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Abstract 

Local convection theory makes the unphysical prediction that turbulent mix

ing terminates at the Schwarzschild stability boundary, and existing non-local 

convection theories have been criticized by Renzini (1987). Since the size of con

vecting cores bears upon stellar structure and evolution, a self-consistent treatment 

of non-local convection is needed. 

We have developed a theory of non-local mixing-length convection based upon 

a Boltzmann transport theory for subsonic, turbulent fluid elements. The momen

tum and thermal energy excesses of fluid elements are dissipated on the scale of a 

mixing length. The distribution function, f(t, z, v, T), which is the mass density 

per velocity-temperature phase space volume, evolves according to the Boltzmann 

equation. The minimal non-local theory is obtained by taking moments of the 

Boltzmann equation, up to third order. The local limit of the moment equations 

reduces to standard mixing-length theory. We extend this moment method to 

local convection in a composition stratified fluid by considering the evolution of 

the distribution function, f(t, z, v, T, J.l), in velocity-temperature-molecular weight 

phase space. The stability criteria for convection, semiconvection, and salt-finger 

instability are derived. 

To determine closure approximations and evaluate the validity of the moment 

theory, we have developed an algorithm called Generalized Smooth Particle Hydro

dynamics (GSPH) that numerically simulates convection. The vertical structure of 
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the background fluid is calculated by SPH averaging of particles on a grid. Forces 

on particles are calculated from the background grid and from the local deviations 

between particles and grid. Particles move vertically only, but the local deviation 

forces, which account for turbulent losses of momentum and energy, arise from 

horizontal interactions. GSPH simulations show that the fourth moments are ap

proximately proportional to squares of the second moments in unstable regions, 

with a proportionality constant between 2 and 4. With this closure approximation, 

we show that solutions of the moment equations agree well with GSPH results. 

The closure relations lead to nearly correct second moments, even in overshooting 

regions where the closure approximations are poor. 

GSPH simulations of convective overshooting in plane parallel and spherical 

geometry typically give overshooting distances in the range dover ~ 1 - 2fM. We 

discuss improvements that we would like to make to the GSPH code and to the 

analytic work to obtain more precise answers that are directly relevant to realistic 

stars. 
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CHAPTER 1 

An Introduction to Convection 

1.1 The Importance of Convection in Astrophysics 

1.1.1 What is Convection? 

Convection is the transport of heat by the motion of a fluid. This defini

tion includes transport by organized flows and by disordered, turbulent flows. In 

most contexts, the latter meaning is implied, and it is the meaning that is meant 

throughout this dissertation. Convective flows are important in studies of the 

earth, the oceans, the atmosphere, and stars. While much of the work of this 

thesis is not specific to the environment of the fluid, we emphasize the relevance 

of convection to astrophysics, and in particular, to stellar evolution. 

The fundamental ideas of convective transport are intuitive. In turbulent 

fluids, some blobs of fluid will be hotter than others. Hotter blobs have a lower 

density and are buoyant. Hence, they rise. Cooler ones sink. The net effect is to 
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carry energy in the direction opposing gravity. Obviously, however, not all fluids 

are turbulent, and we must consider the conditions under which a fluid makes the 

transition to turbulence. 

Let us consider first the ways, other than convection, by which energy is 

transported in stars. The other main transport process is the flow of radiation. 

The transport can be treated in the diffusion approximation if the mean-free-path 

of a photon, >. = 1/ "'RP « R, where "'R is the Rosseland mean opacity, P is 

the density of the fluid, and R is a characteristic dimension of the star. In this 

approximation, which is good everywhere below the photosphere, the energy flux 

is related to the temperature gradient by (e.g. Kippenhahn and Weigert 1990) 

where 

F = -K'VT, 

K = 4ac T3 . 
3 "'RP 

Equation 1.1 can be arranged to show that 

'VT", "'R F. 

(1.1) 

(1.2) 

(1.3) 

Conduction by electrons can be important in white dwarfs, but since conduction 

can be treated with an equation of the form of 1.1, we will not discuss it separately. 

Equation 1.3 shows that the temperature gradient can be made steeper in 

two ways. The first way is to increase the flux that must be carried by radiation. 

The second way is to increase the opacity of the fluid. The greater opacity of the 

fluid impedes the flow of radiation, and, therefore, the temperature gradient must 
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be steeper to carry the same energy flux. One must ask whether a temperature 

gradient that is arbitrarily steep can be maintained. The answer is no. 

If the temperature gradient of the fluid is steeper than the adiabatic gradient, 

VTad, the fluid is unstable to convective motions. This is the famous Schwarzschild 

criterion. Let us motivate this criterion on intuitive grounds. The adiabatic tem-

perature gradient corresponds to the temperature gradient a fluid would have if it 

had no entropy gradient. If the temperature gradient is steeper than VTad, then 

the entropy gradient must be negative, V's < o. Let us consider a fluid blob that 

is in equilibrium with its environment, i. e. at the same density, temperature, and 

entropy. If the blob is displaced adiabatically to a larger r, its entropy will be 

higher than the surrounding fluid, whose entropy is decreasing. When the blob 

comes into pressure balance with the rest of the fluid, its density will be lower since 

its entropy is higher. Therefore, it will be buoyant and feel a positive acceleration. 

The farther the blob rises, the more strongly it will be accelerated. This is clearly 

unstable behavior, and it follows from the sign of the entropy gradient. 

The degree of convective instability can be measured by the amount by which 

the adiabatic temperature gradient is exceeded. This measure is called the su-

peradiabatic gradient, defined by 

b.V'T=(&T') _&T'. ar ad ar (1.4) 

A temperature gradient that is steeper than adiabatic leads to b. V'T > o. In a 

Schwarz schild unstable fluid, both convection and radiative diffusion act together 

to carry the flux. 
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1.1.2 Consequences of Convection for Stellar Structure 

The importance of convection to stellar structure has long been recognized 

(e.g. Chandrasekhar 1939). Since convection carries energy outward in convec

tively unstable regions of stars, radiative diffusion need not carry 100% of the 

energy flux in these regions. Then the temperature gradient of the convecting 

region is related to the fraction of the flux that is carried by radiation, and this 

gradient cannot be as steep as predicted by equation 1.1. We shall see that the 

temperature gradient of convecting regions of stars is nearly adiabatic in most 

circumstances. This property of convection was recognized, in the context of the 

earth's atmosphere, at least as early as the work of Kelvin (1890). 

Convection also alters the composition structure of stars. We will see that 

convection time scales are usually very much shorter than characteristic nuclear 

evolution time scales. (This may not hold true during the final explosive burning 

stages preceding a supernova.) Therefore, we expect that turbulent mixing will 

homogenize any composition gradients. 

Let us consider briefly where convection is likely to operate within stars. 

Equation 1.3 leads us to expect convection when either the energy flux or opacity 

is particularly large. Energy fluxes are largest in stellar cores which are generating 

energy by nuclear reactions. Outside of the cores, the flux must decrease as r- 2 , 

and so it is relatively smaller in stellar envelopes. Calculations show, however, that 

not all stellar cores are convective. Low mass stars, such as the Sun, which burn 

hydrogen by the P-P chain in cores with T;51.5 X 107 K, do not have convective 

cores. Stars which are slightly hotter burn hydrogen predominantly by the CNO 
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cycle. The energy generation rate can be approximated crudely by a power law 

function of temperature. For the CNO cycle, the exponent is of order 20, whereas 

for the P-P chain, it is of order 5 (e.g. Kippenhahn and Weigert 1990). Then, stars 

with hotter cores burn hydrogen much more vigorously, and have a much higher 

energy flux in their cores. Stars that have M;::1.3 M0 produce most of their energy 

by the CNO cycle and have convective cores. The burning rates of elements heavier 

than hydrogen all have even steeper power law dependences on temperature, and 

so later phases of stellar evolution also generate energy in convective cores. 

Opacities within stars are largest for temperatures around T ~ 104 K (e.g. 

Clayton 1983). This peak is caused by the recombination of the hydrogen ion. This 

recombination occurs in the outer envelopes of stars. Hence, stars like the Sun 

have convective envelopes. Lower mass stars have lower internal temperatures and 

higher densities. Both of these changes raise the opacity and make the convecting 

envelope deeper. For the lowest mass stars, M;SO.l M0 , the convective envelope 

reaches all the way down into the core (e.g. Kippenhahn and Weigert 1990). 

The change of the thermal equilibrium brought about by convection processes 

has obvious importance for the resulting hydrostatic configuration of stars. The 

mixing of composition in burning convective cores provides a means of bringing 

more fuel into the hot core than would otherwise be available. Thus, convection 

bears upon stellar lifetimes and the abundances of evolved stars. Envelope convec

tion, which may reach down into stellar cores, may alter the surface composition of 

stars. Clearly, then, the particular stability criterion and convection theory that is 
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used bears upon theoretical evolutionary tracks in the H-R diagram. The variety 

of consequences for stellar evolution will be discussed later in this chapter. 

1.2 Standard Local Mixing-Length Theory and Its Failures 

1.2.1 A Simple Derivation of Mixing-Length Theory 

The concept of a mixing length was introduced by Prandtl (1925). The mixing 

length is the characteristic length over which a moving fluid element retains its 

excess thermal energy and momentum. (The existence of a single length scale 

that characterized the dissipation of heat and momentum is, at best, a crude 

approximation to the spectrum of lengths relevant in a turbulent fluid.) After the 

fluid element travels a mixing length, the changing external pressure distorts the 

fluid element to such a degree that it dissolves into the background (e.g. Gough 

1977a,b). Hence, the mixing length is usually taken to be of order a density or 

pressure scale height, though more commonly the latter. Then, fM ex: Hp. It is 

often parametrized by the ratio Q' = eM / H p. 

The history of the development of mixing-length theory in astrophysics is 

summarized by Biermann (1977). The mixing-length concept was first applied 

to stellar structure by Biermann (1933), and it took on the form most widely 

used today a couple of decades later (Vitense 1953; Bohm-Vi tense 1958). Basic 

derivations can be found in most introductory text books on stellar structure (e.g. 

Kippenhahn and Weigert 1990; Clayton 1983; Cox and Giuli 1968). More detailed 

reviews can be found in Gough (1977a) and Spiegel (1971). 
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Here we present a simple derivation of the mixing-length theory of convec-

tion. Our aim is to see how the convective flux and velocities in the turbulent fluid 

depend on the mixing length and superadiabatic gradient. Accordingly, we will 

disregard factors of order unity when possible. We will be more precise in later 

chapters. Let us imagine that a fluid element is in mechanical and thennal equi-

librium with its surroundings. We perturb its temperature, T, by a small amount, 

I::l.T. The fluid element quickly returns to pressure equilibrium, and, therefore, its 

density must be perturbed from the surrounding fluid. The density change causes 

a buoyancy force (per unit mass) to act upon the fluid element, given by 

of = gb.T, 
T 

(1.5) 

where 9 is the acceleration of gravity. We assume that the particle moves adia-

batically. That is, it does not exchange heat with its surroundings until it has 

traversed a mixing length. We also assume that it remains in pressure equilibrium 

with its surroundings as it moves. This is a good approximation if its velocity is 

sufficiently subsonic. We will show below that convective velocities are generally 

very subsonic. (This is always true in stellar interiors, but not, for example, in the 

envelopes of red supergiants.) As the fluid element accelerates, the temperature 

excess, I::l.T, will change. We assume that the initial perturbation is very small, 

but after the fluid element travels a distance eM, its temperature excess is 

(1.6) 

We take this as the characteristic temperature excess of the fluid element. Af-

ter traveling a mixing length, the fluid element gives up its excess heat to its 

surroundings. 
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The buoyancy force, which acts over distance eM, does work on the fluid 

element. This work supplies the kinetic energy to the fluid element, which we 

estimate according to 

(1.7) 

where u is the turbulent velocity. We combine equations 1.5-1.7 to show that 

JgDo"VT u ~ eM T' (1.8) 

which we take as the characteristic velocity of turbulent fluid elements. Since the 

excess heat, DoT, is transported with characteristic velocity, u, we can estimate 

the convective flux as 

Fconv ~ pcpuDoT, (1.9) 

where cp is the specific heat at constant pressure. Substituting equations 1.6 and 

1.8, we obtain 

(1.10) 

As an example, let us estimate (J and Do "VT for the case of the Sun's envelope. 

The flux near the surface of the Sun is F ~ L0/47rR~ = 6.2 X 1010erg s- l cm-2 

and the gravitational acceleration is g ~ GM0/ R~ = 2.8 X 104cm s-2. We use 

T = 106 K and p = O.lg cm- 3 as typical numbers for the solar convection zone 

(e.g. Clayton 1983). The specific heat for an ideal gas is Cp = SkB/2J-l, where kB 

is Boltzmann's constant and the specific mass, J-l ~ mH /2 = 8.S x 1O-25g. Finally, 

we must estimate the mixing length, which we assume is exactly one pressure scale 

height. One can easily show that a pressure scale height is 

Hp = kBT. 
J-lg 

(1.11) 
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Hence, fM ~ 6 X lOBcm. We assume 100% of the flux is carried by convection, and 

so we substitute these numbers into equation 1.10 to find 

.6. "VT ~ 6 x 10-9 K cm-I • (1.12) 

This implies that the true temperature gradient of the convecting fluid is very 

nearly adiabatic. Since the characteristic temperature excess given by equation 

1.6 is 

.6.T ~ 4K, 

which is much less than the mean temperature, the characteristic turbulent velocity 

given by equation 1.8 is 

Then the convection time scale is 

fM 4 
Teonv :::::: - :::::: 2 x 10 s, 

(J 

which is very much shorter than nuclear evolution time scales in the Sun. 

(1.13) 

(1.14) 

This derivation depends upon the assumption that the fluid element remains 

in pressure equilibrium with its surroundings as it moves. Otherwise, equation 

1.6 for the temperature excess does not hold. Therefore, we must check that the 

assumption of pressure equilibrium is justified. The sound speed of the fluid is 

J-rkBT 6 -I ( ) es = -J.l- :::::: 5 x 10 cm s . 1.15 

Since the turbulent velocity, (J, is highly subsonic, the fluid element indeed does 

remain very nearly in pressure equilibrium as it moves over a mixing length. This 

approximation is alway good in stellar interiors, but in the low density envelopes 
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of giants, convective velocities can be supersonic. In this case, one must work with 

the compressible fluid equations directly (Graham 1977). This is usually done via 

numerical hydrodynamic simulations. 

Even more rigorous derivations of mixing-length theory have uncertainties of 

order Wlity. However, it is not obvious that the mixing-length picture of convection 

is correct in the quantitative sort of way that it is used here. More likely, there is a 

spectrum of mixing lengths that should be used. Furthermore, the mixing length 

is not determined by the physics of the problem. It is a free parameter for which 

we make a reasonable guess. Surely, then, there are more serious Wlcertainties in 

mixing-length theory than the uncertainties of order unity in the derivation. 

1.2.2 The Meaning of a Local Theory 

The equations of mixing-length convection above are local. This means that 

the properties of the convecting fluid at a position r depend only upon the prop

erties of the fluid at r. In particular, the turbulent velocity given by equation 1.8 

and the convective flux given by equation 1.10 depend only upon the local den

sity, temperature, and superadiabatic gradient. From the previous discussion, we 

know that some regions of stars are Wlstable to convection by the Schwarzschild 

criterion, while other regions in the same star are stable. Thus, there are stability 

transitions. The local theory predicts that the convective flux and turbulent veloc

ity dispersion are zero if the superadiabatic gradient is stable. Thus, the equations 

allow the velocity dispersion to be non-zero in the unstable region, but to be zero 

in an immediately adjacent stable region. 
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1.2.3 The Failures of Local Mixing-Length Convection 

The main source of trouble with the local theory is easily seen. In equation 

1.6, we assumed that the superadiabatic gradient at a position r acts over a whole 

mixing length, .eM. Then, in equation 1.7 we assumed the velocity that a fluid 

element has developed after traveling a mixing length is characteristic of position 

r. Clearly, if the superadiabatic gradient varies significantly over a mixing length, 

the above equations will not be very reliable. 

Another way of describing the local approximation is that the fluid elements 

have dimensions of the order of a mixing length. Then, the fluid element extends 

over a range of densities, temperatures, and pressures, but one can use single 

representative values. In this case, the ballistic notion of a fluid element moving 

through local surroundings characterized by a single density, temperature, and 

pressure is not valid. 

Equations 1.5 and 1.6 show that the acceleration of a buoyant fluid element 

is proportional to the superadiabatic gradient. At a stability transition, where 

.6. "\IT = 0, the accelerations on a fluid element are neutrally stable. This does not 

imply, however, that the turbulent velocities must be zero. (Equation 1.8 predicts 

zero turbulent velocity only because of the problems of the local approximation 

described above.) The inertia of the turbulent fluid elements can carry them 

into the stable region, where the stable superadiabatic gradient will decelerate 

their velocities. This penetration into the stable region is known as convective 

overshooting. Hence, the turbulent velocity dispersion and convective flux cannot 
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be zero in a stable region if it is adjacent to an unstable region. The local theory, 

by its very nature, is unable to treat this phenomenon. 

The local theory says nothing about turbulent kinetic energy flux, although 

the equations imply that it should be non-zero. Equation 1.8 predicts that the 

turbulent velocity dispersion varies from one place to the next within a convecting 

region. As an example, let us assume the superadiabatic gradient, ~ 'VT, and the 

mixing length, fM are constant, but that the temperature, T, decreases toward 

larger r. Then the turbulent velocity dispersion rises toward larger r. Fluid 

elements that arrive at r from r + dr have larger, negative velocities than fluid 

elements that arrive from r - dr with positive velocities. Then, the downward 

kinetic energy flux is larger than the upward flux. The net effect is to carry 

mechanical energy downward, even while heat is being carried upward. This is a 

non-local effect that can only be calculated with a more sophisticated approach 

than the local theory. 

While one can hope to develop a mixing length theory that predicts the ex

istence of convective overshooting and the value of the turbulent kinetic energy 

flux, there remains the fundamental problem that the mixing length itself is a free 

parameter. One can make qualitative arguments that the mixing length should 

be of order a pressure scale height, but its value is not quantitatively determined 

and its relationship to the pressure scale height is not necessarily the same in all 

environments. In other words, the mixing length may change from one part of a 

star to another, as well as from one type of star to another. This is a limitation 

of mixing-length theory which is inherent. 
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1.3 Existing Non-Local Convection Theories 

The non-local theories of convection that are most widely used are of two 

types. The first type follows the motion of buoyant fluid elements more accurately 

than in the local theory. In this ballistic approach, one considers the buoyancy 

force as a function of position. The second approach begins with the basic hydro-

dynamics equations, which are expanded to include convection processes. 

The theoretical work presented in the following chapters comprises aspects 

of both approaches. We outline here the basic ideas used to formulate non-local 

theories of the ballistic type, since these concepts will serve to enlighten future 

calculations. We describe the basic changes that one must make to the above local 

equations to obtain a non-local theory. These changes are outlined, for example, 

in Zahn (1977) and Renzini (1987). The temperature excess of a fluid element at 

a position r is dependent upon its initial position, rio Then, the non-local version 

of equation 1.6 is 

(1.16) 

The initial position, ri, must be within the unstable region. One then replaces 

equation 1.7 with 
2( .) -l r 

g(r')D.T(r',rd d ' 
v r,r l - rj T(r') r. (1.17) 

One calculates the distribution of velocities at r, v( r, ri), for a distribution of 

initial positions, rio The initial positions are always taken to be within the range 

of r ± RM (or sometimes r ± RM/2), and only initial positions within the unstable 

region contribute to the dispersion. The average of the velocity distribution gives 
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the turbulent velocity dispersion, q. In overshooting zones, particles eventually 

reach zero velocity. The place where all particles have zero velocity defines the 

end of the overshooting region. The non-local convective flux is given by (Renzini 

1987) 

(1.18) 

where k(r, rj) is the fraction of the surface area at r occupied by bubbles within 

initial positions between rj and rj + drj. All authors, however, have not used this 

non-local flux, but resorted to the local equation 1.9. Renzini points out how this 

leads to physical inconsistencies. 

The "subtleties" of using equation 1.9 versus 1.18, aside, one must determine 

the superadiabatic gradient, ~ '\IT(r). This is especially a problem in overshooting 

regions, where it is not obvious whether convection carries most, some, or very 

little of the total flux. In many cases, authors have not explicitly made assump

tions about the adiabatic gradient in their work, but such assumptions are implicit 

somehow in their calculations (Renzini 1987). In general, authors who have as

sumed that the temperature gradient in the overshooting region is nearly adiabatic 

find extensive overshooting (e.g. Shaviv and Salpeter 1973; Maeder 1975a; Cogan 

1975; Bressan et aI. 1981; Bertelli et aI. 1986; Umezu 1991). Authors who assume 

that the overshooting zone is nearly radiative, so that buoyant deceleration of fluid 

elements is as strong as possible, find a small extent of overshooting (e.g. Saslaw 

and Schwarzschild 1965; Travis and Matsushima 1973; Langer 1986). This is an 

issue that can be resolved only with a fully self-consistent non-local theory, where 

~ '\IT is not externally imposed, but internally calculated by the theory. 
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The second approach for non-local convection theories works with the av

eraged properties of the turbulent fluid directly. The concept of turbulent fluid 

elements is virtually bypassed. There are no general outlines of how most authors 

proceed in this task, and the resulting theories are often quite complicated. Some 

such theories have been derived because they seem physically reasonable, although 

they are not based necessarily upon rigorous derivations (e.g. Eggleton 1983; Kuh

fuss 1986). These theories, too, must model somehow the convective heat flux and 

kinetic energy flux terms in the equations. Using a theory of this sort, Cloutman 

(1987) predicts that overshooting should be extensive. The work of Xiong (1986, 

1989a,b) probably includes the most physics. However, the complex mathemati

cal nature of this ~ork obscures the physical processes of non-local convection and 

makes development of intuition difficult. Xiong (1989b) also predicts that over

shooting should be extensive, but that the convective flux is small in overshooting 

regions. (We will see that our work supports this conclusion.) 

1.4 Other Approaches to Convection Theory 

In this section, we discuss other techniques which have been used to investigate 

convection. We present the main ideas and conclusions of these alternate methods, 

but this summary is not intended to be a thorough review of each. 

1.4.1 Modal Expansions 

One of the alternative approaches to convection theory begins by writing the 

rigorous hydrodynamic equations. In a three-dimensional fluid, all the functions 
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that enter the equations are functions of the three spatial dimensions (x, y, z). The 

horizontal structure of the fluid is described in Fourier space. For example, the 

vertical component of velocity is given by 

vz(x, y, z, t) = L !k(X, y)Wk(Z,t). 
k 

(1.19) 

The functions !k ( x, y) are called planforms, and they are usually taken to be 

orthogonal functions that are spatially periodic. The expansion in terms of these 

planforms is called a modal expansion. This procedure is sometimes called the 

Galerkin method. For a given planform, the equations reduce to a set of non-

linear differential equations in time and in vertical coordinate, z. 

,This method was developed by Latour et al. (1976), and the results have been 

summarized by Zahn (1991). The kinetic energy flux transported by convection 

can be comparable to the convective flux in some cases, and pressure fluctuations 

near stability transitions tend to brake buoyant fluid elements (Massaguer and 

Zahn 1980; Massaguer et al. 1984). The ext.~nt of convective mixing from unstable 

to stable regions can be large (e.g. Latour et al. 1981), but the details depend upon 

the particular choice of planform. For example, if !k(X, y) has a central upwelling, 

the overshooting is more extensive than if there is a central sinking (Toomre et al. 

1976; Massaguer et al. 1984). 

An important shortcoming of these calculations is that usually very few plan-

forms, and sometimes only one, are used in the modal expansion. Then the hori-

zontal size and the structure of the convective cells are arbitrarily imposed. Fur-

thermore, only the energy dissipated on large scales is treated reliably, much as in 

mixing-length theory, while energy in stars is dissipated on scales spanning many 

orders of magnitude. 



38 

1.4.2 Numerical Hydrodynamics 

Another approach to convection involves the numerical solution of the hydro

dynamic equations in either two or three dimensions. Results of these simulations 

have been summarized by Zahn (1991). Many of the results from the modal calcu

lations are confirmed. Common to these simulations is the appearance of strong, 

narrow downflows in convective zones, with weaker broad upflows (e.g. Hurlburt 

et al. 1986; Stein and Nordlund 1989). At greater depths, the characteristic cell 

size of convection increases, and the strong downflows tend to merge (Stein and 

Nordlund 1989; Cattaneo et al. 1991). These velocity asymmetries cause the ki

netic energy flux to be downward throughout most of the unstable region, with an 

amplitude that is less than about a quarter of the convective heat flux (Chan and 

Sofia 1989). Other authors find that the kinetic energy flux is as small as 1-2% 

of the convective flux (Hossain and Mullan 1991). This behavior leads to strong 

penetration into stable regions beneath convectively unstable zones, and weaker 

penetration into stable regions above. 

These numerical simulations show a variety of complex behaviors and struc

tures on scales spanning the depth of the simulation to scales much smaller than 

the size of a convective cell. Nevertheless, some lend support to the mixing-length 

concept. They show that the vertical velocities in the unstable region are corre

lated over about a pressure scale height (Chan et al. 1982; Chan and Sofia 1987; 

Hossain and Mullan 1991). Although the velocity structure can be complicated, 

the transport properties of convection are best understood from statistical aver

ages over horizontal planes obtained from long time integrations (Chan and Sofia 
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1986). Thus, although the three-dimensional motions of the fluid can be highly 

non-local as discussed above, mixing-length theory may provide a good description 

of the statistical steady state transport of energy (Cattaneo et al. 1991). 

The results of such simulations are limited by the modest resolution that 

modern computing resources permit. The highest resolution calculation we have 

encountered has 963 gridpoints (Cattaneo et al. 1991). Although these simulations 

lend insight into the process of convection and predict complex behavior that 

mixing-length theory does not, such detailed computations cannot be incorporated 

into stellar evolution calculations. Thus, we still need an accurate, but simplified 

description of convection, and fortunately, the mixing- length concept seems useful 

for describing the statistical average of three-dimensional flows. 

1.4.3 Turbulence Theory 

Turbulence theory is the least-explored approach to astrophysical convection. 

A brief outline of this technique is given by Huang and Struve (1960). In turbulence 

theory, one tries to determine the probability with which various motions and 

structures occur. One begins by considering the velocity in Fourier space. We can 

define the Fourier amplitude according to 

.... ( .... t) - '" .... (t) -ik·" v r, - ~ Vk e , (1.20) 
k 

where the wavenumber, k, defines the size, A = 27r / k, of the convective eddy. If 

we define vi as the energy stored in the turbulent motions of eddies smaller than 

A, we can write 

vi = {'::>O F( k')dk', 
ik 

(1.21) 
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where F( k) is the turbulent energy spectrum. The classical Kolmogorov spectrum 

IS 

(1.22) 

Turbulence theory has been applied in astrophysics by Ledoux et al. (1961), 

and more recently by Canuto and Mazzitelli (1991). Canuto and Mazzitelli con-

clude that convection of nearly inviscid fluids, such as stellar interiors, must be 

described by the full spectrum of turbulent eddies, and that a single eddy approxi-

mation, such as mixing-length theory, is only useful for viscous fluids. The largest 

eddy size is not determined by their calculation, and, hence, it is a free parameter, 

much like the mixing length. 

1.4.4 Laboratory Experiments 

Naturally, one would like to check mixing-length theory (or any other theory) 

against experiment. There are two parameters that characterize the nature of the 

fluid flow. The first is the Prandtl number, 

v 
Pr =-, 

X 
(1.23) 

where v is the viscosity of the fluid, and X is the thermal diffusion, which is related 

to K by X = K / pc p. The second parameter is the Rayleigh number, 

Ra = ge~ ~'VT. 
Xv T 

(1.24) 

Stellar convection is characterized by very large values of the Rayleigh number, 

of order 1020, and by small values of the Prandtl number, of order 10-9 (Gough 

1977b). This is because of the very small viscosity, v, in stars. In laboratory 
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experiments, however, the Rayleigh numbers are less than 1011, and the Prandtl 

munbers are of order unity. Thus, the astrophysical parameter regime is out of 

reach of laboratory experiments. Furthermore, laboratory fluids always span small 

fractions of a pressure scale height. Therefore, one cannot investigate the nature 

of compressible convection in the laboratory. 

1.5 The Consequences of Non-Local Convection 

for Stellar Evolution 

The consequences of non-local convection for stellar evolution have been inves

tigated using two different treatments of convective overshooting. The first, most 

commonly used procedure, is to parametrize the extent of overshooting by the 

ratio of the overshooting distance to the pressure scale height, dover / Hp (Maeder 

1975b, 1976; Doom 1982a,b; Matraka et al. 1982; Bertelli et al. 1985; Stothers 

and Chin 1985, 1990; Chin and Stothers 1991; Maeder and Meynet 1987, 1988, 

1989). The other procedure is to adopt a non-local theory of convection for use 

in a stellar evolution code (Cogan 1975; Bressan et al. 1981; Doom 1985; Xiong 

1986, 1990; Unno and Kondo 1989; Umezu 1991). 

Stars of intermediate and high mass burn hydrogen in convective cores. Thus, 

the properties of these stars on the main sequence are more sensitive to convective 

overshooting than low mass stars, whose cores are radiative. Many modern evo

lutionary sequences for intermediate and high mass stars with overshooting have 

been calculated (Doom 1982a,b; Stothers and Chin 1985; Maeder and Meynet 

1987, 1988, 1989; Bertelli et al. 1985). The massive star calculations have been 
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summarized by Chiosi and Maeder (1986). Here we summarize some of the pri

mary consequences of convective overshooting on stellar evolution. 

The consequences of overshooting are summarized neatly by Bertelli et al. 

(1985) and Maeder and Meynet (1989). The masses of stellar cores during core 

H-burning are increased. For example, the size of the cores of stars in the mass 

range 1.15 < M / M0 < 1.7 can be doubled or tripled by overshooting. The 

increase is reduced to about 0.3 for M '" 7 M0 . The stars are more luminous. The 

main sequence is broader for intermediate mass stars, but narrower for stars bluer 

than BO (Maeder and Meynet 1987). Core H-burning lasts longer, and, therefore, 

clusters, whose ages are measured by the position of the main sequence turnoff, 

are older. Young and intermediate age clusters may be 70-80% older (Meynet 

et al. 1990). The He and CO cores of the later phases of evolution are larger. The 

He-burning lifetime is shorter, and blue loops during this phase are suppressed. 

We will discuss the blue loop issue at greater length in a future chapter. The blue 

loop evolution bears upon the number of blue to red giants in the core He-burning 

phase. Because overshooting increases the core masses relative to the total stellar 

masses, the lower limit to the mass of stars that ignite He non-degenerately is 

decreased from about 2.3 M0 to about 1.6 M0 . The lower limit to the mass of 

stars that ignite C non-degenerately is decreased from about 9 M0 to 6 M0 . 

Overshooting also influences the surface abundances of massive stars (Maeder 

and Meynet 1987). Overshooting bears on the C/N and O/N abundance ratios 

in giants. The abundance ratios C/He and O/C at the start of the WC stage of 
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massive stars are reduced by overshooting, as is the ratio of WN to we lifetimes, 

tWN/tWC' 

1.6 Observational Support for Non-Local Theories 

Since the Sun is the nearest star, many aspects of convection theory in stellar 

envelopes can be studied best there. For example, the relationship among convec

tion and granules and supergranules can only be studied there. Solar convection 

has been reviewed in detail by Spruit et al. (1990). Spectral signatures of convec

tion that can be observed in the Sun and other stars have been discussed by Bohm 

(1977) and Bohm-Vitense (1977). The interpretation of such signatures, however, 

such as line profiles or star colors, cannot usually be interpreted unambiguously 

in terms of convection. We will, therefore, focus here on evolutionary signatures 

of convection. 

There are two types of observations that are used to determine whether evolu

tionary calculations with or without overshooting are preferred. The first type of 

test involves fitting cluster data to theoretical isochrones in the H-R diagram. In 

general, one tries to fit the cluster's distance, metalicity, and age simultaneously. 

The theoretical model must also predict the correct density of stars along the 

isochrone. The second type of observation is obtained from binary star data, for 

which the stellar masses, temperatures, and luminosities are known. The masses 

determine which evolutionary tracks the stars follow. Whether or not these stars 

fall on the theoretical tracks can be used to discriminate among stellar models. 
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Modern cluster isochrones and their application to cluster data have been 

reviewed by Maeder (1990). Young and intermediate age clusters (t$4 X 109 yr), 

whose main sequence turnoff masses are M;::1.5 M0 , require moderate overshoot

ing for the shape of the theoretical main sequence turnoff to agree with the obser

vations. We define moderate overshooting as dover ~ 0.2-0.3Hp, where Hp is the 

pressure scale height at the edge of the classical core (defined by the Schwarzschild 

criterion). A study of 35 young clusters by Maeder and Mermilliod (1981) found 

that H cores ought to be 20-40% more massive than their classical sizes to fit their 

data, and models with moderate overshooting fit the main sequence widths of 

25 young cluster better (Mermilliod and Maeder 1986). Since overshooting bears 

upon the H and He core burning lifetimes, one can use cluster luminosity func

tions to distinguish among models. Observations of the luminosity function of the 

LMC cluster NGC 1866 favor overshooting models (Chiosi et al. 1989). Observa

tions of the same cluster favor models with convective overshooting, rather than 

semiconvective mixing, during core He-burning in low mass stars (Lattanzio et al. 

1991). Arguments based upon the relative population of various regions of the H

R diagram also favor overshooting. The absence of late type supergiants brighter 

than Mbol = -9.8 argue for convective H core masses larger by 15-50% than the 

classical size (Doom 1982a). Indeed, the whole supergiant distribution may be 

improved by non-local convection models (Bressan et al. 1981). The ratio of the 

number of horizontal branch to AGB stars, predicted with non-local convection, 

is also in better agreement with observations (Chiosi et ai. 1986). 
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For clusters that are older than those discussed above, the mass at the main 

sequence turnoff is smaller, and the size of the convective core shrinks. For old 

clusters (t > 5x 109 yr), whose turnoff masses are M;S1.2M0 , overshooting models 

are not required to fit the data. Indeed, overshooting models turn out to be worse 

(Maeder 1990). 

The case for convective overshooting from observations of binary star data 

is less clear. Recent observations of binary stars in the mass range 1.5 - 2.5 M0 

require moderate overshooting (Andersen et al. 1990). Stothers and Chin (1990) 

place the generous upper limit on overshooting of dover < 1.5Hp for binaries in 

the mass range 5 -15 M0 , while Vanbeveren (1989) finds that overshooting is not 

required. A more recent claim, for which the evidence has not been published yet, 

is that dover < 0.2Hp, and that the data are consistent with no overshooting (Chin 

and Stothers 1991). 

Observations that bear upon overshooting must be interpreted cautiously. 

For example, undetected binaries in cluster data can confuse the isochrones. The 

rates of mass loss and the neglect of binary interactions are additional sources 

of uncertainty in the theoretical models. Non-convective mixing, such as from 

rotation, is usually ignored, and since blue loops are sensitive to the choice of 

opacity, the distribution of giants and supergiants in the H-R diagram is less 

certain. 
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In this section we discuss the main objective of this thesis, namely the de

velopment of a rigorously-derived, non-local mixing-length theory of convection. 

We outline how we will proceed with this task by briefly describing each of the 

following chapters. 

1. 7.1 The Objective of this Thesis 

We have seen that turbulent motion can be much more complex than the 

mixing-length formalism assumes. Nevertheless, we have also seen that the mixing

length picture of convection may describe long time averages of turbulent fluids 

reasonably well. Furthermore, no other type of theory that can be incorporated 

easily into a stellar evolution code seems near (Gough 1977a; Gough and Spiegel 

1977). Although comparisons of stellar evolution calculations with data generally 

favor moderate core overshooting, the existing non-local mixing-length theories 

that have been developed have arrived at conflicting conclusions regarding its 

importance. Furthermore, they have all been criticized by Renzini (1987) for 

physical inconsistencies. 

Our objective is to make mixing-length theory as rigorous and consistent as 

possible. Of course, one may still question whether the assumptions of mixing

length theory are valid. ·The notion that all fluid elements transport heat and 

momentum for the same distance, the mixing length, and then give up their excess 

heat and momentum to the rest of the fluid, is especially suspect. We recognize and 
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accept these assumptions and limitations that are intrinsic to any mixing-length 

formulation of convection. 

The existing non-local mixing-length theories have made assumptions about 

the superadiabatic gradient in overshooting regions. When the overshooting region 

is nearly radiative, the extent of penetration of turbulent fluid elements into the 

stable region is tiny, whereas if the overshooting region is nearly adiabatic, the 

extent of penetration can be large. This inspired Renzini (1987) to comment that 

"overshooting is found small if supposed small, large if supposed large." Thus, it is 

of utmost importance that we do not fall into this trap. Our theory must determine 

the superadiabatic gradient, .6. VT, in the overshooting region self-consistently. 

That is, we must let the superadiabatic gradient be what it must to carry energy 

flux by the combination of radiation and non-local convection. 

We must be careful to use a non-local convective flux. Whereas equation 1.9 

assumes that the turbulent velocity is correlated perfectly with the temperature 

excess of buoyant fluid elements, this is not true in overshooting regions. The 

very reason that fluid elements decelerate in overshooting regions is because they 

develop negative temperature excesses. This leads to an antibuoyancy and an 

anticorrelation of velocity and temperature excess in the convective flux equation. 

Finally, we want to predict whether convective overshooting is likely to be 

important for stellar evolution. If possible, we would like to predict just how 

far overshooting zones extend. Our ability to give very precise answers to this 

question, however, will be limited. 
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1.7.2 An Outline of this Thesis 

Chapter 2 is devoted to the derivation of the equations for non-local mixing

length convection for fluids of uniform composition. Earlier in this chapter we 

discussed how one can think of buoyant fluid elements as ballistic particles. We 

can think of a turbulent fluid as an ensemble of such ballistic particles. This mental 

picture has inspired us to develop a Boltzmann transport theory for buoyant fluid 

elements. We think of the ensemble of fluid elements as populating a velocity

temperature phase space, and the phase space density, or distribution function, 

evolves according to a Boltzmann transport equation. By taking moments of this 

Boltzmann equation, we derive equations that describe non-local convection. We 

find all moment equations up to third order, and we truncate the moment hierarchy 

for all higher order equations. Thus, we make the connection between the ballistic 

particle description of convection and the hydrodynamic approach. We show how 

to take the local limit of these moment equations to reproduce standard local 

mixing-length theory. 

Moment hierarchies of equations, such as those derived in Chapter 2, are 

never closed. We will show that one is not justified in dropping the highest order 

terms, and so we must find closure approximations for these terms. We do this by 

simulating non-local mixing-length convection with a hydrodynamics code, using 

an algorithm we call Generalized Smooth Particle Hydrodynamics (GSPH). We 

describe the GSPH code in detail in Chapter 3. This code finds the steady

state distribution function for convecting fluid elements. We study moments of 

the distribution function for systematic behaviors that may be useful as closure 
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approximations. The GSPH code also gives us a tool to evaluate whether the 

truncation of the moment equations above the third order gives an acceptably 

accurate representation of non-local convection. We demonstrate the code on both 

convectively stable and unstable plane-parallel models. We also present convective 

overshooting models. 

In Chapter 4 we compare solutions of the moment equations, using closure 

approximations suggested by the GSPH code, with the results of the GSPH code. 

We describe the numerical technique for solving the moment equations, and we 

solve them for many of the same convective and convective overshooting models 

presented in Chapter 3. We compare the steady-state second, third, and fourth 

moments derived from the moment equations with those derived from the GSPH 

distribution function. We find good agreement between the two methods of in

vestigating non-local convection, and we conclude that truncation of the moment 

hierarcy above third order is acceptable. 

The convective models of Chapters 3 and 4 were designed to test both the 

GSPH code and the moment equations. In Chapter 5, we present models of some

what greater astrophysical relevance. We present a convective overshooting model 

that is many pressure scale heights deep, and a model relevant to C/O burning 

stellar cores that have strong neutrino losses. We also discuss the importance 

of convection for blue loops during core He-burning. We discuss how the plane

parallel nature of the GSPH code restricts its application to convection in stellar 

cores. 
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In Chapter 6, we develop a GSPH code with spherical symmetry. We discuss 

the existence of two equilibrium regimes: one in which the fluid is confined by its 

own self-gravity, and one in which it is confined by the boundaries of the simulation. 

The first regime is relevant for stellar evolution, but the Eulerian nature of the 

GSPH grid prevents us from running simulations which are convective to the very 

center. We discuss the interest of such simulations and the modifications one could 

make to investigate the evolution of burning stellar cores. 

We return to the analytic work in Chapter 7. We expand the moment method 

to account for convection in fluids of varying composition, i. e. varying molecular 

weight. We only carry this work far enough to develop a local theory of convection 

in fluids with molecular weight gradients. We find the conditions for convective 

instability, semiconvective instability, and instability by the salt finger mechanism. 

We show how the traditional Ledoux criterion is a special case of these other 

criteria. 

In Chapter 8, we discuss how we would like to expand upon this work to 

address specific issues in stellar evolution. Improvements to this work may be 

made along both analytic and numerical (GSPH) fronts. 
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CHAPTER 2 

THE EQUATIONS FOR NON-LOCAL CONVECTION 

2.1 The Method 

Before we begin a mathematical derivation of the equations describing non

local convection, it is useful to develop a mental picture of a convecting fluid. We 

visualize a fluid as an ensemble of fluid elements of equal masses, characterized by 

their vertical positions, z, vertical velocities, v, and temperatures T (or", alterna

tively, entropies, s). The vertical direction is defined by the direction of gravity. 

