Viscosity plays a more important role in models of accretion disks. Assuming 

a steady-state disk, the rate of angular momentum flow j through any radius R in 

the disk is given by 

• • 2 2 dn 
J = MQR + 27l"R v~R dR' (1) 

where n is the angular velocity of the fluid. Equation (1) can be rearranged to give 

(2) 

where we have used M = -27l"RvR~, so that the radial velocity VR is negative for 

accretion, and have defined j = j j !VI. In the boundary layer, we expect dn j dR to 

be large, so that a large value of v will require a large value of VR. 

To know whether the radial velocity becomes supersonic in the boundary layer, 

we must examine the radial equation of motion, 

(3) 

where ng = (G M j R3 )1/2 is the Keplerian angular frequency. We use units in which 

the radius of the star, R*, is the unit of length and ng(R*) is the unit of frequency. 

Using a polytropic equation of state, P = J(~" for the height-integrated pressure 

and defining the sound speed Cs by the relation c; = dPjd~, we can rewrite (3) in 

the form 

VR[(Q1( - n2)R2 - c;] 
-

R(c; - v'h) 
(4) 

Equations (2) and (4) are identical to those used in Chapter 5, which also gives 

more details about the disk model. Combining the two equations, we find 

dVR v[(n1( - Q2)R2 - c;] 
dn - R(c; - v'h)(Q - jjR2) . 

(5) 
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For a slowly rotating star, !1 drops from !1I«R*) to rv 0 in the boundary layer. 

From (5) we see that the corresponding change in v R is proportional to v. Hence, 

if v is large enough, the flow is bound to become supersonic. 

6.2.2 Viscosity Prescriptions 

6.2.2.1 Alpha Viscosity 

Viscosity is fundamentally a diffusive process which redistributes transverse 

momentum in a shearing medium, or angular momentum in a differentially rotating 

flow. The viscosity coefficient v serves as the diffusion constant, and is given by 

the product of the velocity and the mean free path of the diffusing elements. The 

viscosity coefficient in accretion disks is generally taken to be v = aCsH, where 

H rv cs /!1I< is the vertical pressure scale height. This assumes that the diffusion is 

produced by turbulence in the disk, so the diffusing elements are turbulent blobs 

of fluid .. The turbulent velocity is taken to be less than or approximately equal to 

the sound speed Cs , since it is generally assumed that any supersonic motions will 

quickly be slowed by shocks. The mean free path for turbulent motions is taken to 

be less than or equal to the vertical pressure scale height H, since this is probably 

the maximum size of a turbulent eddy in the disk. The factor a simply allows us 

to combine our uncertainties into a single number. 

6.2.2.2 Viscosity Incorporating Radial Pressure Scale Height 

Like several of the other assumptions used in accretion disk theory, the as

sumption that the mean free path for turbulence is limited only by the vertical 

pressure scale height of the disk breaks down in the boundary layer region. Rather, 
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one would expect that the length scale for turbulence in the radial direction would 

be given by the radial pressure scale height, which becomes smaller than the vertical 

pressure scale height as the flow makes the transition from centrifugal to pressure 

support. This was noted by Papaloizou & Stanley (1986), who used a viscosity 

coefficient given by 

v = l/H + l/Hp ' 
(6) 

where Hp is the radial pressure scale height. This prescription essentially allows v 

to be determined by the smaller of Hand H p , yielding values of v which are close 

to those given by the usual a-prescription in the disk, but are substantially reduced 

in the boundary layer due to the small radial pressure scale height. We adopt this 

basic form for the viscosity coefficient, but write the radial pressure scale height as 

P I (1 1 dv R) 1-1 
Hp = IdP/dRI = "Y R + Vn dR ' 

(7) 

which differs slightly from the expression used by Papaloizou & Stanley (1986). 

This yields a viscosity coefficient 

(8) 

6.2.2.3 Causally Limited Viscosity 

The turbulent diffusive motions assumed to be occurring in accretion disks 

are presumably limited to some maximum velocity Vt which is expected to be '" c s • 

Diffusive motions in the radial direction redistribute angular momentum, but it 

is important to remember that at the same time the disk material is also flowing 

inward with a velocity vn. For a small flow velocity Vn ~ Vt one expects that the 
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bulk flow does not affect the efficiency of diffusion. However, if the flow reaches a 

velocity approaching Vt, diffusion in the upstream direction ought to be suppressed, 

shutting off completely for VR > Vt. Thus one would expect the viscosity coefficient 

v to depend on VR and to vanish if VR exceeds the turbulent velocity Vt. Narayan 

(1992) has developed a model for viscosity in the presence of bulk flows, using an 

approach analogous to the flux-limited diffusion theory of Levermore & Pomraning 

(1981). The basic result of this analysis is that the viscosity coefficient is reduced 

by a factor given approximately by (1 - vh/v;)n, where n is an integer whose value 

depends on what one assumes for the scattering properties of the diffusive elements. 

For reasonable assumptions, one obtains n = 2 (see Narayan 1992), which we adopt 

in this paper. Let us write the maximum turbulent velocity as Vt = (3c s , where we 

expect (3 to be of order unity. This yields a modified viscosity coefficient 

(9) 

Combining this prescription with the radial pressure scale height prescription in 

equation (8) gives 

(10) 
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6.3 Results 

6.3.1 Calculations 

The calculation method is similar to that used in Chapter 5. We numerically 

solved equations (2) and (4) using a relaxation method and a polytropic index 

'Y = 2. The outer edge of the disk was fixed at 100 stellar radii; the ratio of the 

sound speed to the Keplerian velocity at the outer edge was taken to be 0.01, and 

the angular velocity at the outer edge was assumed to be Keplerian. At the inner 

edge, we defined R = 1 as the radius where the disk height reaches O.lR. We also 

specified that the angular velocity at R = 1 equals the stellar angular velocity n*. 

Chapter 5 gives more details about how the boundary conditions were set. 

6.3.2 Alpha- Viscosity 

As Chapter 5 demonstrated, disk solutions using alpha-viscosity and a = 0.1 

have a supersonic boundary layer unless the star is rotating near breakup speed. 

Solution a in Figure 6.1 shows such a solution for the case where the star is rotating 

quite slowly. The flow reaches a large Mach number before being slowed by a radial 

standing shock and settling onto the star. The angular velocity drops rapidly as the 

flow accelerates and is continuous across the shock. It drops much more slowly in 

the post-shock region, however, since the viscosity rises rapidly with the increasing 

sound speed and height of the disk. 

Solution a in Figure 6.1 is an example of a case where the inner boundary 

conditions are apparently communicated to the outer disk despite the presence of 

an intervening supersonic zone. This communication is seen explicitly through the 
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Fig. 6.1-The Mach number, IVRlcsl, in the boundary layer region for two different 
forms of the viscosity coefficient v. Solution a uses the standard a-viscosity pre
scription v = aCsH with a = 0.1. The Mach number rises to about 15 before the 
infalling matter encounters a shock and settles onto the star. Solutions band c use 
a modified viscosity coefficient (eq. 8) based on the reduced radial pressure scale 
height in the boundary layer; Solution b has a = 0.1, and Solution c has a = 1. So
lution b remains subsonic, but Solution c becomes supersonic and achieves a Mach 
number of about 6 before reaching a shock. All three solutions correspond to a 
slowly rotating star; the angular velocity n drops rapidly from rv 1 to rv 0 in the 
boundary layer. 

presence of the global eigenvalue j, or equivalently the global angular momentum 

flux j, in the solution. The accretion disk transfers the exact amount of angular 

momentum appropriate to the boundary conditions; in other words, it selects the 

value of j which permits it to match the radius R* and rotation rate n* of the star. 

If R* or n* changes, the disk will presumably find a new value of J to match the 

new boundary conditions. How is this possible if there is a supersonic zone isolating 

the disk from the star? This is the basic paradox we are attempting to resolve. 
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6.3.3 Viscosity Modified by the Reduction in Radial Pressure Scale Height 

The radial pressure scale height becomes small when the angular velocity 

drops substantially below Keplerian. We have computed solutions using a viscosity 

coefficient of the form given in equation (8), i.e. taking account of the reduction in 

radial pressure scale height but not including any causal limiting factor. Solution 

b of Figure 6.1 shows such a solution for a = 0.1 and a slowly rotating star. The 

viscosity coefficient drops substantially below the value derived from the normal 

alpha-prescription; in fact, this reduction is sufficient to prevent the flow from 

exceeding the sound speed. Unfortunately, this modification is not sufficient to 

prevent supersonic flows for all reasonable values of a. Solution c of Figure 6.1 uses 

this same form of the viscosity, again for a slowly rotating star, but with a = 1. The 

flow now becomes supersonic, and we are once again left with the original problem 

of how the inner boundary conditions can be communicated to the disk. 

6.3.4 Causally-Limited Viscosity 

We next include the effect of causality in the viscosity prescription by calcu

lating disk solutions using the viscosity coefficient given in equation (10). We note 

that there are now two critical velocities in the problem: Cs , which represents the 

speed at which pressure fluctuations are transmitted, and Vt, which measures the 

maximum speed for the turbulent motions which transport angular momentum. In 

order to clearly demonstrate the role of these two velocities, we have carried out 

calculations for two separate cases, one with Vt < Cs and the other with Vt > cs . 

Solution a of Figure 6.2 shows the boundary layer around a slowly rotating 

star, using the causally limited viscosity coefficient with a = 1 and Vt = 0.8cs • As 



1 ............... ... . .......... ·0······························· 

.5 

o I-------r 
1.0045 1.005 1.0055 

R 
1.006 1.0065 

101 

Fig. 6.2-The Mach number in the boundary layer region for disk solutions using 
a causally limited viscosity prescription (eq. 10). Solution a sets the maximum 
velocity of turbulent motions Vt = O.Scs , while Solution buses Vt = 1.2cs . Solution 
b briefly becomes supersonic, but neither solution ever has radial velocity in excess 
of Vt, so the star and disk are in causal contact in both solutions. Like the solutions 
shown in Fig. 6.1, these solutions correspond to a slowly rotating star. 

the flow velocity Vn approaches the maximum turbulent velocity Vt, the viscosity 

coefficient drops dramatically, as seen in Figure 6.3. This in turn allows the angular 

velocity to drop very rapidly down to match the slowly rotating star. The flow 

velocity never exceeds the maximum turbulent velocity, and, because Vt < Cs , the 

flow remains fully subsonic. This is a case where the star is clearly in complete 

communication with the disk. 

As a second example, we examine the effect of setting the maximum velocity 

of turbulent motion to be Vt = 1.2cs . In this case, again using a = 1 and a 

slowly rotating star, we obtain Solution b shown in Figure 6.2. Figure 6.3 shows 
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Fig. 6.3-The viscosity coefficient v in the boundary layer region for the solutions 
shown in Fig. 6.2. The viscosity coefficient drops dramatically in the boundary layer 
in both solutions as the radial pressure scale height drops and the radial velocity 
approaches the maximum velocity of turbulent motions Vt. The local maximum 
in the viscosity coefficient for Solution a at R = 1.00504 corresponds to the point 
where the radial velocity reaches its maximum value. This results in a relatively 
large radial pressure scale height since the velocity gradient is zero at that point 
(cf. eq. 7). 

that the viscosity drops to a very small value as the radial velocity approaches Vt. 

Although the solution does have a supersonic zone, nonetheless v R never exceeds 

Vt. This is therefore a very interesting case where the star is in partial contact 

with the disk. There is viscous communication which enables the disk to select the 

value of J appropriate to the stellar boundary conditions. However, there is no 

pressure communication because of the supersonic zone, resulting in a shock where 

the infalling supersonic material hits the star. 
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6.3.5 The j vs. n* Relation 

Chapter 5 showed that the value of j = j / M required to match the stellar 

boundary conditions is fairly insensitive to the stellar rotation rate n* as long as 

n* is less than the breakup rotation rate. However, once the star is at breakup, j 

becomes very sensitive to n*, dropping rapidly as n* increases. Similar results were 

found by Paczynski (1991). The solutions in Figures 6.1-6.3 correspond to a slowly 

rotating star, since these are the solutions which attain the largest radial velocities. 