We add to this picture the assumption that all fluid elements at the same positiox: 

z are in pressure equilibrium, with pressure P(z). This assumption, known as 

the anelastic approximation (Spiegel 1971), is suitable for subsonic fluid veloci

ties. The fluid can have vertical temperature and pressure stratification, but not 

horizontal. 
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The velocities and temperatures of fluid elements at a single position z may 

have dispersions around the mean velocities and temperatures. That is, the veloci

ties and temperatures may be turbulent. Indeed, the vertically stratified structure 

of the fluid is obtained by taking horizontal (i. e. at constant z) averages over the 

fluid elements. The local density is obtained by counting the number of fluid par

ticles in a unit volume, and we can determine the local mean temperature and 

velocity by a similar averaging procedure. (We will use the phrase "fluid particle" 

interchangeably with "fluid element.") The pressure P(z) is related to the average 

density and temperature at z through an equation of state. The mean density, 

velocity, and temperature define a background through which particles move. The 

hydrodynamic and thermodynamic forces that act on a single fluid element are 

completely defined by the background properties of the fluid (e.g. the pressure 

gradient or temperature gradient) and by the local perturbations of the individual 

fluid element around the background values (which, e.g. , give rise to a buoyancy 

force). 

The ensemble of fluid elements is characterized by a distribution function, 

J(t, z, v, T), which describes the fluid element mass density per velocity interval 

per temperature interval as a function of time, t. The background properties of 

the fluid can be found by horizontal (i.e. at constant pressure) averages over 

fluid elements. Let us suppose we have some property of the fluid element e, 
which can be written as ecz, v, T), since these three arguments are enough to fully 



53 

characterize the fluid element. The horizontal average of e, which we will denote 

~, can be calculated from 

-;--( ) _ I I e(z, v, T)f(t, z, v, T)dvdT 
~ t,z - II ) . f(t, z, v, T dvdT 

(2.1) 

If we know the distribution function, we can find whatever properties of the fluid 

we desire. Examples which are important for the description of convection include 

the convective thermal energy flux or the convective kinetic energy flux. 

Unfortunately, we do not know the distribution function explicitly. The distri-

bution function evolves in time according to a "Boltzmann equation" (e.g. Reichl 

1980) 
8f 8 8. 8· 
at + 8z (v f) + 8v (vJ) + 8T(TJ) = r. (2.2) 

The terms v and T refer to the time rates of change of v and T. We shall see that 

they are functions of z, v, and T. r is the collision term. 

There are two ways of applying equation 2.2 to mixing-length convection. 

In one picture of mixing-length convection, one imagines that the collision term, 

r, destroys fluid elements with excess velocity or temperature after traveling the 

distance of a mixing length. For each destroyed fluid element, a new one would be 

reborn in phase space with very little excess momentum or temperature. In this 

formulation the turbulent losses of momentum and energy are included through 

the collision term. Spiegel (1963) wrote such a transport equation for z and v, 

but no moment theory was developed. Gough and Spiegel (1977) suggested that a 

moment method approach, with the collision term, might prove fruitful, and they 

outlined how one might proceed to derive the moment equations and determine 
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closure relations. They mentioned that the temperature, T, can be used as an 

additional phase space variable, but they adopted the enthalpy instead. 

An alternative formulation of the Boltzmann approach to convection includes 

the turbulent losses directly in the v and T terms themselves. In the mixing-length 

picture, we assume that a fluid particle, moving with a characteristic velocity u, 

loses its excess momentum and thermal energy after traveling a mixing length, 

eM. Therefore, we write the kinematic diffusion constants as Vturb = Xturb = 

eMU, where Vturb and Xturb are the turbulent viscosity and diffusion coefficients, 

respectively. These turbulent losses are include in the v and t equations. In 

this second formulation we do not require a collision term, and so we set r = 

O. Although we expect that both procedures should lead to qualitatively similar 

results, we have adopted the latter prescription. Hereafter, we shall only write 

collisionless Boltzmann equations, with r = o. 

It is not possible to solve equation 2.2 for the distribution function f( t, z, v, T), 

but by taking moments of equation 2.2, by which we mean multiplying equation 

2.2 by powers of v and T and integrating over velocity-temperature phase space, we 

can obtain relations among the various horizontally averaged quantities. We thus 

will obtain a hierarchy of moment equations that we must truncate as some point. 

Each moment equation includes terms to one higher order. This is well known 

behavior (compare, e.g. with the BBGKY hierarchy in statistical physics (e.g. 

Reichl 1980)), and hence the equations form an unclosed set. Two main issues 

which will be addressed in this and subsequent chapters are: i) at what point 
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can we truncate the moment hierarchy, and ii) how can we close the resulting 

equations? 

We discuss here the order to which it is necessary to take moments to obtain 

a non-local theory of convection. We are guided by traditional local mixing length 

theory (e.g. Kippenhahn and 'Veigert 1990; Cox and Giuli 1968; Gough 1977) , 

which says that a fluid is convectively unstable by the Schwarzschild criterion if 

the superadiabatic gradient, 6 "VT = (8Tj8z)ad -8Tj8z, is positive. If one writes 

equations which contain moments only up to the second order, then one can show 

(as we will in section 2.7) that the steady-state solution of the equations is non

convecting if 6 "VT is negative. That is, the second moments, and in particular 

the velocity dispersion and velocity-temperature correlation, which describe the 

convective turbulence, are zero in any region which is stable by the Schwarzschild 

criterion. In this approximation of neglecting third and higher moments, there can 

be no convective overshooting (non-zero second moments in stable zones), and one 

obtains a local theory of convection. This is the standard approach. However, if we 

include higher order moments in our calculation, we will have a non-local theory, 

which in certain circumstances can admit convection, even if 6 "VT is negative, 

e.g. in overshooting zones. The minimal non-local set of equations, then, includes 

the third order terms. Therefore, we derive here the evolution equations of all 

moments up to third order. The equations we derive include fourth moments 

because of the non-closing nature of the moment hierarchy discussed below. We 

need a prescription to treat the fourth moments before we can actually solve the 

equations. This is one of the main themes of Chapters 3 and 4. 
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We emphasize that both our mental picture of the fluid and the mathematical 

procedure outlined above are not strictly one-dimensional. The particles strictly 

move in one-dimension, but horizontal fluctuations must be present in a convecting 

fluid. For example, one fluid element may have excess heat and be rising, while 

its neighbor may be cooler than its surroundings and be sinking. Each particle 

is coupled to its horizontal neighbors through interactions with the background. 

That is, the physics of the two horizontal dimensions are included in the terms 

arising from local differences between particles and background, whereby excess 

particle velocities and temperatures are damped by horizontal forces. We shall see 

in section 2.2 that these forces (viscosity and diffusion) are described as deriva

tives. We adopt an approximate method of calculating derivatives of velocity and 

temperature fluctuations. We parametrize each fluid element by characteristic 

horizontal and vertical dimensions, eH and ev, respectively. These scales are used 

to calculate derivatives of fluctuations. 

The "philosophy" of mixing-length convection is that the stresses of differ

entially expanding or contracting fluid elements cause fluid elements to lose their 

identity after traveling about one pressure scale height, H p (Gough 1977). This 

picture of convection presumes the fluid elements themselves have dimensions of 

order a pressure scale height, with eH :::::: ev :::::: eM :::::: Hp. Indeed we will use 

eH = ev = eM in most of the simulations and calculations throughout this thesis. 

This description of fluid elements points out a basic problem with mixing-length 

theory. In the earlier discussion we developed a picture of point-like particles that 

get accelerated by local forces and travel a mixing length. However, the fluid 
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elements are so large that forces over a large range of z are relevant. This is an in

trinsic problem with mixing-length theory. We accept this limitation and proceed 

in the hope that it does not significantly affect the reliability of the theory. 

The following is an outline of this chapter. In section 2.2 we define the vari

ables that describe each particle. Given these quantities, we then define the back

ground variables. We also define some parameters and relationships that govern 

the thermodynamic evolution of the fluid. In section 2.3 we derive how single 

particles evolve in time. We take the zeroth and first moments of the Boltzmann 

equation to obtain the familiar equations that describe hydrodynamic and thermo

dynamic evolution of a fluid. We derive the second and third moment equations 

in section 2.4. In section 2.5 we study the behavior of the theory in the local limit 

where we ignore third and higher order moments. In section 2.5.1 we compare our 

results to other standard treatments of convection. The discussion up to this point 

is central to this chapter. In the following subsections we examine convection in 

certain parameter regimes not usually discussed in astrophysical literature. These 

subsections can be skipped without losing the main story line. In section 2.6 we 

examine the motion of individual particles in stable and unstable fluids. The aim 

is largely to anticipate results of future chapters. This section can also be skipped 

by the reader who is primarily interested in the development of the moment theory. 

Section 2.7 is a stability analysis of the second moment equations. That is, we 

examine the collective stability of the ensemble of particles, and we demonstrate 

the existence of steady-state convection solutions. This discussion demonstrates 
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that the theory is mathematically sound. We summarize this chapter in section 

2.8. 

2.2 Definition of the Variables 

We break down this section into the "absolute" variables that describe the 

properties of a single fluid element relative to some inertial reference frame and 

the "absolute" variables that describe the background properties of the fluid af-

ter horizontal averaging. We also define the "relative" variables which describe 

the perturbations of single fluid elements around the local background proper-

ties. Lastly, we define some necessary thermodynamic variables along with some 

frequently used relationships. 

2.2.1 Characterizing a Single Fluid Element 

The properties of a fluid element can be fully characterized by its vertical 

position, z, the vertical component of velocity, v, relative to some inertial reference 

frame, and its temperature, T. On occasion we will refer to a fluid element's 

specific entropy s, although this is not an independent parameter from z and T. 

The ensemble of fluid elements is described by the "absolute" distribution function 

mdN 
iA(t,z,v,T) = dAdzdvdT' (2.3) 

which is the mass density of fluid elements, each with mass m, in a volume ele-

ment dAdz per velocity-temperature phase-space volume. The term "absolute" is 

intended as a reminder that the coordinates v and T refer to a global coordinate 

system. 
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In our derivation, we also require the density of the fluid element p, which 

can be found from p = p(P, T) via the equation of state. Note that the pressure 

P does not represent a new independent parameter which also must be known 

for every fluid element; rather, P = P(z), the local background pressure, by the 

anelastic approximation. The specific thennal energy is called € = €(P, T). We also 

need the thermal conductivity K = K(P, T), which, when multiplied by the local 

temperature gradient, gives the diffusive energy flux. We also must supply the 

heating/cooling rate Q = Q(P, T), which is the rate at which the energy density 

changes. The total time derivative for a single fluid element is written as 

d/dt = a/at + va/az. (2.4) 

2.2.2 Characterizing the Background 

The background properties are found from horizontal averaging. The mean 

density of the fluid, p, can be derived from the distribution function according to 

p(t,z) = J J iA(t,z,v,T)dvdT. 

The background velocity, 11, is 

-(-) f f ViA(t, z, v, T)dvdT 
v t,z = , 

p(t, z) 

and the background temperature, T, is 

T(t,z) = f fTiA(t,z,v,T)dvdT. 
p(t,z) 

(2.5) 

(2.6) 

(2.7) 
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To first order, the pressure can be found from the equation of state, according to 

P( z) = pep, T). We must also define the velocity dispersion of fluid elements 

u(z) = V(v - v)2, (2.8) 

since it appears in the definitions of the turbulent viscosity and turbulent diffusion 

coefficients. 

We also define the mean specific thermal energy feZ) = f(P, T), the mean 

thermal conductivity K(z) = K(P, T), and the mean heating/cooling rate Q(z) = 

Q( P, T). The superadiabatic temperature gradient is defined as 

Sv'T(z) = (8T/8z)ad - 8T/8z, (2.9) 

This is also a property of the background. The total time derivative for the 

background is 

D/Dt = 8/8t + v8/8z. (2.10) 

Finally, we also require the gravitational acceleration, defined according to 

-g(z) = 8</>/8z, where </> is the gravitational potential. The gravity may be 

regarded as an external force or can include the self gravity of the fluid, depending 

upon the particular problem being addressed. 

2.2.3 Perturbations Around the Background 

Each fluid element has an identity separate from the background properties 

and can be described by its perturbations relative to the background. The relative 

velocity is 

w = v -v, (2.11) 
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and the relative temperature is 

(2.12) 

If the background properties are known, the ensemble of fluid elements can be 

characterized by the "relative" distribution function given by 

mdN 
fRet, z, w, B) = dAdzdwd8 (2.13) 

The term "relative" reminds us that w and B are defined relative to the background. 

Note that if we substitute the definitions for w or 8 into equation 2.1, we can show 

formally that w = B = o. 

In examining the perturbations of other particle properties, we will make 

Taylor expansions around the background temperature. We will restrict ourselves 

to perturbations with 8 ~ T and use only first order expansions. The density is 

p(P,T) = 15+ (Bp/8T)p8. Recall that for taking horizontal averages at constant 

z, the anelastic approximation implies constant P for any horizontal layer. We 

define the coefficient of thermal expansion as 

( 
Blnp) 

a = - BlnT p' 
(2.14) 

and hence we can write 

p = 15 - ap8/T. (2.15) 

The thermal conductivity is K(P, T) = K +K,T 8 and the heating/cooling function 

is Q(P,T) = Q + Q,TB. 
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2.2.4 The Thermodynamic Variables 

The two thermodynamic "constants" that appear throughout this work are 

the coefficient of thermal expansion, a, defined above, and the specific heat at 

constant pressure, c p = T( as / aT) p. In general these are functions of pressure 

and temperature, but we will assume that they are constant for all values of P and 

T. Indeed, this is exactly true for an ideal gas, for which a = 1 and Cp = 5kB/2/l, 

where kB is Boltzmann's constant and /l is the specific mass. 

We will also require certain thermodynamic relationships later in the calcu-

lations. We will need the first law of thermodynamics, given by 

Also, regarding s as a function of P and T, we can show that 

a 
Tds = cpdT - -dP. 

p 

(2.16) 

(2.17) 

Later in the discussion of energy conservation, we will need the enthalpy of a fluid, 

defined as H = € + P / p. Equations 2.16 and 2.17 can be combined to show that 

dP 
dH = cpdT - (a -1)-. 

p 
(2.18) 
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2.3 The Velocity and Temperature Evolution 

In this section we derive the equations for v and T. We will then take the 

zeroth and first moments of the Boltzmann equation to find the familiar equations 

of hydrodynamics and thermodynamics: the continuity, momentum, and thermal 

diffusion equations. 

2.3.1 v Equation 

The general equation for the vertical acceleration of a fluid element is given 

by (Landau and Lifshitz 1959) 

. 1 8 P 2 ( ( V) 82 V v= -g---+vV v+ -+- -, 
p 8z p 3 8z2 

(2.19) 

where v is the shear viscosity and ( is the bulk viscosity, which we will set equal 

to zero for the remainder of this work. (This is reasonable since shear viscosity 

controls the acceleration of convectively unstable fluid elements, not bulk viscos-

ity.) We note that v = v + w, and, therefore, we must define a prescription for 

taking derivatives of the velocity fluctuations, w. The fluctuations, w, occur with 

the length scales characteristic of a single fluid element, fH and fv. Therefore, we 

use 
2 8

2
1j (1 2 ) 

V v = 8z2 - f~ + ft w. (2.20) 

Similarly, 

(2.21) 

Thus, although the v equation describes only the vertical acceleration, it accounts 

for the viscosity arising from horizont'al variations of the velocity. That is, a 

.. 
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fluid element feels a viscosity from moving at a different vertical velocity than its 

neighbors. The viscosity v includes the effects of both microscopic viscosity and 

turbulent processes according to 

v = Vmic + Vturb. (2.22) 

The microscopic viscosity is a term which acts to damp all velocities, and it is 

present wherever v appears in equation 2.19. The turbulent viscosity, defined as 

(2.23) 

only acts to damp the horizontal velocity variations. It damps the excess mo-

mentum of particles with characteristic velocity u after traveling the distance of a 

mixing length. It is non-zero only if there are horizontal velocity variations (i.e. 

non-zero 0'). Consequently, it only goes with the w / f~ term. We also use the 

Taylor expansion of the density to obtain 1/ p = (1 + o:B/T)/fi. 

Substituting all the above approximations into equation 2.19, we find 

. 1 8P o:B 8P 82fj 
v = -g - =- - -=- - (A + Bu)w + C-, 

p 8z fiT 8z 8z2 
(2.24) 

where we define 

(2.25) 

(2.26) 

and 

C = 4Vmic/3. (2.27) 



65 

2.3.2 T Equation 

The temperature of a fluid element can change for two reasons. Firstly, if its 

pressure changes, it experiences adiabatic heating, resulting from the work done 

on it by the background fluid. Secondly, the heat content can change as a result 

of entropy generating processes. If we regard the temperature as a function of 

pressure and entropy, we can write 

T = (8T) dP + (8T) 8. 
8P s dt 8s p 

(2.28) 

Using the identity (8T/8P)s = -(8T/8s)p(8s/8P)r along with the Maxwell 

relation (8s/8P)r = 1/ p2 (8p/8T)p, one obtains 

. a dP( aO) T T=-- 1+-=- +-8. 
pCp dt T Cp 

(2.29) 

We have used the total time derivative, d/ dt on the pressure because we need the 

pressure at the particle as it moves. The pressure of a fluid element, then, can 

change either if the pressure changes at a fixed position or if the fluid element 

moves to a new pressure environment. 

The entropy can change due to thermal diffusion, viscous heating, and any 

sources or sinks of energy. The entropy change of a single fluid element is, most 

generally (Landau and Lifshitz 1959), 

. 1 t'7(})"t'7T) 1 ( (8Vj 8Vk 2. 8VI) ({' 8Vl) 8vj Q s = - v "\. v + - v -- + - - -Ujk- + Ujk- -- +-. 
pT T 8Xk 8xj 3 8XI 8XI 8Xk pT 

(2.30) 

If we expand T and K into its mean and fluctuating pieces, we obtain 

- 2-
V(KVT) = ~(r8T) K 08 T _ KO(...!.. ~) 

8z "\. 8z + ,r 8z2 f~ + f~ (2.31 ) 
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to first order in 8. We must also include turbulent diffusion above, which acts to 

damp out horizontal temperature variations. The turbulent diffusion coefficient is 

(2.32) 

and, in analogy with the turbulent viscosity, this term goes with the 8/.et term of 

the thermal diffusion expansion. Specializing to vertical velocities only, we obtain 

- 2-
S =~~(K8T) _ Cp (D + Ea)8 + K'T a T 8 

pT 8z 8z T pT 8z2 

w2 C (Ov)2 Q Q,T 8 
+(A+Ba)-+- - +-+--, 

T T 8z pT pT 
(2.33) 

where we define 
K(i 2) D=- -+-

pCp f~ f~ 
(2.34) 

and 

(2.35) 

Substituting the above result into equation 2.29 and keeping only terms to 

first order in 8, we get 

. 0' dP( 0'8) 1 8 (-8T) 8
2
T T==:--- 1+-=- +=:--- K- -(D+Ea)8+K,T-8 

pcp dt T pCp 8z 8z 8z2 

1 2 C (Ov)2 Q Q,T8 
+-(A+Ba)w +- - +=:--+-_-, Cp Cp 8z pCp pCp 

(2.36) 

where we have dropped 0' terms arising from the 1/ p expansion on the K and Q 

terms to achieve some modest simplification, since they do not represent any new 

essential physics. 
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2.3.3 The Absolute "Boltzmann Equation" 

The absolute distribution function of the velocity v and temperature T evolves 

according to 

(2.37) 

As mentioned before, we can write this "Boltzmann equation" without a collision 

term because we account for the turbulent momentum and energy dissipation 

through the Bo- and Eo- terms in the v and T equations, respectively. 

2.3.4 The Zeroth and First Moment Equations: The Familiar Equations 

The zeroth moment equation is obtained by integrating equation 2.37 over 

velocity-temperature phase space. In so doing, we can take the t and z derivatives 

outside of the integrals since they are independent variables from v and T. Also, 

because the density is finite, then it must be true that fA -. 0 for the limits of 

v and T. Otherwise equation 2.5 for the density would diverge as the limits are 

approached. Therefore, J J ;)VfA)dvdT = J J 8~(TfA)dvdT = O. This fact 

will be used repeatedly throughout the following derivations. Then, using the 

definitions of equations 2.1 and 2.5, the zeroth moment equation is 

Op 8 
at + 8z (pv-) = O. (2.38) 

This, of course, is the continuity equation. 

We next consider the first velocity moment. In this slightly more complex 

example than the zeroth moment, let us demonstrate the manipulations performed 
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on the Boltzmann equation. Multiplying equation 2.37 by v and integrating, we 

obtain 

! J J vfAdvdT+ ! J J v2 fAdvdT+ J J v !(vfA)dvdT 

+ J J v :r(TfA)dvdT = 0, (2.39) 

where we have pulled the t and z derivatives out of the integrals, as above, since 

they are independent of v. The fourth term is zero because fA --. 0 for the limits 

of T, and we integrate the third term by parts. We find that 

(2.40) 

Substituting v 2 = V-2 + w 2 into the second term, equation 2.24 for v into the third, 

and the continuity equation where v-&P/Bt appears as part of the first, we obtain 

Dv- 1 8 - 82v-
- +g+ --(P+p w 2 ) - c- = O. 
Dt P 8z 8z 2 

(2.41) 

This is the momentum equation. 

Note that the turbulent momentum transport, namely the gradient of the 

turbulent pressure, p w 2 , appears in this "backgroWld equation,"whereas it is 

not explicitly present in the v equation. This will continue to be true for all 

other moment equations. That is, there will be turbulent transport terms in 

the moment equations which were not explicitly included in the single particle 

evolution equations. Note also that the background viscosity "C" term in equation 

2.24 for v appears in equation 2.41 because it is a backgroWld term in the v 

equation. 
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The first T moment equation is 

8 - 8 - 11' 8/P T) + 8/P vT) - TfAdvdT = O. (2.42) 

Using equation 2.36 for T, the continuity equation as part of the first term, and 

vT = VT + wB, we obtain 

DT 1 8 (-8T) 1 8 - a DP a 2 wB 8P 
Dt - pcp 8z K 8z + ~ 8z (p wB) - pCp Dt - pCp T 8z 

_ ~(A + BO')w2 _ £. (Ov)2 __ Q = o. 
Cp cp 8z pCp 

(2.43) 

This describes the temperature evolution of the fluid. The second term describes 

radiative diffusion, the third convective heat flux (the turbulent transport term), 

the fourth and fifth adiabatic changes, the sixth and seventh viscous heating, and 

the eighth sources/sinks. 

2.4 The Higher Moment Time Evolution 

As described in the introduction to this chapter, the three second moment 

equations for w 2, wB, and (J2 describe a local theory of convection. The four third 

order moment equations for w 3, w 2B, w(J2, and (J3 are necessary for the non-local 

theory. Given the tools we have already developed in section 2.3, we could find, for 

example, the w 2 equation by taking the v2 moment of equation 2.37 and subtacting 

off the equation for v2 • However, it is much simpler to consider the evolution of 

the perturbations wand (J, and derive the higher moment equations by taking w 

and B moments of the "relative" Boltzmann equation. 
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2.4.1 tV Equation 

The velocity perturbation of a single fluid element relative to the background 

is given by tV = v - av/dt = v - Dv/Dt - wOv/8z. Here we used the relation 

d/dt = D/Dt + w8/8z. Hence, we find 

. aO 8P Ov 1 8 -
w = --:=- - (A + BO" + -)w + =_(pw2). 7fT 8z 8z p 8z 

(2.44) 

Note that the g, (1/p)8P/8z, and C82v/8z2 terms, which appear in equation 

2.24 for v and equation 2.41 for Dv / Dt, cancel out. These terms can be regarded 

as forces that act on the background fluid, but not on the perturbations with 

respect to the background. The first term on the right of equation 2.44 is the 

buoyancy term, which is present because a fluid element has a different density 

and temperature from the background. The viscosity term, A + BO", damps the 

velocity perturbations. The remaining terms make the background change relative 

to the fluid element. 

2.4.2 iJ Equation 

Similarly, the temperature perturbation can be found from iJ = T - dT /dz = 

T - DT/Dt - w8T/8z. We find 

. a 20 DP a 2 8P - K,T 82T o =~ 'VTw + --:=- + --:=-(wO - wO) - (D + EO")O + =--0 
pcpT Dt pcpT 8z pCp 8z2 

1 2 - Q,T 0 1 8 - ( ) + -(A + BO")(w - w2) + -_- + =-(pwO). 2.45 
Cp pCp P 8z 

The superadiabatic temperature gradient, defined in equation 2.9, can be written 

explicitly as ~ 'VT = (a/pcp )8P/8z - 8T /8z. The first term on the right of equa-

tion 2.45 is the relative temperature change as a fluid element moves adiabatically 
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in a background with a temperature gradent aT / az. The D + EO' term damps 

the temperature fluctuations by radiative and turbulent diffusion. The remaining 

terms include the viscous heating and adiabatic changes of the fluid element rel-

ative to t.he background, as well as the corresponding changes of the background 

relative to the fluid element. 

2.4.3 The Relative "Boltzmann Equation" 

The relative distribution function evolves according to 

aiR a ( ) a a . at + az Cv + W)!R + aw (W!R) + a()(()!R) = O. (2.46) 

Note that in the second term, we have used z = v = V + w, which is the same as 

in the absolute Boltzmann equation. 

2.4.4 The Second and Third Moment Equations: 

Beyond the Standard Set 

The w2 moment equation is 

(2.47) 

and, with a minimal number of intermediate steps, we obtain 

Dw2 1 a - 2a ap- ( Ov)--- + =-(pw3) + --=-w() + 2 A + BO' + - w2 = O. 
Dt paz pr az az 

(2.48) 

To demonstrate the equivalence of the relative versus absolute Boltzmann equation 

approach, in Appendix A we present an alternative derivation of the w 2 moment 

equation starting with the absolute Boltzmann. This is also intended to illustrate 
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the greater simplicity of the relative Boltzmann approach adopted here and for all 

subsequent moment calculations. 

The w(} moment equation is 

8 - 8 - - ff ff . at (pw(}) + 8z (pvw() + pw2(}) - (}wjRdwd() - w(}jRdwd(} = 0, (2.49) 

from which we get 

Dw(} 1 8 - 0(}28P ( au 0 2 DP -- + --(pw2()) + --=-- + A + BO' + - + D + EO' - --=-
Dt paz pT az az pcpT Dt 

, 2- . 2 
_ R,T a T _ ~'T)w(} _ ~"VTw2 _ 0 _ ap w2(} 

pcpT 8z2 pCp pcpT 8z 
1 -

- -(A + BO')w3 = O. (2.50) 
cp 

We will eliminate the intermediate equations hereafter, giving only the final 

moment equations. The (}2 moment equation is 

D(}2 1 a - - (202 D P 
-+=_(pw(}2) - 2~ "VTw(} - --=- - 2(D + EO') 
Dt paz pcpT Dt 

2-' 2 
+ 2!!,T a T _ 2_Q,T)(}2 _ 20_ 8P W(}2 

pCp 8z2 pCp pcpT 8z 

2 -- -(A + BO')w2() = O. 
Cp 

We next wish to find the four third moment equations. They are: 

• w 3 moment equation 

Dw3 1 a - 308P- ( Ov)-- + =-(pw4 ) + -=-w2(} + 3 A + BO' + - w3 

Dt paz pT 8z az 

3w2 a -
- --=--(pw2 ) = O. 

p az 

(2.51) 

(2.52) 
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• w 20 moment equation 

Dw20 1 8 - 2aw02 8P ( au a 2 DP --+ --(pw30) + + 2(A+Bu+ -)+D +Eu---=-
Dt p 8z (iT 8z 8z pcpT Dt 

2-' -
_ ~'T 8 T _ ~'T)W20 _ 2~0 ~(pw2) _ ~ VTw3 

pCp 8z2 pCp p 8z 

a 2 8P - -- 1 - -2 
- =-=-(w30 - w2 wO) - -(A + Bu)(w4 - w2 ) 

pcpT 8z Cp 
w2 8 _ 

- p 8z(pwO) = o. (2.53) 

• w02 moment equation 

Dw02 1 8 -- a03 8P (au 2a2 DP --+ -_(pW202) + --=-- + A + Bu + - + 2(D + Eu) - --=-
Dt P 8z pT 8z 8z pcpT Dt 

2-' 2 
_ 2!,T 8 T _ 2_Q'T)w02 _ ~ ~(pw2) _ 2~ VTw20 

pCp 8z2 pCp p 8z 

2a2 8P -- --2 2 - --
- =-=_(W202 - wO ) - -(A + Bu)(w30 - w2 wO) 

pcpT 8z cp 

2wO 8 -
- -=--(pw8) = o. (2.54) 

p 8z 

• 83 moment equation 

D03 1 8 - - ( a 2 DP - + --(pw03) - 3~ VTw02 + 3 D + Eu - ---=-
Dt P 8z pcpT Dt 

, 2-' 2 
_ 3I\.,T 8 T _ 3Q,T)03 _ 3a _ 8P (w03 _ w(02 ) 

pCp 8z2 pcp pcpT 8z 

3 -- -- 382 8 -
- -(A + Bu)(w202 - w2 ( 2 ) - -=--(pwO) = O. 

cp p 8z 
(2.55) 

If we could write the complete hierarchy of moment equations to arbitrarily 

high order, we would have the analytic tools to describe the full complexity of tur-

bulent, subsonic motions. However, we can describe many aspect of fluid behavior 

without the infinite set of equations. The zeroth and first moment equations, 
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2.38 for p, 2.41 for v, and 2.42 for T, along with an equation of state, describe 

hydrodynamical/thennodynamical evolution of a non-turbulent fluid. If a fluid is 

non-turbulent, the second moment tenns in these equations are zero, and these 

equations fonn a closed set. 

We obtain a minimal theory of convective motion if we retain the second mo-

inent terms in the first moment equations and add the second moment equations, 

2.48 for w2 , 2.50 for w8, and 2.51 for 82 , to the set. These equations form a closed 

set if we drop the third order terms from the second moment equations. This set 

of six equations describes a local theory of time dependent convection. 

The ultimate aim of the work described in this thesis is the development 

of a non-local theory of convection. We can achieve this by retaining the third 

order terms in the second moment equations and by adding the third moment 

equations, 2.52 for w3, 2.53 for w2 8, 2.54 for w82 , and 2.55 for 83 • These third 

moment equations contain fourth order tenns. Although we could drop the fourth 

order and have a non-local theory, these fourth order terms are of the same order 

and are as important as the other terms in the equations. Therefore, we retain 

these fourth order terms. The ten zeroth, first, second, and third order moment 

equations, coupled with a set of closure relations, which relate the fourth order 

tenns to lower order terms, and with an equation of state defines a closed set of 

equations. We use the numerical simulations presented in Chapter 3 to guide our 

choice of closure rules. 

If we were to write the hierarchy of moment equations to yet higher order, it 

seems we would not reach a point where we could justify dropping high order terms. 
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It is conceivable that the effects of moment equations of higher order than derived 

herein could feed back into the lower order equations to give different behaviors 

than that obtained using our closure relationships. However, such an investigation 

is beyond the scope of this work. FUrthermore, the numerical simulations of non

local convection presented in Chapter 3 and the comparisons with the analytic 

theory presented in Chapter 4 suggest that our limited set of equations with closure 

relationships describes the qualitative (and quantitative) behavior of convecting 

fluids quite well. Including higher order moment equations would not alter the 

results in qualitatively important ways. 

It is of fundamental importance that the moment equations of sections 2.3 

and 2.4 satisfy energy conservation. It is a basic requirement if these equations 

are to be accepted as a plausible description of hydrodynamic phenomena. A 

detailed discussion and mathematical derivation of energy conservation is given in 

Appendix B. 

2.5 The Local Theory 

In this section we reduce the moment equations to the local set by dropping 

third and higher moment terms. We derive the local relationship between the 

superadiabatic gradient and turbulent velocity dispersion and show that the most 

general convective instability criterion, thus obtained, is a modification of the usual 

Schwarzschild criterion. We derive an equation, cubic in .6. \1T, that relates the 

superadiabatic gradient to the total flux in the A ~ BO', D ~ EO' limit, which is 

appropriate for comparison with standard mixing-length theory. 
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The local equations also describe convection in regimes not ordinarily ad

dressed in discussions of mixing-length convection. We study the behavior of local 

convection in four limits. The two astrophysically interesting limits have negligible 

microscopic viscosity (A « Bu). (This is because Vmic/Vturb$>../RM, where>.. is the 

mean free path between collisions of ions. For p ~ Ig cm-3 , >.. is of order 1O-9cm, 

whereas RM is of order a pressure scale height.) One of these two regimes has neg

ligible radiative diffusion compared to turbulent diffusion (D « Eu). This is the 

case to be directly compared to the standard theory. The second regime has radia

tive diffusion dominant (D » Eu). We compare these behaviors with other local 

mixing-length theories. The remaining two regimes of less astrophysical impor

tance have microscopic viscosity dominant over turbulent viscosity (A » Bu). We 

get two regimes by choosing whether radiative diffusion is dominant or negligible. 

These discussions highlight the different algebraic dependences of the variables of 

convection upon the fluid parameters. Since these discussions are fairly math

ematical, and since three of these four regimes are not usually discussed in the 

literature, the reader who is primarily interested in seeing the connection between 

this work and others may skip subsections 2.5.2-2.5.6. 

2.5.1 The Local Equations 

In this subsection we find the relationship between the turbulent velocity dis

persion and superadiabatic gradient in the local limit. We will find the critical 

superadiabatic gradient that separates convectively stable fluids from unstable flu

ids. gradient. We study the local equations in the regime suitable for comparison 
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with other discussions of standard mixing-length theory, and we derive an equation 

from which we can derive the superadiabatic gradient in a convectively unstable 

fluid. 

We begin our study of local convection by writing the steady-state second 

moment equations (i.e. all time derivatives are zero and v = 0) without third 

order terms. Since we are dealing with subsonic convection and for the sake 

of obtaining analytical results, we work in the limit that 8(pw2 )/8z « 8P/8z. 

Hence, we use (1/p)8P/8z = -g by equation 2.41. We set K,T = 0 and Q,T = 0 

for this discussion, since they represent additional complications which do not 

significantly alter the following conclusions, and which would make comparison 

with other authors more difficult. Then equations 2.48, 2.50 and 2.51 reduce to 

and 

(A + Ba)w2 - get w8 = 0, 
T 

.6. \lTw2 - (A + Ba + D + Ea)w8 + get 82 = 0, 
T 

.6. \lTw8 - (D + Ea)82 = O. 

(2.56) 

(2.57) 

(2.58) 

These are three equations for the three unknowns w2 , w8, and 82 • Note that 

a2 = w 2 , i. e. a is not a fourth unknown. 

We solve equations 2.56, 2.57 and 2.58 to find the steady-state velocity dis-

persion, a, as a function of b. \IT. We find that a = 0 is a solution for all .6. \IT. 

However, if the fluid is convectively unstable, this is not a stable solution, as we 
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will show in section 2.7, and the velocity dispersion must rise to some other value. 

The equations can be manipulated to show that u must solve 

go:~\lT 
(A+Bu)(D+Eu) = T . (2.59) 

Only positive, real roots, u, have physical meaning. 

Equation 2.59 shows there is a critical superadiabatic gradient, above which 

a fluid is convectively unstable. As u -. 0, ~ \IT approaches the critical supera-

diabatic gradient, and for larger ~ \IT, u must be larger. For u = 0, we find 

TAD 
~\lTcrit = --, 

go: 
(2.60) 

which is not zero in general. However, ~ \lTcrit will be small and approach the 

Schwarzschild criterion (viz. ~ \lTcrit = 0), unless both microscopic viscosity and 

radiative diffusion dominate over turbulent viscosity and turbulent diffusion. This 

never obtains in astrophysical convection. The qualitative change in the solution 

that occurs at ~ \lTcrit can be classified in non-linear stability analysis as a tran-

scritical bifurcation (e.g. Debnath 1987). (This follows from the observation that 

au / a~ \IT =F 0 at u = O. In the limit that A = D = 0, we get a supercritical 

bifurcation. ) 

We recall that the Rayleigh number is defined as 

Ra = go:e~~ \IT, 
XVmic T 

(2.61) 

where X = K /pcp. Then with the aid of equation 2.60, we write the critical 

Rayleigh number as 

(2.62) 
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The existence of a critical Rayleigh number is well know, and in mixing-length 

theory, its value is of order 10. However, because of the low microscopic viscosity 

in stars, the solar value of the Rayleigh number varies from 1012 to 1020 in its 

convection zone (Spiegel 1971). 

If the fluid is convectively unstable with f:l. 'VT > f:l. 'VTcrit, the two roots of 

equation 2.59 are real, and one is positive. In the stability analysis of section 2.7 

we will show that the positive, non-zero value of (j is a stable solution and that 

the solution (j = 0 is unstable. The fluid is convectively stable if ~ 'VT < ~ 'VTcrit. 

and the two solutions, (j, of equation 2.59 are either negative or imaginary. The 

only physical solution to equations 2.56, 2.57, and 2.58 then is a = 0, i.e. there is 

no convection. 

The mathematical description of convection is not complete until we know 

how to calculate the superadiabatic gradient. We assume the total energy flux, 

FTot. that the fluid must carry is prescribed either from some other calculation 

or as a boundary condition. We define the (hypothetical) radiative temperature 

gradient via the relationship 

-(aT) 
FTot = -K -a ' 

Z Rad 
(2.63) 

and the radiative superadiabatic gradient according to 

f:l. 'VTRad = - (a aT) + (a aT) . 
Z Rad Z ad 

(2.64) 

This is the temperature gradient required to carry the entire flux by radiative 

diffusion. If ~ 'VTRad < ~ 'VTcrit (stable), then the true temperature gradient is 

the radiative gradient, i. e. 

(2.65) 
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If Ll'VTRad > Ll'VTcrit (unstable), this cannot hold since convection transports 

some of the flux. 

Let us assume that Ll'VTRad is unstable and that the fluid is convecting. The 

fluid carries some of the energy by radiative diffusion and some by convection. 

The convective flux is given by 

(2.66) 

and the radiative flux is 

-aT -( (aT) ) 
FRad = -K az = K Ll'VT - az ad . (2.67) 

The total flux is the sum of the convective and radiative fluxes, i.e. FTot = Fconv + 

FRad. Using this and the above definitions, we can show that 

pcp
Ll'VTRad = Ll'VT + -=-w8. 

K 
(2.68) 

If we can relate w8 to Ll'VT, equation 2.68 will be an equation for Ll'VT. 

Equations 2.56 and 2.59 define the relationship between these variables. We can 

solve equation 2.56 for w8 to obtain w8 = (T / go:)( A + B 0" )w2, and 0" (and w2) is 

obtained through the quadratic solution of equation 2.59. Therefore, w8 has a com-

plicated dependence on Ll'VT in general. However, since standard treatments of 

mixing-length convection assume A « BO" and D « EO", we will do so here. In this 

limit, we combine equations 2.56 and 2.59 to give w8 = (go:/TB)1/2(~ 'VT /E)3/2. 

Then using the definitions of B, equations 2.26, and E, equation 2.35, equation 

2.68 becomes 
- £2 1/2 

~ 'V 11 _ ~ 'VT = pcp M (90:) ~ 'VT3/ 2 • 
Rad 4K T (2.69) 
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This is the equation for l:1 "VT we need. It is cubic in l:1 "VT, as in all standard 

treatments. 

We can gain some insight into convection by simple analysis of equation 2.69. 

The left hand side of equation 2.69 must be positive since l:1 "VT < l:1 "VTRad. This 

must be true since radiative diffusion does not carry all the flux. In the limit that 

D « EO", K is small, and the coefficient of l:1 "VT3/2 becomes large. Then l:1 "VT 

must be small. In the limit that K --. 0, it follows that l:1 "VT --. O. A small 

superadiabatic gradient can carry almost the entire flux. Convection is a very 

efficient energy transport mechanism. 

The relationship between the convective flux and superadiabatic gradient is 

given by 

(2.70) 

We call this regime of nearly adiabatic convection, convection dominated, since 

convection carries most of the energy flux. The convective efficiency can be de-

scribed in terms of the Nusselt number, defined as 

N = F Tot = 1 + Feonv. 
FRad FRad 

It is much greater than unity in the D « EO' limit. 

(2.71) 

Next we examine equation 2.69 in the limit of large K. Note that this limit 

contradicts the condition of small D under which equation 2.69 was derived. But 

since most introductory discussions of mixing-length theory discuss this limit (e.g. 

Kippenhahn and Weigert 1990), we will also. In this limit, equation 2.69 implies 

that l:1 "VT --. l:1 "VTRad. In this regime, radiative diffusion carries most of the 

energy flux, and so we call it radiation dominated. 
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One of the assumptions under which the moment equations were derived is 

that the convective motions are significantly subsonic. Therefore, it is interesting 

to compare the convective velocities to the sound speed. The adiabatic sound 

speed is c~ = 'Y P /p = 'Y H pg, where 'Y is the ratio of specific heats and H p is the 

pressure scale height. We can easily show that 

af~~"T 
c~ - 4'YH pT 

(2.72) 

This equation sets an upper limit on the superadiabatic gradient, above which our 

derivations are not valid. 

2.5.2 The Four Regimes of Convection 

In this and the following subsections, we examine the local theory of convec-

tion in four regimes, defined by the relative importance of microscopic viscosity 

compared to turbulent viscosity (i. e. A vs. BeT) and of radiative diffusion compared 

to turbulent diffusion (i. e. D vs. EeT). These discussions are fairly mathematical, 

and furthermore, we temporarily adopt a different notation for the superadiabatic 

gradient for easier comparison with other authors. The first time reader may want 

to skip directly to section 2.6 and return to these subsections later. 

We devote one subsection to each of the four regimes for completeness, but 

only the two with A «: BeT are important in astrophysics. In one of the astro-

physical regimes, D «: EeT. This is relevant throughout most stellar convection 

zones, but near the photosphere of a star, the Rosseland opacity, KR becomes small 

and, since J( '" T3 / KR, the radiative diffusion coefficient becomes large. That is, 
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eventually D » EO' and convection only carries a small fraction of the total en

ergy flux. In this regime, the Prandtl number, Pr = Vmie/X, where X = K/pcp, is 

guaranteed to be small. However, it turns out to be small in stars for both regimes 

of convection. For example, it is of order 10-9 in the Sun. 

In the following discussion, we will talk about temperature gradients in terms 

of the dimensionless, logarithmic gradient 

'V = a In T = _ H p aT. 
alnP T az 

The superadiabatic gradient is defined by 

Hp 
'V - 'Vad = -=-.6. 'VT, 

T 

(2.73) 

(2.74) 

where the adiabatic gradient is 'Vad = (-y - 1 )/, for an ideal gas. In this notation, 

we can rewrite equation 2.63 as FTot = (K T / H P )'VRad and equation 2.67 as 

FRad = (KT/Hp)'V. 

In each of the four regimes, we will derive equations from which one can 

calculate the true temperature gradient, 'V, given the total energy flux, 'VRad. If 

the fluid is convectively stable, then 'V = 'VRad, in analogy to equation 2.65. If the 

fluid is convectively unstable, then we use the relationship FTot = Feonv + FRad to 

derive an equation, analogous to 2.68, for 'V. It is 

Hppcp-
'VRad - 'V = we, 

KT 
(2.75) 

where we used equations 2.56 and 2.59 to relate we to 'V - 'Vad. In each of the 

four regimes we will also derive expressions for the convective efficiency, measured 
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by Fconv I FRad , and for the ratio of turbulent velocity to sound speed, u2 Ie;. The 

sound speed is given by c; = ,PIp = ,Hpg. 

For ease of comparison with other published versions of local mixing-length 

theory, we assume .eH = .ev = .eM' We also define two constants useful in the 

measurement of convective efficiency. Following the definition of Kippenhahn and 

Weigert (1990), we define 

(2.76) 

If we use for K the radiative diffusion expression K = 4acT
3 /3KRP, we obtain 

exactly Kippenhahn and Weigert's definition. U is basically an alternative, di-

mensionless measure of the radiative diffusion coefficient. We define another con-

stant, useful in the non-astrophysical regimes where molecular viscosity is high. 

We define 
v = lOKHpvrnic. 

pcpgo:f4M 
(2.77) 

As we shall see, V is the critical superadiabatic gradient, (\7 - \7 ad)crit, below 

which the fluid is stable to convection. 

2.5.3 Turbulent Viscosity, Turbulent Diffusion Dominant 

A «: Bu, D «: Eu 

We first examine the limit where turbulent viscosity and turbulent diffusion 

are the dominant transport processes over molecular viscosity and radiative dif-

fusion. This is the case studied in subsection 2.5.1. We present the same results 
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here, except we use the dimensionless notation defined above. We rewrite equation 

2.70 for the convective flux as 

F. = pcpf~/r J get (\I - \I )1.5 
con v 4Hp Hp ad· 

Then the convective efficiency is 

Substituting equation 2.78 into 2.75, we get 

8 15 
. ""U(\lRad - \I) = (\I - \I ad) .• 

9v 2 

(2.78) 

(2.79) 

(2.80) 

This is the equation we use to find the true temperature gradient,\I , in a con-

vecting fluid. Kippenhahn and Weigert (1990) derive a similar relation. The only 

difference is that their coefficient is 8/9 rather than 8/9V2. This difference of 

order unity has its origins in our definitions of the constants Band E. Mixing-

length theory derivations necessarily make some assumptions about the geometry 

of convecting fluid elements. Our assumption is implicit in the way we take the 

Laplacian of perturbations (see equations 2.20 and 2.31). Finally, we can rewrite 

equation 2.72 as 

(2.81) 

The derivations of this entire work are only valid when this ratio is less than one, 

and so this equation sets an upper limit on the superadiabatic gradient, to which 

these equations apply. 
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Equation 2.80 is the main result of this subsection, and its behavior is illus

trated in Figure 2.1a, in which we plot the logarithm of the superadiabatic gradi

ent, V - Vad, versus the logarithm of the total flux, as measured by VRad - Vad' 

We use this measure of the total flux because VRad must be greater than Vad for 

convective instability. The dotted lines in Figure 2.1a show solutions of the equa

tion at constant" U. The lines are labeled with the value of U, the dimensionless 

diffusion coefficient, at the right. Let us consider what happens as we demand that 

a fluid carries larger fluxes. That is, we move to the right along lines of constant 

U. We make two observations about the change of the superadiabatic gradient. 

First, the superadiabatic gradient goes up to carry larger convective flux. Sec

ondly, the vertical deviation of the true superadiabatic gradient, V - Vad, from 

the hypothetical radiative gradient, VRad - Vad (shown by the heavy diagonal 

line), grows. The implication is that the fraction of the total energy carried by 

radiative diffusion decreases. 

Equation 2.80 has the limiting solution that when the temperature gradient 

is critically stable, that is V = Vad, then the temperature gradient carries the 

entire flux radiatively, i. e. V = VRad. This solution appears as the heavy line 

with a slope of unity in Figure 2.1a. As the total flux rises above that which can 

be carried by an adiabatic temperature gradient, some fraction of the flux gets 

carried by convection, and VRad exceeds V. The precise value of "il in the local 

theory comes from the solution of equation 2.75. 

An alternative interpretation of Figure 2.1a comes from considering changes of 

U for fixed total flux, "ilRad - "ilad' As U (or equivalently K) decreases, convection 
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must carry larger fractions of the total flux, and the temperature gradient ap

proaches the adiabatic value. Small superadiabatic gradients can efficiently carry 

large fluxes. As U increases, the fluid is able to carry larger fractions of the total 

flux by radiative diffusion, and the temperature gradient approaches the limiting 

radiative value. (Note that although equation 2.80 predicts the correct limiting 

behavior for large K, it was not derived to be valid in this limit. We shall see 

in the next subsection that the superadiabatic gradient approaches the radiative 

limit with a different dependence on U than predicted by this equation.) 

The horizontal dashed line in Figure 2.1a shows the sonic limit for convection, 

defined by equation 2.81. We use eM = Hp and "y = 5/3. Convection is super

sonic above this line, and the assumptions under which equation 2.80 was derived, 

namely the anelastic approximation, is invalid. 

Figure 2.1b shows the behavior of equation 2.79. We graph lines of constant 

U. This figure supports our statements above. Given a fluid with superadiabatic 

gradient, \7 - \7 ad, then as the diffusion coefficient, measured by U, goes down, 

the fraction of energy carried by convection goes up. Radiative diffusion can carry 

less energy and convection becomes more efficient. Alternatively, for fixed U, as 

the superadiabatic gradient goes up, the convective flux goes up, and convection 

becomes more efficient. The dashed vertical line is the limit for subsonic convec

tion. 

The solid triangle in Figures 2.1a and b labeled "convection dominated flux" 

refers to the parameters corresponding to one of our standard models of Chapter 

3, in which the convective flux carries most of the energy. The solid circle refers to 



6 

4 "' ~onvection Dominated Flux • uo . * ed Super G1ant 

2 -""' • t> 
I 0 t> ........... 
bD 
0 - -2 

-4 

-6 
-6 -4 -2 0 2 4 

log(V'RAD-Vad) 

6 
(a) 

4 

- 2 ""' ~ 
~ 

' ~ 0 0 
u 
~ ........... 

t::lD 
0 -2 -

, .... ,····' ,. 1.E+04 
........ , .-·-··· . 1.E+05 

-4 

-6 
-6 -4 -2 0 2 4 

log(V'-V.d) 

(b) 
Figure 2.1. (a) A graph showing the superadiabatic gradient vs. the hypothetic 

radiative temperature gradient in the limit A ~ Ba, D ~ Ea. The dotted lines 
have constant U. The bold diagonal line is the limiting radiative solution, where 
the convective flux goes to zero. Above the dashed line, the turbulent velocity 
is supersonic. The positions of the Sun, a Red Super Giant, and the appropriate 
simulation from Chapter 3 are marked . (b) A graph of the convective efficiency, 
measured by the ratio of the convective to radiative fluxes, vs. the superadiabatic 
gradient . The dotted lines are at constant U. The dashed line is the sonic limit. 
See the text for a more detailed explanation of these figures . 
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the Sun's position within these diagrams if we adopt the solar model in Clayton 

(1983), where T = 6.6 X 105 K, p = 6.3 X 10-3 g cm-2 , L = 3.90 X 1033 erg s-1, and 

M = 0.99955 M0 , r = 6.2 X 1010 cm at the bottom of the convection zone. We 

use KR = 70 cm2 s-1, from Cox and Guili (1968). The star symbol corresponds 

to a 20 M0 red supergiant model (Arnett 1991), for which T = 1.76 X 104 K, 

p = 2.36 X 10-9 g cm-2 , L = 7.95 X 1040 erg s-1 at r = 4.18 X 1013 cm in the 

surface convection zone. Here we have KR = 9cm2 s-1 (Cox and Guili 1968). 

We find that this star should have supersonic convection. We take the points 

representing the Sun and a red supergiant as indicative of the range over which 

real stars may fall in these figures. 

2.5.4 Turbulent Viscosity, Radiative Diffusion Dominant 

A « Bu, D » Eu 

This is the limit for which turbulent viscosity is dominant, corresponding to 

the second astrophysical regime, but for which radiative diffusion is the dominant 

means of energy transport. Equations 2.56 and 2.59 yield w(} = (gaiT B)2(Ll \1T I D)3, 

from which we find the convective flux to be 

2 2 2--
F. = (PcP f.M)4 gaT K(\1 _ \1 )3 

cony K 108H~ ad . (2.82) 

The convective efficiency is 

_Fc_on_v _ 243 (\1 - \1 ad) 

16U4 \1 
(2.83) 

Given the total flux, the local temperature gradient can be found using 

(2.84) 
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Figure 2.2. (a) A graph showing the superadiabatic gradient v,'L the hypothetical 
radiative temperature gradient in the limit A «: Bo-, D >> Eo- . The position 
of the appropriate simulation from Chapter 3 is marked. The meanings of the 
dotted, dashed, and bold lines are the same as in Figure 2.1. (b) A graph of the 
convective efficiency, measured by the ratio of the convective to radiative fluxes , 
vs . the superadiabatic gradient. See the text for a more detailed explanation of 
these figures. 
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The expression for the convective velocity is 

(2.85) 

Figure 2.2a shows solutions of equation 2.84 for constant U. The behavior is 

qualitatively similar to that exhibited in Figure 2.1a. As the total flux increases, 

the superadiabatic gradient deviates farther from the radiative limit. Indeed, the 

deviation grows even more rapidly than in Figure 2.1a since the lines of constant 

U have asymptotic slopes of 1/3 rather than 2/3. Also, as in Figure 2.1a, as U 

increases for constant total flux, the solutions get closer to the radiative limit. 

Indeed, a change of !:::..U moves the solution closer than in Figure 2.1a because of 

the stronger U dependence of equation 2.84. Let us quantify this behavior. We 

assume the temperature gradient deviates from the radiative value by 0, which is 

defined via \1 = \1Rad - o. Whereas equation 2.80 predicts that 0 varies according 

to 0 '" 1/U, equation 2.84 predicts 0 '" 1/U4. That is, the temperature gradient 0 

approaches the limiting value \1Rad, differently as a function of U than is predicted 

by equation 2.80. This difference between efficient and inefficient convection is not 

widely appreciated in the literature, where it is customary to use equation 2.80 in 

both regimes since it exhibits the correct limiting behavior. 

The dashed line in Figure 2.2a is the sonic limit. The triangle indicates where 

the "standard" model of Chapter 3, in which radiative diffusion carries most of 

the flux, falls in this diagram. Figure 2.2b is analogous to Figure 2.1b. It shows 

the convective efficiency versus the superadiabatic gradient on lines of constant U. 
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2.5.5 Microscopic Viscosity, Turbulent Diffusion Dominant 

A» Bq, D ~ Eq 

This astrophysically less important regime has microscopic viscosity dominant 

over turbulent viscosity, and it has turbulent diffusion dominant over radiative 

diffusion. This would be applicable to efficient convection in a highly viscous 

fluid. In this limit, equations 2.56 and 2.59 simplify to we = (go:/TA)(l:!.. "VT/ E)2, 

and hence the convective flux is given by 

-4 

F. - 3pcpgo:TfM (t"'7 _ t"'7 )2 
cony - 40 . H2 v vad· 

Vrn1c p 
(2.86) 

Note that larger molecular viscosities lead to smaller convective fluxes. That is, 

the viscosity inhibits the convective transport of energy. We use equation 2.86 to 

show that the convective efficiency is 

(2.87) 

The coefficient V is analogous to U. It measures the radiative efficiency in regimes 

where molecular viscosity is important. The superadiabatic gradient can be pre-

dicted from 

(2.88) 

once the total flux, "VRad is known. The ratio of the convective velocity to the 

sound speed is given by 

2 9 2173 173 
~ _ go: {,M {,M (t"'7 _ t"'7 )2 

2 - 2 3 v v ad • 
Cs 4001'Vrnic Hp 

(2.89) 

Figure 2.3a illustrates the solutions of equation 2.88 for constant V, and 

Figure 2.3b graphs the convective efficiency versus the superadiabatic gradient for 
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Figure 2.3. (a) A graph showing the superadiabatic gradient V-'. the hypothetical 
radiative temperature gradient in the limit A ~ Ba, D <: Ea. The position 
of the appropriate simulation from Chapter 3 is marked . The meanings of the 
dotted, dashed, and bold lines are the same as in Figure 2.1. (b) A graph of the 
convective efficiency, measured by the ratio of the convective to radiative fluxes, 
V-'. the superadiabatic gradient. See the text for a more detailed explanation of 
these figures . 
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constant V. Figure 2.3a shows the same qualitative features as we have previously 

seen. As the fluid carries an increasing flux, the the superadiabatic gradient grows, 

but the solutions deviate more strongly from the radiative value. Figure 2.3b shows 

that this corresponds to greater convective efficiency. Alternatively, if the total 

flux remains fixed, but we increase V, the radiative efficiency, then we approach 

the radiative solution in Figure 2.3a more closely, and Figure 2.3b shows that the 

convective efficiency goes down. Note that radiative efficiency, V, is enhanced by 

both larger values of K (which increases radiative diffusion) and larger values of 

molecular viscosity (which inhibits convective motions). The triangle shows the 

location of the appropriate standard model of Chapter 3 in these diagrams. The 

horizontal dashed lines are the sonic limits for the parameters of this model. 

2.5.6 Microscopic Viscosity, Radiative Diffusion Dominant 

A ~ BO', D ~ EO' 

This regime corresponds to the case when neither turbulent viscosity nor tur-

bulent diffusion plays an important role in the transport of momentum or energy. 

In this regime, where both the molecular and radiative sources of damping are 

large, convective instability can be suppressed for positive values of the superadi-

abatic gradient. If we expand equation 2.59 to first order in 0' and combine the 

result with equation 2.56, we find we = (gaAIT)(l:!. VT - l:!. VTcrit)2 I(BD + AE)2. 

The convective flux, then, is 

F. _ ~ pc/Tgaff.J 
con v - 6 H2 . 

pVrnlc (

(V - Vad ) _ V)2 
!!! + _ 3K 
3 PCpllmic 

(2.90) 
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Note that as the superadiabatic gradient approaches V, the convective flux goes 

to zero. The convective efficiency is measured by 

Fconv 25 1 «V' - V'ad) - V)2 
FRad = 3V (lQ _ &i 3K )2 V' 

3 PCpvmic 

The equation which connects the temperature gradient to the total flux is 

3V (10 + 3K )2 = «V' _ V'ad) _ V)2 . 
25 3 PcpVmic 

Finally, the convective velocity is given by 

(72 _ ga2ftl ftt (V' _ V'ad) _ V) 2 
c2 - 4,v2 . H~ 10 + 3K 

5 mlc "'3 pCp Vmic 

(2.91) 

(2.92) 

(2.93) 

These equations can be applied whenever V'Rad > V'ad + V. For smaller values of 

V'Rad, the radiative solution applies. The non-zero critical superadiabatic gradient 

does not manifest itself in the other regimes since they assume A or D or both 

are negligible compared to other terms. Then in all other regimes, the critical 

superadiabatic gradient is negligibly small. 

Figure 2.4a plots lines of constant V, showing solutions of equation 2.92, and 

Figure 2.4b plots lines of constant V, showing the convective efficiency versus 

V' - V'ad - V, which measures the degree of instability. These figures show the 

same qualitative behavior as we have seen in the other regimes. We note that the 

existence of a modified critical superadiabatic gradient is manifest in the modified 

choice of axes. The triangle corresponds to the location of the standard model of 

chapter 3. 
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2.6 Fluid Element Trajectories in Phase Space 

In this section we consider the behavior of a single fluid element moving in an 

otherwise homogeneous background in hydrostatic equilibrium. Our motivation for 

this section is twofold. First, we want to show that a fluid element in a convectively 

unstable fluid does not tend to accelerate toward arbitrarily large velocities, and 

that fluid elements in a stable fluid tend toward zero velocity. Secondly, we hope 

the investigation of phase space trajectories of a single particle will give us insight 

into the phase space density (or distribution function) for the entire ensemble of 

fluid elements. We will examine particle trajectories in stable, convecting, and 

overshooting regions. 

The particle trajectories studied in this section are useful, especially in an

ticipating the results of Chapter 3, where we numerically simulate convecting and 

overshooting regions of fluids. This section presents results based upon the wand 

iJ equations of section 2.4, but it does not present new physics. The reader can skip 

this section without losing the main theme of this chapter, namely the derivation 

and investigation of the moment equations. 

2.6.1 Simplifled Equations of Motion 

We want to know how a single test particle moves through a fluid. We consider 

the idealized problem of a homogeneous, hydrostatic fluid. By homogeneous, we 

mean that there are no gradients of background terms. We will characterize the 

fluid by a single density and temperature. Nevertheless, a particle's buoyancy 

will be measured by the superadiabatic gradient, ~ \IT, and we will presume 
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the fluid is hydrostatic. As the fluid element moves, we do not let it disturb the 

background properties. For example, the density does not change as a consequence 

of the particle's motion. These idealized phase space trajectories are described by 

simplified versions of equations 2.44 and 2.45. They are 

and 

tV = get 0 - (A + BO' )w 
T 

8 = /)" \1Tw - (D + EO')O. 

(2.94) 

(2.95) 

Given initial values Wo and 00 , these equations can be integrated to show the 

path of the particle through w-O phase space. We will examine solutions of these 

equations in the next section. 

2.6.2 Stability of a Single Fluid Element 

We wish to study the stability of our test fluid element as it moves through 

phase space. We want to show that a particle in a fluid with an unstable superadi-

abatic gradient is not accelerated to arbitrarily large velocities w or temperature 

fluctuations e. We will show that the particle evolves toward an equilibrium posi-

tion in phase space. Similarly, we will show that a particle in a stable fluid evolves 

toward w = e = o. 

Since equation 2.94 and 2.95 are linear, we guess solutions (or eigenfunctions) 

of the form w '" exp(8't) and e '" exp(8't). Given any set of parameters, we want 

to know the time coefficients (or eigenvalues) 8'. The eigenvalues can be found by 

solving the determinant 

1

8' + (A + BO') 
-/),,\1T 

T - 0 -fI,g.. I 
8' + (D + EO') - . (2.96) 
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This equation has the pair of solutions 

1 1 J 2 4ga S~,2 = -2"(A+Bo-+D+Eo-)±2" ((A + Bo-) - (D + Eo-)) + T ~\lT. (2.97) 

These two solutions are plotted in Figure 2.5 for the parameters of the astrophysi-

cal convection dominated model of Chapter 3 (A ¢: Bo-, D ¢: Eo-). The solutions 

are plotted against log(o-/o-o), where 0-0 is the steady-state solution of equation 

2.59. While the solution s~ is always negative or complex, with a, negative real 

part, s~ can be positive if ~ \IT is sufficiently large. The condition for s~ to be 

positive is 

~ \IT> (T/ga)(A + Bo-)(D + Eo-). (2.98) 

Otherwise, si is negative or complex with a negative real part. If there is no 

velocity dispersion 0-, then the condition that s~ is positive reduces to ~ \IT > 

In general, if a fluid is convectively unstable, then si > 0 for sufficiently 

small 0-. That is, small velocity/temperature perturbations must grow. If the 

velocity dispersion is larger than the steady-state value, si < 0 and the velocities 

must decrease. Only when equation 2.98 reads as an equality (which is equation 

2.59) is si = O. This analysis demonstrates that 0- = 0-0 is an attracior, and it 

is marked with a X symbol in Figure 2.5. That is, no matter what the initial 

velocity dispersion is, it must evolve toward the steady-state value. If we regard 
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Figure 2.5. Plot of the two solutions to equation 2.9'6 as a function of a for a 

convectively unstable model. The lower curve has s~ < 0 for all a and represents 
a decaying mode. The upper curve is positive for sufficiently small sigma and 
becomes negative for large a. The point at which s~ = 0 is an attractor, and 
is marked with an x. 

the velocity of a single particle as characteristic of the velocity dispersion, e.g. 

using a = lwl, then we can define an attractor in w-B phase space. 

Let us consider the time evolution of a in a fluid that is convectively stable 

with ~ \lT < 0. If we start off a particle with some perturbations around the origin 

in phase space, equation 2.97 shows, as before, that s~ must be a decaying mode. 

Furthermore, using the property that (A+Ba)+(D+Ea) ~ I(A+Ba)-(D+Ea)l, 

one can see that the squared term in equation 2.97, which is the only positive one 

if ~ \lT < 0, cannot be large enough to make s~ positive. Therefore, s~ is also a 

decaying mode, and the particle evolves towards w = B = 0. The corresponding 

at tractor of the velocity dispersion is a = 0. Indeed, one can prove this if ~ \lT < 
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.6. V'Tcrit, even if .6. V'T is positive. If s~ 2 are negative real, then the particle moves , 

directly toward the origin of phase space. 1f.6. VT is sufficiently negative, then S~,2 

are a complex conjugate pair with negative real part, and the particle will trace 

out ellipses in phase space with the Brunt-Vais8.lii freqency, w = ga/.6. VT//T, with 

an amplitude that decreases with time. 

2.6.3 Phase Space Trajectories 

We consider the motion of a particle in a convectively stable fluid, a convec-

tively unstable fluid, and a fluid whose stability properties change from unstable 

to stable as the particle moves. For the sake of constructing specific mathematical 

examples, we will adopt 9 = 1, T = 1, p = 1, cp = 5/2, and a = 1. These num-

bers are close to those in our more detailed simulations of chapter 3, where we also 

discuss the system of units we use in our calculations. We use B = E = 8.33 and 

we use the instantaneous value of Iw / as the measure of turbulent velocity instead 

of a for these calculations. We integrate equations 2.94 and 2.95 numerically. 

First let us consider the case of a stable fluid, characterized by .6. VT = -0.2. 

From the discussion in the previous subsection, we know that a particle in a stable 

fluid moves so that the velocity and temperature perturbations, wand 8, decrease 

with time. The origin of w-8 phase space is the attractor for this problem. If we 

choose A = D = 0, so that the damping is by the relatively slow mechanism of 

turbulent losses, then a particle displaced from the origin of phase space moves in 

a decaying orbit at the Brunt-Vaisruii frequency. This is illustrated in Figure 2.6a 

by the path with the square points. A particle starts at the upper right in phase 

space and gradually spirals into the center. 
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A qualitatively different behavior occurs if the damping time scale is shorter 

than the Brunt-Vaisrua period. Using A = 0.028 and D = 4.17, as we do in the 

stable models in Chapter 3, we obtain the path traced out by the circular points 

in Figure 2.6a. We start with the same initial displacement from the origin. 

The particle approaches the origin directly. Note especially the negative slope of 

the path as it approaches the origin. We will encounter this w-O anticorrelation 

repeatedly in overshooting models in Chapters 3 and 4, where particles with excess 

velocity and temperature overshoot into stable zones and are strongly damped. We 

suspect that the qualitative differences between the two paths of Figure 2.6a are 

at the heart of why some authors find significant overshoot zones (corresponding. 

to slowly decaying turbulent amplitude) (e.g. Shaviv and Salpeter 1973; Xiong 

1989) while others have found small overshooting zones (corresponding to rapidly 

decaying turbulent amplitude) (e.g. Saslaw and Schwarzschild 1965; Langer 1986). 

In Figure 2.6b we examine the behavior of a convectively unstable fluid with 

~ \IT = 0.04, A = 0.028, and D = 2.08 X 10-5 , corresponding to the model 

of efficient astrophysical convection (A ~ Bu, D ~ Eu) in Chapter 3 where 

A ~ Bu and D ~ Eu. Notice that the paths traced out by the square, circular, 

and triangular points all lead to the same attractor (marked by an x), which is 

now displaced from the origin. The attractor indicates the value of u for steady

state convection. Note that w and 0 move in a correlated manner if Iwl and 101 are 

smaller than the attractor values. In general, the particles of a convecting fluid 

will exhibit a high degree of w-O correlation, since very few will have perturbations 
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Figure 2.6. (a) The phase w-8 phase space trajectory of a particle moving in a fluid 
characterized by~ 'VT = -0.2. The path with square points is for no molecular 
viscosity A or radiative diffusion D. The particle moves in a decaying orbit with 
the Brunt-Vaisala frequency. The path with circular points has A = 0.028, 
D = 4.17, making the damping time faster than the orbital time. The attractor 
at the origin is marked with an x . Points are spaced with equal intervals of 
time. (b) Three particle trajectories in an unstable (~ 'VT = 0.04) fluid, with 
A= 0.028 and D = 2.08 x 10-5 . Each path leads to the same attractor. 
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greater than the attractor values. We will see this in our simulations in Chapter 

3. 

Figure 2.7 shows two overshooting trajectories. In both cases we start the 

particle with zero velocity perturbation and positive temperature perturbation 

withi~l the convectively unstable zone. In Figure 2.7a the particle is initially in 

a region with ~ 'VT = 0.04. it accelerates toward the attractor of the unstable 

region and moves with the steady-state velocity until it crosses the boundary 

into the stable region, characterized by .6. 'VT = -0.2. The particle develops a 

negative buoyancy and eventually starts to sink. Because we use a small A and D 

(the same as for Figure 2.7b), the amplitude is damped slowly in the stable zone 

and the particle eventually returns to the convectively unstable zone, where it is 

accelerated out of the zone again. (If there were no damping forces at all, then the 

particle would continue to trace out an upward facing crescent.) In this example 

the particle does not return to the unstable zone a second time. It remains in the 

stable zone and evolves toward the stable zone attractor at the origin. An estimate 

of the extent of overshooting could be obtained by integrating the velocity from 

the unstable attractor until it reached zero. 

In Figure 2.7b we start the particle in an unstable zone characterized by 

~ 'VT = 0.4. A has its usual small value, but D = 2.08. This example is much like 

the inefficient convective overshooting model in Chapter 3 (A « Bu, D » Eu). 

The particle accelerates toward the unstable attractor and eventually crosses the 

boundary into the stable zone with .6. 'VT = -0.2. In the stable zone, damping is 

a strong because of the large value of D. The particle heads directly for the stable 
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Figure 2.7. (a) An overshooting trajectory in w-B phase space with negligible A and 
D . The particle moves toward the unstable zone attractor, marked with an x in 
the upper right. It eventually crosses the boundary into the stable zone and is 
returned one more time to the unstable zone. The particle finally decays toward 
the stable zone attractor at the origin. The points are separated by equal units 
of time. (b) An overshooting trajectory for significant diffusive damping, D, 
in the overshoot zone. After crossing the boundary into the stable zone, the 
particle decays directly toward the origin . 
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zone attractor. This is a more realistic example than that of Figure 2.7a since 

the reason the fluid becomes stable is because of the larger diffusion coefficient, 

measured by D, in the stable zone. We conclude that most overshooting particles 

do not return to the unstable zone in systematic cycles, as in Figure 2.7a. We 

expect to observe a strong w-O anticorrelation in the overshooting regions of the 

models in Chapter 3, rather than the elliptical phase space structure of Figure 

2.7a. 

2.7 Stability Analysis 

In subsection 2.5.1 we discussed the steady-state solutions of the local equa

tions. In this section we want to show that if the steady-state values are perturbed, 

the perturbed values will tend to return to the steady-state values. We will show 

that if a fluid is convectively unstable and the velocity dispersion and convective 

flux are small, these values will rise to the steady-state values. Similarly, we wish 

to show that if the second moments are too large, then the time evolution will 

reduce them to the steady-state values. Lastly, we also want to show that for a 

stable superadiabatic gradient, the second moments will approach zero with time. 

For the sake of mathematically tractability, we will perform this analysis on the 

local set of equations. 

We will assume that the background quantities of density, temperature, and 

pressure are fixed and do not vary when the second moments change. We will 

further assume that the convection is sufficiently subsonic that - \1 P /'P = 9 is a 
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good approximation. We simplify equations 2.48, 2.50, and 2.51 to the local time 

dependent set obtain 

and 

8w2 2ga- -
- - -=-w8 + 2(A + Bu)w2 = 0, 
at T 

8w8 - - ga-m - ~ VTw2 + (A + Bu + D + Eu)w8 - T 82 = 0, 

882 - -
at - 2~ VTw8 + 2(D + Eu)82 = O. 

(2.99) 

(2.100) 

(2.101) 

To study the stability of these equations, we consider the evolution of pertur

bations around the steady-state values w20, w80, and (Po. We write the second 

moments as 

w8(t) = w80 + yet), 

82(t) = 82
0 + z(t). 

(2.102a) 

(2.102b) 

(2.102c) 

We substitute equations 2.102 into equations 2.99, 2.100, and 2.101 and linearize 

in terms of the perturbations x, y, and z. At this level of approximation, we write 

u - Uo ~ 8u / 8x lox = X /2uo. Then the equations for the perturbations are 

8x 2ga Bw20 
- - -=-y + --x + 2(A + Buo)x = 0, 
at T Uo 

(2.103) 

8y ga w80 
!l.t - -=-z + (B + E)-x + (A + Buo + D + Euo)y - ~ VT = 0, 
UL T 2uo 

(2.104) 

8z 82
0 

!l.t - 2~ VTy + E-x + 2(D + Euo)z = O. 
UL Uo 

(2.105) 
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Because equations 2.103, 2.104, and 2.105 are linear, we guess that initial 

perturbations Xi, Yi, and Zi evolve according to 

(2.106a) 

(2.106b) 

(2.106c) 

(In perturbation analyses such as this, s is called athe Lyapunov exponent.) Then 

s must satisfy the determinant 

s + Buo + 2(A + Buo) -2ga/T 0 
(B + E)wOo/2uo - .6. \IT s + A + Buo + D + Euo -2ga/T = o. 
EfPo/uo -2.6. \IT s + 2(D + Euo) 

(2.107) 

We use equations 2.56 and 2.58 to write wOo and 020 in terms of w20. Then, 

expanding the determinant, we get 

[s + A + Buo + D + Euo][s + Buo + 2(A + Buo)][s + 2(D + Euo)] 

4ga [ A B DE] 2ga.6. \lTB 2ga.6. \IT A + Buo E 
- ~ s + + Uo + + Uo - Uo + D E Uo 

T T T + ~ 
+ (A + Buo)(B + E)uo[s + 2(D + Euo)] = o. (2.108) 

If the superadiabatic gradient is unstable (.6. \IT > .6. \lTcrit), then .6. \IT 

is related to the steady-state velocity dispersion by equation 2.59. Then if we 

expand the first and last terms of equation 2.108 and substitute equation 2.59, we 

get cancellations with the two negative terms, resulting in 

[s + A + Buo + D + Euo] ([s + Buo][s + 2(D + Euo)] + 2s(A + Buo») 
2ga.6. \IT (A + Buo ) 

+ T Euo D + Euo + 1 + (A + Buo)(B + E)uos = O. (2.109) 
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This equation is cubic in s, and clearly all coefficients are positive. Therefore, all 

real roots s must be negative. If two of the roots are a complex conjugate pair, 

then their real parts must be negative (Abromowitz and Stegun 1965). Then if the 

second moments are perturbed from their steady-state values, the perturbations 

will decay and the fluid will evolve toward the steady-state configuration. 

If the superadiabatic gradient is stable (!::J.. '\IT < !::J.. '\ITcrid, then the steady-

state velocity dispersion is 0'0 = O. Then equation 2.108 becomes 

4gO'!::J..'\IT 
[s + A + D][s + 2A][s + 2D] - [s + A + D] = O. 

T 
(2.110) 

This equation has solutions 

S1 = -A - D, (2.111a) 

. / 2 4gO' 
s2 = -A - D - Y (A - D» + T!::J.. '\IT, (2.111b) 

. / 2 4gO' 
s3=-A-D+ y(A-D» + T !::J..'\IT. (2.111c) 

One can show for !::J.. '\IT < !::J.. '\ITcrit that all real roots are negative and that com-

plex roots have negative real parts. Thus, if a fluid has a stable superadiabatic 

gradient, then 0'0 is a stable solution of the local equations. If a fluid with a stable 

superadiabatic gradient has a non-zero velocity dispersion, the velocity dispersion 

will return to zero. 
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2.8 Summary 

In this chapter we have developed a non-local theory of mixing-length convec

tion using a moment method formalism. We wrote the equations that govern the 

time evolution of the velocity and temperature of individual fluid elements. The 

forces acting on each particle include background terms and terms that arise from 

local deviations between the particle and background. Of particular importance 

for this work are the turbulent viscosity and turbulent diffusion terms in the v and 

i' equations. 

We took velocity and temperature moments of the Boltzmann equation, up 

to third order. This resulting set of ten moment equations (2.38, 2.41, 2.43, 2.48, 

2.50-2.55), along with a set of closure relationships that relate the fourth order 

terms to the lower moments, comprise the non-local theory of convection. We 

demonstrated that in the limit that all third and higher order terms are dropped, 

the equations simplify to a local theory. We studied the local theory in several 

parameter regimes, and we showed that our local theory agrees with other standard 

treatments, within factors of order unity. This analysis showed that the proper 

criterion for convective instability is not the Schwal'zschild criterion, but a modified 

criterion given by 2.60. However, for astrophysical convection, the Schwarzschild 

criterion is a very good approximation. 

We studied the stability of single particles and demonstrated that the steady

state velocity dispersion is an attractor. We showed examples of a particle's evo

lution through w-B phase space for various parameter regimes. We also performed 
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a stability analysis on the local second moment equations and proved the stability 

of the steady-state convection solutions. 

The main goal of this work is to go beyond the local theory. To do this we 

saw that we need to consider the third moment equations and that we need to 

figure out a way to close the hierarchy of moment equations. This closure issue is 

one of the main topics of Chapters 3 and 4. 



CHAPTER 3 

Generalized Smooth Particle Hydrodynamics, 

with Applications to Plane Parallel Convection 

3.1 Introduction 

112 

In Chapter 2 we derived a set of moment equations, up to third order, that 

describes non-local mixing-length convection. The third order moment equations 

contain fourth order terms, and we argued in section 2.4 that these terms were 

not necessarily small compared to the other terms in the equation. Thus, we 

decided they must be kept, and that we must define closure relations that relate the 

fourth order terms to the lower moments. Physical intuition alone is insufficient to 

solve this closure problem. Therefore, we have performed numerical simulations 

to provide insight into what approximations may be used to solve the analytic 

equations. 
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We have developed a computer program that simulates mixing-length convec

tion. Specifically, it simulates the physics of fluid particles and their interactions 

with the background fluid. This code incorporates all the physical processes in

cluded in Chapter 2 (section 2.3). The code uses an algorithm which is a modi

fication of Smooth Particle Hydrodynamics (SPH). The code uses SPH averaging 

methods, but in our algorithm we have modified usual SPH by superimposing a 

grid upon the particles. The purpose of the grid is to enable the calculation of 

a background, from which individual particles may deviate. Particles can pop

ulate the entire distribution function, not just the small subset that defines the 

background as in ordinary SPH. The more complete treatment of the distribu

tion function has inspired the name Generalized Smooth Particle Hydrodynamics 

(GSPH). 

The GSPH code calculates the positions, velocities, and temperatures of all 

particles as a function of time. Given a set of parameters, the ensemble of particles 

evolves toward the steady-state configuration, which may be convectively stable 

or unstable. If it is unstable, the particles develop a turbulent velocity dispersion. 

The primary output of the code is the steady-state particle distribution function, 

fR(z, w, 0), as a function of position. In principle the code also provides the time 

evolution of the distribution function, fRet, z, w, 0), as it approaches the steady 

state, but we have not explored this in much detail. 

A key feature of GSPH is that the high order moments do not appear in 

the code. The code gives us the distribution function directly, not moments of it. 

Thus, the numerical distribution function will contain the physics of moments to all 
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orders, whereas the analytic theory neglects the physics of fourth and higher order 

moment equations. GSPH gives us a tool for evaluating whether the truncation of 

the moment equation hierarchy of Chapter 2 is reasonable, it describes the nature 

of the truncated moments, and it suggests closure approximations. By comparing 

the lower order moments of the numerical distribution function with those derived 

from the analytic theory (see Chapter 4), we will be able to evaluate whether 

the analytic theory and closure relations provide an accurate representation of 

non-local mixing-length convection. 

In section 3.2, we describe the GSPH code in detail. Section 3.3 is a discussion 

of the evolution of two convectively stable models (isothermal and isentropic) to 

demonstrate that the particles evolve toward a steady-state configuration and to 

demonstrate the quality of energy conservation. Simulations of convection in the 

four parameter regimes defined in Chapter 2 (based on the relative importance 

of microscopic viscosity versus turbulent viscosity, and of radiative diffusion ver

sus -turbulent diffusion) are presented in section 3.4. In each of these regimes we 

compare the GSPH results with the local theory (see section 2.5). We also ex

amine the third and fourth moments, and attempt to identify any patterns which 

may suggest closure relationships. In section 3.5, we present two convective over

shooting simulations. Convection is efficient in one (convection dominated) and 

inefficient in the other (radiation dominated). We compare these models with the 

local theory and examine the extent of overshooting. In section 3.6, we discuss the 

internal relations among the moments that appear to be common to each of the 

models. We discuss the fourth moment closure relations that we will adopt when 
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we solve the moment hierarchy in Chapter 4. We also discuss somewhat more 

complex relations that may be worth exploring in future investigations. Section 

3.7 is a chapter summary. 

3.2 The GSPH Code 

3.2.1 What is GSPH? 

We have developed a computer program which simulates mixing-length con

vection, using an algorithm we call Generalized Smooth Particle Hydrodynamics 

(GSPH). Like traditional smooth particle hydrodynamics (SPH) (see Monaghan 

1985, Benz 1991 for reviews), our code uses particles to represent fluid elements. 

Each particle is given a finite range of influence by spreading out its properties 

with a smoothing kernel. By averaging over the smoothed particles, we can calcu

late the background fluid properties, such as density or specific entropy, anywhere 

in the fluid. This is reminiscent of calculations in Chapter 2, where we integrated 

over the distribution function to derive the background properties of the fluid, as 

in equation 2.1. In traditional SPH, the background properties are calculated at 

each particle's position. However, in our algorithm, we calculate the background 

properties on an Eulerian grid with uniform spacing. The forces on individual 

particles are found by interpolating background properties, such as the pressure 

gradient, to the particle positions. 

While SPH has been used to address a variety of problems in astrophysical 

hydrodynamics (Benz 1988), SPH methods have never been applied to convection. 

Our modification of SPH, namely the addition of a background grid, allows us to 
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apply these methods to convection. The values characterizing any particle can 

deviate from the background value, which is determined from interpolation on the 

grid. For example, a particle may have a hotter temperature than the background 

temperature. This temperature difference will give rise to a buoyancy force, since 

we assume pressure equilibrium everywhere. Thus, the particle feels forces, not 

only due to the background gradients, but also due to its deviation from the 

background. The gridding allows the forces arising from these deviations to be 

calculated reliably, because our smoothing kernel, which has the width of two bins, 

encompasses many particles. In traditional SPH, the kernel only encompasses 

a few of the nearest neighbors, making the deviation forces, such as buoyancy, 

subject to numerical noise from poor particle statistics. Thus, our method is 

well-suited to determining small perturbative forces around the steady state. The 

gridding enables the calculation of these deviation forces, and, therefore, particles 

can populate the whole distribution function. This is the fundamental difference 

between our method and traditional SPH. 

We simulate mixing-length convection using ideas developed in Chapter 2. We 

use equations 2.24 and 2.35 for the velocity and entropy evolution of individual 

particles. Each particle only moves in the vertical direction, but each feels forces 

from its horizontal neighbors. Particles are free to pass through one another, 

despite the one-dimensional nature of the code. The particles are confined within 

fixed boundaries, and we use reflecting boundary conditions. This code simulates 

mixing-length convection because velocity and temperature excesses are damped 
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on the scale of a mixing length in the Bu tenn of equation 2.24 and the Eu term 

of equations 2.35, respectively. 

Note that although this program simulates the physics of Chapter 2, the 

influences of all moments are inherent in the results, whereas in Chapter 2 we 

assumed we could find closure relations for the fourth moments and we truncated 

all higher moments. Thus, this code gives us a means of checking whether or not 

the truncated moments feed back into the lower order equations in a significant 

way. 

3.2.2 The Equations 

Each particle can be characterized by a position Zj, velocity Vj, and entropy Sj. 