For each form of the viscosity we have also performed calculations for a range of 

values of n* in order to see whether the form of the j vs. n* relation changes in 

any substantial way when modifications are made to the viscosity prescription. We 

find that the basic form of the relation is essentially unchanged, and the actual 

numerical values of j vary only slightly as the viscosity prescription changes. 

Figure 6.4 shows the j vs. n* curve for a series of solutions calculated using 

the viscosity of equation (10) with Vt = O.Ses , which includes Solution a in Figure 

6.2. The basic form of the curve is identical, with j increasing slowly from about 

1.003 to 1.03 as n* increases from zero to about the breakup value, then falling very 

rapidly as n* is increased farther. The j values do appear to be slightly smaller 

here than they were for the case calculated in Chapter 5; this is probably a result 

of the change in (lI rather than the change in the form of the viscosity. This weak 

dependence on (lI can also be seen in Figure 5.7, where for (lI = 10-4 we found 

j = 1.011 for n* = o. 
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Fig. 6.4-The angular momentum per unit mass accreted by the central star, j, 
as a function of the stellar rotation rate Q*. The solid line is the j(Q*) relation 
from Chapter 5 (Fig. 5.5). The points correspond to values of j(Q*) calculated for 
a series of solutions using causally limited viscosity with Vt = 0.8es • Solution a of 
Fig. 6.2 corresponds to the point at j = 1.0026, Q* ~ 0.03. 

6.4 Discussion 

The basic conclusion of this paper is that the problem of having apparently 

non-causal radial velocities in the boundary layer region can be overcome by making 

simple, physically justifiable modifications to the alpha viscosity prescription. The 

required modifications fit naturally into the framework of diffusive transport of 

angular momentum by turbulent motions. It seems clear that the a-prescription 

substantially overestimates the value of the viscosity coefficient in the boundary 

layer region, both by assuming that there is no limit to the speed at which viscous 

angular momentum transport can occur, and by using the vertical pressure scale 
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height of the disk to represent the radial mean free path. Our modified viscosity 

prescription corrects these problems by imposing a reasonable limit on the velocity 

of viscous transport, and by including the radial pressure scale height in estimating 

the mean free path of turbulent motions. These modifications serve to generalize the 

basic a-prescription to make it applicable over a wider range of physical conditions, 

including those in the boundary-layer region, where the unmodified a-prescription 

produces unphysical behavior. 

Radial velocities in disk solutions found using this modified viscosity never 

exceed the maximum velocity of the diffusive elements which transfer angular mo

mentum. Thus the disk remains in viscous communication with the star whether 

or not the radial velocity becomes supersonic, as demonstrated by Solutions a and 

b shown in Figure 6.2. This result validates the assumption that a global eigen

value j can exist for the whole fluid system. The disk is always causally connected 

to the star and should be able to match changes in the stellar radius R* and the 

stellar rotation rate n* by adjusting the angular momentum accretion rate j. Such 

changes are an inevitable result of the accretion process, due to the addition of mass 

and angular momentum to the central accreting object. Thus one might expect the 

time evolution of an accreting system essentially to follow a series of steady-state 

solutions in which changes in the stellar boundary conditions reflect variations in 

the mass, radius, and rotation rate of the central star. Of course, the existence 

of such a series of solutions does not ensure that the evolution of the system will 

necessarily follow this course, but the fact that the present solutions allow the star 

to communicate with the disk makes it a viable scenario. 
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The results obtained in this paper lead to a generalization of the usual picture 

of information transfer in moving fluids. In a steady, one-dimensional flow, sound 

waves transmit information both upstream and downstream. However, if the flow 

velocity exceeds the sound speed, sound waves which travel upstream in the frame of 

the fluid are moving downstream in the observer's frame. This leads to the standard 

conclusion that sound waves cannot transfer information in the upstream direction 

against a supersonic flow. Since the fluid is unaware of anything lying downstream, 

the supersonic zone is terminated by a shock when the flow encounters any kind of 

a barrier, such as a slower-moving region of fluid. 

When we consider a two-dimensional shearing flow like that in the boundary 

layer, the situation is slightly more complicated. Now there are two kinds of motions, 

and each has its own mode of coupling to the fluid. Longitudinal motions are coupled 

by sound waves, so for them communication is still limited by the sound speed cs • 

However, transverse motions interact through viscosity, and viscous communication 

could in principle be limited by a different speed, which we have called Vt. The 

longitudinal flow velocity, which corresponds to the radial velocity v R in an accretion 

disk, may be less than both Vt and Cs , in which case there will be full communication 

between the disk and the star. If VR exceeds one of the two limiting velocities but 

not the other, there will still be partial communication, but if it exceeds both, 

communication will be cut off completely. 

In the case of the accretion disk boundary layer, we have shown in this paper 

that the flow velocity VR always stays below the viscous limiting speed Vt. This is 

exactly what we need to resolve the paradox we started with. We recall that the 

paradox had to do with the fact that the disk needs to be told how much angular 
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momentum the star is willing to accept. Since angular momentum is associated 

with the transverse degree of freedom of the fluid, this information is transmitted 

through viscosity, and therefore communication can be maintained so long as VR 

does not exceed Vt. A shock can still be present if v R exceeds cs • The key point is 

that even when there is a shock, there is only partial blockage of information flow 

since the viscous coupling continues to operate in the upstream direction. 

Another result of this work is that the j VB. n* relation, i.e. the mapping 

between the specific angular momentum added to the star and the stellar rotation 

rate, is essentially independent of the form of the viscosity. This means that the 

time evolution of an accreting star should follow the course outlined in Chapter 5. 

An initially non-rotating star will be spun up by accretion, with j '" MnI«R*)R;, 

until n* reaches the nominal breakup value. Past this point j falls rapidly with 

increasing n*, so the system finds an equilibrium value of n* which will permit 

further accretion without spin-up. This final state will be a stable situation; if 

the star spins faster, j decreases and the star is spun down and vice versa. The 

equilibrium value of n* will be the one which corresponds to j '" 0 if the moment 

of inertia of the star is not sensitive to the mass added by accretion; however, for 

a white dwarf near the Chandrasekhar limit, adding mass decreases the moment of 

inertia, and negative values of j will be required. 

We should, however, point out some weaknesses of the model used to derive 

our results. We neglect bulk viscosity and the accompanying radial viscous force 

in our calculations. The radial acceleration due to this term should be of order 

lJd2 v R/ dR2
, so one would expect it to be most important in the boundary layer 

region where the velocity gradients are large. On the other hand, the viscosity also 
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becomes small in this region according to the modifications we have made to the 

a-prescription. We have calculated the magnitude of the radial viscous term and 

compared it to the other terms in equation (3). We find that this term becomes 

comparable to the dominant terms only under the most extreme conditions, so we 

expect that the inclusion of bulk viscosity would have only a minor effect on the 

solutions. 

Our model also makes the simplifying assumption that the disk is in a steady 

state. Without doing a time-dependent calculation, it is impossible to know whether 

or not the evolution of an accreting system will simply look like a series of steady

state solutions. In particular, the large gradients and small radial extent of the 

boundary layer suggest that it may be prone to instabilities. Such instabilities might 

provide a natural explanation for the time-variable "flicker" and quasi-periodic os

cillations observed in accreting systems. 

Finally, by using the polytropic assumption in place of an energy equation, 

we have ignored the difficulties of energy generation and radiative transfer. A more 

complete treatment would make it possible to generate spectra of the accretion disk 

and boundary layer as a single system rather than treating the boundary layer as 

a separate, independent component. It would also allow an examination of the 

dependence of the spectrum on the stellar rotation rate and on the presence of a 

supersonic zone and shock. We are currently working on such a model. 
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7. SELF-CONSISTENT ACCRETION DISKS AROUND BLACK 

HOLES 

7.1 Introduction 

Shakura & Sunyaev (1973, hereafter SS), in a classic paper, established the 

foundations of the theory of thin accretion disks. They introduced the now-standard 

a-prescription for the viscosity and found analytic solutions for disks around black 

holes. These solutions extend from the inner edge of the disk, near the black hole 

horizon, out to large radii, and have been the basis of numerous investigations of 

disks in a variety of astrophysical systems (e.g. Frank, King & Raine 1985). 

The SS formulation of the basic disk equations involves several approxima

tions, the most serious of which (for the purpose of this paper) is the neglect of 

pressure gradients and acceleration in the radial momentum equation. This simpli

fication is reasonable in the outer regions of the disk, where a nearly perfect balance 

exists between gravity and centrifugal force. However, in the inner regions of the 

disk, especially in the vicinity of the sonic point, the approximations made by SS 

are no longer valid. 

Starting with the early work of Paczynski & Bisnovatyi-Kogan (1981) and 

Muchotrzeb & Paczynski (1982), various authors have attempted to obtain self

consistent solutions of accretion disks around black holes using a more complete set 

of disk equations. However, these investigations have met with only limited success. 

Muchotrzeb & Paczynski (1982) found numerical solutions for very small values 
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of the a-parameter in the viscosity prescription, but were unable to find steady

state solutions for values of a > 0.03 (Muchotrzeb 1983). This has led to several 

discussions on possible peculiarities in the nature of the sonic point (Matsumoto 

et al. 1984, Muchotrzeb-Czerny 1986, Abramowicz & Kato 1989), as well as to 

suggestions that disks with large values of a around black holes may have to be 

time-dependent (Muchotrzeb-Czerny 1986, Paczynski 1987). 

In our view, the lack of self-consistent solutions of accretion disks around 

black holes for physically reasonable parameters represents a major gap in current 

disk theory. We wish to report some progress on this problem. We show that, 

with a modified form of a-viscosity which we introduced in an earlier study of disk 

boundary layers, we can find physically reasonable and self-consistent disk solutions 

for any value of a up to the maximum of a = 1. We introduce the basic equations 

of a polytropic thin disk in sec. 7.2, introduce our modified viscosity prescription 

and describe our results in sec. 7.3, and conclude with a discussion in sec. 7.4. 

7.2 The Basic Disk Equations 

Following SS, we consider an axisymmetric time-independent vertically-aver

aged system, so that all quantities are functions only of the radius R. For a steady 

mass accretion rate M, mass conservation gives 

M = -27rRvR~, (1) 

where v R is the radial velocity, taken to be negative for accretion, and ~ is the 

surface mass density. 
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As in an earlier work on the dynamics of disks (Popham & Narayan 1991), 

we simplify the problem by considering a polytropic fluid. The height-integrated 

pressure P and the sound speed Cs then satisfy 

(2) 

where J{ and, are constants. By using this equation of state, we avoid all the 

complications associated with energy generation and transport without sacrificing 

any of the physics associated with the hydrodynamics of the flow. As in our previous 

work, we set, = 2, which gives the closest analogy to the standard disk equations 

of SS. 

We model the gravitational influence of the black hole by means of the pseudo-

Newtonian potential introduced by Paczynski & Wiita (1980), 

(3) 

where M is the mass of the hole, and Rg = 2G M / c2 is the radius of the event 

horizon. This potential mimics most of the important features of the Schwarzschild 

metric, without introducing any unphysical features. It would be straightforward 

to carry out the calculations with the full general relativistic dynamical equations, 

but we prefer to use (3) in order to facilitate comparison with previous work on this 

problem. We choose our units of length and time such that GM = c = 1. 

The radial equation of motion of the disk is given by 

dVR 2 2 1 dP 
VR dR - n R+ nJ(R+ ~ dR = 0, (4) 
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where nCR) is the angular velocity of the fluid and nJ«(R) is the local 'Keplerian' 

angular velocity, given by 

(5) 

In steady state, the azimuthal component of the momentum equation gives 

(6) 

where j is a constant which represents the net inward flux of angular momentum 

per unit mass. The first term on the left describes the direct advection of angular 

momentum by the accretion flow, while the second gives the angular momentum 

flux due to viscous stresses. In the original SS formulation the viscous stress was 

written in terms of the pressure as 

Tep(R) = aP, (7) 

where a is a dimensionless constant, which is expected on physical grounds to satisfy 

a :s 1. The parameter a is designed to absorb all of the uncertainties in the nature 

of the viscosity. A somewhat improved form of this expression explicitly includes 

the dependence of the viscous stress on the angular velocity gradient, 

dn 
Tep(R) = -1I"£R dR' (8) 

where the kinematic shear viscosity coefficient 11 is again written in terms of an a 

parameter, 

(9) 
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In the standard disk equations employed by SS, the two terms in eq. (4) which 

involve radial derivatives are neglected, so that nCR) = 0,[«(R). The inner edge of 

the disk is assumed to be located at the marginally stable orbit at Rin = 3Rg , where 

the Keplerian angular momentum reaches a minimum. Assuming further that the 

viscous torque vanishes at R = Rin, eq. (6) provides the boundary condition 

j = (nR2 )R=Rin = n[«(Rin)(Rin? Once j is determined through this condition, 

eq. (6) can be solved for other quantities of interest such as ~(R), vR(R), etc. Of 

course, the SS formulation also included equations to describe energy generation 

and transport which led to solutions for the temperature, radiation flux, etc. These 

additional variables do not figure in our polytropic version of disk theory. 