We supplement this set with the dependent variable T j • It is convenient to use the 

entropy, rather than the temperature, as the independent variable in this chapter 

since the particles move quasi-adiabatically over short distances. The subscript i 

refers to a single particle. By summing up particle properties, weighted with the 

smoothing kernel, we calculate the properties of the background grid at positions 

Zk. The subscript k will always refer to the grid. The mean density in cell k, 'h, 

is derived from summing the weighted particles at positions Zji the mean velocity, 

lik, comes from the weighted velocities, Vji and the mean entropy, Sk, comes from 

the weighted entropies, Sj. The specific mathematical procedure will be described 

later. Finally, to first order, the pressure on the grid is found with the equation 

of state, Pk = P(Sk, Pk)' 

As described earlier, the calculation of the local differences between particles 

and the background is essential for the simulation of convection, and especially for 



118 

the calculation of buoyancy forces. Thus we will need to find background values 

at particle positions Zi. We do this by linear interpolation on the background 

grid. We represent the interpolated pressure, velocity, entropy, and temperature 

by the variables Pi, Vi, Si, and Ti, respectively. The subscripts indicate that 

these background quantities are evaluated at particle positions. The equation 

of state gives the temperature of particle i as Ti = T(Pi, Si), and its density 

as Pi = p(Pi , Si). From the weighted values of Ti, we derive the background 

temperature T k • (Note that one could also derive the background temperature 

using Tk = T(Pk , Sk). This gives a different numerical result than the other 

procedure. Numerical experimentation showed that this second method leads to 

inferior energy conservation in simple thermal diffusion problems.) The velocity, 

temperature, and density deviations between particles and background are given 

by Wi = Vi - Vi, (}i = Ti - T i , and bPi = Pi - Pi' respectively. 

Certain of the forces in the expressions for v (equations 2.24) and for T (equa

tion 2.36) are first or second derivatives of the quantities above. An obvious exam

ple is the pressure gradient in the v equation. First derivatives are approximated 

by first differences. We define a secondary grid Zk' halfway between the points of 

the Zk grid. First derivatives are second order accurate at positions Zk', Second 

derivatives are taken to be the second differences, and are defined at points Zk. 

We also define the gravitational acceleration, 9k', on the k' grid. In equation 2.24 

for v, we interpolate the gravitational acceleration and pressure gradient to each 

particle, and we represent these values by 9i and V1 Pi, respectively. We will find it 

convenient to consider certain background forces as constant within a cell k. That 
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is, we will not perform the interpolation to the particle, but simply assign the force 

at zk to the particle at Zj. For example, in equation 2.24 the background viscosity 

term 82ti/8z2 is found at points Zk, since it is a second derivative, and the value 

at Zk is applied to all points Zj within bin k. Also, in equations 2.24 and 2.36 

we will assume the turbulent viscosity and diffusion coefficients, Bu and Eu, are 

constant within each bin k. We use the subscripts i, k, and k' to indicate where 

each term is calculated in our numerical scheme. The gridded forms of equations 

2.24 and 2.36 are 

(3.1) 

and 

(3.2) 

These two equations must be supplemented by 

(3.3) 

which describes the spatial evolution of the particles. These three equations de-

scribe the time evolution of the three quantities, Zj, Vj, and Sj, which characterize 

every particle. 

As particles move, they may cross the walls which confine the fluid. Im-

mediately after crossing a wall, the particle's position and velocity are reflected 

symmetrically around the wall. We must also adopt reflecting boundary conditions 

for the background grid, since we will require a procedure to interpolate or take 
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derivatives near walls. This is equivalent to presuming there are fictitious grids of 

values beyond the walls, which mirror the real grid. Thus, scalar quantities, such 

as pressure have zero gradients at the boundaries, and vector quantities, such as 

velocity, equal zero at the boundaries. 

We require that the algorithm permits a fluid to relax to hydrostatic equi-

librium, at least within numerical round off errors in the computer. Because the 

pressure gradient becomes zero at both wails, the gravity must also become zero 

at the walls. Otherwise there could be no steady state. We assume the gravity 

has the constant value, go, except within a boundary region of width 6.zB at each 

wall. We take the walls to be at Z = 0 and Z = Zmax. For Z < 6.zB, the gravity 

profile is given by 

(3.4) 

Within a distance 6.z B of the right boundary, the gravity profile is the mirror image 

of this, as shown in Figure 3.1. We use the function g( z) to define the gravity grid, 

9k, and we interpolate linearly to particle positions to find the gravity 9j. 

Since we are interested in the transport of energy through the fluid, we supply 

energy at the bottom of the fluid and remove it at the top. We turn on and off the 

heating gradually within the boundary regions of width 6.zB, which we usually 

take to be 10% of the depth of the fluid. The heating/cooling function is given by 

Zk < 6.zB 

Zk > Zmax - 6.zB. 
(3.5) 

The function J(z) is the heating/cooling profile, given by 

J(Z) = 0.5[1 + cos(7l'Z/6.zB)], (3.6) 
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0 

Figure 3.1. Shows the gravity profile curve, labeled g(z), and the heating/cooling 
profile curve, labeled f( z ). The vertical dashed lines demarcate the boundary 
regions of width ~ZB. The boundary regions are 10% of the total width . 

in the left boundary region. In the right boundary region the function is the mirror 

image. It is also illustrated in Figure 3.1. 

In equation 3.5, the constant E 0 measures the rate at which we supply energy 

density to the bottom of the fluid. Within the lower boundary region, the fluid 

must carry a flux given by Eo times the integral of the function f( z ). Beyond the 

boundary region, the fluid must carry a total flux of 

(3.7) 

If the fluid is strictly radiative, the temperature gradient between the boundary 

regions is given by 

(8T) = _ FTot. 

8z Rad K 
(3.8) 
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In equation 3.5, the temperature dependence of the cooling law is appropriate 

for radiative cooling. In a steady state, the energy gained at the lower boundary 

must be lost at the upper boundary. Therefore, choosing the heating rate Eo and 

the cooling constant Ceool determines the steady-state temperature at the upper 

(low T) boundary. Then the slope of the temperature profile fixes the temperature 

at the lower (high T) boundary. 

The choice of the heating/cooling profile fez) and gravity profile g(z) is not 

arbitrary. We have designed them so that the superadiabatic gradient, 6 "VT = 

(8T/8z)ad - 8T/8z, goes to zero monotonically within the boundaries. (The 

reflecting boundary conditions require that the superadiabatic gradient becomes 

zero.) Since for an ideal gas (8T/8z)ad = -g/cp and 8T/8z varies as the integral 

of f( z) in the boundary region, the gravity profile g( z) must be proportional to 

the integral of fez). This is the case. 

It is worth mentioning that it would be straight forward to expand the code 

to include the effect of molecular weight variations. In Chapter 7 we write an 

equation for the time evolution of the molecular weight of a fluid element, jJ., 

which bears resemblance to equation 3.2. By adding the molecular weight of each 

particle to the set z, v, and s, we could simulate convection with molecular weight 

gradients. This, however, would present an expansion in the scope of this thesis 

beyond practical limitations. 
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3.2.3 Time Integration 

The evolution of each particle is described by the integration of equations 

3.1, 3.2, and 3.3 for V, s, and z, respectively. We perform the time integration 

with a leapfrog scheme (e.g. Press et al. 1986), in which the source terms of the 

differential equations are time centered. We calculate positions, Zi, and entropies, 

Si, at integer time steps, RIld we find velocities, Vi, at half-integer time steps. 

For the sake of having a faster code, we make some exceptions to rigorous time 

centering, as will be seen below. Thus, the time integration is formally first order 

accurate, rather than second order accurate as in a strict application of leapfrog 

integration. 

We use a time step !:1t. (Upper limits on this choice of time step will be 

discussed below.) The velocities are integrated according to v7+ t = v7- t +vi!:1t. 

The superscripts identify the time according to t = n!:1t. Note that the source term 

vi is calculated at time level n, at least as far as is practical without a significant 

increase in complexity of the code. Because the particle positions and entropies 

are known at time level n, the density, temperature, and pressure background 

can be calculated at time level n. However, the background velocity and velocity 

dispersion are known at time level n - t. Thus, the finite difference form of 

equation 3.1 will not be perfectly time centered. For convenience we adopt the 

abbreviation l/r:k-
t = A + BO';-t for the coefficient of turbulent damping. We 
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pieces from the two time levels. That is, we treat the turbulent viscosity implicitly. 

Using these relations and solving equation 3.1 for v~+i, we find 

v~+' = 1- {;f; v~-' + !::.t (_!l+ "Vpr) +C!::.t"V2v n
-, + !::.tv~-' (3.9) 

, 1 +..M.. ' 1 + ..M.. g, p~ I. Tvk'· 
2~~ 2~~ , 

The appropriate equation for the entropy integration is si+1 = si + s~+! !::.t. 

However, most of the source terms in s~+i are not known at time level n + t, 
but at level n (e. g. the background temperature or density) and n - t (e. g. the 

velocity dispersion). The finite difference integration of equation 3.2 is given by 

(3.10) 

The time centered spatial integration is given by zi+1 = zf + z7+~ !::.t. How

ever, we do not substitute v~+! for z~+t because of numerical complications. Nu-

merical experiments, especially of overshooting models, show that particles tend to 

clump together on subgrid scales. If the clumping is sufficiently strong that all the 

particles within a bin are in only the left or right half, the background calculation 

described in the next subsection will fail. The pressure gradient in equation 3.9 

can only smooth fluctuations on scales larger than the grid spacing, and, there-

fore, such substructure can occur. Thus, we need a prescription to smooth out the 

particle distribution on subgrid scales. The prescription must not simply be equiv-

alent to regridding at higher resolution. Our solution is to calculate the particle 

density on a subgrid of thrice the resolution. We refer to the subgrid by subscripts 
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k3. We want the overdensities on the subgrid to diffuse. This diffusion imparts a 

correcting velocity to each particle given by 

fc"Az \!Pk3 
Vicorr = ---3- PkJ ' (3.11) 

where the density on the subgrid is given by Pk3 and c" is the sound speed. We 

take f = 0.1, and we never let Vicorr exceed the sound speed. The new particle 

positions are given by 

n+l n + ( n+~ + ) At Zi = Zi Vi Vicorr L.J. • (3.12) 

This permits proper treatment of the dynamics on scales of size .6.z, and it pre-

vents clumping on scales larger than .6.z/3. If the integration puts zi+1 beyond a 

boundary, we reflect the particle's position and velocity. 

There is a minor problem associated with the use of equation 3.12. In sta

ble zones, the nonequilibrium forces from which we calculate v~+! can precisely 

oppose the forces of the subgrid diffusion. In this circumstance, v~+t and Vicorr 

cancel, and the fluid is prevented from relaxing all the way to hydrostatic equilib-

rium. We will see examples of this later in this chapter. 

To apply equations 3.9, 3.10, and 3.12 we must start with initial values of 

position, zl, entropy, st, and .velocity, vl. Because there are damping terms in 

equations 3.9 and 3.10, the fluid will evolve toward a steady-state configuration. 

We do not need to start with initial conditions near the steady-state, but most of 

the time we find it expedient to do so. (However, if we start the code so far from the 

steady state that it develops nearly sonic velocities in its early stages of relaxation, 

it will fail.) We often use the local theory developed in Chapter 2 to specify the 
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initial density and temperature profiles. If the fluid should be convecting, then we 

also calculate the initial velocity dispersion profile, according to the local theory. 

If the fluid is convecting, it evolves toward non-local steady-state convection. We 

assume it reaches this configuration after a time Tsteady = 1.5 max( eM /0' k ), i. e. 

after 1.5 mixing times. For our models, this is typically many sound crossing 

times. If the fluid is convecting, there is a turbulent fluctuation of the number 

of particles in each bin. It follows that moments of the distribution function 

fRet, z, w, 8), e.g. the velocity dispersion, will fluctuate. Numerical experiments 

have shown that the fluctuations are uncorrelated on the time scale for the fluid to 

mix over a single bin. For bins of width ~z, the fluctuations are uncorrelated after 

a time Tmix = max(~z/O'k)' Thus, in our attempt to determine the steady-state 

particle distribution function numerically, we begin to accumulate data about the 

particles after a time Tsteady, and at intervals separated by time T mix thereafter. 

The idea that we can improve our knowledge of the distribution function by taking 

long time averages' is akin to the ergodic theorem, which states that in the limit 

of an infinitely long time average, each particle will spend as much time in each 

part of phase space as is indicated by the phase space density (e.g. Reichl 1980). 

That is, longer time averages improve the phase space coverage. 

Finally, we must specify the size of the time step, ~t. Three conditions must 

be satisfied. The time integration of equation 3.1 is stable only if we satisfy the 

Courant condition (e.g. Press et al. 1986). That is, ~t < €~Z/C8' where the sound 

speed is CII • Experiments show that using €;50.8 is generally sufficient. There is no 

time constraint from the turbulent viscosity, since it is treated implicitly. There 
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second constraint comes from the microscopic viscosity, "C term" in equation 3.1, 

but we never use C so large that this is the limiting factor. The diffusion time 

scale in equation 3.2 provides an important third constraint. The constraint is 

that t:J.t < €pcpt:J.z2 / K. Typically, we must use €~O.3. 

These time step constraints prevent us from using realistic stellar parameters. 

We typically run our simulations for a few tens to a couple of hundred sound cross

ing times, which is much shorter than the nuclear burning time scales relevant to 

stellar evolution. Also, because we use an Eulerian grid, we cannot perform simula

tions in which the density spans many orders of magnitude. Furthermore, in stars 

the time scale for radiative diffusion over a distance 1 is roughly TRad '" 12pcp/K. 

This is typically many orders of magnitude larger than the hydrodynamic time 

scale 7lI '" 1/y'("Jp. However, when we perform simulations where we want the 

radiative diffusion to play an important role over the period of execution, we have 

to choose the diffusion time scale to be much closer to the hydrodynamic time 

scale. 

3.2.4 Calculating the Background 

In the calculation of density on a grid, each particle contributes mass to 

the cell in which it lies. However, if the particle contributed mass only to that 

cell, the density would change discontinuously as the particle was displaced across 

cell boundaries. This is undesirable. The density will change continuously if we 

give each particle a finite size, and, hence, we can improve the accuracy of the 

background grid calculation (Hockney and Eastwood 1981). We consider each 
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particle to be of rectangular shape with width ilz. (By "shape" we really mean 

the profile of differential mass versus position.) The fraction of a particle's mass 

associated with a grid point is the amount of mass the particle contributes to the 

relevant bin. This fraction is given by the smoothing kernel 

1

.!i..=.!L I < 1 ~z -
Zj-ZIs > 1 
~z -, 

(3.13) 

which describes the weight a particle at Zj contributes to bin k. This is the first 

order kernel, and it contributes weight to two bins (unless the particle is exactly 

centered within a bin). A particle in bin k with Zj < Zk contributes to bins k 

and k - 1; a particle in bin k with Zj > Zk contributes to bins k and k + 1. The 

sum of the two weights must be unity. Particles which lie between the walls, which 

confine the fluid, and the neighboring grid point contribute weight outside the fluid 

boundary. However, a fictitious mirror particle outside the fluid contributes weight 

inside the real grid. Effectively, the particles near the boundary also contribute a 

total weight of unity to the fluid. 

We use the weighting kernel to calculate the SPH background. We consider 

the fluid to be contained within a spherical shell of inner radius ro. We assume the 

shell is much narrower, usually by a factor of 1000, than roo Hence, the geometry 

of the fluid is very nearly plane parallel. Each particle has mass m. The density 

on the background grid is calculated wi th 

(3.14) 

The SPH mean, Pb is a good representation of the true density p(z), as long as 

p(z) is nearly linear in the vicinity of Zk. Typically, the density gradient of a fluid 
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z 
Figure 3.2. A hypothetical distribution of particle velocity, entropy, or temperature 

versus position is represented by the dotted line. The crosses show the means 
derived from equation 3.16, whereas the solid points are the values returned by 
the two-line fitting procedure. 

changes slowly, so that equation 3.14 can be applied reliably. The boundary cells 

are an exception. At the boundary cells, the density gradient changes from some 

nonzero slope to zero (because of the reflecting boundary conditions). Given the 

values PI and p2 for the density at the boundary and neighboring grid points, 

respectively, calculated using equation 3.14, an improved estimate of the correct 

density at the boundary grid point can be determined using 

_, 6_ 1_ 
PI = -pi - -p2. 

5 5 
(3.15) 

In Appendix C we derive this equation. We apply this correction at both bound-

anes. 
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We also calculate the background values ofih, Sk, and Tk from the particles. 

The obvious procedure is to apply the formula 

(3.16) 

Here and in the following discussion we use the temperature variables as examples, 

but this discussion applies to the velocity and entropy calculation as well. However, 

if one imagines a plot of particle temperature versus position which is piecewise 

linear, as illustrated by the dotted line in Figure 3.2, then equation 3.16 will 

calculate mean values which do not coincide with the particle values, as shown 

by the crosses in Figure 3.2. (Indeed, this structure occurs in our algorithm for 

convectively stable fluids as a consequence of linear interpolation of forces between 

grid points.) There would be differences between the particle and background 

values that arise from the inaccuracy of the background calculation. However, we 

only want differences that arise from turbulent dispersions. We would like to fit 

the particle data in such a way that the background grid points are represented 

by the solid dots in Figure 3.2 rather than the crosses. We do t.his by constructing 

piecewise linear fits for each grid point k of the form 

T(z) = {Tk + T!..(z - Zk), 
Tk + T.j.(z - Zk), 

(3.17) 

The slopes of the left and right hand segments are T!.. and T.j., respectively, and 

Tk is the value we require for the background grid. We calculate the best least-

squares fit of equation 3.17 to the data. This procedure, which we call two-line 

fitting, is described in detail in Appendix D. We use two-line fitting to derive the 

Vb Sk, and Tk arrays. 
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This two-line fitting is a significant improvement over equation 3.16 only for 

stable fluids. It is not an important improvement in a convectively unstable fluid 

in which the particle values at each z are dispersed. Thus, for the computation of 

the velocity dispersion we use the simpler equation 

E Wk(Zi)(Vi -lh)2 
2 ~.~.~~~~~ __ _ 

Uk = E Wk(Zi) 
i 

(3.18) 

We use the two-line fitting technique to derive the values "fh and Sk on the 

grid. From the equation of state we calculate 

(3.19) 

We interpolate to find the pressure, Pi, at each particle. Hence, we now can find 

the particle temperatures according to 

(3.20) 

From the particle temperatures, Ti, we calculate the temperature background Tk 

by two-line fitting. 

3.2.5 The Units 

The code works in dimensionless units. We define the gravity, which is con-

stant except near the boundaries, as 90 = 1. We also define the average density 

of the entire fluid as p = 1. The thermodynamic relationships are simplified using 

kB / J.l = 1, where kB is Boltzmann's constant and J.l is the molecular weight of the 

fluid. Lastly we use the gravitational constant G = 1. With these four definitions, 

we define the units of length, time, mass, temperature, and entropy as: 



length: 9 / Gp 

time: 1/..j(Jp 

mass: g3/G3p2 

temperature: g2J.L/GpkB 

entropy: kB/ J.L 
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The equation of state for an ideal gas is P = pT = exp[(-y - l)(s - so)]p"Y, where 

the ratio of specific heats, ;, equals 5/3 for a non-relativistic, monatomic gas. The 

reference entropy, so, can be chosen arbitrarily without affecting the physics. 

In the calculation of the density by equation 3.14, we require the mass m of a 

single particle and the radius ro of the fluid. We will obtain these by adding two 

dimensionless parameters to the four definitions above. For a central gravitating 

mass McentraI and a fluid mass Mshell with depth Dz, we define the ratios 

(3.21 ) 

and 

f3 = ro/ Dz. (3.22) 

Large aM implies that self-gravity is unimportant, and large f3 implies that the 

fluid geometry is nearly plane-parallel. Working in dimensionless units, we have 

9 = McentraI/r'5 and Mshell = 47rr'5Dz. We combine these equations with the 

definitions of the ratios aM and f3 to derive 

ro = f3/47raM, 

Mshell = f32/167r 2ait, 

(3.23) 

(3.24) 
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and 

Dz = 1/47raM. (3.25) 

The mass m of a single particle is given by MsbeU divided by tht:l total number of 

particles in the simulation. 

Most simulations use aM = 0.1 and f3 = 103. This choice makes the depth 

of the mass shell, Dz, of order unity and makes the fluid nearly plane parallel. 

If we were to include the self gravity of the fluid in the calculation, it would be 

important compared to the external gravity. However, we do not include the self 

gravity, and, therefore, the basic physics of the simulations are independent of aM. 

To convert the dimensionless numbers used in our simulations to physical 

units, we require a stellar model to provide us with g, p, and J.l. As an example 

of characteristic values of the units, we use the solar model discussed in Clayton 

(1983). At the base of the Sun's convection zone, 9 = 3.5 x 104 cm/ s2, p = 

6.3 x 1O-3g/ cm3, and J.l = 1.0 X 1O-24g, which give the units 

length: 8.3 X 1013cm 

time: 4.9 x 104s 

mass: 3.6 x 1039g 

temperature: 2.1 x 1010K 

velocity: 1.7 x 109 cm/s 

If we adopted aM ~ 2000 and f3 ~ 6, the simulation parameters would be similar 

to those of the solar convection zone. 
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3.2.6 Code Execution 

Numerical experiments have shown that at least 20 particles per bin are re

quired for reliable hydrodynamic evolution. Furthermore, the more particles there 

are, the better the code conserves energy and the better we can construct the 

particle distribution function. We used 80 bins and 20,000 particles, yielding an 

average of 250 particles per bin, in our simulations, except when these parameters 

would have demanded too much CPU time. The need to maintain a sufficient 

number of particles per bin, coupled with the use of an Eulerian grid, means we 

cannot perform simulations where the density varies by more than about one order 

of magnitude. This is regrettable, and, hopefully, it will be remedied in a future 

version of the code with a Lagrangian grid. 

All the simulations reported in this dissertation, except for numerical exper

iments which were performed during code development, were done on the CRA Y 

Y-MP8/864 at the San Diego Supercomputer Center. The code has been optimized 

to take advantage of the CRAY's vector processing. The shortest calculation re

ported took about 10 minutes, while the longest took about 14 hours, with 50 to 

100 minutes being the most typical run time. 
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3.3 Examples of Convectively Stable Models 

We demonstrate the hydrodynamic and thennodynamic behavior of the code 

with two convectively stable models. The first model is an evolution to an isother

mal, hydrostatic configuration, and the second shows (nearly) isentropic evolu

tion. We start with constant density and constant temperature initial models, far 

from the steady state, to show that the particles evolve to hydrostatic distribu

tions. Both models have aM = 0.1 and f3 = 103, making the depth of the fluid 

Dz = 0.80. Initially the entropies Sj = 1 for all particles. The square of the sound 

speed is c~ = ,Pip = ,kBTIIl, and the time scale for hydrodynamic relaxation is 

TfI ~ Dz I Cs ~ 0.6. We use the "standard" microscopic viscosity Vmic = 4.8 X 10-4 • 

The reason for this choice will be described in subsection 3.5.1. Then the viscous 

time scale Tv ~ Dz2 IVmic ~ 103 is much longer than TfI. In both models we use 

Q = 0, so the energy of the fluid should be conserved. We discuss the quality of 

energy conservation for both examples. 

3.3.1 An Isothermal Model 

In this example we start with a nearly constant density profile and constant 

entropy. Therefore, the initial temperature is also nearly constant. (The initial 

density fluctuations are a consequence of the random initial particle positions.) 

The fluid is out of hydrostatic equilibrium, and so it begins to relax toward hydro

static equilibrium. In doing this, the temperature initially changes adiabatically. 

If there were no thennal diffusion, the final steady-state temperature profile would 
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have an adiabatic temperature gradient. (Viscous heating would modify an adi

abatic profile, but this is a small effect.) However, in this calculation we use a 

thermal diffusion coefficient K = 0.1, making the thermal diffusion time scale 

7Th ::::: Dz2pcp/K ::::: 16. Consequently, eventually the fluid will become both 

isothermal and hydrostatic. 

Figure 3.3 shows the evolution of density and temperature. The top pair of 

panels shows the initial density and temperature profiles at t = o. Gravity points 

to the left. The sound crossing time is of order unity, so by t = 1, the density 

profile is approaching quasi-hydrostatic equilibrium, as illustrated in the second 

pair of panels. The density profile then starts to evolve on the slower thermal 

diffusion time scale. At this time the temperature profile has been modified both 

by the adiabatic temperature changes and by thermal diffusion. As the evolution 

continues, the small density fluctuations decrease as the pressure gradient smooths 

out the wrinkles and the temperature profile becomes more nearly isothermal, until 

at t = 40, the fluid is isothermal to high precision. The final state corresponds to 

a subadiabatic temperature gradient of ~ VT = -0.4. 

As a check on the accuracy with which we calculate time dependent hydrody

namical and thermodynamical evolution, we examine the energy conservation of 

the code. In Figure 3.4 we plot the kinetic energy, thermal energy, and potential 

energy of the ensemble of particles. Initially, the fluid has no kinetic energy. It is 

far from equilibrium, and gravity causes the kinetic energy to rise and the potential 

energy to drop as the fluid flows downhill. As the fluid flows and heats adiabat

ically, the thermal energy rises. The fluid sloshes in the box on a sound crossing 



137 

1.2 1.4 
1.2 1.1 

Q.. 1 E---4 1 
.8 .9 
.6 .8 

0 .2 .4 .6 .8 
1.2 ° .2 .4 .6 .8 

1.4 
1.2 1.1 

Q.. 1 E---4 1 
.8 .9 
.6 .8 

0 .2 .4 .6 .8 
1.2 ° .2 .4 .6 .8 

1.4 
1.2 1.1 

Q.. 1 E---4 1 
.8 .9 
.6 .8 

0 .2 .4 .6 .8 
1.2 ° .2 .4 .6 .8 

1.4 
1.2 1.1 

Q.. 1 E---4 1 
.8 .9 
.6 .8 

0 .2 .4 .6 .8 
1.2 ° .2 .4 .6 .8 

1.4 
1.2 1.1 

Q.. 1 E---4 1 
.8 .9 
.6 .8 

0 .2 .4 .6 .8 0 .2 .4 .6 .8 
z z 

Figure 3.3. Shows the evolution of the density and temperature profiles towards an 
isothermal, hydrostatic equilibrium. 
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Figure 3.4. Shows the kinetic energy (K.E.), thermal energy (T.E.), and poten
tial energy (P.E.) fluctuations as a function of time for the evolution toward 
isothermal, hydrostatic equilibrium. The total energy fluctuation is plotted as 
the heavy line. The total energy fluctuation is about 7% of the energy amplitude 
during the early violent relaxation. 

time scale, which is of order unity. The sloshing causes energy to get transferred 

among the kinetic, thermal, and potential energies. Notice that the kinetic energy 

oscillates with twice the frequency of the thermal and potential energies, since 

the velocities go to zero at both the peaks and valleys of the potential energy. 

Despite the low molecular viscosity, this process of energy transfer permits the 

thermal diffusion to act as the dominant source of damping of the kinetic energy 

oscillations. The oscillations are damped on the thermal diffusion time scale, and 

in the final configuration, the entire change of potential energy should be balanced 

by the increase of thermal energy. The total of the three energies is plotted as 

the heavy line in Figure 3.4. One can see that there are fluctuations of the total 
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energy curve during the initial period of violent relaxation. These fluctuations are 

roughly 7% of the thermal and potential energy amplitudes. However, the total 

energy fluctuations decrease as the fluid approaches the steady state, and we can 

expect conservation to better precision if our initial model is closer to the steady 

state. 

3.3.2 An Isentropic Model 

This model starts with the same initial conditions and parameters as the 

isothermal model above, except that there is no thermal diffusion (i. e. K = 0). The 

density and temperature evolution of this model is shown in Figure 3.5. The initial 

condition at t = 0 is far out of equilibrium, but after a sound crossing time, the 

density and temperature profiles crudely resemble the hydrostatic configuration. 

Notice that the qualitative structure of the temperature profile is similar to the 

density profile. This is a consequence of isentropic (ignoring viscous heating) 

evolution, for which T oc p2/3. The pressure gradient drives the density profile 

toward more nearly hydrostatic configurations, and the temperature profile evolves 

toward the steady state at precisely the same rate. By the final time of t = 40, the 

temperature gradient is near the steady-state value of (aT / az )ad = -g / Cp = -0.4, 

and the superadiabatic gradient is near ~ \IT = o. This is essentially the critical 

superadiabatic gradient, for which the forces on fluid elements are neutral in the 

absence of viscosity. It is, therefore, no surprise that the fluid sloshing and energy 

oscillations (see below) take so long to decay. 

Figure 3.6 shows the energy evolution for this model. As in Figure 3.4, we see 

here the exchange of kinetic, thermal, and potential energies. Initially the fluid 
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Figure 3.5. Shows the evolution of density and temperature profiles towards an 
isentropic, hydrostatic equilibrium. 
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Figure 3.6. Shows the kinetic energy (K.E.), thermal energy (T.E.), and potential 
energy (P.E.) fluctuations as a function of time for the evolution towards isen
tropic, hydrostatic equilibrium. The total energy fluctuation is plotted as the 
heavy line. The total energy fluctuation is about 7% of the energy amplitude 
during the early violent relaxation. 

loses potential energy and gains kinetic energy as gravity causes the fluid to flow. 

As the fluid gets compressed, the thermal energy rises. The fluid sloshes on a 

sound crossing time scale, as indicated by the period of ?scillations. Since there is 

no thermal diffusion, the exchange of energies cannot assist the damping of kinetic 

energy. The oscillations damp on a viscous time scale, which is of order Tv ~ 1000. 

This is confirmed by the slow decay seen after the first several oscillations. The 

total energy is drawn as the heavy line in Figure 3.6. As before, the total energy 

fluctuations are initially about 7% of the thermal and potential energy amplitudes, 

and models that start nearer the steady state should conserve energy to higher 

preCISIOn. 



3.4 Examples of Convection in the Four Parameter Regimes: 

the Standard Models 
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In Chapter 2 we discussed four parameter regimes of convection. We study 

these four regimes in this section using the GSPH code. In the two astrophysi

cally relevant regimes, microscopic viscosity is unimportant compared to turbulent 

viscosity, and so A ¢: Bu. For nearly adiabatic convection where convection is 

efficient, the thermal diffusion is unimportant compared to turbulent diffusion, 

and so D ¢: Eu. This is the first regime. We refer to models in this regime 

as convection dominated, since convective flux carries most of the total flux. In 

the second regime, convection is inefficient, and D ~ Eu. We refer to models in 

this regime as radiation dominated, since radiative diffusion carries most of the 

total flux. The third and fourth regimes have dominant molecular viscosity, with 

A ~ Bu. These two regimes are of less astrophysical relevance, but we discuss 

them here for completeness. However, we will concentrate on the astrophysically 

important regimes after this section. 

3.4.1 Description of the Four Regimes 

All the simulations used QM = 0.1 and f3 = 103 , giving a shell size of Dz = O.S. 

We adopted length scales CM = CH = Cv = 0.24. Although the three lengths need 

not be the same, we make this assumption to limit the volume of parameter space 

we explore. Furthermore, this assumption is consistent with the idea that a mixing 

length is the dimension on which a fluid element feels strong shear stresses that 

destroy it (e.g. Gough 1977). For these parameters, the mixing-length is small 
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enough that the central region of the shell should be free from boundary influences. 

It is also significantly larger than the lowest grid resolution we ever use, so that 

the convective motions can properly interact with the background. 

We can obtain high quality statistics for the distribution function if we use 

20,000 particles and 80 bins. However, some models demand relatively small time 

steps or need to run longer because of large mixing times, and, therefore, we cannot 

always use this many particles or bins. 

The choice of diffusion coefficient, K, and rate of energy input at the bound-

ary, Eo, is guided by the hypothetical radiative temperature gradient, 

(3.26) 

The ratio Eo/ K determines whether the fluid will be convectively stable or unsta-

ble. If K is sufficiently large, then most (if the fluid is unstable) or all (if stable) 

of the energy flux will be carried by radiative diffusion. The true temperature gra-

dient will be very nearly (if unstable) or exactly (if stable) equal to the radiative 

gradient, and 
A "11 g Eo~zB 
~ v Rad = -- + --==--

Cp 2K 
(3.27) 

will be a good approximation to the true superadiabatic gradient. This is the 

case of inefficient convection, where D ~ EO'. In the local approximation, the 

convective flux is determined by the value of ~ \IT. Hence, as one decreases 

Eo, keeping the ratio Eo / K fixed, the con vecti ve flux remains the same and the 

total flux decreases. Then convection carries a larger fraction of the total flux 

and the fluid moves toward the convection dominated regime. Alternatively, the 
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model can be made convection dominated by lowering the diffusion coefficient at 

constant Eo. Either change puts the fluid in the D ~ Eu regime. The actual 

parameter choices are given in the relevant subsections. However, any combination 

of parameters that gave the same dimensionless diffusion coefficients, U or V, and 

the same 'VRad (see subsection 2.6.1) as the parameters we use, would probe the 

same regimes of parameter space. 

For simulations designed to have dominant turbulent viscosity (A « bu), 

we use a microscopic viscosity Vrnic = 4.8 X 10-4 • This value was chosen so 

that microscopic viscosity would be unimportant in convecting regions and yet 

be a stabilizing influence in stable regions in the overshooting models in the next 

section. For microscopic viscosity to be unimportant in convecting regions, we 

must have Vrnic «.eMU. As we shall see in the simulations below, u is of order 

0.01, and hence, our choice of Vrnie does not interfere with the convective transport. 

The initial configuration for each model was derived from the local, steady-

state equations. The temperature of the models is determined by the cooling rate, 

-=- =4 
Q = -CeoolT . We choose Ceool such that the temperature at the lower (hotter) 

boundary is T ~ 1.0 in the steady state. This makes the models of order one 

pressure scale height deep. 

3.4.2 Turbulent Viscosity, Turbulent Diffusion Dominant 

A « Bu, D « Eu 

In this model, the heating rate is Eo = 0.01 and the diffusion coefficient 

is J{ = 10-6. From these parameters one can calculate 'VRad and U for this 
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model, whose location in Figure 2.1a indicates that the temperature gradient is 

nearly adiabatic in the local approximation. Figure 2.1b shows that convection 

should carry most of the flux. Thus, this is a convection dominated model in the 

astrophysical regime. 

This simulation used 20,000 particles and 80 bins. To illustrate the nature 

of the numerical data, in Figure 3.7 we plot the particle velocities, entropies, and 

temperatures versus positions after approximately 80 sound crossing times. Note 

that the entropy gradient in Figure 3.7b is negative, as it must be for a convectively 

unstable model. The velocity dispersion in Figure 3.7a is a significant fraction of 

the sound speed (c s ~ 1.0), but the mean background velocity, drawn as a solid 

line through the data points, is much smaller. This implies that the fluid is in a 

nearly hydrostatic configuration. Indeed, the background velocity fluctuations are 

a consequence of the turbulence. Furthermore, there is structure in the entropy 

and temperature data plotted in Figures 3.7b and c. Although we cannot properly 

account for its presence, the structure appears connected with the scale of the bins. 

It probably is not physical. 

Numerical tests have demonstrated that the structure in the background 

changes on the time scale for a convective element of characteristic velocity u w to 

cross a bin. Then an accumulation of many uncorrelated data sets over a long time 

yields better distributions, without the structure or background fluctuations due 

to convective turbulence. Such an accumulation is shown in Figure 3.8. During 

the course of code execution, the particle values were saved at 103 times, giving a 

total of 2,060,000 particles. In Figure 3.8 we plot one out of 101 points for the 
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Figure 3.7.(a) Shows the 20,000 particle velocities, Vi, versus positions, Zi, for the 
low Vrnic, convection dominated model after about 80 sound crossing times. (b) 
Shows the entropies, si, versus position, and (c) shows. the temperatures, Ti, 
versus position. Lines showing the mean background values are drawn over the 
individual particle data. 
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Figure 3.8.The same as Fig. 3.7, except this is the average of 103 uncorrelated 
times. One out of 101 points in the total sample of 2,060,000 points is plotted. 
Note the absence of the structure seen in Fig. 3.7. 
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Figure 3.9. ~ VT vs. z. The solid line is derived from the accumulated data for 
the low Vmic. convection dominated model. Except for the boundary zones, 
the temperature gradient is nearly adiabatic. The dashed line is the solution 
of the local equations. If the fluid were nearly radiative instead, we would find 
~VT~400. 

entire data set. The transient structure is not apparent in the entropy or temper-

ature plots, and the mean background fits do not show the turbulent fluctuations 

seen in Figure 3.7. Note especially that the mean velocity in Figure 3.8a is very 

near zero, indicating that over a long time average, the turbulent fluid is in hy-

drostatic equilibrium. 

One can show that the hypothetical radiative gradient ( 8T / 8z )Rad = -400 

for this model. However, the time-averaged superadiabatic gradient is shown in 

Figure 3.9 as the solid line, which shows that the temperature gradient is nearly 

adiabatic. Indeed, it is over three orders of magnitude smaller than the radiative 

value, and, hence, the actual radiative flux is over three orders of magnitude below 



149 

the total flux. Notice that the superadiabatic gradient is slightly larger near the 

boundaries due to boundary effects. It is noteworthy that these boundary effects 

do not extend far beyond the boundary region of width LlZB. This particle code 

result is compared with the prediction of the local theory, shown as the dashed 

line in Figure 3.9. The agreement is quite good considering the enormous ratio 

between the true and radiative superadiabatic gradients. Comparison of the curves 

near the boundaries suggests that the boundary effects mentioned above require 

the non-local description of convection. In Chapter 4, we will make comparisons 

between the particle code results and the non-local theory. 

In Figure 3.10 we compare the second moments obtained with the particle 

code and with the local theory. The solid lines in Figures 3.10a and 3.lOb show 

the velocity and temperature dispersions derived from the particle data. The error 

bars represent the 1-0" standard deviations from the mean moment values. These 

figures can be compared with the scatter diagrams of Figures 3.8a and 3.8c. In 

the local curve, drawn as the dashed line, the dispersions go to zero at the bound

aries. This must happen in the local theory because the dispersions only depend 

on the local value of Ll "VT, which goes to zero at the boundaries. As in Figure 

3.9, there are significant non-local deviations in the boundary regions, but agree

ment is reasonably good throughout most of the interior. Notice that the velocity 

dispersion rises in the direction of positive z. This can be understood intuitively. 

The temperature and density are lower at higher z, and there is less mass to store 

and transport thermal energy. Then the convection must be more violent for the 

convective flux to remain steady. This can be described mathematically with the 



.035 

.03 
it: 

b .025 

.02 

.01 

.008 
Cl) 

b .006 

.004 

1 

~ ,.-...... 
Q::) 

.5 ~ ............, 

0 

0 .2 

0 .2 

0 .2 

.4 
z 

(a) 

.4 
z 

(b) 

.4 
z 

150 

.6 

.6 

.6 

Figure 3.10. Comparisons of the particle code~id lines) and local theory (dashed 
lines) second moments. (a) The velocity dispersion, (b) temperature dispersion, 
and (c) normalized velocity-temperature correlation are graphed versus position. 
The error bars on the particle code curves represent the 1-a standard deviations 
of the moments, assuming the moment variations are uncorrelated on bin mixing 
times. 
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assistance of equation 2.59. In the limit that A « Bu and D « Eu, equation 

2.59 can be rearranged to give U w ~ Vga/:l. \IT/BET. Then for lower T, U W must 

increase. 

We plot the velocity-temperature correlation, wOn, as a function of position 

in Figure 3.10c. The curve has been normalized by the velocity and temperature 

dispersion curves, as indicated by the subscript "n", so that wOn is a dimension

less quantity. The local theory predicts a perfect correlation, WO/U w U8 = 1, in 

convecting regions. This is supported by the particle code results, which show a 

high degree of correlation throughout most of the fluid's interior. 

Because the velocity dispersion rises to the right (ignoring boundary effects 

and statistical fluctuations), one expects that particles arriving at some point from 

the right will have a more negative velocity than particles arriving from the left 

with a positive velocity. Thus, from this negative skewness, we expect that the 

w3 moment will be negative where the velocity dispersion is rising. Even the 

local theory predicts this skewness, yet it neglects the third moments. This is a 

fundamental inconsistency of the local theory. The w 3 moment is plotted in Figure 

3.lla. We see that w 3 , indeed, has the negative skewness we expect, except at the 

right boundary where the gradient of the velocity dispersion changes sign. The 

reflecting boundary conditions demand that w 3 goes to zero at the boundaries. The 

qualitative shape of the w 3 curve was found in the three-dimensional simulation 

of Chan and Sofia (1989). Figure 3.llb shows all the normalized third moments. 

Except in the boundary regions where some moments must go to zero and others 

need not, the third moment curves are quite similar. The implication is that the 
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Figure 3.11.( a) w 3 and (b) the normalized third moments ver-sus position. The third 
moments show the negative skewness discussed in the text, except at the right 
boundary where the slope of u w changes sign. 
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Figure 3.12.( a) w 4 and (b) the normalized fourth moments versus position. The 
approximately constant normalized moments suggest that the fourth moments 
are approximately proportional to the products of second moments. 
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third moments can be scaled to w3 • We will exploit this information in Chapter 

4, where we solve the analytic equations. 

Figure 3.12a shows the w4 moment, and Figure 3.12b shows the normalized 

fourth moments. We have used the wO curve to normalize the odd w fourth 

moments. These values can be compared to the gaussian distribution value of 

3. A broader distribution has a larger fourth moment and a narrower one has a 

smaller fourth moment. From the modest variation of the normalized w 4 moment, 

we conclude w 4 is approximately proportional to the square of the second moment 

w2 • Apparently, this "constant of proportionality" actually varies between 2 and 

4 for this model. The normalized fourth moment curves are similar, and hence, 

the remaining fourth moments are, likewise, approximately proportional to the 

appropriate product of second moments. We will use this qualitative observation 

to guide our choice of closure relations that we use to solve the analytic equations 

in Chapter 4. 

Many of the previous observations regarding velocity-temperature correlations 

and velocity distribution skewness can be displayed graphically as the phase space 

density for a slice of fluid. In Figure 3.13 we show the phase space density contours 

for a slice of the fluid between z = 0.4 and z = 0.45. The high degree of velocity

temperature correlation is obvious, as is the non-gaussian velocity distribution. 

The skewness toward negative velocities is seen. Such a phase space diagram 

for slices across the entire fluid would completely describe the fluid configuration. 

However, we only give one example here, since the qualitative appearance of others 

(except near the boundaries) is the same. 
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Figure 3.13. Contours of phase space density or, equivalently, the distribution func
tion for a slice of fluid at 0.4 < z < 0.45. The density varies by a factor of 2 
between contours. The small, dotted oval in the upper left shows the size of the 
gaussian used to smooth the particle data . The high degree of w-8 correlation 
and negative w skewness is obvious. 

3.4.3 Turbulent Viscosity, Radiative Diffusion Dominant 

A<< Ba, D >> Ea 

This model has Eo = 1.0 and /{ = 0.05, and was run with 20,000 particles and 

80 bins for 183 mixing times. The total flux is twice that which can be carried by 

an adiabatic temperature gradient. Therefore, the fluid must be convectively un-

stable, but radiation will carry most of the energy. This is the regime of inefficient 

convection, which we call radiation dominated. The location of this model is shown 

on Figure 2.2a, which shows that the true temperature gradient is nearly equal to 

the radiative gradient. Figure 2.2b shows that the convective flux is only a small 

fraction of the radiative flux. For these parameters, the interior radiative gradient 
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Figure 3.14. ~ '\!T vs. z. The solid line is derived from the accumulated data of 
181 independent mixing times for the radiation dominated model. The dashed 
line is the solution of the local equations. The curves are nearly at the radiative 
level of ~ '\lTRad = 0.4. 

is ~ '\lTRad = 0.4. Indeed, Figure 3.14 shows that the steady-state superadiabatic 

gradient found by the particle code (solid line) is near this radiative value. The 

dashed line shows the solution from the local theory. The agreement between the 

local theory and the simulation is quite good, except near the boundaries, where 

non-local effects are important. 

Figure 3.15 shows the second moments for this model. Figures 3.15a and b 

show the velocity and temperature dispersions as solid lines. For comparison, the 

solutions of the local equations are drawn as dashed lines. As in the previous 

model, the velocity dispersion increases to the right. This is a consequence of the 

lower temperature and density at the right. The local curves lie far outside the 

code error bars, and the quantitative agreement can only be described as modest. 
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Figure 3.15. Comparisons of the particle code (solid lines) and local theory (dashed 
lines) second moments. (a) The velocity dispersion, (b) temperature dispersion, 
and (c) normalized velocity-temperature correlation are graphed versus position. 
The error bars on the particle code curves represent the 1-a .standard deviations 
of the moments, assuming the moment variations are uncorrelated on bin mixing 
times. 
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This suggests that a non-local treatment of convection is required to obtain better 

agreement. Comparisons with the non-local theory will be made in Chapter 4. 

Figure 3.15c shows the normalized velocity-temperature correlation. The code 

and local theory results are in good agreement. 

Figure 3.16 shows the third moment results. From Figure 3.16a, we see that 

the w 3 moment is negative, except near the right boundary. This is because (7 w 

rises to the right, except near the right boundary. The normalized third moments 

are drawn in Figure 3.16b. Clearly the moments are not independent of one 

another. These curves are very similar, except near the boundaries, where the 

reflecting boundary conditions require that odd w moments go to zero, while the 

even w moments need not. We will exploit the similarities of these moments in 

Chapter 4, where we solve the non-local equations. 

The fourth moment curves are shown in Figure 3.17. As with the third mo

ments, Figure 3.17b shows that these moments are not independent, except near 

the boundaries. Therefore, Figure 3.17a for the w4 moment shows the qualitative 

shape of all five fourth moments. Except near the boundaries, the normalized 

fourth moments range from 4 to 2. It is approximately true that the fourth mo

ments are proportional to products of second moments. This is in good qualitative 

agreement with the results obtained from the convection dominated model. 
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dispersion. 



5x10-6 

0 .2 

8 · (w4)n 
·············-···(w3e)n 

2 2 
6 -----(w e )n 

--(we3)n 

4 
·-·-·-· ( 8

4)n 

2 

0 
I 0 .2 

.4 
z 

(a) 

.4 
z 

160 

.6 

.6 . 

Figure 3.17.(a) w 4 and (b) the normalized \~Jrth moments versus position . Except 
for the boundary regions, these curves suggest that . the fourth moments are 
approximately proportional to the products of second moments, with a constant 
of proportionality that varies between 2 and 4. 

·' 



161 

.4 
f---4 
[::> 

.2 <l 

0 

0 .2 .4 .6 
z 

Figure 3.18. ~ '\!T vs. z. The solid line is derived from the accumulated data of 19 
independent mixing times for the convection dominated, high microscopic vis
cosity model. The dashed line is the solution of the local equations. Compared 
to the radiative temperature gradient of ~ "VTRad = 400, the true temperature 
gradient is nearly adiabatic. 

3.4.4 Microscopic Viscosity, Turbulent Diffusion Dominant 

A>> Ba, D << Ea 

The first of the high microscopic viscosity models is a convection dominated 

model with E0 = 0.01 and K = 10-6
• We use a microscopic viscosity of Vmic = 0.1, 

which will dominate over turbulent viscosity. This simulation, which used 5000 

particles and 40 bins, was run for 19 mixing times. The location of this model is 

shown in Figure 2.3, which indicates that convection transports most of the energy 

in the local theory. 

Figure 3.18 shows as a solid line the steady-state superadiabatic temperature 

gradient found by the particle code. Whereas the radiative temperature gradient 
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is ~ 'VTRad = 400, the true temperature gradient is over three orders of magnitude 

smaller and is very nearly adiabatic. The local solution, drawn as the dashed line, 

is in good agreement with the non-local curve. The superadiabatic temperature 

gradient for this model is about 5 times larger than that in Figure 3.9 for the 

convection dominated model with low microscopic viscosity. This can be under

stood with the assistance of equation 2.86, which relates the convective flux to the 

microscopic viscosity and to the superadiabatic gradient in the local limit. For a 

given convective flux, the superadiabatic gradient varies as the square root of the 

viscosity in the A ~ BO' limit, i.e. ~ 'VT ex v~~. Viscosity inhibits the convective 

flux. Therefore, for larger Vrnic, the fluid must be more unstable to carry the same 

flux. Since the convective flux is very nearly the same in this model as in the first 

convection dominated model and the viscosity is about 200 times larger, equa

tion 2.86 predicts the superadiabatic gradient should be a bit more than 10 times 

larger than the values plotted in Figure 3.9. Because the relationship between the 

superadiabatic gradient and the viscosity does not hold in the regime of the first 

convection dominated model, this prediction is only a "first order" guess. 

The second moments are shown in Figure 3.19. Figure 3.19a shows the ve

locity dispersion versus position, which is smaller than in Figure 3.10a for the low 

viscosity, convection dominated model. In the low viscosity model, equation 2.81 

shows that the velocity dispersion rises as the superadiabatic gradient increases. 

However, as the microscopic viscosity increases into the A ~ BO' regime, equation 

2.89 provides the correct relationship between the velocity dispersion, superadia

batic gradient and viscosity. Given that the superadiabatic gradient varies as the 
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Figure 3.19. Comparisons of the pa-rticle code (solid lines) and local theory (dashed 

lines) second moments for the convection dominated, high viscosity model. 
(a) The velocity dispersion, (b) temperature dispersion, and (c) normalized 
velocity-temperature correlation are graphed versus position.- The error bars on 
the particle code curves represent the 1-a standard deviations of the moments, 
assuming the moment variations are uncorrelated on a bin mixing time scale. 
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square root of viscosity in this latter regime, equation 2.89 implies that the veloc

ity dispersion varies as the inverse square root of viscosity, i. e. U w ex v~f!2. This 

is in accord with the intuitive notion that viscosity inhibits turbulent motions. 

Because the velocity dispersion is smaller in this model than in the low vis-

cosity, convection dominated model, the temperature dispersion must be larger 

for the fluid to carry the same convective flux. Comparison between Figures 3.19b 

and 3.10b verify this. Figure 3.19c shows that the velocity-temperature correlation 

is high. The agreement between the local theory and the particle code results is 

good for each of the three second moments. Just as in the previous models, the 

normalized third and fourth moments (not shown) are highly correlated. 

3.4.5 Microscopic Viscosity, Radiative Diffusion Dominant 

A» Bu, D » Eu 

This model used the parameters Eo - 1.0, K = 0.05, and a microscopic 

viscosity of Vrnic = 9 X 10-3 • This simulation, which had 20,000 particles and 

20 bins, was run for 12 mixing times. The position of the model in Figure 2.4 

shows that this fluid is radiation dominated. This is supported by Figure 3.20, 

which shows that the temperature gradient is very near the radiative value of 

b. 'VTRad = 0.4. The value of the microscopic viscosity was selected so that the 

fluid would be convectively stable at the left and unstable at the right according 

to the stability criterion, equation 2.60. Using ev = eH = eM, equation 2.60 can 

be rewritten as 
10VrnicKT T 

b. 'VTcrit = e4 _ = 0.543=. 
Cp M P P 

(3.28) 
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Figure 3.20. Ll \lT V3. z. The solid line is derived from the accumulated data of 
12 independent mixing times for the radiation dominated, high viscosity model. 
The dashed line is the solution of the local equations. The curves are very near 
the radiative temperature gradient, ~ VTRad = 0.4. 

The temperature gradient is steeper than the density gradient, and, therefore, 

the lower temperatures at the right imply a lower critical superadiabatic gradient. 

The radiative temperature gradient, ~ VTRad = 0.4, is smaller than ~ VTcrit at 

left and larger at the right. Therefore, the fluid is stable at the left and unstable 

at the right. The stability transition occurs at approximately T ~ 0. 7. 

The time averaged steady-state particle distributions are shown 1n Figure 

3.21. The velocity distribution versus position in Figure 3.21a is most illustrative. 

Obviously the fluid is convectively unstable at the right. The velocity dispersion 

diminishes toward the left, but does not suddenly become zero beyond some crit-

ical stability boundary. We are witnessing an overshooting phenomenon, unlike 

other overshooting models that will be discussed in the next section and in later 
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Figure 3.21. (a) Shows particle velocities, Vi, ~~sus positions, Zi, for the radiation 

dominated model with high molecular vi~Bs)ty. The particles overshoot to the 
left. (b) Shows the entropies, si, versus position, and (c) shows the tempera
tures, Ti, versus position. One out of 21 data points, out of. the total sample of 
240,000, are plotted. The mean background curves are drawn over the particle 
data. 
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Chapters. In astrophysical fluids, overshooting occurs when the superadiabatic 

gradient changes from stable to unstable. In this model, the superadiabatic gradi

ent hardly changes, as seen in Figure 3.20. Rather, the stability criterion changes. 

This figure confirms that the critical superadiabatic gradient is not zero, and sup

ports the analysis from which we derived the critical stability criterion, equation 

3.28. Note that the dispersions in Figures 3.2lb and c also overshoot to the left. 

Although the fluid is stable at the left, the entropy gradient is negative and the 

superadiabatic gradient is positive. 

The particle code second moments are shown in Figure 3.22 as the solid lines. 

For comparison, the local theory curves are drawn as dashed lines. The local theory 

predicts that the velocity and temperature dispersions become zero at z ::::::: 0.3. 

This is consistent with our claim that the stability transition is near T ::::::: 0. 7. 

The overshooting behavior of this model suggests that the particle code moments 

will not agree very well with the local theory, and indeed this is seen. Extensive 

leftward overshooting of particles is apparent by the non-zero velocity dispersion 

down to nearly z = 0. Notice that the velocity dispersion in the unstable region is 

below the values shown in Figure 3.15a for the radiation dominated, low viscosity 

model. This is in accord with the intuitive idea that molecular viscosity should 

hinder convective motions. 

We do not present the third and fourth moment data here. We comment, 

however, that the normalized third and fourth moment curves are very nearly 

identical. The third moments are negative where the gradient of the velocity dis

persion is positive, and positive where the gradient is negative. These observations 

are consistent with the behavior of previous models. 
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Figure 3.22. Comparisons of the particle code (solid lines) and local theory (dashed 
lines) second moments for the radiation dominated, high viscosity model. (a) 
The velocity dispersion, (b) temperature dispersion, and (c) normalized velocity
temperature correlation are graphed versus position. The error bars on the 
particle code curves represent the 1-a standard deviations of the moments, 
assuming the moment variations are uncorrelated on a bin mixing time scale. 
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3.5 Convective Overshooting Models 

In this section we present two simulations of convective overshooting. The 

convective region of the first simulation has parameters corresponding to a low, 

microscopic viscosity, convection dominated model. We make the diffusion co

efficient, K, a function of position. It rises toward positive Z until the fluid is 

convectively stable. The fluid overshoots into this stable zone. The unstable zone 

of the second simulation has parameters corresponding to a low viscosity, radiation 

dominated model. As in the first case, the diffusion coefficient rises so that the 

fluid becomes stable. 

Several definitions of the overshooting distance have been used in the past 

(Maeder 1977). The most common definition is the distance between the stability 

transition, Zcrit (i. e. where b.. "VT = b.. "VTcrid, and Zen where the turbulent velocity 

dispersion goes to zero (e.g. Saslaw and Schwarzshild 1965; Shaviv and Salpeter 

1973; Cogan 1975; Maeder 1975a; Langer 1986). That is, the overshooting distance 

is defined as 

dover = ZCT - Zcrit· (3.29) 

However, it is not clear that this definition of overshooting is applicable to 

this study. In the solutions of the moment equations for overshooting models in 

Chapter 4, we do not expect that the velocity dispersion will reach zero and remain 

there at finite z. If it did, the solutions would necessarily have discontinuous 

derivatives at some order in Taylor expansion around ZCT' It is also not obvious 

whether the GSPH code predicts a finite extent of overshooting. It may be that 

the distribution function ought to have an exponentially decreasing density for 
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large Iwl and 181. (This seems conceivable for a fluid of infinite depth. For a fluid 

of finite extent, there is likely to be a cutoff from boundary effects since no fluid 

element can be accelerated for an infinite distance.) 

If there is no finite position Zer where the velocity dispersion goes to zero, the 

overshooting distance could be defined as the point where the mixing time scale 

becomes smaller than stellar evolution time scales. In practice, the fluid need not 

mix out to arbitrarily far distances beyond Zcrit. It only mixes until w2 becomes 

sufficiently small. This definition of overshooting requires that we consider details 

of stellar evolution, which goes beyond the investigations of this thesis. 

3.5.1 Convection Dominated Overshooting 

This model is characterized by A « Bu and D « Eu in the convection zone. 

The fluid is heated at a rate Eo = 0.01 and the diffusion coefficient is K = 10-6 

at the bottom of the fluid. (These are the same parameters as in the low viscosity, 

convection dominated model of subsection 3.4.2.) This is an overshooting model 

because we make the diffusion coefficient a function of position. It rises toward 

positive Z until all the flux can be carried radiatively with a stable temperature 

gradient. We use Z = 0 as the lower boundary of the fluid and Zmax as the upper 

boundary. The position dependence of the diffusion coefficient is given by 

_ { 10-6+6z/Zmax 
K(z) = 3 ' 

10- [1 + (2z - zmax)/3zmax]. 
Z < zmax/2 
Z > zmax/2 

(3.30) 

The diffusion coefficient rises exponentially to the center of the fluid at z = Zmax /2, 

where it has the value K = 10-3 • This is the value for which the radiative 

temperature gradient is adiabatic, i. e. the fluid is critically stable. Because of the 
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steep z dependence of K(z), the unstable regime is convection dominated, except 

near the center. The diffusion coefficient is continuous at the center, and it rises 

linearly to the top of the fluid, where K = 1.33 X 10-3 • This corresponds to a 

radiative subadiabatic gradient of L\ VTRad = -0.1. 

The standard choice of the microscopic viscosity was derived from consid

eration of overshooting models. In the unstable zone we want Vrnic « fMO", so 

that convection remains in the astrophysically relevant regime with low molecu

lar viscosity. However, we wanted the microscopic viscosity to be large enough 

in the stable regime to damp the fluid to a hydrostatic profile in the absence of 

turbulent viscosity. As we shall see below, the convectively unstable zone has a 

velocity dispersion of 0" w ::::::: 0.02, and we recall that fM = 0.24. We choose Vrnic 

to be a factor of 10 times smaller than the turbulent viscosity, O"wfM, and hence 

Vrnic = 4.8 X 10-4 • 

This simulation was run with 20,000 particles and 80 bins. Data were ac

cumulated for 144 mixing times. We show the time averaged particle velocities, 

entropies, and temperatures as a function of position in Figure 3.23. Convective 

overshooting is clearly present in the velocity distribution of Figure 3.23a. Parti

cles to the right of z = 0.4 can only have non-zero velocities because of non-local 

effects. That is, the superadiabatic temperature gradient they felt along their path 

through the unstable zone is responsible for their local velocities. It is apparent 

that the turbulent velocity dispersion becomes smaller in the stable zone (this will 

be shown quantitatively below when we take moments of the distribution func

tion), but we see that some of the particles overshoot more than a mixing length. 
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Figure 3.23. (a) The time averaged particle velocities, (b) entropies, and (c) temper
atures for the convection dominated overshooting model. One out of 101 points 
from the total sample of 2,880,000 points are plotted. The stability transition 
is at z = 0.36. All the dispersions are much larger in the unstable zone to the 
left, but overshooting into the stable zone is apparent in all figures, especially 
for the velocities. The mean background curves are drawn through the points. 
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Indeed, there are a few, albeit very few, particles that have significant non-zero 

velocities at the upper boundary. It is also apparent that the particles are skewed 

toward positive velocities, especially in the overshooting region. This is a conse

quence of having the unstable zone to the left. Particles making the return trip 

to the unstable zone have had much longer to relax, and so their velocities are 

smaller. For the background to be in hydrostatic equilibrium, the net mass flux 

must be zero, and, therefore, there are many more particles with small negative 

velocities than with larger, positive velocities. 

The entropy diagram of Figure 3.23b also clearly demonstrates that this is 

an overshooting model. In the unstable region, the entropy gradient is negative, 

and it is positive in the stable region. We see that particles with large entropy 

excesses (and positive velocities) keep their positive excess entropy well into the 

stable zone. This is also true of the excess temperatures in Figure 3.23c. This 

accounts for the large extent of overshooting. The particles with the largest en

tropy and temperature excesses are not decelerated until they have penetrated 

nearly a mixing length into the stable zone. Note that in the entropy diagram, the 

stability transition, defined by the change in sign of the entropy gradient, occurs 

at z = 0.36, rather than z = 0.4 predicted by the local theory (see Figure 3.24 

below.) 

Figure 3.24 shows the time averaged superadiabatic gradient as the solid line. 

The solution to the local equations (dashed line) is shown for comparison. At 

the bottom of the fluid, ~ V'TRad ~ 400, but the true temperature gradient is 

nearly adiabatic, confirming that this is a convection dominated regime. The 



174 

.3 

.2 
~ 

.1 [> 
<l 

0 

-.1 

0 .2 .4 .6 
z 

Figure 3.24. D. \lT vs. z. The solid line is derived from the accumulated data of 144 
independent mixing times for the convection dominated overshooting model. 
The dashed line is the solution of the local equations. There are significant 
departures from the local solution, especially near the stability transition, which 
is at a slightly lower z than the local equations predict. 

superadiabatic gradient falls below the critically stable value slightly before z = 0.4 

as predicted by the local theory. Also, the qualitative shape of the curve differs 

significantly in the stability transition and stable regions. Whereas the local curve 

smoothly crosses to negative values and gradually decreases, the true curve has a 

cusp near the transition and is more nearly fiat in the stable zone. 

It is instructive to examine the particle distributions in w-8 phase space. A 

sequence of such distribution functions for thin slices of the fluid is plotted in 

Figure 3.25. Figure 3.25a shows the distribution function at the left boundary, in 

the unstable zone. The concave shape is a consequence of the boundary. Particles 

with negative (} are unstable and are accelerated to the left. When they reach 
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Figure 3.25. A sequence of distribution functions for slices of the convection domi
nated overshooting model. (a) is the distribution function at the left boundary, 
(b) is in the middle of the unstable zone, (c) is near the stability transition, (d) 
is just beyond the stability transition, (e) is in the middle of the overshooting 
region, and {f) is at the right boundary. Each contour represents a factor of 2 
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gauss1an. The lower and upper boundaries of the slices are shown below each 
box. 
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the wall, the velocities are reflected with the same (J. Particles with positive (J 

have a positive acceleration, and thus are biased against negative velocities. This 

is apparent by the diagonal contours at negative velocities and the more square 

contours at positive velocities. 

Figure 3.25b is the distribution function for a slice of the fluid in the middle of 

the unstable zone. This regime is not strongly influenced by the non-local effects of 

the boundary or stability transition, and it is much like a regime of homogeneous 

convection. The contours show a high degree of correlation, and they are fairly 

symmetric around the origin. Most particles in this slice of fluid only experienced 

the accelerations of the unstable zone in their earlier histories (which, roughly, 

only go back enough for them to traverse one mixing length). 

Figure 3.25c shows the distribution for a slice of fluid just before the stability 

transition. The distribution is both highly correlated and highly asymmetric. 

Particles with positive velocity and temperature excess have been accelerated over 

distances up to a mixing length. Therefore, the positive extent of the contours 

are similar to the more homogeneous case in Figure 3.25b. However, particles 

with negative temperature excess have only been accelerated to negative velocities 

over a short distance. Therefore, the negative extent of the contours is much 

shorter than the positive extent. The peak of the distribution function is at a 

small negative velocity. This is required to compensate for the fewer particles 

with large, positive velocities, and to keep the total mass flux equal to zero. 

The next distribution function, Figure 3.25d, is for a slice of fluid at the onset 

of the overshooting zone. Most of the particles with large velocities continue to 
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have positive temperature excesses. Particles with initially small, positive temper

ature excesses have developed negative temperature excesses and have begun to 

decelerate. This accounts for the qualitative changes in the shapes of the contours 

and the decreasing correlation. The peak of the distribution remains at a small 

negative velocity for the same reason as above. Particles with sufficiently small 

temperature excesses and velocities have spent their entire lives in the stable zone, 

and their temperatures are not correlated with their velocities. Thus, the peak of 

the temperature excess is closer to zero. The shapes of the contours bear some 

resemblance to the overshooting trajectory of a single particle, shown in Figure 

2.7b. This figure shows that particles which have overshot the stability boundary 

will populate a family of curves in phase space with similar qualitative shapes as 

the contours, and that the particle density should be highest near the origin. 

Figure 3.25e shows the distribution function for a slice of fluid in the middle of 

the overshooting zone. Most of the overshooting particles with large velocities have 

developed negative temperature excesses and have been decelerated. Some particle 

velocities have been decelerated enough to become negative, but they quickly 

spiral toward the origin. Since more particles have been decelerated, the density 

of particles near the origin is greater than before. All these factors contribute to 

a more pronounced "hook" shape. 

The last panel, Figure 3.25f, shows the distribution function at the stable 

boundary. Most particles here have not been influenced by the unstable zone. 

These particles should not exhibit any velocity-temperature correlation and they 

should have a peak density at the origin. This accounts for the dominant feature of 
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this figure. However, there are a few overshooting particles with positive velocity. 

All these particles have developed negative temperature excesses by this point. 

When these particles hit the wall, they are reflected with the same temperature. 

This accounts for the lower density "wishbone" structure in the lower part of the 

figure. 

We take moments of the distribution functions and plot them as a function 

of position. In Figure 3.26, we compare the second moments with the predictions 

of the local theory. While the second moments are in reasonably good agreement 

with the local predictions in the unstable zone in the left half of the fluid, the 

qualitative agreement is not good in the overshooting region. The local theory 

predicts that all second moments should be zero in the stable zone, but the parti

cle code demonstrates that this is not true. Figure 3.26a shows that the velocity 

dispersion begins to decrease roughly after the stability transition. However, it 

approaches zero slowly, and with an approximately constant slope. Because of 

boundary effects, it does not asymptotically approach zero. However, byextrap

olating the linear slope to predict where it becomes very small, we can estimate a 

lower limit to the overshooting distance of dover :::::: 2fM. This result is consistent 

with the mixing-length picture of convection. 

In Figure 3.26b we see that the temperature dispersion begins to decrease 

earlier than the velocity dispersion, and that it declines much more rapidly. This is 

why we decreases more rapidly than (J'w. The we moment remains positive beyond 

the stability transition. This is consistent with Figure 3.25c, which suggests that 

the temperature excesses of most overshooting particles do not become negative 
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lines) second moments for the convection dominated overshooting model. (a) 
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particle code curves represent the 1-a standard deviations of the moments. 
The sharp increase of aw at the left boundary is an unphysical consequence of 
the algorithm. 
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Figure 3.27. The convective flux versus position for the convection dominated over
shooting model. In the unstable zone at left, the convective flux is near the 
total flux of Ftot = 4 x 10-4 . The convective begins its rapid decrease before 
the stability transition and becomes negative after the transition. 

immediately after the entropy slope changes sign. However, the temperature excess 

of particles with positive velocity must eventually become negative, and, so too, 

does wB. This change in sign of the convective flux corresponds to the minimum 

of a 9. The reflecting boundary conditions require that the correlation goes to zero 

near the boundaries, as shown by the rising correlation near the right boundary. 

In Figure 3.27, we plot the convective flux, defined as 

- 1-
Fconv = pcpw(} + 2 pw3

• (3.31) 

The second term is the turbulent kinetic energy flux, and it is never more than a 

couple of percent of the first term. In the convectively unst~ble half of the figure, 

the convective flux is near the total flux of FTot = 4 x 10-4
• Indeed, it is slightly 
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more than the total at the far left. This is probably because the fluid is not in 

a perfect steady state throughout the entire accumulation of data. The convec

tive flux begins to decrease strongly before the stability transition and becomes 

negative in the stable zone. However, the convective flux is small in the stable 

zone, and we do not expect the convective overshooting to strongly influence the 

temperature structure there. (To confirm that this behavior is not a result of a 

finite Vrnic, we ran a simulation with the same parameters, except with Vrnic = O. 

The qualitative and quantitative behavior was nearly the same.) Beyond the over

shooting zone, we expect the convective flux to return to zero (asymptotically?). 

However, this is also required by the reflecting boundary condition, which causes 

the convective flux to approach zero sooner than it would otherwise. 

The third moments are plotted in Figure 3.28. The w 3 moment, plotted 

in Figure 3.28a, rises as the phase space diagrams become more skewed toward 

positive velocities nearer to the stability transition. It peaks near the transition. 

In the overshooting zone it remains positive because of particles overshooting from 

the left, but it decreases because fewer and fewer particles arrived there from the 

unstable zone. The normalized third moments in Figure 3.28b are highly correlated 

in the lUlstable zone. The non-local behaviors in the stable zone will be discussed 

in Chapter 4, where we compare the particle code results with the solution of the 

non-local equations. 

For completeness, we show the fourth moments in Figure 3.29. The w4 mo

ment, plotted in Figure 3.29a, exhibits a long overshooting tail beyond the stability 

transition. As we have seen in previous simulations, the normalized fourth 
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moments in Figure 3.29b are highly correlated in the unstable zone, with charac

teristic values around 2. The odd 0 fourth moments and we change sign slightly 

out of phase. Since the odd 0 fourth moments are normalized by wO, they become 

large where wO goes to zero and change sign. The next peak in the normalized 

moments occurs near the right boundary where u w has a minimum. 

3.5.2 Radiation Dominated Overshooting 

The convective region of this model has parameters such that A «: Bu and 

D ~ Eu. The fluid is heated at the rate Eo = 1.0 (compare with the radiation 

dominated model of subsection 3.3.3). We make the diffusion coefficient a linear 

function of posi tion according to 

- (1 4Z) K(z) = 0.1 - + -- . 
3 3zrnax 

(3.32) 

At the center of the fluid (z = zrnax/2), K = 0.1 and the radiative temperature 

gradient is critically stable (D. 'VTRad = 0). The diffusion coefficient is smaller 

to the left, and the total flux cannot be carried radiatively with a subcritical 

temperature gradient. If the energy flux were constant across the fluid, without 

the gradual rise and decline at the boundaries, we would predict D. 'VT = 0.8 at 

z = 0 and D. 'VT = -0.16 at z = Zrnax. 

The simulation was run with 5000 particles and 80 bins. Data were accu-

mulated for 79 mixing times. Because this is an overshooting model, the velocity 

dispersion of the initial model decreases to zero in the middle. We define the mix-

ing time by the smallest non-zero dispersion in the initial model. This may make 

the interval between data sets longer than necessary, but we cannot know this a 



185 

prsors. Our choice of mixing time guarantees uncorrelated data sets, especially for 

particles near the stability transition. 

The time averaged particle distributions are shown in Figure 3.30. These 

plots show the unmistakable signature of convective overshooting, namely non

zero second moments in the stable zone (z > 0.4). This is especially obvious in 

the velocity distribution in Figure 3.30a. Indeed, overshooting particles seem to 

extend more than half way into the stable zone. The dispersion rises again as we 

approach the upper boundary. This boundary behavior will be discussed later in 

this section. 

The second unmistakable signature of an overshooting model is the change 

in the sign of the entropy gradient, seen in Figure 3.30b. Because the diffusion 

coefficient has a linear spatial dependence, rather than the exponential to linear 

transition (see equation 3.30), as in the convection dominated overshooting model 

above, the slope changes sign more gradually near the stability transition (compare 

with Figure 3.23b). Also, because the convection zone is radiative with a larger 

superadiabatic gradient than in the convection dominated model, the temperature 

and entropy gradients are steeper in the convection zone. Particles do not move 

adiabatically, but rather approximately follow the entropy slope because of the 

diffusion term, (D + Eu)8, in equation 3.2. Consequently, the steeper slope deep 

in the convection zone, combined with the shallower bottom, causes the entropy 

dispersion to become small before the stability transition. Indeed, in Figure 3.30c, 

we cannot discern visually the temperature dispersion after z ~ 0.35. Finally, we 
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independent mixing times for the radiation dominated overshooting model. The 
dashed line is the solution of the local equations. The critical superadiabatic 
gradient is tl. \!Tcrit ~ 0.05. Notice that a small segment of the fluid at the left 
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note that there is a small, stable segment of the fluid at the left boundary. We 

will discuss this later in this section. 

Figure 3.31 shows the time averaged superadiabatic gradient as a solid line. 

The solution of the local equations (dashed line) is shown for comparison. Except 

for deviations in the boundary regions, the agreement is excellent. There is even 

agreement in the stable zone at the left boundary. The superadiabatic gradient 

changes sign at z = 0.4, but the critical superadiabatic gradient, according to 

equation 2.60, is tl. \!Tcrit ~ 0.05. Therefore, the stability transition is actually at 

Zcrit ~ 0.35. 
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Figure 3.32. A sequence ol distribution functions for slices of the radiation dominated 

overshooting model. (a) is the distribution function at the left boundary, (b) is 
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at the right boundary. Each contour represents and factc;>r ~f 2 in density. The 
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lower and upper boundaries of the slices are shown below each box. 
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To gain additional insight into the particle motions, in Figure 3.32 we study a 

sequence of distribution functions for slices of the fluid. The distribution function 

for the left boundary is shown in Figure 3.32a. We see two structures in this 

figure. The particles in the larger structure are in the convectively unstable part 

of the slice (see Figure 3.31). The contours somewhat resemble those in Figure 

3.25a, where the boundary "wishbone" structure is clearly evident. However, these 

contours exhibit a strong w-8 correlation. This is because the narrow stable zone 

immediately next to the wall acts as a barrier against simple reflection. Particles 

with negative velocity enter the narrow, stable zone and are braked by negative 

buoyancy. The particles are reflected, but do not return with the same velocity. 

We turn to the smaller clump of particles away from the origin in Figure 

3.32a. These particles are in the stable zone immediately next to the boundary. 

Despite their non-zero velocities, they stay in the stable zone rather than cross it. 

The velocity deviation from the origin corresponds to the velocity correction of 

equation 3.6. Some narrow vertical clumps of particles are seen in this stable zone 

in Figures 3.30b and c especially. The velocity correction (equation 3.11) tries to 

reduce the clumping by moving particles to the right, but this disturbs hydrostatic 

equilibrium. The velocity imparted in one time step by the non-equilibrium forces 

exactly balances the velocity correction. Thus, these particles are actually in a 

steady state and not moving through the fluid. Note that an analogous feature is 

seen in the right boundary distribution function in Figure 3.32f. 

Figure 3.32b shows the distribution function in the middle of the unstable 

region. The velocity and temperature are highly correlated, and the velocity dis

tribution is skewed toward positive velocities. Because the velocity dispersion 
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decreases sooner than in the convection dominated overshoot model, the non-local 

characteristics of overshooting manifest themselves sooner in the asymmetric dis-

tribution function. 

The distribution function at the stability transition is shown in Figure 3.32c. 

The contours are much tighter, reflecting the smaller velocity and temperature 

dispersions, and the velocity-temperature correlation is becoming weaker. Because 

the fluid becomes nearly adiabatic in this region, a particle with positive velocity 

hardly gains any temperature excess. Of course, particles with large velocities have 

a memory of when they were deeper in the convection zone and show a stronger 

correlation. Thus, the contours develop a mild curvature. The peak velocity is 

slightly negative to compensate for the fewer particles with large, positive velocities 

and to maintain zero mass flux. 

Figure 3.32d illustrates the distribution function just beyond the stability 

transition. Even the initially large temperature excesses have become small, and 

the initially small excesses have become negative. Thus, most particles have been 

strongly decelerated by antibuoyancy, and the density at the origin increases. 
, 

There is no sign of a velocity-temperature correlation, and very few particles have 

significant positive velocities. 

The distribution function in the middle of the stable zone is shown in Figure 

3.32e. It shows a strong w-O anticorrelation. Particles with positive velocities 

develop negative temperature excesses and are slowed by the negative buoyancy. 

The opposite obtains for negative velocities. The net effect is to increase the 

density at the origin. 
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The distribution function at the right boundary is shown in Figure 3.32f. Par

ticles immediately adjacent to the wall have clumped together. This is especially 

evident in Figure 3.30b. The particle redistribution, discussed in connection with 

Figure 3.32a, keeps this region slightly out of hydrostatic equilibrium, and it im

parts a non-zero velocity to the clumped particles. However, these particles are 

essentially in a steady state. This accounts for the smaller structure in the upper 

left in this slice of phase space. The unclumped particles slightly farther from the 

wall are responsible for the structure around the origin. 

We take moments of the distribution functions and plot the moments versus 

position in Figures 3.33, 3.34 and 3.35 so we can develop a better quantitative 

understanding of the overshooting. The second moments in Figure 3.33 (solid 

lines) are quite different from the predictions of the local theory (dashed lines). 

Indeed, no part of the unstable zone appears to resemble homogeneous convection. 

In the unstable zone, the local theory predicts steeper velocity and temperature 

dispersion gradients than are observed, as seen in Figures 3.33a and b. It also 

predicts no dispersions after Zcrit ~ 0.35. Of course the particles overshoot into 

the stable zone. Figure 3.33c shows that w(} changes sign soon after the stability 

transition, and the particles begin decelerating due to negative buoyancy. Nev

ertheless, the velocity dispersion remains finite for a significant distance beyond 

there. As in the convection dominated overshooting model, the right boundary 

seems to keep the overshooting velocity dispersion from reaching zero, but if we 

extrapolate the approximately linear slope to very small dispersion, we predict 

that the overshooting distance is at least dover ~ 1.3eM • Indeed, the phase space 
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Figure 3.33. Comparisons of the particle code ( s~fr) lines) and loca I theory (dashed 
lines) second moments for the radiation dominated overshooting model. (a) The 
velocity dispersion, (b) temperature dispersion, and (c) normalized velocity
temperature correlation are graphed versus position. The error bars on the 
particle code curves represent the 1-a standard deviations of the moments. 
The sharp changes of O'w and wBn near the boundaries are a consequence of 
particle clumping and are not physical. 
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Figure 3.34. The convective flux versus position for the radiation dominated over
shooting model. The convective flux is always far below the total flux, FTot = 
0.04. 

diagram of Figure 3.32f does not support overshooting, which would manifest itself 

as either w-8 correlations or anticorrelations, as far as the boundary. 

Because the radiative flux dominates the energy transport, even in the con-

vective zone, we know that convective transport cannot be important to the tern-

perature structure anywhere. However, we are interested whether the convective 

flux overshoots. We plot the convective flux in Figure 3.34. We see that the 

convective flux becomes small well before the stability transition. Indeed, it be-

comes negative after z ~ 0.4, where wB changes sign. These qualitative features 

confirm our observations about the convection dominated overshooting model. A 

significant velocity dispersion in the overshooting zone does not imply a significant 

convective flux (either positive or negative). 
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We examine the third moments in Figure 3.35. In Figure 3.35a, the w 3 

moment is positive because the slope of the velocity dispersion is negative. It 

reaches its peak in the middle of the unstable zone. This is additional evidence 

that the local theory does not provide a good description of the model anywhere. 

We examine the normalized third moments is Figure 3.35b. As usual, we see that 

they are strongly correlated in the unstable zone. Beyond z ~ 0.4 (where wO is 

negative), the temperature excesses are biased toward negative values, but the 

velocities are biased toward positive values. Therefore, odd w moments remain 

positive, while odd () moments become negative. Closer to the boundary, the 

velocity and temperature dispersions rise. The velocities become biased toward 

negative values and the temperatures toward positive values. Therefore, the odd 

wand odd 0 moments change sign. However, this behavior is clearly a boundary 

effect. We will discuss this non-local behavior in greater detail in Chapter 4. 

For completeness, we show the fourth moments in Figure 3.36. Figure 3.36a 

shows the qualitative shape of the fourth moments and Figure 3.36b shows the 

normalized fourth moments. The normalized moments are strongly correlated in 

the unstable region and throughout most of the stable region, except near the sta

bility transition. Near the stability transition, U(J has a minimum and w() changes 

sign. Therefore, even () curves have peak amplitudes there, and odd 0 curves be

come very large and change sign because the normalizing function w() crosses zero 

out of phase with these moments. After these moments cross zero, the normalized 

curves become positive again. The peak in the normalized fourth moments in the 

overshooting region occurs approximately where U w has a minimum. As we have 

seen many times before, the fourth moments are approximately proportional to 
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Figure 3.35.( a) w3 and (b) the normalized third moments versus position. The 
sharp changes at the boundaries are not physical. 
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squares of second moments deep in the convecting region, with 2 being a good 

estimate for the proportionality constant. However, this is not a good estimate 

in the stable zone or near the stability transition. We will discuss these non-local 

effects in more detail in Chapter 4. 

3.6 Internal Relations Among the Moments 

This chapter was motivated, in large part, by the need to find reasonable 

closure relations to supplement the moment equations derived in Chapter 2. In 

this section we discuss the internal relations among the third and fourth moments 

that the GSPH simulations suggest hold in generality. 

In all the simulations presented in this chapter, the normalized third moments 

are not independent of one another in convective regions. That is, the normalized 

curves are nearly identical, except in the boundary regions where odd w moments 

must go to zero and even w moments need not. Therefore, we can approximate 

w()2 and ()3 as 

(3.33a) 

(3.33b) 

These equations preserve the reflecting boundary symmetries. They are more 

accurate in radiation dominated regimes of convection than convection dominated 

regimes, but they are reasonably good in both. In overshooting regions, these 

approximations are much poorer, but generally the normalized w()2 curve is most 

similar to the w 3 curve, while the normalized ()3 curve is most similar to the w 2 () 

curve. 
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The normalized fourth moments are also not independent in convecting re-

gions. That is, the fourth moments can be scaled according to the relations 
__ __ 02 

w2 02 = w4 = 
w2 

__ 02 

w03 = w30= 
w 2 

__ 022 
1I4 _ w4--
17 - -2' 

w2 

(3.34a) 

(3.34b) 

(3.34c) 

These equations preserve the boundary symmetries, and they are also generally 

more accurate in radiation dominated regimes. These approximations seem fairly 

good in the overshooting region of the radiation dominated overshooting model, 

but they are very poor in the overshooting region of the convection dominated 

overshooting model. However, in the latter model, the even w moments appear to 

have qualitatively similar behavior, as do the odd w moments. However, the even 

and odd moments compare less favorably. 

Our aim is to write the fourth moments in terms of the second and/or third 

moments. We have observed throughout this chapter that the normalized fourth 

moments usually have values between 2 and 4 in convecting regions. As a lowest 

order approximation, we regard the normalized values as constant. Then, the 

fourth moments are related to the second moments by 

- -2 
w4 = (w2 (3.35a) 

(3.35b) 

where ( is the constant of proportionality with a value between 2 and 4. We 

can substitute these equations into equations 3.34 to obtain the complete set of 
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fourth moments. Indeed, these are the closure relations we adopt in Chapter 4. 

Although they are not very good in overshooting regions and the fourth moment 

values can be in error by factors of several, the second and fourth moments are 

relatively small there. Consequently, we have hope that they will not destroy the 

lower order moment solutions. 