7.3 Improved Dynamical Equations with Modified Viscosity 

One major limitation of the SS theory is that it does not solve the full dy

namical equations (4) and (6), but instead assumes n = n[(. The full dynamical 

equation allows the possibility of sonic transitions; in fact, in the case of black hole 

accretion, the fluid free-falls into the horizon, so we are guaranteed that all solutions 

will have a sonic point. We therefore identify the inner edge of the disk Rin with 

the sonic point, where two regularity conditions must be satisfied (cf. Popham & 

Narayan 1991), viz. 

(10) 

Another difficulty with the standard disk equations is that the formulation of 

viscosity through the shear stress (8) does not satisfy causality. This is a defect 
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which is common to all diffusion problems, but is usually not serious. However, 

it appears that in modeling viscous accretion disks, this unphysical feature of the 

model leads to unexpected and serious consequences. 

In our previous work on boundary layers in accretion disks around regular 

stars we noticed certain paradoxical features in the solutions (Popham & Narayan 

1991, 1992) which we finally traced to the non-causality of our viscosity model. 

Motivated by this, we proposed a modified form of the viscosity coefficient (9) of 

the form (Narayan 1992) 

(11) 

=0, 

where {3 is a constant"" 1. The key feature of this formula is that it explicitly cuts 

off the viscous stress as soon as the radial velocity of the flow exceeds a critical speed 

equal to (3c s • This is the maximum speed of the particles which mediate viscous 

interactions, which limits the speed at which the influence of shear can propagate. 

The model is highly simplified and is valid only in steady state, but it does explicitly 

guarantee causality. 

When the modified viscosity prescription given in eq. (11) was used in place 

of the standard a-prescription (eq. (9)) in the boundary layer problem, the para-

doxical behavior disappeared completely (Popham & Narayan 1992), showing that 

the violation of causality was indeed at the root of our earlier difficulties. Because 

of this, we have used this modified viscosity in the present study of black hole disks. 

In general, it seems reasonable to select {3 = 1 and we do so in this paper. 
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In order to find a numerical solution, we have to solve two differential equa

tions, eqs. (4) and (6), using the shear stress given by eqs. (8) and (11). At the 

same time, we also have to solve self-consistently for the two unknown parameters 

Rin and j. We thus need a total of four boundary conditions. Eq. (10) provides 

two boundary conditions at R = Rin. Another boundary condition is that n = nJ( 

at some outer radius Rout of the disk, which we usually take to be 100 Rin. The 

final boundary condition is a 'no-torque' condition at the point where the viscosity 

vanishes, which is the sonic point when f3 = 1. This gives 

(12) 

which is essentially a regularity condition on the azimuthal equation (6). To apply 

this condition we integrate eqs. (4) and (6) from Rin inward to near R g. 

The solutions have an additional degree of freedom whereby, for each choice 

of CY, there is a one-parameter family of polytropic solutions. These solutions are 

parametrized by a quantity X (see Popham & Narayan 1991), which measures 

the vertical height of the disk at some fiducial radius, usually Rout. X is a free 

parameter given by a particular combination of M and J(. If we had included an 

energy equation instead of the polytropic equation of state, X would have been 

replaced by another parameter, lVI/Merit, where Merit is the critical value of M at 

which the luminosity is equal to the Eddington limit. 

Once a solution has been obtained numerically between R = Rin and R = 

Rout, it is necessary to integrate the equations from R = Rin to R = Rg to check 

whether the flow can reach the horizon smoothly. Since the viscous stress vanishes 
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for R < Rin, eq. (6) gives j = nR2
, and substituting this in eq. (6) we find another 

conserved quantity 

(13) 

Consistency of the solution merely requires v R > Cs for all Rg < R < Rin, which is 

easy to check. 

With the above formulation of the black hole disk problem, and using the 

modified viscosity prescription (ll), we have been able to find steady state solutions 

for all reasonable values of a up to a = 1, using values of X from"" 0 to 1. We 

did not use values of a > 1 since these are not considered physical, and we did 

not consider X > 1 since this corresponds to thick disks which are not likely to be 

represented well by our height-integrated equations. These represent the first black 

hole solutions for reasonable values of a. 

Figures 7.1 and 7.2 show some typical solutions that we have obtained for 

polytropic disks around black holes. Four velocities are plotted as a function of 

the radius for each solution; these include the radial velocity VR, the sound speed 

Cs , the rotational velocity nR, and the 'Keplerian' rotational velocity nJ( R, where 

nJ( is defined in eq. (5). Figure 7.1 shows two solutions with a = 0.1; one of 

the solutions has X = 0.1, and the other has X = 1.0. The two solutions are 

basically quite similar. In both, VR ~ Cs throughout most of the disk, but as the 

gas approaches the last stable orbit at R = 3Rg (log(R/Rg) = 0.477), VR increases 

rapidly, and reaches the sonic point just inside of R = 3Rg. After it exceeds the sonic 

speed, the infalling gas continues to accelerate until it reaches the event horizon at 

R = Rg (log(R/ Rg) = 0). The rotational velocity is very nearly 'Keplerian' until 
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the gas reaches the sonic point; inside the sonic point, it does not increase as rapidly 

as the 'Keplerian' rotational velocity, which becomes infinite at the event horizon. 

Instead, the gas conserves angular momentum, so that n ex R-2 • Figure 7.2 shows 

two solutions with a = 1.0, one with X = 0.01 and one with X = 0.1. The 

solutions are quite similar to those shown in Figure 7.1. One qualitative difference 

is that because the viscosity coefficient is larger, the transition between the viscous, 

subsonic region and the non-viscous, supersonic region is more abrupt. Nonetheless, 

all of the quantities vary smoothly through the sonic point. 

7.4 Discussion 

The main result of this paper is that we have obtained the first self-consistent 

solutions of accretion disks around black holes for the entire physical range of the 

viscosity parameter a. For simplicity, we used a polytropic fluid, which eliminates 

the need for any description of the thermal structure of the disk. This is, of course, 

a major simplification, and it is now necessary to show that we can obtain similar 

solutions even when equations describing energy generation and transport are in

cluded. We do not anticipate any conceptual difficulties in this step, although it 

will almost certainly be more complex than the problem we have solved here. 

The important difference in the present analysis, compared to previous un

successful attempts, is that we have used a modified version of the a-viscosity 

prescription which is designed to satisfy causality. The standard a-prescription 

allows viscous shear signals to propagate at infinite speed whereas our modified 

formulation explicitly limits the speed to a finite value, which we have set equal 
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to the sound speed. We stress that the modification we have introduced is not an 

arbitrary one designed just for the present study. We have already demonstrated 

the usefulness of this prescription in an earlier study of disk boundary layers where 

the standard a-prescription produced paradoxical results. The same modification 

which enabled us to solve that problem also seems to solve the black hole disk case. 

In combination with our previous work, the present paper highlights the im

portance of using a physically consistent description of viscosity which can model 

the finite speed of propagation of viscous signals. The prescription we have used 

is an approximate one, which was derived under several simplifying assumptions; 

moreover, it is valid only in steady state situations. In view of the apparent impor

tance of this issue for a self-consistent description of accretion disks, we feel that it 

is worthwhile to find a more general description of viscous interactions which can 

introduce causality naturally even into time-dependent flows. 
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8. HARD X-RAYS FROM ACCRETION DISK BOUNDARY LAYERS 

8.1 Introduction 

Accretion disks (Shakura & Sunyaev 1973, Pringle 1981) are found in a wide 

variety of objects in astrophysics, ranging from newly-formed stars to mass-transfer

ring binaries to quasars and other active galactic nuclei (AGN). Detailed modeling 

of these systems has long been handicapped by a lack of understanding of the bound

ary layer, which is the interface between the disk and the star where up to half the 

accretion luminosity may be liberated. Until now there has been no satisfactory 

description of the flow and thermal structure of the boundary layer, resulting in 

serious incompleteness in models of disk spectra. We have calculated numerical 

solutions of thin accretion disks around a central white dwarf of mass M. = 1 Mev 

and radius R. = 5 X 108 cm, which include for the first time a self-consistent de

scription of the boundary layer. We find a bifurcation in the nature of the solutions 

as a function of the mass accretion rate M. At high rates, M 2: 10-9 Mev yr-1 , 

we obtain optically thick boundary layers whose radial width tlRBL and maximum 

temperature TBL decrease with decreasing M. However, for M ;S 10-9 Mev yr- 1 , the 

boundary layer becomes optically thin and tlRBL and TBL increase dramatically 

with decreasing M. For sufficiently low M, tlRBL becomes comparable to R., and 

the temperature exceeds 108 ](. These results explain the hard X-rays that are ob

served (Patterson & Raymond 1985a) in cataclysmic variables (CVs), especially at 

low M. The techniques developed here should permit us to construct self-consistent 
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models of other accretion disks in astrophysics, such as disks around neutron stars, 

black holes (both stellar-mass and supermassive), and newly-formed stars. 

8.2 Disk and Boundary Layer Model 

The solutions described here were obtained by numerically solving a set of cou-

pled differential equations which describe the hydro dynamical and thermal struc-

ture of a steady state thin accretion disk as a function of radius R. The radial and 

tangential components of the momentum equation give (Popham & Narayan 1991, 

Paczynski 1991) 

(1) 

(2) 

where v is the radial velocity at radius R, n is the angular velocity, nJ( is the 

Keplerian value of n, p is the density, P is the pressure, v is the coefficient of shear 

viscosity, and J is an eigenvalue describing the inward flux of angular momentum per 

unit mass. We employ a modified prescription (Narayan 1992, Popham & Narayan 

1992) for v, which is an extension of the usual a -prescription of Shakura & Sunyaev 

(1973), designed to satisfy causality. We set a = 0.1. 

A crucial feature of this work is the inclusion of an energy equation (Paczynski 

& Bisnovatyi-Kogan 1981, Muchotrzeb & Paczynski 1982, Abramowicz et al. 1988), 

( )

2 . dS . v dn d 
lVIT- - M - R- - -(47l"RHFR) - 47l"RFv = 0 

dR v dR dR ' 
(3) 

where the four terms correspond to entropy advection, viscous energy generation, 

divergence of radial radiative flux FR, and energy loss via vertical flux Fv through 
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the top and bottom of the disk; H is the half-thickness of the disk, such that 

M = 471" RH plvl. We assume an ideal equation of state, corresponding to a perfect 

gas mixed with radiation. 

For the vertical flux Fv we use approximate solutions (Hubeny 1990) relating 

the effective temperature Teff, defined by Fv = uT;ff' to the central temperature 

T. We use a simple gray opacity which includes Kramers free-free absorption and 

electron scattering. For the radial flux FR, we employ a "two-stream" model of 

radiative transfer, which leads to two differential equations for the radiation density 

U and radial flux FR. We thus have a total of five first-order ordinary differential 

equations. We solve these numerically with three inner boundary conditions at 

R = R., viz. n = n., P = p., FR = u(T. )!f f' where we arbitrarily assume 

(T. )eff = 2 X 104 K, and two outer boundary conditions at R = Rout = lOOR., viz. 

!1 = nJ(, U = aT4. We use a relaxation method to compute the solutions, taking 

care to maintain sufficient resolution in the difficult boundary layer region. 