It is appropriate to consider how we might improve the closure relations so 

that the calculated fourth moments more nearly resemble the GSPH fourth mo-

ments. The most obvious way to do this is to incorporate the third moments 

into the relations. When there are asymmetries in the distribution function that 

generate large third moments, the fourth moments must also be larger. Then, 

improved closure relations are 

(3.36a) 

(3.36b) 

The remaining fourth moments can be found using equations 3.34. Study of the 

normalized third and fourth moment figures throughout this chapter suggest that 

using ( = 2 and TJ = 2 would improve the fourth moments in convecting regions. In 

particular, these parameters generally make the fourth moments vary from roughly 

2 to 4 as in the GSPH results. However, equations 3.36 fail to capture behavior 

of a more non-local character. This is exhibited by their failure to predict the 

qualitative boundary behavior of some fourth moments, and especially by their 

failure to predict the qualitative behavior of the fourth moments in overshooting 

regions. Indeed, equations 3.36 may be worse than equations 3.35 in overshooting 
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regions. It is possible to derive improved closure relations that capture much of 

the qualitative structure in overshooting zones on a model by model basis, but we 

have not discovered any such relations which are appropriate for all the models 

studied herein. 

3.7 Summary 

In this chapter we described our GSPH code and demonstrated that it suc

cessfully can find hydrostatic solutions of convectively stable models. We showed 

the time evolution toward isothermal and isentropic hydrostatic equilibrium for a 

fluid which transports no energy. In these models we conserved energy to about 

7%. The closer our initial model is to the steady state, the better we conserve 

energy. However, this code is intended mainly to simulate convecting fluids which 

do transport energy. Since energy is supplied at one boundary and removed at 

the other, energy conservation is not an important issue for convectively unstable 

models. 

We studied simulations of convection in the four parameter regimes defined 

by the relative importance of turbulent to microscopic viscosity and of turbulent 

to radiative diffusion. In each case (except the A » Bu, D » Eu model in 

subsection 3.4.5, which was developed to exhibit non-local behavior) the second 

moments are described fairly well by the local theory, except near the boundaries. 

We examined the normalized fourth moments for the two low microscopic viscosity 

(A ~ Bu) models and observed that they have values between 2 and 4. This 
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modest variation suggests that the fourth moments are approximately related to 

the second moments by 

- -2 
W 4 =(W2 (3.37a) 

(3.37b) 

(3.37c) 

(3.37d) 

(3.37e) 

where ( is a constant with a value between 2 and 4. Equations 3.37 are a set 

of closure relations we can use to solve the analytic set of equations derived in 

Chapter 2. 

We examined two overshooting models for which the local theory is a poor ap-

proximation. Overshooting is an intrinsically non-local phenomenon, and, there-

fore, comparison of these models with the solutions of the analytic theory will 

provide the most stringent test of the theory. The unstable zone was convec-

tion dominated in one of the overshooting models and radiation dominated in the 

other. In both cases the velocity dispersions overshot the stability boundaries by 

1.3 to 2 mixing lengths. However, the convective flux is not large far beyond the 

stability transition, and we do not expect that non-local effects will have a signif-

icant influence on the temperature stratification in the overshooting region. This 

is consistent with the theory of Xiong (1989). Furthermore, the normalized fourth 

moments are well-described by ( :::::: 2 deep in the unstable zones, but this is a very 

poor approximation in the overshooting region. 
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It might be possible to develop an improved set of closure equations that 

relate the fourth moments to both the second and third moments, We have sug

gested relations which are better in convective regions, but we have not discovered 

relations that are improvements for all regions (convective and overshooting) of 

all models. 

In Chapter 4 where we solve the analytic equations of Chapter 2 that describe 

non-local convection, we will use equations 3.37 as our closure relations. Although 

we have seen that they are not accurate in the overshooting zone, we have also 

seen that the fourth moments (unnormalized) become much smaller than in the 

unstable zone. Thus, the influence of the fourth moments is smaller in the over

shooting zone, and we are hopeful that a bad choice of , in that region will not be 

a severe problem. Of course, we will get a better idea about whether or not this 

is true when we compare the second and third moment solutions of the moment 

equations with the results of the GSPH code in Chapter 4. 

Although we developed GSPH primarily to derive closure relations, it has 

turned out to be a useful tool in its own right. It can be applied in all the same 

parameter regimes as the moment theory. We have used it to obtain insight into 

non-local physical processes that are much harder to discern from mathematical 

scrutiny of the moment equations. Studying the spatial variations of the distribu

tion function, especially in overshooting models, has been particularly valuable. 
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CHAPTER 4 

Steady State Solutions of the Moment Equations: 

A Comparison of Truncation and Closure Schemes 

4.1 Introduction 

In Chapter 2 we used a moment method to derive equations that describe 

non-local mixing-length convection. Out of practical necessity, we could not derive 

the infinite hierarchy of equations that would provide a complete description of 

a convecting fluid. We derived the equations up to third order. In Chapter 3 

we described the GSPH code that was used to numerically simulate convection. 

These simulations contain the physics of the moments to all orders. In this chapter 

we compare three truncation and closure schemes for the moment equations of 

Chapter 2 with the (more accurate) results of the GSPH simulations. 

In section 4.2 we discuss the analytic equations we solve, and the numerical 

technique we use to solve them. In section 4.3 we compare the solution of the 
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equations with results of the GSPH code in the two astrophysically important 

parameter regimes discussed in sections 2.5 and in 3.4 (i. e. convection dominated 

and radiation dominated regimes with low microscopic viscosity). We compare 

the convective overshooting models of section 3.5 with the moment solutions in 

section 4.4. In section 4.5 we summarize the results of this chapter. 

4.2 The Moment Evolution Code 

The moment equations derived in Chapter 2 can be used at three levels of 

complication. The first level describes the evolution of non-convecting fluids. The 

second describes local convection. At this level there is no velocity or tempera

ture dispersion if the superadiabatic gradient is stable. In unstable regions, the 

dispersions and convective flux are determined by the local superadiabatic gra

dient. The third level of complication describes non-local convection. In some 

circumstances, we can get non-zero dispersions and flux where the superadiabatic 

gradient is stable. This is necessary for convective overshooting. 

In this chapter we are not interested in the details of time dependent con

vection, but rather in the steady state. However, numerical experiments with a 

variety of techniques have proved that direct calculation of non-local convecting 

steady states is very hard. Such computations often do not converge. There

fore, we seek the steady state more gradually by solving simplified time dependent 

equations. This section is devoted to a description of the numerical scheme we use 

to solve the moment equations. 
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4.2.1 The Moment Equations 

Since our aim is to calculate the steady state predicted by the moment equa-

tions, we have dropped certain terms from the moment equations which are zero 

in the steady state. In particular, we have dropped v terms and DP/Dt terms 

whereever they appear. (Note that we keep Erv/8z terms, since this is related 

to changes in density, and 82v / 8z2 terms, since this measures the viscous force 

that we need to damp velocities so that we reach a steady state.) We present the 

equations we use with the appropriate boundary conditions below. 

a) The Lowest Order Equations-Standard Hydrodynamics 

The lowest order problem we discuss describes non-convecting fluids. This 

is standard hydrodynamics. The necessary equations are the zeroth and first 

moment equations, with the second moment terms set to zero. Below we present 

the simplified forms of the moment equations that we use. The numerical method 

we use works on first order differential equations. Therefore, we will write all 

the following equations as first order equations, and we will introduce auxiliary 

variables as required. The thermal evolution of the fluid is described by 

(4.1) 

where the heating/cooling function Q is given by equations 3.5 and 3.6. We have 

introduced the auxiliary variable T' = 8T / 8z. These are two equations for which 

we need two boundary conditions. Since our goal is to make comparisons with 

the GSPH results, we adopt reflecting boundary conditions, much like we did in 
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Chapter 3. The appropriate conditions here are T = 0 at both the left and right 

boundaries of the fluid. 

The density of the fluid evolves according to the continuity equation 

(4.2) 

The boundary conditions require that the derivative of the density 7f = EJp/8z = 0 

at both the left and right boundaries. Thus we again have two equations with two 

boundary conditions. 

The velocity evolves according to the momentum equation 

&v pI " -+g+--CV =0 at p , (4.3) 

where C is given by equation 2.27 and the gravity is given by equation 3.4. This 

equation has been supplemented with four auxiliary variables: P = pT, pI = 

8P/8z, v' = &v/8z, and v" = &v' /8z. We need five boundary conditions. Four of 

them are v" = 0 at both the left and right boundaries, and v = 0 and pI = 0 at the 

left boundary. (We equally well could have placed these boundary conditions at the 

right boundary, but to have conditions at both boundaries would overdetermine 

the equations.) The relationship between P, p, and T is the ideal gas equation of 

state. (Note that we have adopted the same dimensionless units as in Chapter 3.) 

Because the equation is algebraic rather than differential, we can use the algebraic 

relation at the left boundary to constrain P there. 

b) The Local Convection Equations 
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The local equations include second order terms. Because the continuity equa-

tion 4.2 is the zeroth moment, it is unchanged by the introduction of higher order 

terms, but the first moment equations for T and v have second order terms. The 

temperature evolves according to 

8T a (-=') ~ a
2 P'w() - a-

pCP7ft- az KT -Q- T -p(A+Bcr)w2 +cPaz(pw()) =0. (4.4) 

As before, the boundary conditions are T' = 0 at the left and right boundaries. 

The velocity equation is 

au pI ,1 a -
- + 9 + -=- - CV' + =-(pw2

) = O. at p paz 
(4.5) 

The three boundary conditions are v = 0 at left and V" = 0 at left and right. As 

above, we also have two auxiliary equations for P and P' with suitable boundary 

conditions. 

We need the three second moment equations to complete the local set. Recall 

that for the local theory we set third and higher order terms equal to zero. The 

simplified second moment equations are 

aw2 2aP'w() -
fit + pT + 2(A + Bcr)w2 = 0, (4.6) 

aw() aP' ()2 __ 
fit + pT + (A + Bcr + D + Ecr)w() - b. 'lTw 2 = 0, (4.7) 

and a()2 _ _ 

at - 2b. 'lTw() + 2(D + Ecr )()2 = O. (4.8) 

We have introduced the auxiliary variable b. 'IT into these equations. It is defined 

as b. 'IT = -g/cp - T'. Since this and the three second moment equations are 
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spatially algebraic, the values of the variables at the left boundary are supplied 

by the equations themselves. 

c) The Non-Local Convection Equations 

To construct the non-local equations, we must restore the third order terms 

to the second moment equations and add the third moment equations themselves. 

The velocity dispersion evolves according to 

8w2 2aP'wf} - 1 8 -- + + 2(A + Bu)w2 + =-(pW3 ) = O. at pT p 8z 
(4.9) 

The reflecting boundary conditions require (pw2)' = 8(pw2)/8z = 0 at. the left 

and right boundaries. These are two boundary conditions for two equations. Note 

that these boundary conditions are different than the ones we used in the local 

version above. Because of the algebraic nature of the local equations, the local 

solution of w 2 has a cusp at the boundaries. Therefore, a boundary condition on 

the gradient of w 2 is not appropriate for the local equations as it is here. 

The velocity-temperature correlation evolves according to 

8wf} aP'f}2 - - 1 8 -
~ + -=- + (A + Bu + D + Eu)wf) - D. VTw2 + =-8 O(pw2f}) 

UL pT p z 

1 - P'w2 f} 
- -(A + Bu)w3 - _ = O. 

Cp pcpT 
( 4.10) 

The boundary condition for this equation is wf} = 0 at the left boundary. This is 

essentially the same as in the local version. 

The temperature dispersion comes from 

8f}2 - -18- 2 -
- - 2D. VTwf} + 2(D + EU)f}2 + =_(pwf}2) - -(A + Bu)w2f) 
at p& ~ 

2a2p'-_ 8-
- -=-==-wf}2 -1/J-(pf}2)' = O. (4.11) 

pcpT 8z 
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We set the auxiliary variable (p(}2)' = 8(p()2)/8z = 0 at the left and right bound-

aries as the two conditions on two equations. The last term of equation 4.11 is 

not present in the derivation of Chapter 2. This term has been added to smooth 

out ripples that tend to develop in the numerically converged solution of ()2, which 

then propagate to the other variables. The coefficient tP is of the order of a typical 

velocity dispersion times the separation between grid points. We put this smooth

ing term on ()2, rather than on one of the other second moments, since there are 

derivatives of the other second moments in the v and T equations, which should 

smooth ripples that arise from the discretization of the w 2 and w() equations. 

The w3 moment evolves according to 

8w3 1 8 - w2 -, 3 - 3aP'w2() - + =_(pw4 ) - 3-=:-(pw2) + =(A + Ba)w3 + = O. (4.12) m pfu p p pT 

The boundary condition is w3 = o. 

The w2 () moment comes from 

8w2 () 1 8 - w2 8 - 2w() 8 --- + =-(pw3 ()) - -=:--(pw()) - ~_(pW2) m p 8z p 8z p 8z 

- -- 2aP'w() 
-.6. "Tw3 + [2(A + Ba) + D + Ea]w2() + pT 

1 _ -2 a 2 p' -- ----
- -(A + Ba)(w4 - w2 ) - ::--=(w3 () - w2 w()) = o. 

Cp pcpT 
(4.13) 

We define the auxiliary variable (w2())' = 8w2()/8z, which must be zero at both 

boundaries. These are two conditions for two equations. 
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While we actually adopt some approximations for the last two third moments 

(see below), rather than solve the full set of third order equations, we present the 

last two for completeness. The w02 moment evolves according to 

aw02 1 a -- O'.P'03 --- + =_(pw202) + -=- + [A + Bu + 2(D + Eu)]w02 
at paz pT 

02 a - -- 2O'.2p' -- --2 
- -=-(pw2) - 2~ 'VTw20 - -=--=(w202 - wO ) 

p az pcpT 

2 ---2wOa-
- -(A + Bu)(w30 - w2wO) - -::--(pwO) = O. 

Cp p az 
(4.14) 

The appropriate boundary condition is to set w62 = 0 at the left boundary. 

The 63 moment evolves according to 

a63 1 a - - - 30'.2 P' - --- + =-(pw63) - 3~'VTw62 + 3(D + Eu)63 - -=--=(w63 - w(62) at paz pcpT 

3 -- -- 362 a -
- -(A + Bu)(w262 - w2( 2) - -::--(pw6) = O. (4.15) 

Cp P az 

To use this equation we would have to introduce the auxiliary variable (63 )' = 

a63 / az, which must be zero at both boundaries. Furthermore, we would probably 

need to add a smoothing term like the 'I/J term in equation 4.11. 

Whether we are solving the complete set of moment equations or some subset 

of them, we want to keep equations to the same order. First we must consider how 

we define the order of an equation. There are two approaches to this question. 

The first, most obvious, definition is to use the one used throughout this thesis 

so far, i. e. the order is defined by the order of the moment of the Boltzmann 

equation, i.e. the w2 equation is second order, the w 2 6 equation is third order, 

for example. In this approach we would use all equations up to second order 

or all equations up to third order. We call the non-local solution that uses all 
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Figure 4.1. A schematic diagram that illustrates the four non-local solutions we 
have tried. Horizontal cuts through the variables define moments to equal 
order, while diagonal cuts define moments to equal order in energy. Variables 
above the lines indicate the moment equations we use, while we must use 
closure relationships for the variables below. We have never been able to obtain 
SUPERFULL solutions. 

the third moment equations, including equations 4.14 and 4.15, the SUPERFULL 

solution. Unfortunately, we have never been able to obtain converged solutions to 

this complete set. 

A second way to select equations is to keep equations to equal order in energy. 

We note that T and f) have units of energy, as does w2. In Figure 4.1 we have drawn 

a "pyramid" of the moments that appear in the non-local equations. Diagonal cuts 

through this figure define variables of equal order in energy. With this procedure, 

the equations that we retain inevitably will include higher order terms which 

are not defined by separate equations, e.g. the f)2 equation contains a wf)2 term. 

We cannot neglect these higher order terms, but must address the problem of 
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closure. We have discussed the necessity of obtaining closure relations for the 

fourth moments, but this procedure will require it for certain of the third moments 

too. We have constructed non-local solutions that use equations to consistent order 

in energy that we call MIN. This set of equations is defined in Figure 4.1. We use 

the full time dependent moment equations for the variables that lie above the line 

and we must supply closure relationships for those that lie below the line. 

We have constructed two solutions intermediate to MIN and SUPERFULL. 

We have added the 02 equation to obtain the INT solution, and we have added 

the w 20 equation to construct the FULL solution. We will compare the results of 

the MIN, INT, and FULL solutions in the next section. 

4.2.2 Lessons from the Particle Code: Closing the Equations 

We must supply closure relationships for all solutions of the non-local equa-

tions. We must supply relations for all of the fourth moments. We must supply 

two third moment relations for the FULL solution and three for the MIN and 

INT solutions. For the MIN solution we must even supply one second moment 

relation. We discuss these closure relationships in this subsection. All our clo-

sure relationships are based upon GSPH simulations of non-local convection. We 

present relations for the highest order terms first. 

In Chapter 3 we saw that the fourth moments in convection simulations are 

approximately related to the second moments according to 

- -2 
w4 = (w 2 (4.16a) 

(4.16b) 
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W(}3 = (w() (}2 

(}4 = ((}22, 
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(4.16c) 

(4.16d) 

(4.16e) 

where ( is a constant. These relations are a fairly crude representation of the fourth 

moments. The simulations show that ( is usually between 2 and 4 across most of 

the convecting fluid. However, there can be large departures from this in convective 

overshooting models, particularly in the overshooting zone. Fortunately, this is 

precisely where the second and fourth moments are small, and so we may hope 

that a bad choice of ( in the overshooting zone may still lead to reasonably good 

solutions of the moment equations. Of course, this remains to be demonstrated. 

These are the only closure relations required for the SUPERFULL solution, 

but for the MIN, INT, and FULL solutions we must supply relationships for some 

lower moments. In Chapter 3 we saw that the normalized third moments are 

not really independent. Rather, they are generally nearly the same, except near 

the boundaries where the even wand odd w moments have different boundary 

conditions. Therefore, we use the closure relations 

W(}2 = w 3 (}2/W 2 

(}3 = w2() (}2 /w2. 

(4.17a) 

(4.17b) 

Note that these relations preserve the appropriate boundary conditions on w(}2 

and (}3. For the MIN and INT solutions we also use 

(4.17c) 
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However, this relation does not preserve the right boundary condition on w2 () since 

w2(), which is even in w, is scaled to w3 , which is odd in w. Then for the MIN 

and INT solutions, both w2 () and ()3 have the wrong boundary symmetry. Of the 

four non-local subsets of equations, only the FULL and SUPERFULL solutions 

preserve the reflecting boundary symmetries on all moments that are imposed in 

the GSPH code. 

The solution MIN requires one second moment closure relationship. We use 

- -2-
()2 = w() /w 2 • (4.18) 

This does not preserve the correct boundary symmetry for ()2. 

4.2.3 The Numerical Technique: Implicit Hydrodynamics 

We have tried several numerical procedures to solve the analytic equations 

above in the non-convecting, local convecting, and non-local convecting limits. We 

tried a relaxation method (e.g. Press et al. 1986) to find directly solutions of the 

steady-state equations. However, this technique need not work if the initial guess 

of the solution is too far from the real solution. Indeed, we could not make these 

solutions converge for most convection problems. We concluded that we must use 

the time dependent equations to approach the steady state more gradually. We 

tried explicit Lax-Wendroff integration (e.g. Press et al. 1986), but the Courant 

time step limit made this computationally prohibitive, since convective mixing 

times can be very much longer than the hydrodynamic time scale. To overcome the 

limitation of a small time step, we attempted implicit solutions of the equations. 

We tried an iterative scheme to get solutions by implicit Lax-Wendroff integration, 
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but we could not always get solutions to converge. The numerical method with 

which we have had most success has been a relaxation method applied to the 

implicit time dependent equations. We describe this in more detail below. 

Let us assume we have N linear differential equations for the N variables Yi 

with explicit time dependences. These equations, of course, are supplemented by 

auxiliary equations and closure relationships. The N equations can be written in 

the general form 

( 4.19) 

These equations are discretized by approximating first derivatives (temporal and 

spatial) as first differences over time intervals b..t and spatial intervals b..z. The 

discrete, implicit form of equation 4.19 is 

Y!1+1 _ y!1 _ Atf(yn+l yn+l yn+l) 
I I -oW. 1 '2 , ... , N , ( 4.20) 

where the superscripts indicate the time step. Using time level n + 1, rather than 

n, on the right hand side makes the method implicit rather than explicit. For the 

set of N such equations with the values of yf already known, we can calculate 

the new values yr+l. We then use these new values as the known set and repeat 

the procedure to take another time step. The bonus brought by using an implicit 

scheme such as this is that the time step is not limited by the Courant time scale. 

We do not want the initial time steps to be too large. This would be like trying 

to find the steady state directly, which we cannot do in general. We calculate the 

time step according to 

(4.21 ) 
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over all i. For convecting problems, we must usually take f of order unity or 

smaller, but for non-convecting problems, we can often make it arbitrarily large. 

(This is because convergence problems are usually associated with second and 

higher order moments, which are zero for this class of problems.) As the steady

state solution is approached, the time step grows. It is customary for us to run 

this code to final times of t = 1010 • This is many orders of magnitude longer than 

the mixing time scales of any of our models. Indeed, most of the computation time 

is spent in the first few hundred units of time. We note that in stable zones, some 

of the variables Yi, e.g. the velocity dispersion w 2 , approach zero. Then equation 

4.21 is not good for the time step calculation. In such zones, changes occur on a 

mixing time scale, and so we use a time step of t::.t = ft::.Z/O". Even though the 

velocity dispersion goes to zero, the time step remains large. 

We have taken care that the discretized equations are spatially centered, so 

that they are second order accurate in space. We usually use 50 mesh points in 

the relaxation calculation, with mesh points separated by intervals t::.z. We have 

also tried calculations with 100 and 200 mesh points. These calculations, however, 

never captured details that were not present in the lower resolution calculations, 

nor did they converge when the lower resolution calculations failed. 
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In section 3.4 we presented GSPH results of four "standard" models in the 

four parameter regimes defined by the relative importance of turbulent to micro

scopic viscosity and of turbulent to radiative diffusion. We called models in which 

turbulent diffusion was the dominant energy transport process over radiative dif

fusion convection dominated, whereas we called models in which radiative diffusion 

was the dominant process radiation dominated. The fluid in stellar interiors has 

negligible microscopic viscosity. 

Below we present the MIN, INT, and FULL solutions of the non-local equa

tions for the low viscosity convection dominated and radiation dominated standard 

models. We will compare the second, third, and fourth moments with the LOCAL 

solution and with the GSPH results for each model. Vie will discuss the quality of 

agreement between the various formulations of the moment theory and the GSPH 

code. We refer the reader to section 3.4 for the actual parameter choices adopted 

in the models below. 

4.3.1 Turbulent Viscosity, Turbulent Diffusion Dominant 

A « Ba, D « Ea 

In this subsection we describe the steady-state solutions for the convection 

dominated, low microscopic viscosity model. We used ( = 3 in the fourth moment 

closure relations. We begin with a discussion of the superadiabatic gradient. We 

recall that for this model, the radiative superadiabatic is ~ \7TRad ::::: 400. In 
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Figure 4.2. The superadiabatic gradient for the LOCAL, MIN, INT, and FULL equa
tions are compared with the GSPH result for the low microscopic viscosity, con
vection dominated model. The FULL solution captures some of the qualitative 
behavior of the GSPH curve near the boundaries. 

comparison, all the curves in Figure 4.2 are nearly adiabatic, as required in the 

convection dominated regime. The LOCAL, MIN, INT, and FULL solutions agree 

very well with the GSPH result (shown by the solid line) throughout the interior 

of the fluid. The FULL solution, however, is the only one which captures the 

qualitative behavior of the boundaries. 

We examine the w 2 moment in Figure 4.3a. The LOCAL solution has the 

worst agreement with the GSPH curve. In the local limit, the second moments 

must go to zero when .6. VT goes to zero. The three non-local solutions, MIN, INT, 

and FULL, all seem to agree equally well with the GSPH code. The agreement is 

especially good near the right boundary. (The sharp upturns of the GSPH curves 

at the boundaries are a consequence of minor particle clumping near the walls. We 
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Figure 4.3. The second moments: (a) w 2 , (b)(fi, and (c) w8. The FULL solution 

gives the best representation of the GSPH results. In the figures here and 
throughout this chapter, means are indicated by brackets, although they are 
indicated by bars over the variables in the text. The difference is necessitated 
by the graphics software, but the two notations have the same meaning. 
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think these upturns are non-physical in origin, and so we disregard these features 

when making comparisons.) 

The (}2 moment plotted in Figure 4.3b does a better job discriminating among 

the non-local solutions. We see that the LOCAL and MIN curves have the worst 

agreement. This is a consequence of the incorrect boundary behavior in the LO

CAL and MIN solutions. As with the LOCAL w2 curve, the LOCAL (}2 curve 

must go to zero at the boundaries. The MIN curve must go to zero too because (}2 

is scaled to w(). The INT curve does not suffer from the wrong boundary condition 

here, but clearly the FULL curve gives the best representation of the GSPH data. 

In particular, the increase in (}2 near the boundaries is fit much better by the 

FULL curve. The qualitative improvement of the FULL solution over the others 

is a consequence of the better treatment of the w2 () moment. In the MIN and INT 

equations, w 2 () has the wrong boundary condition imposed by the scaling to w 3 • 

Only in the FULL equations does it have the correct boundary condition. Hence, 

the behavior of w 2 () enters equation 4.11 for ()2 in a more nearly correct way. 

We plot the we moment in Figure 4.3c. All the analytic solutions agree with 

the GSPH curve equally well. In convection dominated models, w() essentially 

measures the convective flux (presuming the kinetic energy flux is small). Hence, 

we is defined by the convection dominated condition. Therefore, non-local effects 

can have little influence on w(). 

We examine the third moments in Figure 4.4. The three non-local solutions 

of the w 3 moment in Figure 4.4a are nearly identical. While the non-local curves 

capture the qualitative shape of the GSPH curve, the quantitative agreement with 
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Figure 4.4. The third moments: (a) w 3 , (b) w2 B, (c) wB2 , and (d) 83 . The FULL 
solutions capture some of the qualitative behaviors of the GSPH curves that 
the others do not. 
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the GSPH curve is not very good, except near the right boundary. In the interior 

of the fluid, the deviation of w3 from the GSPH curve is a consequence of the 

deviation of the w 2 (} moment (see equation 4.12). We note, however, that in both 

the GSPH and analytic results, the kinetic energy flux, pw3 /2, is only a couple to 

several per cent of the convective flux. 

In Figure 4.4b, the FULL w2 (} curve appears to agree the best with the GSPH 

result. This is especially true near the left boundary. As we have stressed before, 

the FULL model is the only one in which w2 (} has the correct boundary symmetry. 

The MIN and INT curves are scaled to w3 , and, therefore, are only as good as the 

w 3 curves. 

In Figure 4.4c, we see that the FULL curve for w(}2 is a better representation 

of the GSPH result than either MIN or INT. This moment is proportional to both 

w 3 and (}2. The better (}2 fit of the FULL curve (see Figure 4.3b), therefore, leads to 

the better fit of the FULL w(}2 curve. The qualitative and quantitative agreement 

is best near the boundaries. The qualitative (if not quantitative) behavior of the 

(}3 curve in Figure 4.4d is best described by the FULL solution, since this is the 

only one with the correct boundary behavior. The (}3 moment is scaled to the w 2 (} 

curve of Figure 4.4b, and is only as good as the w 2 (} curve. 

We show the fourth moments in Figure 4.5. We recall that the normalized 

fourth moments have values that range between 2 and 4 (see Figure 3.12b), and 

the trend is for the normalized value to decrease. Because we use a value of 3 

throughout the entire fluid, we tend to underestimate the fourth moments at left 

and overestimate them at right. This is most clearly evident in Figures 4.5a and b. 
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Figure 4.5. The fourth moments: (a) w 4 , (b) w 3 B, (c) w2()2, (d) wB3 . None of the 
non-local solutions are good representations of the GSPH results, although the 
FULL solution is in better qualitative agreement. 
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We note that the moments of Figures 4.5c and d are scaled to the (}2 moment, and 

so the FULL model shows significant differences from the MIN and INT models 

as in Figure 4.3b for (P. However, none of the fits to the GSPH curves are of 

particularly good quality. 

Let us summarize the above discussion. The MIN, INT, and FULL w 2 and 

w() moments each agree with the GSPH results with roughly the same quality. 

However, the FULL (}2 curve is best. In general, the FULL model better represents 

the third moments. This is essentially because this is the only one where all the 

boundary conditions are correct. In this problem of "homogeneous" convection, 

the non-local effects of the third moments are only of secondary importance, as 

demonstrated by the second moment curves. However, when we consider problems 

of a more non-local character, namely overshooting problems, we expect the third 

moments to be of greater importance. In these problems we expect that the FULL 

solutions of the second moments will be significantly better than the MIN and INT 

solutions. 

We have seen that the fourth moments are in fairly poor agreement with the 

GSPH curves, although we prefer the FULL solution. Nevertheless, the quality of 

fit has not fed back into the second moments in a way that makes the lower order 

fits too bad. We will reexamine this claim, namely that poor fourth moments do 

not destroy the lower moments, throughout this chapter. 
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Figure 4.6. The superadiabatic gradient for the LOCAL, MIN, INT and FULL solu
tions of the low microscopic viscosity, radiation dominated model are compared 
with the GSPH result. 

4.3.2 Turbulent Viscosity, Radiative Diffusion Dominant 

A¢:: Ba, D ~ Ea 

We have calculated solutions for the radiation dominated, low microscopic 

viscosity model using ( = 3 in the fourth moment closure relations. We compare 

the LOCAL, MIN, INT, and FULL superadiabatic gradients to the GSPH curve 

in Figure 4.6. The interior of the fluid is extremely well represented by all of 

the solutions. This must be so because the temperature gradient is constrained 

to carry nearly all the flux. However, in the boundary regions where the flux 

is changing, the solutions fail to reproduce the peaks of the GSPH curve. We 

presume this reflects a failure of the moment equations. 



'".' 

226 

We study the second moments in Figure 4.7. Of course, the LOCAL curves 

do not do very well near the boundaries because they must be zero at the walls, 

and they are not in very good agreement with the GSPH curves in the interior. 

The MIN and INT curves generally do better. However, the FULL solution is in 

excellent agreement, even in the boundary regions. This is especially encouraging 

for the we moment in Figure 4.7c, since its value is not constrained by a convection 

dominated condition as in the previous model. 

We examine the third moments in Figure 4.8. Although none of the third 

moment fits to the GSPH data are outstanding, the FULL solutions of w 2 e and e3 , 

as usual, are somewhat better because of the treatment of boundary symmetries. 

As in the previous model, the non-local kinetic energy flux (w 3 ) is lower than the 

GSPH prediction by about a factor of 2 throughout most of the fluid. 

The fourth moment curves in Figure 4.9 do not agree very well with the GSPH 

results. In Figure 3.17b we saw that that normalized fourth moments decrease from 

about 4 to 2, except near the boundaries, where the values are larger. Since we 

use ( = 3 throughout, we have underestimated the fourth moments at the left and 

overestimated them at the right. These poor fourth moment fits have hurt the 

third moment fits, but not to such a degree that we cannot obtain the essential 

qualitative features. As before, the poor fourth moment fits do not seem to feed 

back into the second moments to significantly alter their non-local behaviors. 
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Figure 4.7. The second moments: (a) w2 , (b) 82 , and (c) wB. 



0 

-2x10-5 

--MIN 
·-·- ·-INT 
··············FULL 
-GSPH 

~ 

N 
Cl:) 

IN 
·-·-·-INT 
··············FULL 

0 k----GSPH 

~ -6 
~x10 

5 -6 
-4x10- -4x10 

0 

-10-5 

L.......L......---'---L.....,L.......I...&.........I..'--'---L-'--'-...J-...J...... 

0 .2 .4 .6 
z 

(a) 

--MIN 
·- ·- ·-INT 
··············FULL 
-GSPH 

0 .2 .4 .6 
z 

(b) 

~ 
(") 

0 

~x10-7 

-10-6 

0 .2 .4 .6 
z 

(c) 

0 .2 .4 .6 
z 

(d) 

Figure 4.8. The third moments: (a) w3 , (b) w 2 8, (c) w82 , and (d) ()3. 

228 



-5 
1.5x 10 

0 ~~~~~~~ 
0 .2 .4 .6 

z 

(a) 

4x 10-6 

_.4x10-6 

CJ::) 
t"1 

~x10-6 

............... 

10-6 

0 
0 .2 .4 .6 

z 

(b) 

229 

0 ~~~~~~~ 
0 .2 .4 .6 

z 

(c) 

3x 10-7 

_.2x10-7 

t"1 
CJ::) 

~ 
10-7 ............... 

0 
0 .2 .4 .6 

z 

(d) 

Figure 4.9. The fourth moments: (a) w4 , (b) w3 B, (c) w2 82 , and (d) w83 . 



230 

.3 

.2 
~ .1 [> 
<l 0 

-.1 

-.2 
0 .2 .4 .6 

z 

Figure 4.10. The superadiabatic gradient for the LOCAL, MIN, INT, and FULL 
equations are compared with the GSPH result for the convection dominated 
overshooting model. The FULL curve is in closest agreement. 

4.4 Comparisons of the Overshooting Solutions 

with the GSPH Results 

4.4.1 Convection Dominated Overshooting 

We discuss the solutions of the non-local equations for the convection dom-

inated overshooting model. The equations were solved with ( = 3 in the fourth 

moment closure relations. We present the LOCAL, MIN, INT, FULL, and GSPH 

superadiabatic gradients in Figure 4.10. Inspection shows that the FULL model 

is in best agreement with the GSPH curve. In particular, the rise near the left 

boundary and the cusp at z = 0.4 are only present in the FULL solution. In 

the unstable region at left, the FULL curve has larger values than the others, in 
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better agreement with the GSPH data. The model was constructed so that the 

local superadiabatic gradient would become sub critical at z = 0.4, but the GSPH 

curve makes the stability transition at z ~ 0.35. The FULL curve also mal<:es 

the stability transition earlier, in good agreement with GSPH. In the stable zone 

at right, all the non-local solutions merge with the LOCAL curve. However, the 

GSPH curve begins to deviate from these solutions after z ~ 0.55. We will discuss 

this deviation again when we examine the w(} solutions. 

We plot the second moments in Figure 4.11. Of course, all the LOCAL curves 

are identically zero in the stable region. The non-local solutions show overshooting 

into the stable zone. The INT and FULL w 2 curves of Figure 4.11a agree best 

with the GSPH data. The MIN curve goes to zero too soon. The (}2 curve of 

Figure 4.11b is more useful to discriminate among the solutions. While both INT 

and FULL have the appropriate boundary condition on (}2, the FULL curve is in 

best agreement with the GSPH data. The FULL fit is best in the overshooting 

region, but, unlike the MIN and INT solutions, it also captures the qualitative 

shape in the unstable region. 

The FULL w() curve also represents the GSPH data best. The improvement 

over the other non-local solutions is most evident in the stability transition region. 

The GSPH curve, and therefore also the convective flux, becomes negative after 

z ~ 0.55. The MIN curve becomes negative too soon and returns to zero too soon. 

On the other hand, the INT and FULL curves never become negative. It appears 

that they go to zero monotonically. (These details are not visible on the scale of 
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this figure.) The failure of the INT and FULL curves to become negative in the 

overshooting region is probably a problem with the moment theory. 

If the convective flux is negative in the overshooting region, the temperature 

gradient must by steeper than the radiative value for the fluid to carry a constant 

flux. Indeed, we see that where the GSPH and MIN convective fluxes are nega

tive, the corresponding superadiabatic gradients in Figure 4.10 are larger than the 

radiative value given by the LOCAL curve. This mechanism of a larger supera

diabatic gradient to compensate for a negative convective flux was proposed by 

Shaviv and Salpeter (1973) to maintain the superadiabatic gradient more nearly 

adiabatic in the overshooting region. While our GSPH results support this qualita

tive picture, we find that the deviation from the radiative superadiabatic gradient 

is small. We find that there can be extensive overshooting without the aid of the 

Shaviv and Salpeter mechanism. 

We want to know the overshooting distances predicted by the non-local solu

tions. The LOCAL solution shows that the stability transition is at Zcrit = 0.40. 

The MIN velocity dispersion goes to zero at Zu = 0.62, corresponding to an over

shooting distance of dover = 0.9l'M. However, the INT and FULL velocity dis

persions are still decreasing at the right boundary. This may be a consequence 

of non-local boundary effects. The GSPH velocity dispersion reaches a minimum 

at Z = 0.75, and in Chapter 3 we extrapolated the data to estimate that the 

dispersion would reach zero at Zu ~ 0.85 in the absence of the boundary. This 

corresponds to an overshooting distance of dover ~ 1.9l'M. However, the GSPH 

estimate may be significantly in error. We need GSPH simulations and non-local 

solutions in which the boundary is farther from the zero dispersion point, Zu. 
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Figure 4.12. The third moments: (a) w3 , (b) w2B, (c) wB2, and (d) 83 . 
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The third moments are shown in Figure 4.12. The best non-local solutions 

are not as obvious as for the second moments. The only apparent improvements 

of the FULL solution over the MIN and INT curves are seen in the w 2(J curve in 

Figure 4.12b, which is better in the stability transition region, and the W(J2 curve 

of Figure 4.12c, which is better near the left boundary. The non-local w 3 curves 

of Figure 4.12a and (J3 curves of Figure 4.12d capture the qualitative features of 

the GSPH results. 

We show the fourth moments in Figure 4.13. None of the non-local solutions 

are good representations of the GSPH data. The normalized GSPH fourth mo

ments were graphed in Figure 3.29b. Throughout most of the stable region, the 

values are about 2. In the transition region, the values go up by factors of several, 

and in the stable zone, the behavior is much less systematic. For the solutions 

of the non-local equations, we adopted ( = 3 in the closure relations. We could 

have obtained better fits in the stable zone if we had used ( = 2 instead. We tried 

this and found that the transition zone is fit even more poorly. Furthermore, the 

amplitude of the third moments is smaller for ( = 2, and the agreement is clearly 

worse than for ( = 3. The non-local second moments are also in worse agreement 

for ( = 2. In particular, for ( = 2, w 2 decreases to zero faster in the overshooting 

region. Also, the FULL (J2 curve is not much better than the INT curve if ( = 2. 

4.4.2 Radiation Dominated Overshooting 

We present solutions for the radiation dominated overshooting model in this 

subsection. The equations were solved using ( = 3 in the fourth moment closure 
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Figure 4.14. The superadiabatic gradient for the LOCAL, MIN, INT, and FULL 
equations are compared with the GSPH result for the radiation dominated over
shooting model. The non-local behavior is constrained by the radiation dom
inated condition. The spikes in the GSPH curve near the boundaries are not 
physical. 

relations. We examine the superadiabatic gradient in Figure 4.14. The MIN, INT, 

and FULL curves each agree equally well with the GSPH data. The temperature 

gradient is essentially fixed by the radiation dominated condition in both the 

unstable and stable zones. Therefore, the higher order moments cannot have a 

significant influence on the temperature gradient the way it does in convection 

dominated regimes. The GSPH curve deviates fr~m the moment solutions in both 

boundary regions. 

The second moments are shown in Figure 4.15. The LOCAL curves go to 

zero beyond Zcrit ~ 0.35 and they are maximum where~ VT is maximum. In the 

local theory, the velocity dispersion is derived as if the particle feels the buoyancy 



'., 

238 

resulting from its local ~ 'VT as it traverses a mixing length. However, we saw in 

Figure 4.14 that ~ 'VT becomes significantly smaller within the distance of a mixing 

length beyond the maximum value. Because the non-local solutions account for 

the acceleration a particle feels in its earlier history, the non-local w 2 curves of 

Figure 4.15a do not have nearly as large a maximum as the LOCAL curve. In the 

unstable zone, the INT and FULL solutions bound the GSPH data. This is also 

true for the and we figure. In the w2 figure, the transition and stable regions are 

described somewhat better by the FULL solution. 

In Figure 4.15b for e2 , the INT solution seems better than FULL in the un

stable region at left, and in Figure 4.15c for we, neither INT nor FULL are clearly 

better representations of the GSPH data, especially in the stability transition re

gion. Indeed, neither the INT nor FULL solutions stand out as better. We note 

that none of the non-local we curves become negative in the overshooting region, 

nor does the GSPH data. 

The FULL w 2 curve reaches zero at Zrr = 0.59, whereas the LOCAL curve 

makes the stability transition at Zcrit = 0.35. This corresponds to an overshooting 

distance of dover = 1.0t'M. The MIN solution becomes completely stable at Zrr = 

0.60, and the INT solutions becomes completely stable at Zrr = 0.67. These models 

give overshooting distances of 1.0t'M and 1.3t'M, respectively. The GSPH curve 

reaches a minimum at Z = 0.62. In Chapter 3 we hypothesized that boundary 

effects prevented the GSPH dispersion from reaching zero, and we extrapolated to 

estimate the zero at Zrr ~ 0.70, giving dover ~ 1.5t'M. However, the extrapolation 

is very crude, and we cannot evaluate the degree to which the GSPH and non-local 
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Figure 4.15. The second moments: (a) w2 , (b) ()2, and (c) w8. The sharp GSPH 
fluctuations of w 2 near the boundaries are not physical. 
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solutions are in accord. This will require simulations where we can be certain that 

boundary effects are not important near z(1'. 

We examine the third moments in Figure 4.16. Just as in the second moments, 

the INT and FULL curves generally bound the GSPH data in the unstable region. 