8.3 Results 

Figure 8.1 shows typical solutions at high M for a star rotating with angular 

frequency n. = 0.5 nb, where nb ~ !1J((RJ is the "break-up limit" on the spin 

of the star. The boundary layers in these solutions are optically thiclc. Note that 

there are two distinct widths. The dynamical width over which !1 changes from !1J( 

to !1. is quite narrow, less than O.OIR., while the thermal width over which the 

boundary layer luminosity is radiated is somewhat larger, rv O.lR •. Both widths 

decrease monotonically with decreasing M, and so do the central temperature T 
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Fig. S.l-The optically thick boundary layer region for two solutions with high 
mass accretion rates !VI; the solid lines correspond to !VI = 10-7 .5 M8 yr-1 , and the 
dashed lines to !VI = 10-8 .5 M8 yr-1 • The accreting material flows from right to left, 
and meets the stellar surface at R I'J 5 X 108 cm. The top panel shows the angular 
velocity of the accreting material fl, and the density p. fl is nearly Keplerian 
in the disk, but drops abruptly to the stellar rotation rate n. = O.5fl[((R.) in 
the boundary layer. The bottom panel shows the central temperature T and the 
effective temperature Tej j. T rises gradually through the boundary layer and more 
rapidly as the material settles onto the star. Tejj peaks in the boundary layer, but 
is large over a fairly wide region, so that the boundary layer luminosity is radiated 
from an area larger than that of the boundary layer itself. 
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Fig. 8.2-The optically thin boundary layer region for two solutions with low mass 
accretion rates lVI and with a stellar rotation rate n. = O.lng(R.)j the solid lines 
correspond to lVI = 10-9 .5 Mev yr- 1 , and the dashed lines to M = 10-10 .5 Mev yr-1 . 

The boundary layers in these solutions are much wider than in the optically thick 
solutions shown in Figure 8.1. The width increases rapidly with decreasing M. The 
drop in density in the boundary layer is far more pronounced than in the optically 
thick solutions, and the central temperature jumps dramatically, exceeding 108 J( 

before falling suddenly when the accreting material reaches the star. The effective 
temperature is relatively low in the boundary layer because of the low optical depth, 
but is larger in a narrow spike at the inner edge of the boundary layer and in a 
small region just outside the boundary layer, where the optical depth is larger. 
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and effective temperature Teff. Further, the boundary layer luminosity decreases as 

n. is increased, vanishing when the star reaches break-up (n. = nb). None of these 

results is surprising, but we emphasize that this is the first time that self-consistent 

solutions have been actually calculated of this region of a disk. 

Figure 8.2 shows some of our solutions at low accretion rates, where the bound

ary layer is optically thin. We see immediately very different behavior than in Fig. 

8.1. Now, as M decreases, both the width and the temperature of the boundary 

layer increase very rapidly. Indeed, for M = 10-10 .5 M0 yr-1 and n. = O.lnb, the 

width I::!.RBL is comparable to the stellar radius R. and the maximum temperature 

TBL is well in excess of 108 J(. Both I::!.RBL and TBL increase even further for lower 

M, but decrease as n. increases. Further, the results are quite sensitive to the 

choice of a. For IVI = 10-9.5 M0 yr-1 and n. = O.lnb, as we increase a from 0.1 

to 0.4, we find that I::!.RBL increases from 0.13R. to 0.43R. and TBL goes from 

108 J( to 2 X 108 J(. At these extreme temperatures the disk is no longer very thin; 

nevertheless, we expect the models to be reasonably realistic. 

8.4 Discussion 

8.4.1 Thermal Instability 

The surprising behavior of the boundary layer at low M can be explained in 

terms of a thermal instability (Tylenda 1981, Patterson & Raymond 1985a). The 

accreting gas cannot cool efficiently due to the decreased density in the optically 

thin boundary layer. This forces the disk to store most of the viscously generated 

energy in the form of entropy, heating the boundary layer gas rapidly. The gas then 
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expands vertically, which serves to further decrease its density. Thus, in much of 

the boundary layer region, we do not have a balance between viscous heating and 

locally radiated vertical flux (the second and fourth terms in eq. 3), as in the rest of 

the disk. Instead, viscous heating is balanced primarily by entropy advection, the 

first term in eq. (3), while the two radiative flux terms playa relatively insignificant 

role. When the superheated material in the boundary layer finally reaches the star, 

the thermal instability works in reverse. The fluid now becomes optically thick and 

cools abruptly. Although there is no hydrodynamic shock at this point (Popham 

& Narayan 1992), the cooling instability sets in very suddenly and shows some 

features of a radiative shock. Previous approximate treatments of the boundary 

layer (Tylenda 1981, Regev 1983) included elements of the thermal instability but 

missed the importance of the advected entropy and the sudden cooling. 

8.4.2 Comparison to Observations of Cataclysmic Variables 

It is known that CV s radiate in hard X-rays, with spectra which appear to 

be consistent with a thermal bremsstrahlung spectrum with kTbrems of a few to 

tens of keY. As the accretion rates of CV s decrease, and especially when they drop 

below M :s 10-9 .5 Mev yr- l , their hard X-ray luminosity becomes a substantial 

fraction of the total flux (Patterson & Raymond 1985a). Our results are consistent 

with these observations. The high temperature (1'o.J 108 J(), optically thin boundary 

layers which we find for low values of M should produce abundant X-rays with 

knrems I'o.J 10 keY. The optically thick boundary layers at higher values of IVI will 

emit a far smaller fraction of their total luminosity in X-rays. Since ~RBL and 

TBL both depend on M, M .. , R .. , n .. and Ct, we should be able to compare our 
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self-consistent solutions with observations and thus to constrain the parameters of 

the accreting white dwarfs. 

A possible difficulty in comparing our results with observations is that the 

hard X-ray emission is often variable (perhaps due to time-dependent features of 

the thermal instability), which we cannot fit with our steady-state models. We 

must also caution that the radiative transfer we have used is somewhat simplistic. 

We have not for instance considered the scattering of horizontal to vertical flux 

(or vice versa) due to electron scattering, or energy transport through conduction. 

It is straightforward to include these effects, which will introduce modest changes, 

particularly in the thermal width of the boundary layer. We also intend to carry 

out more detailed vertical radiative transfer in order to compute realistic continuum 

spectra. We will then be in a position to make direct comparisons between observed 

spectra and model predictions. We should be able to understand, for instance, why 

so few cataclysmic variables have been detected in soft X-rays, as might be expected 

from an optically thick boundary layer (Patterson & Raymond 1985b). 

8.4.3 Future Applications 

Although the models we have presented here are for CV s, we may be able 

to use the same techniques to construct models of other accretion disk systems. 

One interesting application is to accreting neutron stars and black holes, which 

are similar to CV s in many respects but differ by being radiation-dominated in 

the boundary layer region (Shakura & Sunyaev 1973, Pringle 1981). In analogy 

with the present results, we might expect these systems to have cooler narrower 

boundary layers at high IVI and hotter wider boundary layers at low IVI. There is 
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indeed evidence for this behavior, with some Galactic binary black hole candidates 

(Sunyaev & Trumper 1979, McClintock 1991) as well as a few neutron star systems 

showing transitions from a soft spectrum at higher luminosities (high M) to a hard 

spectrum at lower luminosities. 

A potentially important difference between neutron stars and black holes is 

in the nature of the inner boundary condition. Accretion on to an unmagnetized 

neutron star is similar to the white dwarf case considered here, with n changing 

from n[( to n. within the boundary layer and v decelerating significantly when the 

material reaches the star. In contrast, a black hole has a "soft" inner boundary, so 

that n is nearly equal to n [( down to the inner edge of the disk and then nearly 

constant to the horizon. Also, the radial velocity v increases monotonically inwards, 

passing through a sonic point (Abramowicz et al. 1988). (A neutron star too can 

show similar behavior if its radius is smaller than the radius of the last stable orbit, 

but this needs a soft equation of state and a slowly rotating star.) This difference 

must lead to distinct signatures in the spectra, which we hope to discover using the 

techniques developed in this paper. 

Many models of AGN postulate the presence of a supermassive black hole that 

creates a hot pair plasma (Rees 1984), but the mechanism by which the central 

engine maintains the required high temperatures has been unclear. By simply 

scaling from the white dwarf solutions presented here, we would expect optically 

thin boundary layers around black holes or neutron stars to produce temperatures 

as high as 1010 - 1011 J( by steady low-M accretion. This is hot enough for the 

creation of e+e- pairs and could be relevant to pair production in AGN. However, 

our model does not include some effects which could be quite important at such high 
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temperatures. For instance, the boundary layer would be cooled both by Compton 

scattering of soft radiation from elsewhere in the disk (Shapiro et al. 1976), and 

by conduction. This will limit the maximum temperature that can be attained in 

these systems and should be included self-consistently in the models. 

Finally, this work may also be applicable to accreting young stellar objects. 

Among this class of stars, the FU Orionis systems with high !VI rv 10-4 Mev yr-1 

certainly have optically thick boundary layers, while T Tauri stars with !:VI ;S 10-7 

Mev yr-1 may have optically thick or thin boundary layers (Bertout et al. 1988, 

Hartigan et al. 1991). There is a good deal of observational data on the disks 

and boundary layers of these systems which could be exploited by computing self

consistent models. An interesting point is that in a few T Tauri stars there is 

evidence that the accretion disk appears to terminate at a few stellar radii. We 

speculate that this may in some cases result from an optically thin boundary layer 

that happens to be several stellar radii wide. Such wide boundary layers are possible 

if a 2: 1 and if the central star spins much below break-up as observed. 
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9. OPTICALLY THICK BOUNDARY LAYERS IN CATACLYSMIC 

VARIABLES 

9.1 Introduction 

In Chapter 8, we presented boundary layer solutions for cataclysmic variables 

(CVs) as a function of the mass accretion rate N1. For CVs with high accretion 

rates, M .2: 10-9 M0 yr-1 , we found that the boundary layer region is optically 

thiclc This chapter examines optically thick boundary layers in more detail. The 

solutions presented in this chapter were found using the same set of equations as 

described in Chapter 8. However, the results in this chapter are still preliminary 

and have not been published yet. 

In Chapter 8, we concentrated on presenting a basic set of solutions for four 

accretion rates, using the same stellar parameters for each solution. In Section 

9.2, we examine the variation in the structure and characteristics of the boundary 

layer as a function of the stellar mass and radius. Since we are assuming that the 

accreting star is a white dwarf, the radius is specified by the mass, so that the mass 

and radius taken together represent a single parameter. We also examine how the 

boundary layer changes for various values of the stellar rotation rate. Note that we 

have used a very approximate mass-radius relation in this work, and that we have 

not included the effects of the rotation rate on the equatorial radius of the white 

dwarf. In the near future, we plan to include these effects in our work by using the 

results derived by Hachisu (1986), who computed a grid of rotating white dwarfs. 
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Another issue which was not addressed in Chapter 8 was the "breakup branch" 

of boundary layer solutions, which were discovered in the work presented in Chapter 

5, using a polytropic equation of state. The existence of these solutions suggested 

that accretion would continue even after the accreting star had spun up to breakup; 

however, it has not been demonstrated that these solutions exist when the more 

realistic equation of state and energy equation are used, as in the solutions in 

Chapter 8. In Section 9.3, we demonstrate that these solutions do indeed exist, 

and that they are quite similar to the breakup solutions presented in Chapter 5. 

In particular, we find solutions which transfer mass to the accreting star while 

transferring no angular momentum to the star, or even removing angular momentum 

from it. We examine these solutions in detail, and show how their boundary layer 

angular velocities, radial velocities, and temperatures differ from those of solutions 

on the normal "slow rotator branch" . 

Section 9.4 addresses the energetics of optically thick boundary layers. We 

examine the balance between various terms of the energy equation which charac

terize the various zones within the disk, boundary layer, and star. We also derive 

an expression for the total luminosity of the boundary layer and disk, and compare 

the luminosities generated in our models to those predicted by this expression. 
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9.2 Variations in the Boundary Layer as a Function of the Parameters of 

the Accreting White Dwarf 

9.2.1 Variations in the White Dwarf Mass and Radius 

We have calculated boundary layer solutions around accreting white dwarfs 

ranging in mass from 0.6 to 1.0 Mev. The mass of the central star is particularly 

important in the case of accretion disks around white dwarfs because for white 

dwarfs, the radius decreases as the mass increases. Thus, the accretion luminosity 

Lace = GMWDM/RwD, where MWD and RWD are the mass and radius of the 

white dwarf, changes rapidly as the mass of the white dwarf changes. 

The masses of white dwarfs in the field are highly concentrated around lvlwD ~ 

0.6 Mev (Bergeron et al. 1992). On the other hand, estimates for the masses of white 

dwarfs in CVs have varied widely, but have averaged more than 0.6 Mev. Webbink 

(1990) found an average white dwarf mass of 0.74 Mev in 84 CVs. We have calculated 

solutions for a range of masses in order to examine the variation of the boundary 

layer structure with stellar mass and radius. 

Figures 9.1 and 9.2 show five boundary layer solutions with the same accretion 

rate, M = 10-7 .5 Mev yr- 1 , around white dwarfs with masses of 0.6, 0.7, 0.8, 0.9, 

and 1.0 Mev, and radii of 9 x 108 , 8 X 108 , 7 X 108 ,6 X 108 , and 5 X 108 cm, 

respectively. The 1.0 Mev, 5 x 108 cm solution is the same solution as presented in 

Chapter 8; it has a stellar rotation rate nw D = 0.5s-1. The other solutions have 

rotation rates which have been adjusted in order to keep the ratio of nw D to the 

breakup rotation rate nbreakup the same in all five solutions. 
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Figure 9.1 shows the variation of the angular velocity n and the radial velocity 

v R in the boundary layer region for these solutions. Although both the angular and 

radial velocities decrease as the white dwarf mass decreases, the velocity profiles are 

quite similar for all five solutions. The angular velocity falls from nearly Keplerian 

to the stellar rotation rate quite rapidly, in a dynamical boundary layer with a width 

of only one or two percent of the white dwarf radius. The radial velocity (negative 

for accretion) rises dramatically and reaches a peak in the boundary layer, then falls 

just as dramatically as the flow approaches the stellar surface. Figure 9.2 shows the 

central temperature Te, the effective temperature Teff, and the combined spectrum 

of the boundary layer and disk for each of these solutions. As the white dwarf mass 

decreases and the radius increases, both the central and effective temperatures 

steadily decrease. The peak effective temperature in the boundary layer reaches 

about 400,000 K in the MWD = 1 Mev solution, but only reaches about 200,000 K 

in the Mw D = 0.6 Mev solution. Nonetheless, as with the velocities, the temperature 

profiles are quite similar in all five solutions. The spectra of the solutions for the 

more massive white dwarfs extend into the soft X-ray band, whereas those with less 

massive white dwarfs would produce far fewer X-rays. Nevertheless, the spectra are 

quite similar in shape. Thus we can conclude that, at least for this accretion rate, 

the mass and radius of the accreting white dwarf make a quantitative rather than 

a qualitative difference in the boundary layer characteristics. 

9.2.2 Variation in the White Dwarf Rotation Rate 

The stellar rotation rate n. is particularly important to the boundary layer 

because it determines how much rotational kinetic energy the accreting material will 
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Fig. 9.1-Variation of (a) the angular velocity n and (b) the radial velocity Vn 
in the boundary layer as a function of the white dwarf mass and radius. The five 
solutions shown have white dwarf masses of 0.6, 0.7, 0.8, 0.9, and 1.0 M0 , and 
radii of 9 x 108 , 8 X 108 , 7 X 108 , 6 X 108 , and 5 X 108 cm, respectively. All of the 
solutions have a mass accretion rate of 10-7 .5 M0 yr-1 and an angular momentum 
accretion rate of 1.02 times the Keplerian rate. The stellar rotation rate is chosen 
to be the same fraction of the breakup rotation rate in each case; it is about half of 
the breakup rate. 
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Fig. 9.2-(a) The central and effective temperatures and (b) the spectra of the 
solutions shown in Figure 9.1. The spectra include flux from the boundary layer 
and the disk, which extends out to 100 stellar radii. 
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have to lose in the boundary layer region before it is added to the star. In section 

9.4.2, we examine the relationship between Q. and the boundary layer luminosity 

in more detail. Here, we present boundary layer solutions for five values of Q.: 0, 

0.25, 0.50, 0.75, and 0.921 s-l. Note that the Keplerian rotation rate at the stellar 

surface, where R = RWD = 5 X 108 cm, is 1.03 S-l. Nonetheless, the highest stellar 

rotation rate for which solutions are available is 0.921 s-l; this will be discussed 

further in section 9.3. 

Figure 9.3 shows the angular and radial velocities for these five solutions. 

The angular velocities again drop rapidly in a narrow dynamical boundary layer; 

as Q. increases, the dynamical boundary layer widens slightly, even though the 

angular velocity is dropping less in these solutions. The radial velocity peaks in 

the boundary layer, but the peak is most dramatic in the Q. = a (nonrotating) 

solution, where the radial velocity reaches nearly 100 km s-l. As Q. increases, the 

peak radial velocity drops dramatically, so that it is less than 10 km s-l in the 

Q. = 0.921s-1 solution. 

Figure 9.4 shows the central and effective temperatures and the combined 

spectra of the boundary layer and disk for the same five solutions. The temperature 

profiles change substantially as a function of Q •. Outside the boundary layer, all of 

the solutions are identical; the central temperature drops slowly as the material flows 

inward. In this region the flow is described well by the Shakura-Sunyaev equations, 

in which the central temperature reaches a local maximum at R = 1. 44R. and 

then decreases. In the thermal boundary layer region, where the boundary layer 

luminosity is being released, the central temperature rises substantially, and finally, 