However, in Figure 4.16a for w 3 and Figure 4.16b for w2 (}, the FULL solution is 

in better quantitative agreement. The transition region is also better fit by the 

FULL solutions. No non-local solution agrees especially well with the W(}2 and (}3 

data of Figures 4.16c and d. This is partly due to the inferior quality of the second 

moment fits, to which these third moments are scaled. 

We study the fourth moments in Figure 4.17. In Figure 3.36b we saw that 

the normalized GSPH moments have values of about 2 at left and rise by a factor 

of several in the unstable zone. In the transition region, the normalized values 

can become very large. In the stable region, the values are generally larger also. 

However, the velocity and temperature dispersions are small, and, therefore, de

spite the large normalized values, the fourth moment values are small. Although 

we adopt a value of ( = 3 throughout the fluid to calculate the fourth moments, 

the FULL w4 curve in Figure 4.17a and the FULL w3 (} curve of Figure 4.17b 

are in reasonably good agreement with the GSPH data. As is usually the case, 

the non-local w 2 (}2 and W(}3 solutions of Figures 4.17c and d do not represent the 

GSPH data as well. 
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Figure 4.16. The third moments: (a) w 3 , (b) w28, (c) w82 , and (d) 83 . The sharp 
fluctuations of the GSPH data near the boundaries are not physical. 
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Figure 4.17.The fourth moments: (a) w 4 , (b) w3 B, (c) w 2 B2 , and (d) wB3 . The 
boundary fluctuations of the GSPH data are not physical. 
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4.5 Conclusions 

In this chapter we have compared three levels of solution of the non-local 

moment equations, MIN, INT, and FULL, with the GSPH results of Chapter 3. 

In general, the FULL solutions give the most favorable comparisons with GSPH, 

especially for the second moments. This is mainly because the FULL solution 

is the only one where all the second and third moments have the proper reflect

ing boundary conditions. Although the GSPH code and the moment theory are 

intended to simulate the same physical processes, since the GSPH code evolves 

particles and not moments, it provides a check on the moment theory. There

fore, the good quality solutions of the moment equations confirm that the moment 

theory provides a good description of non-local mixing-length convection. 

The quality of fit of the non-local solutions to the GSPH data also justifies 

a posteriori the choice of closure relations. If the closure relations were too bad, 

we would not expect the correct qualitative behavior from the lower moments. 

In all of the solutions presented, we calculated the fourth moments using ( = 3. 

Although ( = 2 would probably improve the quality of the fourth moments in 

the convection dominated overshooting model, we found, even so, that the lower 

moments were better if ( = 3. 

In most cases, the quality of fourth moment fits to the GSPH data has been 

poor. However, the third moment fits are usually better, and the second moment 

fits are better yet. The results suggest that the quality of fit ofthe second moments 

depends most directly on the third moments, and that the effect of erroneous fourth 

moments do not feed down through the moment hierarchy to destroy the second 
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moment solutions. Of course, the fourth moments affect the third moments more 

directly. 

We have studied two examples of overshooting: convection dominated and 

radiation dominated overshooting. For the radiation dominated overshooting we 

saw that even the non-local velocity dispersion goes to zero at a finite overshooting 

distance. The overshooting distance appears to be 1.0-1.5fM. Unfortunately, be

cause of the proximity of the right boundary to Zoo, the point of zero dispersion, we 

cannot be more precise. Boundary effects were more important in the convection 

dominated overshooting model, and the INT and FULL dispersions never reached 

zero. We can only argue that the overshooting distance is probably 1-2l:'M. We 

need to perform simulations of bigger dynamic range (i. e. spanning more pres

sure scale heights), so that the boundary does not interfere with the overshooting 

region. We will study bigger dynamic range problems in Chapter 5. 

There is a second line of investigation which may improve the solutions of 

the moment equations. It is probable that better modeling of the fourth moments 

could improve the third and second moment fits significantly. In Chapter 3 we 

suggested improved closure relations that relate the fourth moments to both the 

second and third moments. We have attempted to solve the non-local equations 

with these improved relations, but the relaxation code would not converge. Regret

tably, we are, therefore, unable to report here upon solutions with the improved 

closure relations. 
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CHAPTER 5 

Astrophysical Applications in Plane Parallel Geometry 

5.1 Introduction 

In Chapters 3 and 4 we applied the moment theory and the GSPH code to 

"standard" problems to demonstrate the basic physics of non-local convection. In 

this Chapter, we discuss convection problems of somewhat more direct relevance 

to stellar evolution. 

One of the most important limitations of our "standard" problems was the 

adoption of a mixing length significantly shorter than a pressure scale height. This 

was necessary since there was only about one pressure scale height from the bottom 

to the top of the simulations. In section 5.2 we discuss a "big dynamic range" 

model to evaluate the effects of using a more appropriate mixing length. In this 

simulation, we study a fluid many pressure scale heights deep and make the mixing

length parameter proportional to the pressure scale height, as is commonly done 
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in stellar evolution calculations. We discuss a convection dominated overshooting 

problem. These results should be most directly applicable to overshooting from 

stellar cores. 

In section 5.3, we discuss a model that simulates convection in a stellar shell 

that cools by neutrino losses. Neutrino losses are local in the sense that the energy 

that the neutrinos carry escapes directly from the star and is not transported by 

diffusion or convection processes. This simulation is most relevant to convection 

in the outer part of C/O burning stellar cores, where the heating rate has fallen 

below the neutrino loss rate. 

In section 5.4 we discuss the importance of overshooting for the development 

of blue loops during core He-burning. Since these blue loops have been the subject 

of recent investigations (Tuchman and Wheeler 1989a,b; Arnett 1991; Stothers and 

Chin 1991), it is appropriate to investigate whether we can shed any light on this 

issue. The chapter is summarized in section 5.5. 

5.2 A Deep Overshooting Model 

In the overshooting simulations of Chapter 3, we were forced to adopt a 

mixing length significantly smaller than the depth of the fluid to avoid boundary 

influences throughout the entire range of z. However, those models were only about 

one pressure scale height deep, and therefore, the mixing length was smaller than 

a pressure scale height. This is contrary to the usual assumption that the mixing 

length is of order a pressure scale height (e.g. Gough 1977). 
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In an attempt to be more realistic, we have simulated convective overshooting 

in a fluid many pressure scale heights deep. We discuss here an overshooting model, 

in which the radiative diffusion coefficient increases with z according to equation 

3.30. The energy transport is dominated by the convective flux in the unstable 

region. This model is relevant to overshooting from convective cores of stars. It 

uses essentially the same parameters as the model in subsection 3.5.1, except that 

the cooling constant is larger. Therefore, the shape of the temperature profile is 

nearly the same as before, but the overall temperature is lower than before. At 

the bottom of the fluid, the local pressure scale height is about half the depth of 

the fluid, and at the top it is about an eighth of the depth. Thus, the fluid is 

clearly at least several pressure scale heights deep, and the density varies by about 

a factor of 6 from bottom to top. 

We have calculated the pressure scale height for each grid point in the simu

lation, and we have set the local mixing length equal to the pressure scale height, 

i.e. eM = Hp. (Most other calculations of overshooting use a mixing length de

rived from the pressure scale height at the stability transition.) We calculate the 

local turbulent viscosity and diffusion coefficients Vturb = Xturb = eMU at each grid 

point, and we use these local values in the particle evolution equations 3.9 and 

3.10. As before we used eH = ev = eM, so that the "constants" A, B, D, and E 

take on local values. 

This simulation had 20,000 particles and 80 bins. Data were accumulated for 

207 mixing times. The time averaged data are shown in Figure 5.1. The particle 

velocities, in Figure 5.la, show that the velocity dispersion is generally larger at 



248 . 

. 1 

.05 
...... 0 > 

-.05 

-.1 

0 .2 .4 .6 
z 

(a) 

.5 

.4 
...... 

C/) 
.3 

.2 

.1 
0 .2 .4 .6 

z 
(b) 

.4 

.3 
...... 
~ 

.2 

.1 

0 .2 .4 .6 
z 

(c) 
Figure 5.1. (a) The time averaged particle velocities, (b) entropies, and (c) tem

peratures for the deep convection dominated overshooting model. One out of 
201 points from the total sample of 4,140,000 points are plotted. The stability 
transition is at z = 0.36. All the dispersion are larger in the unstable zone to 
the left. The particles overshoot into the stable zone at the right. The mean 
background curves are drawn through the points. 
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Figure 5.2. ~ \!T V3. z. The solid line is derived from the accumulated data of 
207 mixing times for a convection dominated overshooting model which is sev
eral pressure scale heights deep. The dashed line is the solution of the local 
equations. At far left, the radiative temperature gradient is ~ \lTRad ~ 400. 

the left, and that beyond the stability transition at Zcrit = 0.36, the particles 

overshoot into the stable zone, where the dispersion gets smaller. It is interesting 

to compare this figure to Figure 3.23a for the convection dominated overshooting 

model of Chapter 3. We observe two main differences: 1) the dispersion of the 

unstable region at left is about 50% larger; and 2) the dispersion in the stable 

region, especially at far right, is tighter. We will account for these features in the 

discussion of the second moments below. 

In Figure 5.2, the time averaged superadiabatic gradient (solid line) is com-

pared with the local solution (dashed line). At the far left, if the fluid were 

completely radiative, the superadiabatic gradient would be ~ \lTRad ~ 400. The 
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actual superadiabatic gradient is much smaller, as one would expect in a convec-

tion dominated regime. The diffusion coefficient rises exponentially (see equation 

3.30) until the local solution becomes stable at zmax/2. This entire figure is quite 

similar to Figure 3.24 for the earlier convection dominated overshooting model. 

This is expected, since both models must carry the same energy flux and both 

have the same diffusion coefficient. Only the temperature level is very different. 

The second moments are plotted in Figure 5.3. The velocity dispersion in 

Figure 5.3a rises in the unstable zone. In the convection dominated regime, O'~ '" 

l'ivtf::..VT/T and f::..VT '" Tl/3/l~P. Hence, O'~ '" lij3/T
2
/3. Since lM '" Hp '" T, 

O'w is nearly constant in the unstable region. The dispersion is larger than in the 

earlier model, illustrated by Figure 3.26, and beyond the stability transition, the 

dispersion decreases more steeply. This is because the entropy gradient in Figure 

5.1b is steeper, and hence the overshooting particles are decelerated more strongly. 

As before, the dispersion essentially reaches its minimum at the right boundary, 

suggesting we still are not free of boundary effects. As before, we can extrapolate 

the approximately linear slope of the dispersion to zero to estimate a minimum 

overshooting distance. In terms of the mixing length at the stability transition 

(lM = 0.23 at z = 0.4), the overshooting distance is at least dover ~ l.7fM. We 

take this as an indication of the importance of convective overshooting, but the 

actual number applies only to a limited region of parameter space and to our 

simplistic variation of the diffuslon coefficient with position. 

The temperature dispersion in Figure 5.3b decreases into the overshooting 

zone much faster than the velocity dispersion, just as we saw in Figure 3.26b. 
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Figure 5.3. Comparisons of the particle code (solid lines) and local theory (dashed 
lines) second moments for the deep convectjon dominated overshooting model. 
(a) The velocity dispersion, (b) temperature dispersion, and (c) normalized 
velocity-temperature correlation are graphed versus position. The error bars on 
the particle code curves represent the 1- (J standard deviations of the moments. 
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However, it is smaller in the unstable region than in the earlier model because 

the mixing length, over which particles develop excess temperatures, is smaller. 

For the fluid to carry the same convective flux as the earlier model, u w must be 

larger, as we saw in Figure 5.3a. The normalized velocity-temperature correlation 

in Figure 5.3c is also qualitatively similar to the older simulation. The correlation 

remains positive beyond the stability transition, but eventually it becomes negative 

when most overshooting particles develop negative temperature excesses. 

The third moments are plotted in Figure 5.4. The w 3 curve in Figure 5.4a 

exhibits qualitatively similar behavior to Figure 3.28a for the older model. The 

value is positive where the dispersion is decreasing, and it reaches its peak, which 

is larger than before, near the stability transition. The normalized w 3 moment in 

Figure 5.4b rises almost all the way to the right boundary. In the earlier model, 

the normalized w 3 curve of Figure 3.28b begins to decrease sooner. This suggests 

that the overshooting zone here is less affected by particles reflected off the right 

boundary than before. Reflected particles should only be a significant perturbation 

on the overshooting zone within a mixing length of the boundary. 

The fourth moments are plotted in Figure 5.5. They can be compared with 

the earlier results in Figure 3.29. The w 4 curve in Figure 5.5a mainly reflects the 

qualitative shape of the velocity dispersion curve in Figure 5.3a. The normalized 

fourth moments have a value of 2 in the unstable region, as in the earlier simulation. 

The qualitative shapes of the curves in the overshooting region are similar to the 

older simulation. 
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Figure 5.5. (a) w 4 and (b) the normalized fourth moments versus position. 
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We have modified the program that calculates the FULL solution of the mo

ment equations to include a mixing length that is proportional to the pressure 

scale height, just as in the GSPH code. While this program is able to handle 

problems of smaller dynamic range, we have been unable to achieve convergence 

for larger dynamic ranges. Therefore, no comparative results are presented here. 

5.3 Neutrino Cooling in Massive Star Shells 

In this section we discuss a simulation relevant to the structure of carbon

oxygen burning stellar cores that are cooled by neutrino losses. In all the earlier 

simulations, energy is supplied at the bottom of the simulation, and it is trans

ported through the fluid by both radiative diffusion and convection. At the top 

of the simulation, energy is removed. A better description of a stellar core is that 

energy is deposited locally by nuclear burning, and that it is transported by both 

radiative diffusion and convecti<;>n, and by neutrino losses, to which the star is op

tically thin. Neutrino losses are important for the structure of stellar cores hotter 

than about 0.5 x 109K, such as in C/O burning cores of massive stars. 

The local heating/cooling rate in such an environment can be approximated 

by 

(5.1) 

The positive term represents the heating by nuclear burning and the negative term 

represents neutrino losses. The exponents are strongly dependent on temperature 

and are only approximate (e.g. Clayton 1983). The sum of the terms is positive 
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if T > To. To is about 2.0 x 109 K for oxygen burning (Kippenhahn and Weigert 

1990). 

If equation 5.1 were the only "source term" in the energy equation, the fluid 

in our simulations either would experience a thermal runaway if more heat was 

deposited than removed over the whole fluid, or would tend to become more nearly 

isothermal and cool with time if more heat were removed. These behaviors are not 

representative of real stars. Depending upon whether there is net heating or cool-

ing, the core of a real star will expand or contract until an equilibrium temperature 

profile, such that the integral of equation 5.1 over mass is nearly zero, is achieved. 

Our simulations cannot expand or contract because of the fixed boundaries, which 

cannot undergo Lagrangian displacements. Indeed, our simulations can only be 

stable if there is net cooling, so we disregard the positive term of equation 5.1 for 

our purposes. 

Since our goal is to examine the transport of heat in the presence of neutrino 

losses, we must add a source of energy. If we supply energy in the left boundary 

region according to our usual prescription given by equation 3.5, the steady-state 

configuration will have a temperature in the boundary region that can locally 

dissipate all the heating by neutrino losses, and the remainder of the fluid will be 

nearly isothermal. Again there will be very little energy transport. To sustain 

energy transport, we must also remove energy in the right boundary region, which 

we do according to our standard prescription of equation 3.5. We add a neutrino 

loss term 

(5.2) 
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to the source term of equation 3.5. Thus, our simulation is suggestive of the 

boundary of the convective core of massive C/O burning stars, where the energy 

generation rate has fallen below the neutrino loss rate. Most of the energy is 

generated inside this boundary region, so the local heating is not important. Thus, 

this simulation applies only to a narrow mass shell outside of a burning core, and 

it should be regarded as a preliminary step in the investigation of convection in 

neutrino cooled cores. 

We adopt parameters that are identical to our standard convection dominated 

model of subsection 3.4.2, the only difference being the addition of neutrino losses. 

In equation 5.2, we use € = 0.001 and To = 0.8. The simulation had 20,000 

particles and 80 bins. Data were accumulated for 84 mixing times. We used an 

initial model with a left boundary temperature of T = 0.84, which is the steady 

state value given by solution of the local moment equations. Whereas our choice 

of cooling constant gave a left boundary temperature of T ~ 1.0 in the simulation 

of subsection 3.4.2, the same constant gives a lower boundary temperature here 

because of the additional channel of energy loss by neutrinos. Because the neutrino 

losses are so strong if the fluid temperature is much above To, the left boundary 

temperature is not much larger than To. 

In Figure 5.6, we show the superadiabatic gradient. If the energy transport 

were dominated by radiative diffusion, we would find the superadiabatic gradient 

near .6. VTRad ~ 400. We find, however, that the fluid is very nearly adiabatic 

throughout and that this figure is very similar to Figure 3.9 for the convection 

dominated model of subsection 3.4.2. Since neutrino losses decrease the total flux 
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Figure 5.6. ~ VT vs. z. The solid line is derived from the accumulated data of 84 
mixing times for the convection dominated model with neutrino losses. The 
dashed line is the solution of the local equations. If the fluid were nearly radia
tive, we would find~ VT ~ 400. 

that must be transported by convection as we go to higher z, the fluid moves toward 

the radiation dominated regime, but clearly it still stays within the convection 

dominated limit. 

In Figure 5. 7 we plot the second moments, which we will compare with the 

convection dominated results of Figure 3.10. The velocity dispersion in Figure 5. 7a 

is nearly flat, whereas in Figure 3.10 it is slightly larger at left and rises gradually. 

Since the neutrino losses are local and remove energy even in the boundary region, 

the total flux that needs to be carried by convection is lower from the outset, as 

shown by Figure 5.8. Hence, the fluid can transport the necessary amount of heat 

with a lower level of turbulence. Since the total flux decreases to the right, the 

turbulence is even less at large z compared to Figure 3.10a. On the other hand, 
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Figure 5.8. The convective flux versus position. The total flux the fluid would have 
to carry in the absence of neutrino losses is Ftot = 4 x 10-4

• 

the decreasing density at right tends to increase the velocity dispersion. These 

competing effects conspire to keep the actual dispersion nearly constant. 

Although flux is lost at all . z from neutrino emission, the strongest losses are 

near the left where T~To. Then w8 must decrease over this interval since p cannot 

change too much. (Recall that the convective flux is Fconv = pcpw8 + pw3 /2, but 

that the kinetic energy flux term is relatively small, as shown in Figure 5.9a.) Since 

u w is nearly constant, this implies that ue must decline significantly, as shown in 

Figure 5. 7b. Across the rest of the fluid, the total flux declines much more slowly 

(see Figure 5.8). The decrease in density can account for the lower flux at large 

z, so that a 8 ceases to decline and actually rises slightly toward the right. 

The normalized velocity-temperature correlation in Figure 5.7c shows the 

usual high degree of correlation, indicating that non-local convection effects are 
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not very important for this model. This statement is supported by the favorable 

comparison of the particle code (7w and (78 curves with the solutions of the local 

theory, illustrated by the dashed lines in Figure 5.7. The local approximation 

may not be as good in a more realistic simulation in which the dependence of the 

heating rate on T is used. 

For completeness we discuss the third and fourth moments also. We see that 

the w 3 curve in Figure 5.9a has a smaller amplitude than in Figure 3.lla for the 

convection dominated model without neutrino losses. This is a consequence of 

the nearly constant value of (7w in this case, whereas in the earlier case it was 

rising. Indeed, the normalized w3 curve in Figure 5.9b is nearer to zero. Then 

the kinetic energy flux is smaller here than in the earlier model without neutrino 

losses. However, unlike the (7w curve, the (78 curve is not constant across the fluid. 

These variations are reflected in the other third moments, and most strongly in 

the normalized ()3 curve. Since the temperature dispersion is decreasing at left, 

the ()3 values are positive, but they become slightly negative as (78 gradually rises. 

In Figure 5.10 we show the fourth moments. Figure 5.10a forw4 shows rather 

modest variation, especially compared to Figure 3.12a. Considering that this is 

the fourth power of w, the variation of (7w must be slight indeed. The normalized 

fourth moment curves in Figure 5.10b are similar, as is usually the case in non

overshooting models, with values between 2 and 4. However, whereas in Figure 

3.12b the trend was decreasing normalized moments, here the curves peak near 

the middle, where the third moments are smallest. 
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Figure 5.9. (a) w 3 and (b) the normalized third moments versus position . The sharp 
upturns of w 3 and the "spikes" of the normalized moments at the boundaries 
are not physical. 
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sharp upturns of w 4 at the boundaries are not physical. 
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5.4 A Discussion of Blue Loops 

Stellar evolution calculations of intennediate and high mass stars often exhibit 

the so-called blue loops in the H-R diagram during the red giant or supergiant 

phases of core He burning. However, for a single stellar mass, not all calculations 

show that the loops have similar extensions into the blue, nor do all calculations 

predict loops. This problem is especially troublesome for the evolution of massive 

stars (Chiosi and Maeder 1986). Interest in the phenomenon of blue loops has 

been reinvigorated by two recent observations: 1) The surprising discovery that 

the SN 1987a progenitor was a blue supergiant (Wallborn et al. 1987; West et al. 

1987) may be indicative of the nature of Type II supernova progenitors, and 2) 

Fitzpatrick and Garmany (1990) found evidence for a blue "ledge" in the LMC H

R diagram and found a paucity of stars between the ledge and the Hayashi track. 

These related issues have been the subject of recent investigations (Tuchman and 

Wheeler 1989a,b; Arnett 1991) .. 

The fundamental reason for the computational difficulties is that for a range of 

core He masses, there can be multiple equilibrium envelope structures (Paczynski 

1970; Lauterborn et al. 1971b; Tuchman and Wheeler 1989a,b). One envelope 

solution is typically in the blue, and the others are near the Hayashi line. A 

consequence is that the envelope structures are very sensitive to the input physics 

of evolution calculations. The hydrogen abundance profile (X-profile) is known 

to be crucial for the formation of blue loops (e.g. Lauterborn et al. 1971a), and, 

therefore, the choice of convection theory bears upon this directly. 
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After the exhaustion of hydrogen fuel in stellar cores, stars evolve toward the 

Hayashi track. While several mechanisms are known which tend to make the star 

redder during its subsequent evolution, only one is known that can make it evolve 

to the blue (Lauterborn 1971a). During the subsequent phase of core He-burning 

and shell H-burning, a loop can be initiated by the outward burning of the H shell 

through a transition region of increasing X. (This transition region is caused by 

the contraction of the convective core during core H-burning.) The outer edge 

of this transition region is determined by the size of the convective core on the 

zero-age main sequence. As the shell burns through the transition region, the star 

evolves to the blue, and this evolution stops when the shell reaches the boundary 

of the transition region. Beyond this point, the increasing He-burning core mass 

drives the star back to the red. 

The competing effects of increasing core mass and shell burning determine 

whether there will be a loop a,nd its size if there is a loop. If the core burns 

much faster than the time for the shell to burn through the transition zone, the 

loop will be suppressed. Since the the initial X-profile is determined on the main 

sequence, overshooting of the convective H-burning core is important. Matraka 

et al. (1982) found that for significant overshooting, the shape of the X-profile 

was little changed, but that it was moved outward and that the resulting He core 

was more massive. The subsequent stage of core He-burning was faster. The 

decrease of He core burning time compared to the time for the H shell to burn 

through the transition region was sufficient to strongly suppress the loops in stars 
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with M$6 M0 . The same effects, although qualitatively weaker, were observed for 

more massive stars, 

Although most authors have considered modification of the X profile by over

shooting from the core below the shell, Stothers and Chin (1991) have considered 

downward overshooting from the convective envelope. If downward overshooting 

is sufficient to penetrate into the X-profile transition region, it will cause a step 

in the profile. Since a more square X-profile means the H-burning shell can bum 

through the transition region faster, the downward overshooting can promote blue 

loops. Indeed, for 5-15 M0 stars, downward overshooting need only extend about 

O.3Hp to trigger loops. 

Very massive stars exhaust the He fuel in their cores before they even reach 

the Hayashi line. These stars will begin He shell burning as they evolve toward 

the red. Under these circumstances, overshooting from the He shell will enrich 

the envelope in He. This makes the formation of blue loops more likely (Tuchman 

and Wheeler 1989b). 

We see that overshooting from convective H-burning cores tend to suppress 

blue loops during subsequent core He-burning. However, overshooting from a He

burning shell in very massive stars and downward overshooting of the convective 

envelope into the X-profile transition region promotes the loops. Overshooting can 

both promote and suppress blue loops, and thus, it is not obvious how overshooting 

effects the phenomenon of blue loops. Furthermore, rotationally induced mixing, 

the dependence of opacity on composition, and mass loss may make blue loop 

evolution more complicated than the Lauterborn description. Although the results 
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of this thesis suggest that overshooting distances are significant, we cannot draw 

any implications for the blue loop phenomenon. A solution seems to require stellar 

evolution calculations that use a more reliable prescription of non-local convection 

in all convective zones. 

5.5 Summary 

In this chapter we have discussed two issues of more direct astrophysical 

relevance than in earlier chapters. We presented a "big dynamic range" simulation 

that was several pressure scale heights deep. We made the mixing length equal 

to the pressure scale height. We found that the overshooting distance was at 

least 1.7 Hp , in terms of the pressure scale height at the stability transition, for 

the particular simulation presented here. The velocity dispersion decreased more 

steeply in the overshooting region than in the convection dominated model of 

Chapter 3. The convective kinetic energy flux at the stability transition is larger. 

We presented a simulation that included local losses appropriate for the escape 

of neutrinos from the edge of C/O burning stellar cores. The main effect was 

to decrease the temperature of the fluid, while leaving the temperature gradient 

nearly unchanged. Because the total flux that the fluid must transport goes down 

toward higher z, the velocity dispersion is nearly constant and the kinetic energy 

flux is smaller than it would be otherwise. The absence of a realistic heating rate 

makes the applicability of these results very limited, and hence, they should be 

regarded as a preliminary step toward a more realistic calculation. 
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We discussed the importance of the choice of convection theory for the de

velopment of blue loops during the He-burning phase of intermediate and massive 

star evolution. We saw that overshooting from the core tends to suppress the 

loops, but that overshooting from the envelope favors the formation of loops. We 

conclude that we cannot shed light on this issue without putting our convection 

theory in the context of a real stellar evolution code. 

We emphasize that the results of this chapter suggest what the true impact 

of non-local convection may be in the astrophysical circumstances discussed here, 

but that real answers require more realistic simulations than we can perform with 

our present version of the GSPH code. More realistic simulations should have the 

proper dependence of diffusion coefficient (opacity) upon density and temperature. 

Likewise, one should consider the dependence of heating rate upon density and 

temperature. Also, to simulate stellar cores that are generating heat locally, one 

really needs to permit Lagrangian adjustments of a self-gravitating fluid, which we 

cannot do because of our fixed boundaries. To address such issues, one would like 

to simulate a spherically symmetric, self-gravitating fluid with an inner boundary 

at r = O. We discuss efforts toward this goal in Chapter 6. 



CHAPTER 6 

Spherical GSPH and Astrophysical Applications 

in Spherical Geometry 

6.1 Introduction 
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In Chapter 5 we discussed a few examples of applications of the GSPH code 

to more astrophysically realistic environments. We were limited, however, to a 

restricted set of problems in which the boundaries of the fluid could not adjust to 

the thermal forces and in which the geometry was plane-parallel. In this chapter 

we develop a GSPH code with spherical symmetry to overcome some of these 

shortcomings. 

Only two modest changes need to be made to the plane parallel code described 

in Chapter 3. First, the geometry of the code must be made spherical by using 

the appropriate divergence in the thermal diffusion equation and by modifying 
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the volume element for the density calculation Second, we must add self gravity. 

These modifications are described in section 6.2. 

In section 6.3 we discuss two tests of the spherical code. The first test demon

strates the instability to collapse if'Y < 4/3. The accompanying discussion iden

tifies the existence of two regimes: a pressure confined regime and a self-gravity 

confined regime. Collapse only occurs in the latter regime. The second test is 

a convection dominated overshooting simulation. In section 6.4 we discuss why 

overshooting in fluids with 'Y ~ 4/3 may be more extensive than in fluids with 

larger 'Y. We consider what modifications to the code would have to be made to 

simulate the evolution of the structure and composition of burning cores in sec

tion 6.5. Because of the problems of simulating convection in the self-gravitating 

regime, we discuss these issues, but do not present any simulations. In section 6.6 

we summarize this chapter. 

6.2 Modifications to the GSPH Code 

6.2.1 Modifications for Spherical Geometry 

We must modify the divergence term in equation 3.10 for the entropy evolution 

of a single particle. Because this term is essentially a second derivative (divergence 

of the temperature gradient), it is second order accurate at bin centers, rk, and 

we use the value at rk throughout the interval from rk-I/2 to rk+I/2' The width 

of the bin is .6.z. The finite difference form of this term is 

'V(K'VTh = .6.z~r% (r%+1/2K k+1/2(Tk+1 -Tk )-r%_1/2K k-I/2(Tk - Tk-d) .(6.1) 
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Note that there is also a divergence of the velocity gradient in equation 3.9 for the 

velocity evolution of a single particle. This is a viscosity tenn that is zero in the 

steady state and has no important influence on the steady-state fluid configuration. 

Therefore, we do not modify the calculation of this tenn for spherical geometry. 

We must also modify the density calculation. The density in bin k is given 

by 

(6.2) 

where the mass in the bin is 

Mk = J 47rr2p(r)Wk(r)dr, (6.3) 

and the "effective" volume element is 

~Vk = J 47rr2Wk{r)dr. (6.4) 

The SPH kernel, Wk{r), is given by equation 3.13. Equation 6.4, which is the 

convolution of the spherical volume element with the SPH kernel, is evaluated in 

Appendix E, taking into account the reflecting boundary symmetries. Of course, 

we do not know the true density profile, p{r). The SPH averaged density that we 

calculate is derived by a summation over a finite number of particles. We find the 

mass in a bin according to 

(6.5) 

where m is the mass of the particles and rj are their positions. We use equation 

3.15 to correct the densities of the boundary points for the sudden change of slope 

of the piecewise linear density profile. (It would be better to derive a correction 

function, as in appendix C, by evaluating PI from equation 6.2 using a piecewise 

linear density profile. We, however, have not implemented this. In the limit of 

small bin width, this improved correction function should reduce to equation 3.15.) 
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6.2.2 Inclusion of Self Gravity 

We calculate the gravity at bin walls, i. e. at the k + 1/2 points. The gravita-

tional acceleration at rk+1/2 is given by 

MTot(rk+l/2) ) 
gk+1/2 = 2 gB(rk+l/2 , 

r k+1/ 2 

(6.6) 

where the function gB(r) on the right describes the boundary profile given by 

equation 3.4 and should be distinguished from the gravitational acceleration on 

the left. This function insures that the gravity goes to zero at both boundaries, 

as demanded by the reflecting boundary conditions, but its value is unity in the 

interior of the fluid. (Note that the inner boundary is not necessarily at r = 0, 

so that the gravitational acceleration would not necessarily be zero at the inner 

boundary without modification by the function, gB(r).) 

The total mass interior to radius rk+1/2 is the sum of the mass inside the 

innermost boundary, Mcentral, and of the mass in each interior grid cell. That is, 

10 

MTot(rk+1/2) = Mcentral + L Mk', (6.7) 
10'=1 

The Mcentral term accounts for external gravitational forces, as in the plane parallel 

code, but the summation of mass shells accounts for the self gravity of the fluid 

in the simulation. 

6.2.3 The Units 

In Chapter 3 we adopted a set of dimensionless units (see subsection 3.2.5). 

One of our basic definitions was that 9 = 1 at the bottom of the fluid. (Indeed, 

since there was no self gravity and the fluid was plane parallel, the gravity remained 
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unity throughout the fluid.) In the spherically symmetric code, we want to allow 

for the possibility that the inner boundary, ro, is at r = 0, where the gravitational 

acceleration should be zero, even in the absence of the gravity profile function. 

This is fundamentally incompatible with our earlier definition. We can, however, 

make a simple redefinition. We take 9 = 1 at the top of the fluid. We continue 

to use the definitions G = P = kB/ J.L = 1 as before. Then we can write 9 = 

(Meentral + MsheU)/(ro + Dz)2 = 1, where the mass in the simulation is Mshell = 

(471"/3)[(ro + Dz? - r~l and the depth of the fluid is Dz. Using the parameters 

aM = Meen tral / MsheU (6.8) 

and 

(3 = ro/Dz (6.9) 

with the above two relations, one can show that 

3(3 (1 + (3)2 
rO = 4; (1 + aM )(3(32 + 3(3 + 1)' 

(6.10) 

9 (1 + (3)6 
Mshell = 1671"2 (3(32 + 3(3 + 1)2(1 + aM)3' 

(6.11) 

and 
Dz = 3 (1 + (3)2 . 

471" (1 + aM )(3(32 + 3(3 + 1) 
(6.12) 

These equations reduce to our definitions in equations 3.23-3.25 in the limit of 

large aM and large (3. For small aM and small (3, the self gravity and the spherical 

geometry of the fluid become important. Simulations with the inner boundary at 

r = 0 correspond to aM = (3 = o. 
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6.3 Some Tests of the Spherical Code 

In this section we present two tests of the spherical code. The first test verifies 

that a fluid with adiabatic exponent , < 4/3 is unstable and collapses under its 

own self gravity. Moreover, this discussion highlights the existence of two regimes 

in the spherical code. In one regime, the fluid is pressure confined. This is the 

regime with which we are familiar from the plane parallel code. In the other, 

the fluid is gravitationally confined. We also present an example of a convection 

dominated overshooting model. 

6.3.1 Instability and the Virial Theorem 

A steady state fluid configuration must satisfy the virial theorem (e.g. Kip

penhahn and Weigert 1990) 

n + 3(, - 1)U + 471T
3 PI~~ = 0, (6.13) 

where n is the gravitational potential energy of the fluid and U is its thermal 

energy. The third term is evaluated at the outer and inner boundaries, T2 and 

r}, respectively. In most discussions of self-gravitating fluids, the third term is 

not present because at the inner boundary, rl = 0, and at the outer boundary 

(at infinity), P = O. In this case, the virial theorem predicts that more centrally 

condensed configurations (more negative n) have a larger thermal energy, U (as

suming , > 1). That is, as the central density goes up, so, too, must the central 

temperature. (Note that this is the opposite behavior observed in the "big dy

namic range" problems of Chapter 5, where we lowered the central temperature 

to get a bigger central density.) 
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In the limit that the pressure term in the virial theorem is negligible, we can 

write the total energy of the fluid, Brot = n + U, in terms of the gravitational 

potential according to 

(6.14) 

H"Y < 4/3, then ETot > 0 (since n is always negative) and the fluid is unstable 

since it has more energy than a fluid dispersed to infinity. In this case, small 

inward Lagrangian displacements of the fluid will increase the thermal energy 

adiabatically as the density rises, and hence the pressure gradient will rise also. 

However, the self gravity will rise even faster than the pressure gradient, and, 

therefore, the fluid will collapse. 

In our simulations, the inner boundary need not be at r = 0, although it can 

be. The outer boundary is not at infinity, and there is always a non-zero pressure 

there. Therefore, the third term in the virial theorem is not zero in our case, and 

its presence leads to two equilibrium regimes. In the first regime, the entropy of 

the fluid is high and the central density is low. In this regime, the U and P terms 

of the virial theorem are the important pair for understanding the equilibrium 

configuration as the entropy of the fluid is varied. As the entropy of the fluid 

is decreased, n hardly changes, but the thermal energy and central temperature 

decrease. The virial theorem predicts that the pressure at the inner boundary, P l , 

increases and/or the pressure at the outer boundary, P2 , decreases. Therefore, the 

central density gradually rises. 

As the entropy of the fluid is decreased further and the central density contin-

ues to increase, the change of n eventually becomes significant. In due course, the 
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!2 and U tenns of the virial theorem become most important. This defines the sec

ond regime. In this regime, as the entropy is decreased further, the gravitational 

potential, !2, continues to decrease. Now, however, the virial theorem predicts 

that the central temperature goes up. Therefore, there is a minimum central tem

perature, below which there are no equilibrium configurations. The entropy at 

which this minimum temperature is obtained divides the two regimes. In the first 

regime, the fluid is confined mainly by the pressure at the boundaries. We call this 

the pressure supported regime. In the second regime, the fluid is mainly confined 

by its own self gravity, and we call this the self-gravitating regime. 

A fluid in the pressure supported regime can be stable even for "y < 4/3. We 

verified this by simulating the evolution of an isentropic fluid with "y = 1.1. The 

inner boundary was at r = 0 (aM = f3 = 0), and the central temperature in 

hydrostatic equilibrium was T = 1.2. The minimum possible equilibrium central 

temperature was T min = 1.1, ~d, therefore, the equilibrium configuration was in 

the pressure supported regime by a small margin. If we were to remove entropy 

from the fluid, it should make a transition to the self-gravitating regime. We 

decreased the entropy of every particle in the isentropic fluid by 68 = 1.0, and, the 

central temperature of the fluid dropped below the minimum possible equilibrium 

temperature. The density and temperature profiles of the fluid at this time, t = 0, 

are shown in Figure 6.1. We let the fluid evolve, as shown in the remaining panels 

of Figure 6.1. The central density and temperature of the fluid rise, and there is 

no stable equilibrium since we are in the self-gravitating regime with an unstable 
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Figure 6.1 . Shows the density and temperature evolution of a fluid with 1 = 1.1. At 
t = 0, the fluid is out of equilibrium and in the self-gravitating regime. There 
is no stable equilibrium , and the fluid collapses under its own self gravity. 
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"y. We followed the collapse until the outer density dropped so much that there 

were no particles in the outermost bin. (We used 20,000 particles and 10 bins.) 

The eventual depletion of particles from the outer bin highlights a shortcoming 

of the spherical code. This depletion is inevitable with our fixed, Eulerian grid. It 

would be more desirable to have a Lagrangian grid, that can adjust as the mass 

shells move. The use of an Eulerian grid also is a source of trouble in the innermost 

bins, especially if the inner boundary is at r = O. Since the volume elements vary 

as r2 , the number of particles per bin roughly varies as r2. If, for example, there are 

10 bins, the outermost bin has about 100 times more particles than the innermost 

one. If there are 20,000 particles in a simulation, the innermost bin has fewer than 

200 particles. Thus, for much higher grid resolution, the innermost bin suffers from 

bad particle statistics. This is tolerable if we are simulating a convectively stable 

fluid, but because of the fluctuations of particle count that accompany convectively 

unstable simulations, we usually cannot simulate convective fluids with the inner 

boundary at r = O. This problem could be overcome with the use of a Lagrangian 

grid. 

6.3.2 A Convection Dominated Overshooting Simulation 

As a second test of the spherical code, we simulated convective overshooting. 

Because of the limitations of the Eulerian grid discussed above, we adopted the 

parameters aM = f3 = 0.5, so that the fluid is twice as deep as the distance 

from r = 0 to the inner boundary and twice as massive as the interior mass, 

Mcentral. Therefore, both the spherical geometry and self gravity of the fluid are 
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important, although the fluid is not in the self-gravitating regime. We used length 

scales .eM = .eH = .eV = 0.0182. This change from the parameter choice in the 

previous chapters is mainly because the depth of the fluid, Dz, is smaller for the 

new OM and p. Therefore, we use a smaller boundary temperature (T = 0.2 at 

the inner boundary) to have approximately one pressure scale height across the 

fluid. Other parameters must also be scaled appropriately so that the simulation 

tests the same regime of parameter space as the Chapter 3 model. Accordingly, 

we use Vrnic = 5 X 10-7
• The heating rate is Eo = 3.015 X 10-3 , and the diffusion 

coefficient is given by 

_ { 10-8+6z/zmax 
K(z) = 5 ' 

10- [1 + (2z - zrnax)/3zrnax l. 
z < zrnax/2 
z > zrnax/2 

(6.15) 

With these choices, the fluid remains cOllvection dominated below zrnax/2, and 

it becomes convectively stable outside this radius. The simulation used 20,000 

particles and 80 bins, and it was run for 143 mixing times. 

The overshooting nature of the simulation is illustrated by the plot of supera-

diabatic gradient versus position in Figure 6.2. The true superadiabatic gradient 

is nearly adiabatic, although the radiative value is several orders of magnitude 

larger. Hence, the unstable region at left is convection dominated. Toward larger 

z (or larger r), the flux decrease as r-2 because of the spherical geometry, and the 

diffusion coefficient increases. At zrnax/2, the flux has decreased by a factor of 4 

from the left boundary (see Figure 6.3) and the diffusion coefficient has increased 

by 103 , making the fluid critically stable. The diffusion coefficient increases by 

another factor of 5/3 by the right boundary, and if the flux were constant, the 
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Figure 6.2. ~ "VT vs. z for the convection dominated overshooting model with the 
spherical code. At the left boundary, the radiative temperature gradient is 
~"VTRad ~ 1,500. 

superadiabatic gradient would decrease to ~ 'VT ~ -0.1, as shown by Figure 3.24. 

The flux, however, decreases by another factor of 9/4 by the right boundary, and 

the temperature gradient need not be as steep. At the right boundary, the tern-

perature gradient is approaching the isothermal value of ~ "VT = -0.4. 

In Figure 6.3 we show the convective flux. At the left boundary, the total flux 

predicted by equation 3. 7 (which is only approximate for spherical geometry) is 

FTot = 1.5 x 10-5
. Since the unstable zone is convection dominated, the convective 

flux is essentially equal to the total flux until near the stability transition. Indeed, 

the convective flux shows the expected r- 2 decrease until the fluid departs from the 

convection dominated regime. (Compare with Figure 3.27 for the plane parallel 

simulation.) We expect the convective flux to decrease by about a factor of 4 by 
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Figure 6.3. The convective flux versus position for the convection dominated over
shooting model from the spherical code. The total flux at left is about FTot ~ 
1.5 x 10-5 , and it decrease as r-2 until the fluid is no longer convection dom
inated. 