c 

~ 

I en 

1 0.921 (a 

0.75 

.5 1-->0<.:.,:.5=--_../ 

0.25 

5.1 x1 08 5.2x1 0
8 

5.3x1 08 5.4x1 08 5.5x1 0
8 

R (em) 
20 ~~~~~~~~~~~~~~~~ 

o I-------.,,.,,....,--__=::= 

~~~~ 
-20 

-40 

-60 

-80 

-1 00 L.......L......L......L--1-..L-J...-L-Jc......I.-...L.......I..-1-L.......L....L-.L-l-.I-l.-....L......L--1-.L-L.....J 

5x10
8 

5.1 x1 08 5.2x1 0
8 

5.3x1 08 5.4x1 08 5.5x1 0
8 

R (em) 

138 

Fig. 9.3-(a) The angular and (b) radial velocities in the boundary layer as a 
function of the stellar rotation rate n •. The solutions shown have rotation rates of 
0, 0.25, 0.5, 0.75, and 0.921 s-l. All of the solutions have a white dwarf mass of 
1.0 M 0 , a white dwarf radius of 5 x 108 cm, a mass accretion rate of 10-7 .5 M0 yr-1 , 

and an angular momentum accretion rate of 1.02 times the Keplerian rate. 
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at the inner edge of the boundary layer, it rises quite rapidly as the flow approaches 

the stellar surface. 

The effective temperature follows a slightly different pattern. Outside the 

boundary layer, the effective temperatures are identical for all the solutions, fol

lowing the Shakura-Sunyaev profile and reaching a local maximum at R = 1.36R •. 

The effective temperature rises dramatically in the thermal boundary layer region, 

then drops quite rapidly at the inner edge of the region, and is relatively low inside 

the boundary layer. The central temperature, effective temperature, and thermal 

width of the boundary layer all decrease substantially as fl. increases. Moving from 

the fl. = 0.921s-1 solution to the n. = 0 solution, the central temperature ranges 

from about 300,000 K to 1,000,000 K, the effective temperature from about 100,000 

K to 500,000 K, and the thermal width from about 3% to 10% of the stellar radius. 

The effective temperature profile also develops a dip near its maximum in the 

slowly rotating solutions. This is caused by the large radial velocities and high 

temperatures reached in this region, which result in a very small absorptive optical 

depth, and a corresponding decline in the cooling efficiency. At a lower accretion 

rate, the total optical depth (absorption plus scattering) might become small in 

slowly rotating solutions, producing high-temperature, optically thin boundary lay

ers like those seen in Chapter 8. In other words, the transition from optically thick 

to optically thin boundary layers would probably occur at a higher accretion rate 

for slowly rotating stars than for rapidly rotating stars. 

The spectra also show dramatic changes as a function of fl •. The solution for 

a nonrotating star shows a strong boundary layer component at extreme ultraviolet 

and soft X-ray wavelengths. As n. increases, this component rapidly disappears, 
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Fig. 9.4-The (a) central temperatures, (b) effective temperatures, and (c) spectra 
of the solutions shown in Figure 9.3. 
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leaving only a single disk component in the solutions for rapidly rotating white 

dwarfs. 

9.3 The "Breakup Branch" for Rapidly Rotating Accreting White Dwarfs 

In Chapter 5, using a simple polytropic disk model, we discovered the exis

tence of a "breakup branch" of boundary layer solutions. These solutions occurred 

for accretion onto stars which were rotating at breakup speed, and they allowed 

the star to accrete mass while accreting little or no angular momentum, or even 

losing angular momentum to the surrounding disk. The existence of such solutions 

indicated that accretion could continue even after a star had spun up to breakup. 

Up to now, the existence of such solutions has not been demonstrated in a full disk 

model which includes an energy equation. 

Figure 9.5 shows the angular and radial velocities of seven breakup branch 

solutions. All the solutions have n. = 0.921s- 1 , but each has a different value of j, 

the angular momentum accretion rate scaled by the Keplerian angular momentum 

accretion rate at the stellar surface. The seven solutions have j = 1.02, 1.00, 0.95, 

0.80, 0.50, 0.00, and -1.00. The j = 1.02 solution is almost identical to the solution 

with Q. = 0.921s-1 in Figure 9.3; this solution represents the transition between the 

slowly-rotating branch of solutions and the breakup branch. The angular velocity 

Q of this solution reaches a maximum and then falls gradually to 0.921 s-l. As 

j decreases, this maximum vanishes, and n simply flattens out when it reaches 

Q., with the transition from Keplerian to constant n becoming more gradual as 

j continues to decrease. The lack of a maximum in n between the star and the 
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disk means that viscosity can transport angular momentum from the star to the 

disk; this viscously transported angular momentum offsets the angular momentum 

of the accreting material, and allows the net angular momentum accretion rate to 

be small or even negative. 

The radial velocities in the breakup branch solutions are very small compared 

to those in the slowly-rotating solutions. Except for the transitionary n. = 0.921s-1 

solution, the radial velocity profiles do not show a pronounced peak; rather, the 

radial velocity rises slowly in the disk, then drops gradually as the accreting gas 

approaches the star. These solutions have the same accretion rates as the slowly 

rotating solutions, so the surface density of the accreting material must be much 

larger to compensate for the small radial velocities. Thus, these solutions have 

large optical depths in the boundary layer. To demonstrate this, we calculated 

solutions with n. = 0.921s-1 and j = 0 for accretion rates from 10-7 .5 M0 yr-1 

to 10-10.5 M0 yr-1 , and found that all of these solutions remained optically thiclc 

This provides another demonstration that the boundary between optically thick and 

optically thin solutions depends strongly on the rotation rate of the accreting star, 

rather than simply falling at a particular value of the mass accretion rate. This 

dependence could be very useful in setting limits on n. for CVs which emit hard 

X-rays. 

Figure 9.6 shows the central temperatures, effective temperatures, and spectra 

for the solutions shown in Figure 9.5. Both sets of profiles are quite simple; apart 

from the j = 1.02 solution, none show any evidence for the presence of a boundary 

layer component. Instead, there is a smooth transition from disk to star, which 

becomes more and more gradual as j decreases. Both the central and effective 
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Fig. 9.5-(a) The angular and (b) radial velocities for solutions on the breakup 
branch, as a function of j, the angular momentum accretion rate in units of the 
Keplerian rate. The solutions shown have j = 1.02, 1.00, 0.95, 0.80, 0.50, 0.00, and 
-1.0. All of the solutions have a white dwarf mass of 1.0 M0 , a white dwarf radius 
of 5 x 108 cm, a white dwarf rotation rate of 0.5 S-l, and a mass accretion rate of 
10-7 .5 M0 yr-1 . 
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temperatures increase substantially as j decreases. This is because energy which 

had been used to spin up the accreting star is now being dissipated and radiated 

in the disk. A more detailed description of the spin-up of the star and its effect on 

the boundary layer luminosity is given in section 9.4. The increase in the central 

and effective temperatures as j decreases extends out to large radii, unlike the 

temperature changes due to different stellar rotation rates, which occur only in 

the boundary layer region. The spectra of these solutions show only a single disk 

component, which gets hotter and more luminous as j decreases. 

9.4 Energetics of Optically Thick Boundary Layers 

9.4.1 Energy Balance in the Boundary Layer Region 

The energetics of the boundary layer region tend to be somewhat more com-

plex than those in the surrounding accretion disk. In the disk, it is assumed that a 

simple balance exists between energy dissipated by viscosity and energy radiated by 

the disk surface, so that the dissipated energy is radiated locally. In the boundary 

layer, however, it is necessary to include the effects of radial energy transport. One 

reason for this is that the radial extent of the dynamical boundary layer, where the 

boundary layer luminosity is generated, may be smaller than the disk height at that 

point. Thus, most of the energy radiated from the region will be directed radially 

rather than vertically. The entropy of the accreting gas is also transported by the 

accretion flow itself. 

We have included these terms in our energy equation, which reads 

. dB . v ( dn ) 2 d 
MT- - M - R- - -(471" RH FR) - 471" RFv = a 

dR v dR dR . 
(1) 
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Fig. 9.7-The energy balance in the boundary layer region for a solution with 
M = 10-7 .5 Mev yr-1 and Q. = 0.5s-1 . The four terms in the energy equation are 
shown: the vertical flux from the disk surface as a solid line, the energy added or 
lost as radial luminosity as a short-dashed line, the viscous dissipation of energy as 
a long-dashed line, and the advection of the entropy of the accreting gas as a dotted 
Ine. 

The first term in this equation represents the advection of the entropy of the ac-

creting gas by the accretion flow. The second term is the dissipation of energy by 

shear viscosity, where v is the kinematic viscosity coefficient. The third term is 

the divergence of the radially-directed luminosity, which gives the amount of energy 

gained or lost by the disk via radial transport of radiation per radial width dR. 

Finally, the fourth term represents energy radiated from the disk surface. 

These four energy terms are shown in Figure 9.7 for the boundary layer region 

in the solution with M = 10-7 .5 Mev yr-1 , Q. = 0.5s-1 , and j = 1.02, which was 

also shown in Figures 9.1-9.4_ The boundary layer and the region around it can 
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be divided into zones based on which pair of energy terms dominates in each zone. 

Outside the boundary layer, in the disk, viscous dissipation and vertical flux balance 

each other, as is assumed in the Shakura-Sunyaev equations. The boundary layer 

luminosity is dissipated in the dynamical boundary layer, as evidenced by the fairly 

narrow spike in the viscous dissipation rate. The matching spike in the divergence 

of the radial luminosity shows that the great majority of this energy is radiated 

in the radial direction. The reason for this is fairly clear: the radial extent of 

the dynamical boundary layer is only about 2 X 106 cm, while the full disk height 

in the same region is about 2 X 107 cm, so that the shape of the emitting region 

ensures that most of the radiation will go in the radial direction. The density of the 

accreting gas is around 1O-5gcm-3 just outside the dynamical boundary layer, but 

increases rapidly within the dynamical boundary layer, and continues to increase 

rapidly as it approaches the star. This ensures that most of the radiation ends 

up traveling radially outward rather than inward toward the star. This radiation 

is absorbed and converted into vertical radiation over a wider region, the thermal 

boundary layer. In this region, the divergence of the radial luminosity is a source 

of energy which is balanced by vertical flux from the disk surface. The thermal 

boundary layer extends over a radial distance which is comparable to the full disk 

height. Finally, as the accreting gas settles into the star, the entropy it carries 

inward becomes the dominant energy source, which is balanced by the radial flux. 

9.4.2 The Total Luminosity of the Boundary Layer and Disk 

By ignoring the boundary layer and making some simple assumptions, it is 

simple to find the total luminosity of an accretion disk (e.g., Pringle 1981). If one 
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assumes that the disk angular velocity is Keplerian all the way in to the stellar radius 

R., and that the luminosity is equal to the total energy per unit time dissipated by 

viscosity, the flux from the disk surface can been written 

F(R) = vE(R~~)' = 3~~f [1- (i) 1/'] , (2) 

where 2:: is the surface density of the accreting gas. By integrating this flux over the 

disk area, assuming that the disk extends from R. to infinity, we obtain the total 

luminosity of the disk, Ldisk = ~GM. M / R •. Thus, only half of the gravitational 

potential energy G M. M / R. = Lace is radiated away by the disk. The other half is 

in the form of the rotational kinetic energy of the accreting gas. 

Some of this kinetic energy is dissipated in the boundary layer, where the an-

gular velocity of the accreting gas decreases rapidly. The amount which is dissipated 

depends on the rotation rate of the accreting star. Since the gas at the stellar surface 

has kinetic energy per unit mass ~Q: R:, it has long been incorrectly assumed that 

the remaining kinetic energy per unit mass HQ7«(RJ - Q:)R: is dissipated and 

radiated by the boundary layer, which gives a boundary layer luminosity (Pringle 

1981) 

(3) 

Under this assumption, the boundary layer luminosity would vary quadratically 

with the stellar rotation rate, such that Lbt/ Lace = HI - (Q. /QJ((R. ))2], which 

gives Lbl = O.5Lacc for a nonrotating star, Lbl = a for a star with Q. = QJ((R.), 

and Lbl = O.375Lacc for a star with Q. = O.5QJ((R.). 

This formula for the boundary layer luminosity neglects to account for the en-

ergy which goes into spinning up the accreting star, as was pointed out by Kluzniak 
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(1987). The correct formula can be derived in an approximate way as follows. Ac

cretion adds angular momentum to the star at a rate j = j Mn [( (R. )R:. Since the 

accreting gas arrives at the stellar surface rotating at the stellar rotation rate n., 

it carries angular momentum to the star at a rate Mn. R:. The remainder of the 

angular momentum is added by the viscous torque at a rate M(jn[((R.) - n. )R:, 

which is generally positive, but can be negative in some breakup branch solutions 

where jn[((R.) < 0, •. Both the accreting gas and the torque also add rotational 

energy to the star. The rotational kinetic energy of the accreting gas increases the 

star's rotational kinetic energy at a rate ~ Mn: R:. The torque spins the star up, 

adding rotational energy at a rate M(jnJ((R.) - n.)n.R:. Thus, the total rate 

at which rotational energy is added to the star is M(jnJ((R. )0,. - ~n: )R:. If we 

assume that all of the energy ~Mnl{(R. )R: is either radiated or imparted to the 

rotation of the central star, then the boundary layer luminosity is just 

(4) 

If we also assume that the disk luminosity is simply ~GM.!VI / R., the totallumi-

nosi ty of the boundary layer and disk is 

L G !vI. M (1 . n. 1 0,: ) 
tot = R - J n (R) + 20,2 .(R) . • J(. /{. 

(5) 

Thus, when the energy expended in spinning up the star is accounted for, the 

quadratic dependence of the boundary luminosity on n. is reversed: for j ~ 1, 

Lbt/ Lace ~ ~[1 - (n.;nJ((R.))]2, so that Lbl = O.125Lacc when n. = O.5nJ((R.). 
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Thus, contrary to the old eq. (3), eq. (5) shows that most of the decrease in the 

boundary layer luminosity occurs in the early stages of spin-up, when the star is 

rotating slowly, rather than the late stages when it is nearing breakup. 

The derivation given here makes a number of simplifying assumptions. A more 

formal derivation for the total luminosity of the boundary layer and disk is given in 

Appendix Cj it arrives at a similar result 

GM M ( n 1 n2 ) GM M (3 Rl/2) 
Ltot = R· 1 - j n o(R ) + 2" n2 (R) - R· 2" - j ~/2 

• /{. [(. out R t ou 

(6) 

The first term is identical to eq. (5), and the remaining terms are generally com-

paratively small. 

Equation (4) shows that the boundary layer luminosity depends on a number 

of factors: the stellar mass M. and radius R. , the mass accretion rate M, the stellar 

rotation rate n., and the appropriately scaled angular momentum accretion rate j. 

In this chapter, we have presented a variety of boundary layer solutions in which 

these parameters were varied. In Table 2, we show the total luminosities for the 

disk and boundary layer for each of these solutions, along with the total luminosity 

predicted by eq. (6). 

We find good agreement with equation (6) for all the parameters. Note that 

eq. (6) gives the luminosity dissipated by the disk and boundary layer, which may 

differ slightly from the luminosity which is actually radiated due to factors not 

included in eq. (6), such as the flux entering the disk at the inner boundary. We 

have included both the dissipated and radiated luminosities from our numerical 
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TABLE 2 

TOTAL LUMINOSITY OF THE DISK AND BOUNDARY LAYER 

n. J MWD RWD L~redicted L~isc L~ad 

0.00 1.02 1.0 5 X 108 4.946 4.948 5.088 
0.25 1.02 1.0 5 X 108 3.892 3.893 3.967 
0.50 1.02 1.0 5 X 108 3.098 3.100 3.122 
0.75 1.02 1.0 5 X 108 2.612 2.614 2.631 

0.921 1.02 1.0 5 X 108 2.467 2.468 2.488 

0.921 1.02 1.0 5 X 108 2.465 2.466 2.487 
0.921 1.00 1.0 5 X 108 2.554 2.556 2.581 
0.921 0.95 1.0 5 X 108 2.789 2.790 2.817 
0.921 0.80 1.0 5 X 108 3.493 3.495 3.528 
0.921 0.50 1.0 5 X 108 4.906 4.908 4.950 
0.921 0.00 1.0 5 X 108 7.262 7.264 7.322 
0.921 -1.00 1.0 5 X 108 11.977 11.980 12.071 

0.36 1.02 0.9 6 x 108 2.326 2.327 2.339 
0.27 1.02 0.8 7 x 108 1.773 1.774 1.782 
0.21 1.02 0.7 8 x 108 1.359 1.359 1.364 
0.16 1.02 0.6 9 x 108 1.036 1.036 1.040 

1 Lpredicted is from equation (6); Lvisc and Lrad are the luminosity dissipated by 
viscosity and the luminosity radiated by each of the models listed. All luminosities 
are in units of 1035 ergs. 

solutions in Table 2; the dissipated luminosities agree to high precision with the 

predictions of eq. (6). The radiated luminosities also agree quite well, generally to 

within a percent or so. 

The luminosities in Table 2 also follow the dependences on the stellar param-

eters and the mass and angular momentum accretion rates quite accurately. The 

total luminosity decreases as the white dwarf mass decreases and the white dwarf 

radius increases. As the stellar rotation rate increases, the star follows the predicted 

quadratic dependence quite accurately, confirming that eq. (4) rather than eq. (3) 
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is the correct expression for the boundary layer luminosity. Finally, as we decrease 

j along the breakup branch, the total luminosity rises dramatically, since the en

ergy which had been expended in spinning up the star is now being dissipated by 

viscosity and radiated by the disk and boundary layer. In fact, in the j = 0 and 

j = -1 solutions, the total luminosity exceeds the accretion luminosity, since the 

disk removes some of the rotational energy from the star and radiates it away. 
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10. BOUNDARY LAYERS IN PRE-MAIN SEQUENCE ACCRETION 

DISKS 

Abstract 

We present self-consistent solutions, using a-viscosity, for the flow and ener

getics of optically thick boundary layers in accretion disks around pre-main sequence 

stars. The solutions span a range of accretion rates from M = 10-7 M0 yr-1 to 

10-4 M0 yr-1 and are in qualitative agreement with observations of T Tauri and 

FU Orionis stars. The boundary layers in the solutions have two radial zones. The 

viscous dissipation occurs in a relatively narrow dynamical boundary layer, but 

most of the energy is actually radiated over a wider thermal boundary layer which 

extends to larger radii. We find that at low accretion rates, the boundary layer 

emission is clearly visible as a separate hot component in the combined spectrum 

of the disk and boundary layer, but this component is more difficult to distinguish 

at higher accretion rates. 

10.1 Introduction 

In recent years it has become clear that many pre-main sequence stars undergo 

disk accretion as they evolve toward the main sequence. Accretion produces a 

substantial luminosity in these systems, dominating the intrinsic stellar luminosity 

at high accretion rates, as in the FU Orionis stars, and contributing significantly 

even at the relatively modest accretion rates found in T Tauri stars. 

Up to half of the luminosity of an accretion disk should be produced by the 

boundary layer region, the interface between the disk and the star where the rota

tional velocity of the accreting material slows from nearly Keplerian to the stellar 
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rotation rate (Lynden-Bell & Pringle 1974). It is here that most of the rotational 

kinetic energy of the accreting material is dissipated by viscosity and radiated. 

Recent observations of the spectra of accreting pre-main sequence stars (Bertout, 

Basri, & Bouvier 1988, Basri & Bertout 1989, Hartigan et al. 1989, 1991) have 

provided evidence of boundary layer emission, and have led to crude estimates of 

the sizes and temperatures of the emitting region. However, detailed interpretation 

of the observations has been impossible in the absence of self-consistent models of 

the boundary layer flow. 

In this paper, we report physically self-consistent solutions for boundary layers 

around pre-main sequence stars for accretion rates ranging from M = 10-7 Mev yr- l 

to 10-4 Mev yr- l • 

10.2 Disk and Boundary Layer Model 

We model the entire accretion flow in the disk, the boundary layer and the 

central star by a single set of equations, which are similar to the standard disk 

equations developed by Shakura & Sunyaev (1973), but with additional terms to 

account for the more complex physics of the boundary layer. We assume that the 

disk is axisymmetric and in a steady state, and solve for the radial structure. The 

local vertical structure is treated in the usual vertically-averaged approximation. 

10.2.1 Dynamical Equations 

The dynamics of the accretion flow are described by two components of the 

momentum equation. The steady state angular momentum equation can be used 
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to find the variation of the angular velocity n with radius R: 

dn = VR (n--d-) 
dR v MR2' 

(1) 

where VR is the radial velocity, v is the kinematic shear viscosity coefficient, and j 

is the rate of accretion of angular momentum. We use a modified a-prescription for 

the viscosity, as described in Narayan (1992) and Popham & Narayan (1992). 

The radial momentum equation gives 

dVR 1 dP (2 2 ) 
v R dR + P dR = n - n J( R, (2) 

where P is the pressure, p is the density, and nJ( is the Keplerian angular velocity 

at radius R. This equation describes the transition from rotational support (n2 R) 

to pressure support ( - V' P / p) as the accreting material moves from the disk to the 

star. We use an equation of state which includes gas and radiation pressure. 

In the vertical direction, we assume that the material is in hydrostatic equi-

librium. This gives rise to the usual expression for the vertical scale height of the 

fluid, H = cs/n[(, where the sound speed Cs ~ (P/p)1/2. 

10.2.2 Energy Balance 

The standard disk equations (Shakura & Sunyaev 1973) assume that energy 

dissipated by viscosity is radiated locally by the disk surface. In order to model the 

boundary layer region, we need to include additional terms in the energy balance to 

account for radial transport of energy. Since the height of the boundary layer may 

be comparable to or greater than its radial extent, most of the energy dissipated 

here may go into radial rather than vertical flux. Also, since the radial infall velocity 
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may be large, advection of the entropy of the accreting material may be significant. 

Thus, we use the "slim disk" energy balance equation (Abramowicz et al. 1988) 

( )

2 . dS . v dn d 
MT- - M- R- - -(47l'RHFR) - 47l'RFv = 0 

dR VR dR dR ' 
(3) 

where S is the entropy, FR is the radial flux, and Fv is the vertical flux from the 

disk surface. 

We calculate the radial flux FR using a simple two-stream radiative transfer, 

so that 

(4) 

where u is the mean intensity, B is the frequency-integrated Planck function, "'abs 

is the absorptive opacity, and dT = ",pdR, where", is the total opacity. For the 

vertical flux we use an approximate relation due to Hubeny (1990): 

Fv = aT;1 I = ( e ) , 
!!. .!l:..+_l_+_l_ 
<1 2 V3 3ra b.,c 

(5) 

where Tel I is the effective temperature, and Te, Te = "'pH, and Tabs,e = "'abspH are 

the temperature, total optical depth, and absorptive optical depth at the midplane 

of the disk or boundary layer. 

We calculate Rosseland mean opacities assuming a pure hydrogen gas and 

including Hand H- bound-free and free-free absorption and electron scattering. 

We tabulate and interpolate these opacities at each radial position as a function 

of the midplane density and temperature. At relatively low temperatures, where 

the Rosseland mean opacity drops below 1 cm2 g-l, we simply assume that", = 

"'abs = 1 cm2 g-l. Although this prescription is a reasonable approximation at 
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temperatures below about 1500 K, where the opacity is due to dust grains (Pollack, 

McKay, & Christofferson 1985), it substantially overestimates the opacity in the 

range 1500 K ;S T;S 5000 K where molecules are the dominant opacity source 

(Alexander, Augason, & Johnson 1989). However, in the boundary layer region, 

the midplane temperature is generally hotter than 5000 K, so this simplification 

has no effect on our main results. 

10.2.3 Boundary Conditions 

The equations described above include five coupled differential equations. At 

the inner edge Rin of our radial computational grid we adopt the following boundary 

conditions: n = Q. , the stellar rotation rate, and FR = aT.4, where T. is an assumed 

photospheric temperature ofthe star. We take the outer edge to be at R = 100Rin, 

and there the boundary conditions are n = n[(, u = B, and Tc = Tss, where Tss 

is the Shakura-Sunyaev temperature, i.e. the temperature assuming that there is 

local balance between viscous energy dissipation and vertical flux. 

We solve the resulting boundary-value problem numerically using a relaxation 

code. For each solution, we specify the values of the stellar mass, rotation rate, and 

photospheric temperature, lvI. , n., and T., the mass accretion rate M, the angular 

. . 
momentum accretion rate J, and the viscosity parameter o. We adjust J until we 

obtain the required "stellar radius" R.. Note that R. cannot be defined precisely 

(cf. Popham & Narayan 1991); in this paper, we take R. to be the radius in the 

boundary layer where n drops to one half its maximum value. 
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10.3 Results 

We have calculated boundary layer and disk solutions for stellar masses, radii 

and accretion rates similar to those estimated from observations of T Tauri and 

FU Orionis stars: M. = 1 Mev, R. rv 2 - 7 Rev, !VI = 10-7 - 10-4 Mev yr-1 

(Kenyon, Hartmann, & Hewett 1988, Bertout, Basri, & Bouvier 1988, Basri & 

Bertout 1989, Hartigan et al. 1989, 1991). We display four solutions corresponding 

to !VI = 10-7 ,10-6 ,10-5 , and 10-4 Mev yr-1 for Q = 0.1 (solid lines in the figures) 

and one solution for !VI = 10-4 Mev yr- 1 with Q = 0.001 (dashed lines). In all cases 

we assume a nonrotating star, n. = 0, and a stellar temperature T. = 5000 K. 

Figure 10.1(a) shows n as a function of R in the boundary layer region of 

these solutions. We define the dynamical width of the boundary layer, b..Rd, to be 

the radial extent of the region where n drops from rv nJ( to n. = O. This is also 

the region where the boundary layer luminosity is generated by viscous dissipation. 

We find that b..Rd scales as H2 / R. For !VI = 10-7 Mev yr-1 , b..Rd is fairly small 

compared to the stellar radius, rv 0.02R., but as M increases, b..Rd increases rapidly, 

so that b..Rd rv O.lR. at 10-5 Mev yr-1 and b..Rd rv 0.3R. at 10-4 Mev yr-1 . 

For observational purposes, the most useful measure of the size of the bound

ary layer is not the dynamical width, but rather the thermal width, b..Rt , the radial 

width over which the boundary layer luminosity is radiated. Figure 10.1(b) shows 

plots of the effective temperature Tel I for the solutions. In general, we find that 

b..Rt rv 2H, the "full-thickness" of the disk, which agrees with some previous esti

mates (e.g., Pringle 1977), so that b..Rt rv (R/H)b..Rd » b..Rd for thin disks. In 

the !VI = 10-7 Mev yr-1 solution, b..Rt rv 0.2R., and the peak Tel I reaches 8500 

K. As the accretion rate increases, b..Rt gets progressively larger, and in general 
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Fig. 10.1-The variation of (a) n, (b) Tcff, and (c) log H/R in five boundary 
layer solutions around pre-main sequence stars. The four solutions shown by solid 
lines have accretion rates M = 10-7 , 10-6 , 10-5 , and 10-4 Me;) yr- 1 , stellar radii 
of R. = 2.23, 2.33, 2.53, and 4.53 Re;), respectively, and €X = 0.1. The dashed line 
shows a solution with M = 10-4 Me;) yr- 1 , R. = 6.58Re;), and €X = 0.001. All of the 
solutions are for nonrotating stars, n. = 0, with stellar temperatures T. = 5000 K. 
The feature in TCff and H / R at R ~ 1.08R. in the 10-7 Me;) yr-1 solution is due 
to the strong temperature dependence of the opacity in this temperature regime. 
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Teff also increases. However, the peak Teff at M = 10-4 M0 yr-1 is lower than at 

M = 10-5 M0 yr-1 • In the M = 10-4 M0 yr-1 , a = 0.001 solution, the boundary 

layer is so wide that there is no peak in Teff, and it is difficult to tell where the 

boundary layer ends and the disk begins. 

Figure 10.1(c) shows the ratio H/R for the various solutions. It is clear that 

H / R increases steadily wi th increasing M, but remains small enough that the thin 

disk (or, more accurately, "slim disk", cf. Abramowicz ct al. 1988) formulation is 

reasonable. We have marked the approximate regions corresponding to the star, 

boundary layer, and disk for each solution. At lower M, these regions are easy 

to recognize, since H / R reaches a minimum near the outer edge of the thermal 

boundary layer, increases gradually within the boundary layer, and increases more 

rapidly as the flow reaches the stellar surface. However, in the 10-4 M0 yr-1 solu

tion, particularly for a = 0.001, the three regions are quite difficult to distinguish. 

We show blackbody spectra for the various models in Figure 10.2. These spec

tra include flux from the stellar radius R. out to 104 R., covering the boundary layer 

and a large region of the disk, but not the central star. (The numerical solutions 

displayed in Figs. 10.1(a)-(c) extend only to Rout = 100Rin .:s 100R •. To compute 

the spectrum out to 104 R., we assume that Tef f is given by the Shakura-Sunyaev 

solution outside of Rout-} The general characteristics of the spectra arc not surpris

ing: as the accretion rate increases, the boundary layer gets hotter and the spectrum 

gets bluer. However, the shape of the spectrum clearly changes with accretion rate. 

In the 10-7 M0 yr-1 solution, the contributions to the spectrum from the boundary 

layer and from the disk are clearly distinguishable, with an inflection around 1 pm. 
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Fig. 10.2-The blackbody spectra of the solutions shown in Figure 10.1. The 
spectra include flux emitted by the boundary layer and disk from R = 1R. to 
R = 104R . • 

The two components are only marginally visible at 10-6 M0 yr-1 , and at higher M 

they have essentially merged into one. 

10.4 Summary and Discussion 

The main result that we wish to emphasize is that we have obtained self-

consistent numerical solutions of optically thick boundary layers in pre-main se-

quence accretion disks. We have developed robust techniques whereby we can find 

solutions for accretion rates ranging from M = 10-7 _10-4 M0 yr-1 , corresponding 

to the rates estimated in T Tauri and FU Orionis stars. The solutions provide a 

description of the flow of the accreting material and the energy balance in the disk 



162 

and boundary layer, including radial transport terms. 

An interesting aspect of the solutions involves the apparent disappearance of 

the boundary layer component from the overall spectrum at high accretion rates. 

Our results show that as M increases from 10-7 M0 yr-1 to 10-4 M0 yr-1 , it be

comes progressively more difficult to distinguish the boundary layer and disk com

ponents in the overall spectrum. This can be understood by observing that as the 

accretion rate increases, the vertical optical depth becomes larger and the disk thick

ens, and as a consequence the radial extent of the boundary layer increases. The 

boundary layer luminosity is then spread over such a large area that its temperature 

is no longer very different from that of the adjoining disk and it becomes difficult 

to distinguish it as a separate component in the spectrum. Kenyon et al. (1989) 

examined ultraviolet spectra of FU Orionis systems, with M '" 10-4 M0 yr-1 , and 

found very little evidence for boundary layer emission. This is in contrast to T 

Tauri systems (discussed below), with M '" 10-7 M0 yr-1 , where there is clear 

evidence in the spectra for a separate hot component. Our solutions reproduce this 

difference quite well. 

At accretion rates around 10-4 M0 yr-1 , the material in the midplane of the 

inner disk and boundary layer approaches virial temperatures because the large 

optical depth inhibits cooling. Therefore, even within the star, the entropy carried 

in by the accretion flow is significant. This large flux of energy into the star would 

be expected to increase the stellar radius substantially (Prialnik & Livio 1985). In 

this context it is interesting that disk models for FU Orionis objects suggest inner 

disk radii '" twice as large as the typical radii of T Tauri stars (Kenyon, Hartmann, 

& Hewett 1988). 
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Our models may also help to interpret observations of several symbiotic bi

naries through an eruption cycle. Quiescent observations of both CI Cyg and AX 

Per suggest a "standard" boundary layer temperature of '" 105 K for an estimated 

accretion rate of '" 10-5 M0 yr-1 (Kenyon et al. 1991; Mikolajewska & Kenyon 

1992). As these systems evolve to a mass transfer rate of '" a few X 10-4 M0 yr- 1 

during an outburst, the boundary layer temperature initially tracks the increase in 

M but then falls dramatically. The solutions presented here show a similar drop 

in the boundary layer temperature, due to both the increase in the boundary layer 

width and the larger stellar radius at high accretion rates. 

Another important result of our calculations is that the boundary layer has two 

distinct widths, which define different regions of the accretion flow. The boundary 

layer luminosity is generated within the relatively narrow dynamical boundary layer, 

where n drops from Keplerian to the stellar rotation rate. However, this luminosity 

is not radiated locally from the disk surface at the same radius as where it is 

generated. Instead, most of the energy goes into radial flux, and is transported 

outward and re-radiated from the disk surface at a larger disk radius. The region 

which radiates the luminosity is the thermal boundary layer, and it has a radial 

width comparable to the full thickness of the disk (Pringle 1977). The two-zone 

boundary layers in our solutions are quite different from those obtained by Bertout 

& Regev (1992) using the matched asymptotic method. Their method constrains 

the radial flux to be zero at the point where n reaches its maximum value, the outer 

edge of our dynamical boundary layer. This forces all of the energy dissipated in 

the boundary layer to be radiated inward, toward the star, which in turn requires 

the temperature to decrease inward. Because of these constraints, they were able 
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to find solutions for only a restricted range of M, and even these solutions required 

them to invoke an ad hoc mass loss from the boundary layer. 

Although the solutions presented here are primarily intended to illustrate the 

general features of boundary layers in pre-main sequence accretion disks, a brief 

quantitative comparison with observations is instructive. Basri & Bertout (1989) 

and Hartigan et al. (1991) derived estimates of boundary layer widths and temper

atures and mass accretion rates for T Tauri stars by modeling the blue continuum 

excess emission observed in these systems as flux from a slab of material at a single 

temperature and density. They derived accretion rates of about 10-7 M0 yr-1 , 

temperatures in the range from 7000 to 10,000 K, and boundary layer widths of 

1-10% of the radius of the star. The 10-7 M0 yr-1 solution presented here reaches 

a maximum effective temperature of about 8500 K in the boundary layer. The full 

thermal width of the boundary layer in this solution is about 15-20% of the stel

lar radius, but the width of the region above 7000 K is only a few percent of the 

stellar radius. Thus our 10-7 M0 yr-1 solution matches general T Tauri boundary 

layer parameters fairly well. However, it has been suggested that the inner portions 

of accretion disks in T Tauri stars may be disrupted by the magnetic field of the 

central star (Konigl 1991, Calvet & Hartmann 1992). If this is correct, then the 

resulting boundary layer will be quite different from those we have modeled here. 

Kenyon, Hartmann, & Hewett (1988) used standard disk models to fit spectra 

of two FU Orionis stars, and derived accretion rates M rv 10-4 M0 yr-1 and stellar 

radii R. rv 4 - 5R0 . The disk models did not include any boundary layer, and 

the best-fit maximum disk temperatures were around 7000 K. Thermal instability 

models for FU Orionis outbursts indicate that a rv 0.001 for these systems (Clarke, 
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Lin, & Pringle 1990, Bell & Lin 1993). Our 10-4 M0 yr-1 solution for this value 

of G has a boundary layer effective temperature of around 7000-9000 K, quite close 

to the observed temperatures. The solution with G = 0.1 is significantly hotter, 

suggesting that for this choice of accretion rate and stellar parameters, a low value 

of G is favored. 

The work reported here includes only optically thick disks and boundary lay

ers. There are indications that boundary layers in some T Tauri stars may be 

optically thin; both Basri & Bertout (1989) and Hartigan et ai. (1991) derived op

tical depths T rv 1 in some systems. Our models indicate that for accretion rates 

M < 10-7 M0 yr-1 , the "opacity gap" in the 1500-5000 K temperature range will 

begin to affect the boundary layer. In particular, when M ;S 3 X 10-8 M0 yr-1 , 

the dynamical boundary layer may become optically thin, which could produce im

portant changes in the overall structure of the boundary layer (Narayan & Popham 

1993). We hope to examine optically thin boundary layer solutions in the near 

future. We also plan to make a detailed comparison of observed spectra of T Tauri 

and FU Orionis stars to solutions calculated with the model described here, in

corporating a more sophisticated treatment of the vertical disk structure and a 

wavelength-dependent opacity in order to generate better model spectra. 
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11. APPENDIX A-POLYTROPIC FLUIDS 

11.1 Two-Dimensional Fluid 

We assume that the height-integrated two-dimensional fluid has an equation 

of state of the form 

P = 1("5]1, (A1) 

where J( and, are constants. This leads to a relation between the two-dimensional 

sound speed, Cs , and the radial infall velocity, VR, (cf. equation [4]) 

2 _ dP _ (I 1)1-1 c ,q - d~ - Co R v R , (A2) 

where Co is a constant. 

Consider now the outer regions of the disk, where nCR) is very nearly equal 

to the Keplerian ng(R) = VGM/R3. Further, assume that j/R1
/

2 « 1. Then, 

equations (3), (10), (11) and (A2), show that VR, ~ and Cs scale as follows with 

radius, 

v ex R-(21 -3)/21 R , (A3) 

(A4) 

(A5) 

In the detailed theory of thin accretion disks, the regime of the "outer disk" is 

defined as the region where gas pressure dominates over radiation pressure and 

free-free opacity dominates over electron scattering (Shakura & Sunyaev 1973). In 
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this regime it can be shown that v R ex R-I/4, ~ ex R-3 / 4 (cf. Frank, King & Raine 

1985). We see that we can simulate this dependence with our two-dimensional fluid 

by choosing 

"'/ = 2. (A6) 

Since most accretion disks do have an extended "outer disk," we specialize to this 

value of "'/ in all our calculations. We thus hope to obtain "realistic" behavior over 

at least some part of our simulated fluid. 

11.2 Three-Dimensional Fluid 

Let the fluid have a three-dimensional equation of state of the form 

(A7) 

where P3 is the pressure, p is the density, "'/3 is assumed to be constant, and ](3 is 

in general a function of R. Vertical hydrostatic equilibrium requires 

GlvIz 
p 8z 

1(3"'/3 d(p'Y3-1) 

"'/3 - 1 dz 
(A8) 

where lvI is the mass of the central star. Integrating, and writing the result in terms 

of the Keplerian frequency, 

(A9) 

we have 

(AID) 
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where H is the vertical half-thickness of the fluid, and we have assumed H ~ R. 

Similarly, we obtain 

(All) 

We now calculate the height-integrated surface density, ~, and two-dimension-

al pressure, P, of the fluid: 

(A13) 

If P and ~ are to have a polytropic relation as in equation (AI), then we require 

J{3 to scale as 

(A14) 

with J{o a constant. Substituting this in (A12) and (A13) we find 

(A15) 

The two-dimensional sound speed then becomes 
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I.e. 
[ ]

1/2 
Cs l(r3 - 1) H 

ngR = (313 -1) R' (A16) 

This relation allows us to estimate the vertical thickness of the fluid in terms of the 

sound speed cs • 

The above relations are written for arbitrary 1 and 13. We have already 

specified the value of 1 in equation (A6). To fix 13, we need some other criterion. We 

decided that we would like 1(3 to be independent of H for given ng. This permits 

our fluid to behave like a star with a three-dimensionally polytropic equation of state 

in the transition region between the disk and the star. For 1 = 2, this corresponds 

to 

Equation (A16) then becomes 

13 = 3. 

Cs 1 H 
n[(R - V2 R' 

(A17) 

(A1S) 

This relation is used in Chapter 5 to estimate the vertical thickness of the fluid. 

Note that when equation (A1S) is combined with equation (A5) we obtain a scaling 

of the form, 

(A19) 

a standard result for the regime of the outer accretion disk. 
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12. APPENDIX B-THE CONDITION FOR A SUBSONIC BOUND-

ARY LAYER 

Although the following analysis can easily be done for an arbitrary n*, we 

will for simplicity assume n* = O. For such a star, the boundary layer will occur 

at R '" 1, and the disk solution will correspond to j '" 1. Consider a subsonic 

boundary layer with Vn < Cs ~ n[( R '" 1. Under these conditions, equations (7), 

(10) and (11) simplify to 

(Bl) 

dn '" Ivnl (1- n). 
dR Q'c; (B2) 

Combining these two equations, we find 

dlvnl 
dn > Q(1 + n) > Q. (B3) 

Now, in the boundary layer, n increases from 0 to '" 1. Therefore, Ivnl, which 

is extremely small inside the star, will have a value outside the boundary layer given 

approximately by 

Ivnl 2: Q. (B4) 

The solution will be subsonic only if the above value of v n is less than the sound 

speed. From equations (4) and (16), setting R rv 1 and assuming j / R!~; ~ 1, we 

estimate the sonic Ivnl to be 

(B5) 
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The condition for a subsonic boundary layer then becomes 

(B6) 

For our particular choice of parameters, ,= 2, Rout = 100, this gives 

(B7) 

An inspection of the sense of the inequalities in equations (B1) and (B3) shows that 

the coefficient in equation (B7) is likely to be an overestimate, possibly by a factor 

"'2. 
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13. APPENDIX C - THE TOTAL LUMINOSITY OF THE DISK AND 

BOUNDARY LAYER 

The energy dissipated per unit area by viscosity is 

(C1) 

Assuming that all of the dissipated energy is radiated from the disk surface, an 

annulus of radial width dR contributes a luminosity 

( 
dn)2 dL = 27rRdR· 1/~ R dR (C2) 

We know, e.g. from equation (1) of Chapter 10, that dnjdR can be written 

do' = VR (0, _ --1-) = VR (0, _ jQJ((R. )R:) , (C3) 
dR 1/ M R2 1/ R2 

where j = j MnJ((R. )R:. Eq. (C3) can be substituted into (C2) to give 

2. 2 do' = 27rRVR~' (QR - )QJ((R.)R.) dRdR 

= -M(nR2 - jnJ((R.)R:)dn. (C4) 

This can be integrated to find the total luminosity of the disk and boundary layer, 

i
nout 

. 2 2 
L tot = -M (nR - jnJ((R. )R. )dn. 

n;n 

(C5) 

U sing the relation 

(C6) 
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and using the radial momentum equation (e.g., eq. (2) in Chapter 10), 

2 2 dVR 1 dP 
!l R = !l J( R + v R dR + P dR' (C7) 

we can then write 

. [i RaU1 

2 l vR

,aul l Pau1 
dP L tot = M !lJ(RdR + vRdvR + -

Rin VR,in Pin P 

(C8) 

which gives 

If we assume Rin = R., !lin = !l., and !lout = !lJ((ROllt ), and remember that 

M!l}(( R. )R: is just the accretion luminosity G M. M / R., we have the result 

(C10) 

The first term is identical to equation (5) in Chapter 9, and the remaining terms 

are usually small. 
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