Zmax/2. This is only approximately true since the fluid ceases to be convection 

dominated somewhat sooner than Zmax/2. 

In Figure 6.4, we show the second moments. (Compare with Figure 3.26. for 

the plane parallel simulation.) From Figure 6.4a for the velocity dispersion, we can 

estimate the minimum overshooting distance. The stability transition, according 

to the local theory, is at Zcrit = 0.055, and the point of minimum dispersion is at 

about z = 0.09. Hence, the overshooting distance is at least dover ~ 1.9.eM. We 

observe that the velocity and temperature dispersions in the unstable region of 

Figures 6.4a and b decrease since the flux that must be transported by convection 

decreases. However, the normalized velocity-temperature correlation in Figure 

6.4c is near unity, indicating that the local equations would be good here. We see 
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Figure 6.4. The second moments for the convection dominated overshooting model 

from the spherical code. (a) The velocity dispersion, (b) temperature dispersion, 
and (c) normalized velocity-temperature correlation are graphed versus position . 
The error bars on the curves represent the 1 - u standard deviations of the 
moments . 
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that we becomes negative soon after the stability transition. This is where most 

of the overshooting particles are developing negative e. Accordingly, this is where 

there is a minimum of (To. Then (To rises again, but drops sharply when we returns 

to zero. This approximately corresponds to the minimum of (T w' 

For completeness we show the third and fourth moments in Figures 6.5 and 

6.6. (Compare with Figures 3.28 and 3.29 for the plane parallel simulation.) We 

see that the normalized w 3 curve is mostly positive, except near the right bound

ary where the slope of (T w changes sign. The amplitude of the normalized curve 

is magnified there by the small values of (Tw. We saw, however, that the struc

ture of (To is more complex, and accordingly, so is ()3, as well as the moments of 

intermediate () order. We see that the normalized fourth moments start near 2 at 

the left boundary, as is typical of most simulations in this thesis. They remain 

highly correlated until the non-local effects of the overshooting region become im

portant. The confusion of the ,curves in the overshooting region is enhanced by 

the normalization of certain moments by w(), which is zero at two points. 
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Figure 6.5. (a) w 3 and (b) the normalized third moments versus position. 
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Figure 6.6. (a) w 4 and (b) the normalized fourth moments versus position. 
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6.4 A Discussion of Overshooting With 'Y Near 4/3 

It is well-known that self-gravitating, spherically symmetric fluids become un

stable to collapse if 'Y < 4/3. This critical 'Y is derived from equation 6.14. For 

'Y = 4/3, the potential energy, f2, of the fluid can change without a corresponding 

change in the total energy. The fluid can change its configuration without feeling 

any forces that try to restore a preferred hydrostatic configuration. Stars whose 

pressure support is dominated by radiation pressure or by relativistically degen

erate matter have 'Y only slightly greater than 4/3. In these cases, the forces that 

restore hydrostatic equilibrium to a perturbed fluid configuration are weak. 

In fluids with such low 'Y, the perturbations may take a long time to decay. 

We have seen how the mean velocity and temperature (as well as the moments) 

fluctuate with time in turbulent fluids. While this fluctuation has, so far, been 

mainly attributed to the statistics of a finite number of particles, there may be 

a component which is physical and caused by the fluid's not being in perfect 

hydrostatic equilibrium. The energy of the convective motions may drive acoustic 

waves through the background, and we would expect these acoustic waves to last 

longer in fluids with lower 'Y. If the time scale for these acoustic perturbations to 

damp became of order or longer than the convection time scale, we would expect 

the background fluctuations to interact with the convection. It is conceivable that 

the overshooting distance could be much greater in this case. 

Simulations under such circumstances would only be meaningful in the self

gravitating regime, where the critical I is 4/3. Otherwise, the force that restores 

equilibrium is supplied essentially by the boundaries and not by gravity. Thus, 



287 

while it is trivial to change "y in our simulations, it is hard to perform a useful 

simulation in the right regime. We would need the inner boundary of a convecting 

fluid at r = O. The turbulent particles and bad statistics in the innermost bin 

have always caused such simulations to crash. 

6.5 A Discussion of the Evolution of Burning Stellar Cores 

It is well-established that convective overshooting from stellar cores can in

crease a star's luminosity and the lifetime of various burning phases by supplying 

more fuel to the hot core than there would be without overshooting. It would be 

interesting to simulate the development of convection in stellar cores. With such 

simulations we could predict the evolution of the abundance profiles and the total 

amount of energy released in each burning phase. Comparisons with results using 

other convection theories or stability criteria (see Chapter 7) would be valuable. 

Such simulations would entail modifications of the code. For any burning 

phase, we could define the maximum energy per unit mass that can be liber

ated, €max. We can also calculate the burning rate, €(p, T). One would also 

include losses, such as from the escape of neutrinos, in the € term. Then the 

heating/cooling rate is Q = p€. Each fluid element would require a variable that 

indicates how much energy it has released, €j. Initially the material is entirely 

unburned, and €j = O. As the energy is supplied at the rate €, €j rises. When the 

fluid element is completely burned, €j = €max, and no more energy can be squeezed 

out. We have successfully introduced these additions to the code. 
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If our simulation were in the self-gravitating regime, but not initially burning, 

the core would lose entropy, shrink, and get hotter, until eventually burning was 

ignited. We could consider the structure of the core at the onset of burning 

and how far overshooting extends on the ZAMS. Recall from Chapter 5 that this 

is crucial for the formation of blue loops. The convective core shrinks with time. 

Since the entropy generation rate is lower, the core should contract and get hotter. 

Eventually, subsequent core burning phases or shell burning phases may ignite. In 

principle, one could follow the evolution of the composition profiles that result 

from application of non-local convection. 

It is evident that such simulations would require more physics than is presently 

m the code, especially the density and temperature dependence of the heat

ing/cooling rate, Q(p, T), and of the diffusion coefficient, I«p, T). We would need 

a more general equation of state, since the cores of stars in advanced burning stages 

can be degenerate. Furthermore, these simulations would only be meaningful in 

the self-gravitating regime. Otherwise, as a core ceased to burn, it would lose en

tropy, shrink, and get cooler; no subsequent burning phases would occur. Indeed, 

the evolution of the burning would proceed differently than in a self-gravitating 

regime. Because of the difficulty of performing simulations in this regime, we do 

not present any here. 

In this discussion, we have neglected the important effect of changing com

position during nuclear burning. Nuclear burning liberates energy, and it changes 

the molecular weight of the fluid elements. One must account for these changes 

in the equation of state (see Chapter 8). As the molecular weight of the core 
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goes up, the number density of ions decreases. Then, even if the density and 

temperature were unchanged, the fluid would lose pressure support and contract. 

This effect cannot be neglected. Furthermore, we will see in Chapter 7 that the 

development of composition stratification can lead to new stability regimes that 

can affect the rate of mixing. The modifications required to include the effects of 

changing molecular weight have not been introduced to the code yet. 

6.6 Summary 

We have extended the GSPH technique to fluids with spherical geometry, 

where the imier boundary can be at any r, down to r = O. The existence of 

boundaries leads to two equilibrium regimes. In one regime, the fluid is contained 

mainly by its own self gravity. This is the one relevant for realistic stellar calcula

tions. In the other, the fluid is contained mainly by the pressure of the boundaries. 

In this regime, a loss of entropy leads to cooling rather than heating. 

We tested this modified code by demonstrating the transition from the pres

sure confined to self-gravitating regimes in a fluid with I < 4/3. When the fluid 

crossed into the self-gravitating regime, it collapsed unstably. We also demon

strated the code on a convection dominated overshooting model. We saw that the 

flux varied as r- 2 as expected for spherical geometry. The overshooting distance 

was about dover ~ 1.9fM for this particular model. 

We discussed how one might simulate convection in stellar cores where I ~ 

4/3, or which are burning a finite amount of fuel. We saw that the simulations are 

only meaningful if the fluid is in the self-gravitating regime, where the spherical 
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code is not robust. If the inner boundary is at r = 0, the statistical fluctuations 

of particles in the innermost bin are always a problem if the fluid is convecting. 

These discussions emphasized the need for putting more physics into the code, 

especially the density and temperature dependence of the heating/cooling rate, 

Q(p, T), and of the diffusion coefficient, K(p, T). This chapter also makes clear 

the need for a more robust spherical code, e.g. one with a Lagrangian grid, and it 

motivates the importance of including the effects of molecular weight and compo

sition stratification for the simulation of the evolution of convecting fluids. 



CHAPTER 7 

CONVECTION WITH MOLECULAR WEIGHT 

GRADIENTS 

7.1 Introduction 
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In this chapter we investigate convection in fluids with molecular weight gra

dients. Convection in such circumstances is often called thermohaline convection 

or thermosolutal convection. Summaries of this phenomenon in an astrophysical 

context can be found in Spiegel (1972) and Huppert (1977). We study this type of 

convection both because of the interesting physics that results from the changing 

composition and as a demonstrat.ion of how the moment formalism, developed in 

Chapter 2, can be extended to other problems. 

The fundamental modification of the analysis in Chapter 2 is the addition of 

the molecular weight, fJ., as an additional parameter that is needed to characterize 

each fluid element. The ensemble of fluid elements will be described by the particle 
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density in the three-dimensional phase space, v-T-J1., i. e. by the distribution func

tion f(t, z, v, T, J1.). The horizontally averaged molecular weight is Ji. The moment 

hierarchy of equations will include J1. moments as well as the v and T moments 

described in Chapter 2. 

H a fluid has a positive molecular weight gradient, VJl > 0, it is dynamically 

unstable by the Rayleigh-Taylor instability (e.g. Chandrasekhar 1961). (Formally, 

the Raleigh-Taylor instability is based upon the density condition Vp > O. For 

an isentropic fluid, however, the above condition is equivalent, and we will use 

the phrase "Rayleigh-Taylor instability" to refer the VJl > 0 instability for lack 

of a better term.) However, a negative superadiabatic gradient, ~ VT < 0, is 

stabilizing, and if it is sufficiently negative, the fluid can be made dynamically 

stable. Indeed, for an ideal gas, the criterion for dynamical stability is 

VJi/Jl + /). VT/T < 0, (7.1) 

the well-known Ledoux criterion (Ledoux 1947). As astrophysical example of a 

fluid that is stable by 7.1, but has Vii > 0, occurs in massive stars of about 

10 M0 , (e.g. Kippenhahn and Weigert 1990) where the peak temperature is off 

center due to neutrino cooling in the center. Eventually, such a star will ignite 

helium burning off center, and the molecular weight will increase in the burning 

shell as the carbon abundance rises around the pure He center, making the core 

Rayleigh-Taylor unstable. But th~ core is stable by the Schwarz schild criterion 

and stable by the Ledoux criterion. 

Although the core is stable according to the Ledoux criterion, there is another 

type of instability that the core develops. A fluid element displaced downward will 
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be heavier and hotter than the surroundings. The hotter fluid element is cooled to 

the background temperature, and it loses its thermal buoyancy, and the restoring 

force is less. If the thermal diffusion is fast enough, the fluid element sinks directly 

on a thermal diffusion time scale. This is the salt finger phenomenon (or for the 

example cited, the "carbon finger" phenomenon). 

Another interesting phenomenon occurs if a fluid is Schwarzschild unstable 

(.6. VT > 0) but Ledoux stable. This could happen near the boundary of a stellar 

core, which is both hotter and heavier than its exterior. An upwardly displaced 

fluid element would be in an environment cooler and lighter than itself. Because 

the fluid element is hotter than its environment, it feels an upward buoyancy 

force, but because it is heavier, it also feels a downward buoyancy, which will 

win because the fluid is Ledoux stable. Thus, the net buoyancy force tries to 

restore the particle to its original position. Indeed, the particle oscillates around 

its equilibrium position. As the particle makes its excursions into the cooler, upper 

region, thermal energy diffuses out of the particle. Then the particle returns to its 

equilibrium position with 0 < o. As it sinks, the thermal part of the buoyancy is 

stronger than if there were no thermal diffusion earlier. Then the particle makes 

its excursion into the lower, hotter region, where it is heated. It returns to its 

equilibrium position with 0 > 0, and the thermal buoyancy grows even more. The 

growth of the oscillations results from the phase lag between the temperature and 

velocity oscillations, and comes from the net work done over each cycle (Spiegel 

1972). This vibrational instability is often called semiconvection, and it produces a 

slow mixing of the fluid. Semiconvection is important for the evolution of massive 
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stars, with M~lO M0 (Kippenhahn and Weigert 1990). The presumption implicit 

in the discussion above is that the thermal diffusion acts on a faster time scale 

than the molecular weight diffusion. If the time scales are reversed, the two types 

of instabilities (salt finger and semiconvection) in the two regimes, just described, 

will exchange (Baines and Gill 1969). To complete the discussion, a fluid which 

is both Rayleigh-Taylor and Schwarzschild stable (and, therefore, also Ledoux 

stable) is completely stable. 

The stability regimes just described are those commonly discussed in con

nection with convection in fluids with molecular weight gradients. However, just 

as the appropriate critical stability condition for simple thermal convection (with 

'V/1 = 0) is given by equation 2.60, rather than the traditional Schwarzschild cri

terion, in this chapter we will find that the stability regimes are separated by a 

modified set of lines in the D. 'VT- 'V/1 plane, rather than the traditional Ledoux 

criterion (e.g. Baines and Gill 1969). 

The development of the equations and stability conditions for convection with 

molecular weight gradients are presented in a manner parallel with Chapter 2. In 

section 7.2 we expand the particle and distribution function definitions to include 

molecular weight phenomena. In section 7.3 we write the equations governing the 

dynamics of a single particle and we derive the zeroth and first moment equations. 

We derive the second moment equations in section 7.4. We study the local limit of 

these equations in section 7.5, and we find an equation that relates the turbulent 

velocity dispersion to the superadiabatic and molecular weight gradients. We will 

obtain the conditions for convective stability and instability. We study the stability 
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of a single fluid element in section 7.6. As this section gets off the track of the 

development of the moment theory, the reader who does not require deeper insight 

into the stability regimes may skip this section. Section 7.7 is a lengthy discussion 

of the stability of the second moments and of the nature of the bifurcations of the 

equilibrium solutions. The convective, semiconvective, and salt finger regimes are 

identified. The reader can learn the main results of this section by studying its 

introduction, without delving deeper into the details of the rest of this section. 

The results of this chapter are summarized in section 7.8. 

In this chapter we develop the local theory of convection, but do not go on, as 

in Chapter 2, to also derive a non-local theory. The main purpose is to demonstrate 

that the formalism we have developed reproduces the standard results known in 

this problem. 

7 .2 New Definitions 

In addition to the variables z, v, and T that characterized a single particle in 

Chapter 2, we add the molecular weight, J.L. Associated with this is the molecular 

weight of the background, Ii, and the variation around the background, v = J.L - Ii. 

We will describe the ensemble of fluid elements either by an absolute distribution 

function 
mdN 

fA(t, z, v, T, J.L) = dAdzdvdTdJl' 

or by the relative distribution function 

mdN 
fR(t, z, w, 8, v) = dAdzdwd8dv 

(7.2) 

(7.3) 
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These describe the particle density in a three-dimensional velocity-temperature-

molecular weight phase space. 

As before, we will need to expand the density at constant pressure. To first 

order we have pep, T, J.L) = p + (8p/8T)p() + (8p/8J.L)pll. In a manner analogous 

with the definition of a (equations 2.14), we define 

q,= (8In p ) . 
8ln J.L p 

(7.4) 

Hence, we can write 

p = p - apO /T + q,pv /71. (7.5) 

In a more detailed calculation one might also consider K and Q as functions of J.L, 

as well as P and T. However, we will neglect this extra complication. 

7.3 The Velocity, Temperature, and Molecular Weight Evolution 

In this section we derive, or modify by inspection, the v and T equations of 

Chapter 2, and we introduce a jJ, equation. We will discuss the zeroth and first 

moment, or background, equations. 

7.3.1 v Equation 

The v equation is essentially equation 2.24, with the additional buoyancy term 

that results from the molecular weight variation in the expansion of 1/ p. We use 

l/p = (1 + aO/T - q,v/J.L)/p and obtain 

. 1 8P aO 8P q,v 8P 821j 
V = -g - -- - -=- + -- - (A + Ba)w + C-. (7.6) 

P 8z pT 8z pJ.l 8z 8z 2 
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7.3.2 t Equation 

In Chapter 2 we derived equation 2.36 for T by expanding 1/ p as a function 

of 8 in the adiabatic temperature change term. In equation 2.33 for oS, we replaced 

the 1/ p terms with l/p, rather than the expansion in 8. Analogously, we will 

expand the adiabatic term as a function of 8 and v and use equation 2.33 for s as 

written earlier. The appropriately modified version of equation 2.36 is 

. a dP a8 ¢JV 1 a (-aT) a2T 
T=--(l+-=---)+-- K- -(D+Eu)8+KT-8 

pCp dt T 71 pCp az az ' az2 

1 2 C (Ov)2 Q Q,T8 + -(A + Bu)w + - - + =-- + -==-. 
cp cp az pCp pT 

(7.7) 

7.3.3 jJ, Equation 

The molecular weight of a fluid element can change due to several processes. 

Two of these are chemical reactions and nuclear burning. Another is molecular 

diffusion, characterized by a d~ffusion coefficient XD. We will consider only the 

latter process for simplicity. Most generally, we can write a diffusion equation as 

(7.8) 

Just as we considered the radiative diffusion coefficient, J(, as a function of (P, T), 

we also consider the molecular diffusion, XD, to be a function of (P, T), and to first 

order we get XD = XD + XD,T 8. We expand equation 7.8 to first order and replace 

the Laplacian of the variation v with the inverse squares of the characteristic 

lengths to obtain 

(7.9) 
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In equations 2.24 for v and 2.36 for T we included the effects of turbulent 

momentum transport (turbulent viscosity in the EO' term) and turbulent energy 

transport (turbulent thermal diffusion in the EO' term). Similarly, we must include 

turbulent composition transport (turbulent molecular diffusion) in XD in the last 

term of equation 7.9. Similarly to the other turbulent transport processes, we 

assume the excess molecular weight, v, decreases to the background value as the 

fluid element travels a characteristic distance of a mixing length with characteristic 

turbulent velocity, 0'. Hence we define the turbulent molecular diffusion coefficient 

as O'eM • We assume the turbulent diffusion only works on horizontal variations. 

We find 
. 8 (_0Ji) 82/1 ' 
p= 8z XD8z +XD,r 8z20-(F+GO')v, (7.10) 

where 

F = XD(2/£~ + 1/£~) (7.11) 

and 

(7.12) 

The GO' term is the turbulent molecular diffusion term. 

7.3.4 The Absolute "Boltzmann Equation" 

In an obvious extension of equation 2.37, we write the new absolute Boltzmann 

equation as 

(7.13) 
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7.3.5 The Zeroth and First Moment Equations 

Using the above equations for the evolution of a single fluid element, we find 

that the zeroth and v moments the Boltzmann equation 7.13 are unchanged from 

the Chapter 2 results. The zeroth moment is still the continuity equation, 2.38, and 

the v moment is still the momentum equation, 2.41. The T moment of equation 

7.13 is slightly modified from equation 2.43. It now becomes 

DT __ 1_!"'(K8T) +.!.!...(pwB)- a2 
wB8P + ar/> wv8P 

Dt pCp 8z 8z p 8z pCp T 8z pCp /1 8z 

_2.(A+Ba)w2_£(Ov)2 __ Q =0. 
Cp Cp 8z pCp 

(7.14) 

This equation has a Wi7 correlation term, in addition to the wB correlation term, 

both of which have their origin in the adiabatic temperature change of equation 

7.7. 

With our three-dimensional phase space, we also have a third first moment 

equation. The first 11 moment of equation 7.13 is 

D/1 1 8 8 ( 0jI) - + =-(pwv) - - XD- = 0 
Dt p 8z 8z 8z 

(7.15) 

This is just the usual diffusion equation with an additional term that describes 

turbulent transport. 
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7.4 The Second Moment Time Evolution 

As we discovered in Chapter 2, it is easier to use the relative distribution 

function fR (t, z, w, 0, v) to derive the second and higher moments. Whereas in 

Chapter 2 we had three second moments, w2 , wO, and 02 , here we have six second 

moments. The three additional equations are for Wv, Ov, and v2 • We begin by 

writing the evolution equations for the perturbations w, 0, and v. 

7.4.1 tV Equation 

The equation for tV is a slightly modified version of equation 2.44. It is 

. 00 8P ¢)1/ 8P au 1 8 _-
w = --=- + --- - (A + Ba + -)w + --(pw2 ). 

pT 8z pJ.l 8z 8z P 8z 
(7.16) 

7.4.2 T Equation 

The following equation for iJ is a simple extrapolation of equation 2.45. It is 

. ( 0
20' o¢v ) DP 0

2 8P -o =~'\ITw + --= - -- -- + --=-(wO - wB) 
pcpT pcp71 Dt pcpT 8z 

o¢ 8P ( K,T a2
T Q'T) -::-=-(wv-Wi7)- D+Ea-=---=- 0 

pCpJ.l 8z pCp 8z2 pCp 
1 2 - 18 -

+ -(A + Ba)(w - w2
) + =-8 (pwB). 

cp p z 
(7.18) 

7.4.3 v Equation 

The time evolution of the molecular weight variation can be found from v = 

jJ. -llJi/dt = jJ. - D71/ Dt - w8Ji/8z. We get 

. 8271 1 8 
v = -'\I71w - (F + Ga)v + XD,T -8 2 0 + =-8 (pwv). 

z p z 
(7.17) 
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In the first tenn we use the definition V"ji = 0ji/8z. This term produces a change 

in the molecular weight perturbation as a particle moves relative to its background. 

It is analogous to the ~ VTw term in the 8 equation above. The next tenn plays 

a role analogous to the (A + Bu) tenn in equation 7.16 for tb or the (D + Eu) 

tenn in equation 7.17 for 0. 

7.4.4 The Relative "Boltzmann Equation" 

In a straight-forward extrapolation of equation 2.46, we get the new relative 

Boltzmann equation. It is 

7.4.5 The Second Moment Equations 

The six second moment equations are: 

• w2 moment equation 

Dw2 1 8 _- (2GWO 2¢>Wi7) 8P au --- + =-(pw3
) + --=- - -=-=- - + 2(A + Bu + -)w2 = o. 

Dt P 8z pT p j.L 8z 8z 

• w(} moment equation 

DwO 1 8 - (G02 ¢>OV) 8P ( au --+--(pw2(})+ --=-- -+ A+Bu+-
Dt p8z pT p"ji 8z 8z 

2-· 2--
+D+Eu- K,T 8 T _ Q'T)wO_ (G wO _ G¢>wv)DP 

pcpT 8z2 pCp pcpT pcp"ji Dt 

_ ~ VTw 2 _ (G2~ _ G¢>~) 8P 
pcpT pCpj.L 8z 

1 -
- -(A + Bu)w3 = O. 

Cp 

(7.19) 

(7.20) 

(7.21) 
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• ()2 moment equation 
- 2- . 

D()2 1 8 - - ( K,T8 T Q'T)-- + =_(pw()2) - 2~'VTw() + 2 D + Eu _ =-_ + =-- ()2 
Dt p 8z pCp 8z2 pCp 

_ (2a2()2 _ 2ar/l7iV) DP _ (2a2W82 _ 2ar/lWOV) 8P 
pcpT pCp"Ji Dt pcpT pCpI' 8z 

2 -
- -(A + Bu)w2() = O. (7.22) 

Cp 

• wv moment equation 

DWiJ 1 8 (--2-) (a()v r/lv2) 8P -- + -- pw v + ---=- - - -
Dt P 8z pT p"Ji 8z 

au -
+(A+Bu+ 8z +F+Gu)wv+'V"Jiw2 =0. 

• ()v moment equation 

D()v 1 8 -- (a2()v ar/lv2) DP 
--+=-(pw()v)-~'VTwv- --=-~ -
Dt P 8z pcpT PCPI' Dt 

2- . 

( 
K,T 8 T Q,T )--

D + Eu - =-- - =-- + F + Gu ()v + 'l"Jiw() 
pCp 8z2 pCp 

2-- --2 
_ (~ w()v _ ,ar/lwv ) 8P _ ~(A + Bu)w2v = O. 

pcpT PCPI' 8z Cp 

• v 2 moment equation 

Dv2 1 8 -- -
-D + =-8 (pwv2) + 2(F + Gu)v2 + 2'lTiwv = o. 

t P z 

(7.23) 

(7.24) 

(7.25) 

In analogy with the work in Chapter 2, we could go on to find the ten third 

moment equations for w 3 , w2(), w2v, W()2, wv2 , w()v, ()3, ()2v, ()v 2 , and v3 , and, 

thereby, develop a nonlocal theory of time dependent convection for fluids with 

molecular weight variations. However, this goes beyond the scope of this work. 

Even the local theory is rich with interesting physics. 
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7.5 The Local Theory 

We would like to find an equation analogous to 2.59, which will relate the 

velocity dispersion of a convectively unstable fluid to the superadiabatic gradient 

6. 'VT and the molecular weight gradient 'V71. We will begin by dropping the 

third moment terms from the second moment equations, by writing the steady-

state equations (i.e. D/Dt = 0, v = 0), and by making the approximation that 

(1/p)8P /8z = -g, which is good for subsonic convection. The local steady-state 

equations are 
- (aw8 </>Wfi) (A+Ba)w2 -g T - 71 =0, (7.26) 

- - (a8
2 

</>8v) 6.'VTw2 -(A+Ba+D+Ea)w8+g T - 71 =0, (7.27) 

6. 'VTw8 - {D + Ea)82 = 0, (7.28) 

- (a8v </>V2) 'V71w2 + (A + Ba + F + Ga)Wfi - 9 T - 71 = 0, (7.29) 

6. 'VTwv - 'V71w8 + (D + Ea + F + Ga)8v, (7.30) 

and 

'VJiwv - {F + Ga)v2 = O. (7.31) 

VvTe briefly examine the limit that 'VJi = 0 and show that the three v corre-

lations must be zero in the steady-state, and, therefore, that these six equations 

reduce to the three in section 2.5. We intuitively expect this since these three 

correlations were not required in the equations of Chapter 2. If 'VJi = 0, then 

v 2 = 0 by equation 7.31. Then equations 7.29 and 7.30 combine to give 

ga6.'VT 
(A + Ba + F + Ga)wv = - Wfi. 

T 
(7.32) 
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If the fluid is convectively unstable, ~ VT > 0, and the coefficients of wv have 

opposite signs. Then equation 7.32 can only be satisfied if Wv = 0, from which it 

follows that Ov = 0 also. Only equations 7.26-7.28 are non-trivial in the "V71 = 0 

limit. 

In the general case when V'Ji :f:. 0, we want to solve the set of equations, 

7.26-7.31, for u (or, equivalently, w2 ). One can show that the resulting condition 

IS 

[(A + Bu + D + Eu)gOt~ VT + (A + Bu + F + Gu)g</J;Ti 

- (A + Bu + D + Eu)(A + Bu + F + Gu)(D + Eu + F + Gu)] 

x [(F+Gu)gOt~VT +(D+Eu)g</J;Ti 

- (A + Bu)(D + Eu)(F + Gu)] = 0 (7.33) 

This is the analog of equation 2.59, which relates the turbulent velocity disper-

sion to the superadiabatic gradient. Note that if we remove the complications of 

molecular weight variations by setting VTi = F = G = 0, this reduces to equ;:ttion 

2.59. 

The condition of critical stability is obtained when u = O. Because equation 

7.33 is quadratic in ~ VT and VTi, there are two stability conditions. We will 

discuss the stability properties in the ~ VT -VTi plane in detail in the following 

sections. Here we simply state the two critical stability conditions. They are 

FgOt~ VT + Dg</JVTi = ADF 
T Ti 

(7.34) 

and 

(A + D)gOt~ VT + (A + F)g</J;Ti = (A + D)(A + F)(D + F) (7.35) 
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Equation 7.34 reduces to the modified Schwarzschild critical stability criterion 

given by equation 2.60 if "'/'11 = F = O. For the special case that D = F = 0, 

equation 7.34 simplifies to the usual Ledoux criterion, 

aD. \IT IT + ¢\l71/71 = O. (7.36) 

7.6 Fluid Element Trajectories in Phase Space 

We consider the equations that describe the motion of a particle through w-

B-II phase space. We will obtain the modes of growth (for instability) or decay (for 

stability) of the perturbations around the background. We will obtain again, by 

means of a different calculation, the critical stability conditions of equations 7.34 

and 7.35. 

7.6.1 Simplified Equations of Motion 

We consider the motion of a particle through a homogeneous hydrostatic 

background. That is, we characterize the fluid with a single density, temperature, 

and molecular weight. However, we still describe the buoyancy forces by the 

superadiabatic gradient, D. \IT, and molecular weight gradient, \171. The simplified 

versions of equations 7.16, 7.17, and 7.18 are 

. ga g¢ 
w = T () - /1 11 - (A + B(7)w, (7.37) 

iJ = D. \lTw - (D + E(7)B, (7.38) 

and 

v = -\l/1w - (F + G(7)II. (7.39) 
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7.6.2 Stability of a Single Fluid Element 

We want to study the time evolution of a particle through phase space. We 

guess solutions (or eigenfunctions) of the form w '" exp(s't), 0 '" exp(s't), and 

V'" exp(s't). We substitute these solutions into equations 7.37, 7.38, and 7.39 to 

find the time coefficients s' (or eigenvalues) which describe the modes of growth or 

decay of the perturbations. The eigenvalues can be found from the determinant 

8' + (A + Bu) 
-.6.\1T 
\171 

-~ 
T 

8' + (D + Eu) 
o 

JJj. 
jJ 

o = O. (7.40) 
8' + (F + Gu) 

We will not write the analytic solutions to this cubic polynomial, but we examine 

certain limiting solutions of this equation. 

We want to find the conditions of critical stability for a single particle. There-

fore, we use u = 0 in equation 7.40. In this analysis we will find it useful to expand 

equation 7.40 into the form 

8,3 + a8,2 + b8' + c = 0, (7.41) 

where 

a=A+D+F, (7.42a) 

b = AD + AF + DF _ go.6. \1T _ _ g¢_\1_71 
T 71 

(7.42b) 

and 
c = _Fgo.6. \1T _ D g¢\171 + ADF. 

T 71 
(7.42c) 
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In addition, one can show that ifthe three roots to equation 7.40 (or 7.41) are s~, 

s~, and s~, then 

(7.43a) 

(7.43b) 

and 

(7.43c) 

Because equation 7.41 is cubic, there are two possible types of solutions. One set 

of solutions has three real roots. The second has one real root and a complex 

conjugate pair of roots. Also, there are two ways to achieve critical stability. 

One way is for one mode to be critically stable, while the other two are stable (i. e. 

s~ = 0 and ~(S~,3) < 0). The second way is for two modes to be strictly imaginary 

and the third stable (i.e. s~ < 0, s~ = i'IjJ, and s~ = -i'IjJ). 

If we assume critical stability is described by the first set of modes, i. e. by 

s~ = 0 and ~(s~ 3) < 0, then c = 0 and from equation 7.42c we get , 

F 9aD. 'VT + D9cP'VJi = ADF. 
T Ji 

(7.44) 

As one crosses the line in the D. 'VT-'V71 plane defined by this equation, one real 

root changes from positive to negative. This is precisely the stability condition of 

equation 7.34, which was derived from the local moment analysis. 

If we assume that critical stability is described by the second set of modes, 

i. e. by s~ < 0, s~ = i'IjJ, and s~ = -i'IjJ, one can show c = abo (Indeed, one obtains 
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c = ab so long as two roots are of opposite sign.) Hence we obtain another stability 

criterion, defined by 

(A + D)ga~ VT + (A + F)g</J;Ji = (A + D)(A + F)(D + F). (7.45) 

This is precisely the line in the ~ VT-'VJi plane defined by equation 7.35. Across 

this line two vibrationally unstable modes (because ~(s~ 3 > 0) change to two , 

vibrationally stable modes. We thus have derived the stability conditions 7.34 

and 7.35 by a second procedure, without reference to the local moment analysis. 

Indeed, it was this analysis that provided the insight into the best way to factor 

equation 7.33. 

The lines of critical stability are drawn in the ~ 'VT -'VJi plane in Figure 7.1. 

To be specific, we adopt the parameters A = 0.1, D = 1.0, and F = 0.2 as 

our example. The nearly horizontal line is defined by equation 7.44, and the 

nearly vertical one is defined by equation 7.45. Each of the four sectors defined by 

these lines are labeled with the stability behavior for that regime. The detailed 

demonstration of the stability behaviors is left to the next section, but we mention 

the main results here. We find that for a fluid to be completely stable, it must have 

a superadiabatic gradient that puts it in the lower left quadrant. That is, we must 

satisfy two stability criteria. If, however, we satisfy one stability criterion but not 

the other, we find either the salt finger instability or the semiconvective instability. 

We obtain convective instability if neither stability criterion is satisfied. 

In an analysis of essentially the same problem, Baines and Gill (1969) dis-

cuss the stability criteria and nature of the instabilities in different regimes for 
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Figure 7.1. Shows the lines of critical stability in the ~ "VT-"VJI plane for the pa
rameters A= 0.1, D = 1.0, and C = 0.2. These lines define four sectors, each 
of which is labeled with the relevant stability behavior. 
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a Boussinesq (Spiegel 1971) fluid bounded by two, dynamically free walls. They 

essentially find the critical stability criteria of equations 7.44 and 7.45, and they 

find many of the same stability behaviors mentioned here and below. 

7.7 Stability Analysis 

In this section we study the stability of particles that have been perturbed 

from their attracting points in phase space. In subsection 7.7.1 we discuss the 

qualitative changes that occur across the lines of critical stability in the ~ \/T-\/71 

plane, and we identify the boundaries of regions of qualitatively similar stability 

behavior. Figure 7.2 is the primary result of this section. It divides the ~ \/T-\/71 

plane into regimes of different stability properties. This diagram is labeled with 

abbreviations that indicate the stability behavior. Subsection 7.7.2 is a detailed 

study of each of the regions defined in Figure 7.2. The discussions in this subsection 

justify the labels on Figure 7.2, but readers who are not interested in this detailed 

analysis can skip the remainder of the section. In subsection 7.7.3 we study the 

~ \/T- \/71 stability diagram for the special case that the critical lines approach the 

Ledoux criterion. 

We have not performed a stability analysis on the local second moment equa

tions as in section 2.7 because of the difficulty of obtaining analytical results. Such 

an analysis would require that we find the steady-state values of the six second 

moments from equations 7.26-7.31. To derive the time dependence of perturba

tions to these six moments, we would have to calculate a 6 x 6 determinant and 

examine the roots of a sixth order polynomial. In the previous section, however, 
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we showed that we can recover the same stability regimes from studying single 

particle evolution as we can from second moment evolution. Therefore, we use the 

more tractable single particle approach. 

7.7.1 The b..\lT-'VJi Plane and the Stability Regimes 

Our stability analysis amounts to finding the roots, s', of the cubic equation 

7.41. These roots describe how the excess velocity, w, excess temperature, 0, 

and excess molecular weight, v, evolve in time. Let si, s~, and S31 be the roots 

of equation 7.41. There are two classes of solutions. The three roots, si, s~, 

and s~, can be all real, or the three roots can comprise one real number and 

a complex conjugate pair. Throughout the following discussion we will use the 

subscripts on the roots to indicate the ordering of their real parts. For example, 

~(si) > ~(s~) > ~(s~). 

As we move through the b.. \IT-\ljI plane, the stability characteristics of parti

cle evolution change. In particular, we want to understand the qualitative changes 

to the three roots as we move across the lines defined by equations 7.34 and 7.35 

(or. 7.44 and 7.45). For lack of any "standard" simulation parameters, we, rather 

arbitrarily, choose parameters for specific examples. In Figure 7.2 we show the 

critical lines, drawn as heavy solid lines, for A = 0.1, D = 1.0, and F = 0.2. 

Indeed, for astrophysical fluids, we have A « D (since Vrnic/XRad ~ )..VTh/ )"-yc, 

where).. is the mean free path between collisions of ions, of order 1O-9cm, and 

)..-y :::::: 1/ "'RP is the mean free path of photons, of order 1cm) and F « D (Spiegel 

1972). The nearly horizontal critical line is defined by equation 7.34 (or 7.44). The 
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nearly vertical critical line is defined by equation 7.35 (or 7.45). We know from 

the analysis preceding equation 7.44 that one root is zero on the "horizontal" line. 

From later calculations, we will see that to the left of the "vertical" line, s~ = 0, 

whereas to the right of the vertical line, s~ = O. From the analysis preceding 

equation 7.45, we know that on the vertical line, two roots are of opposite sign. 

We will find that below the horizontal line, s~ and s~ are a completely imaginary 

conjugate pair, whereas above the line si = -s~. 

We have anticipated that there will be locations in the .6. \1T- \1'JI plane where 

all roots are real and locations where some roots are complex conjugate pairs. 

The boundary that separate these qualitatively different behaviors is given by 

(Abromowitz and Stegun 1965) 

(~ -~ r + (ab ~ 3c r = 0, (7.46) 

where a, b, and c are given by equations 7.42. This curve, which separates the two 

classes of solutions described above, is drawn as a dashed line in Figure 7.2. We 

have also drawn a curve defined by 

ab - 3c (a)3_ 
--6-- 3 -0 (7.47) 

as a dotted line. The meaning of this line will be made clear later. We have 

used these curves and the critical lines to divide up the .6. \1T- \171 plane into eight 

regions, which are labeled A-H clockwise from the upper right. There are a few 

small regions, especially near the center, which have not been labeled. In the 

next subsection we will examine the roots, si -s~, in each of the labeled sectors, as 

functions of 0'. (We use B = E = G = 8.33, corresponding to the standard values 
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Figure 7.2. The b. 'lT-'lJi plane for A = 0.1, D = 1.0, F = 0.2. The heavy solid 
lines are lines of critical stability. The dashed line separates all real from some 
real and some complex roots. All roots have the same real part on the dotted 
that separates sectors E and F. Sectors A-Hare labeled with the roots structure. 
An s means the root is real, whereas ~( s) implies the root is complex In all 
cases, the sign of the real part of the root is indicated, as well as the number of 
roots with that sign. The dots show the locations for the calculations of Figures 
7.3-7.9. 
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We have found numerically the three roots of the cubic polynomial, equation 

7.41, as a function of the velocity dispersion, (7, for points in each of the sectors in 

Figure 7.2. These roots roots are graphed in Figure 7.3 for a point in sector A. All 

roots are real, and s~ > 0 is a growing mode for sufficiently small (7. If the particle 

velocities are too small, and hence (7 too, they must increase. As we saw in the 

analysis of Chapter 2, however, as (7 grows, all roots eventually become negative. 

Then the individual particle velocities must decrease until they are representative 

of the steady-state dispersion. Steady-state convection occurs when the largest 

root is zero. We call the steady-state value of (7 the attractor. We designate this 

steady-state value as (70 and mark the location with a x symbol in Figure 7.3. On 

the line dividing sectors A and B, si + s~ = s~ + s~. The qualitative appearance 

of the roots in sector B is the same as in A. 

As we cross from sector B to C, the root s~ changes to a second growing 

mode, as shown in Figure 7.4. This mode undergoes a transcritical bifurcation. 

Steady-state convection, however, occurs at the largest value of (7 for which a root 

is zero. Therefore, the larger 0" is the attractor, (70, and the bifurcation does not 

change the nature of the equilibrium. 

On the dashed line separating sectors C and D in Figure 7.2, si = s~. The 

merger of these roots defines a limit point bifurcation (e.g. Nicolis and Prigogine 

1989). In sector D, si and s~ become a complex conjugate pair. In Figure 7.5 we 

plot the real parts of the roots versus (7. The real part of the complex roots is 
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Figure 7.3. Shows the roots, s~ -s~, as a function of C1 / C!o in sector A, at~ VT = 3.0, 
'\!Jl = 2.0. The attractor is C!o All roots are real; one is positive. The roots in 
sector B look the same. The x marks the steady-state velocity dispersion, at 
C!=C!o. 
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Figure 7.4. Shows the roots in sector C, at ~ VT = 6.0, VJi = -2.0. All roots are 
rea I; two are positive. 
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positive. Hence, this is a zone of vibrational instability, which we identify as the 

semiconvection regime. The equilibrium trajectory of w, 0, and 1I in phase space 

is periodic. The radius of this orbit is defined by the real part of (j. Perturbations 

from this orbit evolve toward it. Hence, the orbit is a limit cycle. (Spiegel (1972) 

describes the vibrationally unstable mode occurring in the region unstable by the 

Schwarzschild criterion and stable by the Ledoux criterion. Indeed, this is the 

description of the semi convective zone that we used in the introduction to this 

chapter. However, we and (also Baines and Gill (1969)) have shown that if D 

is finite, as it must be for the instability to grow, we cannot obtain the critical 

stability lines suggested by this picture; i. e. we never obtain a vertical line at 

.6. VT = 0 (Schwarzschild criterion) and a diagonal line (Ledoux criterion).) 

As we approach the stability line separating sectors D and E, the radius of the 

limit cycle decreases. On the stability line, the radius becomes singular, and the 

equilibrium second moments undergo a supercritical Hopf bifurcation (e.g. Nicolis 

and Prigogine 1989), where the real part of (j reaches zero. The real parts of 8~ 

and 8~ change from positive to negative. The growing mode of Figure 7.5 changes 

to a stable mode, as shown in Figure 7.6. Since there is no attractor, we plot the 

roots versus (j, rather than (j / (jo as in the previous figures. We achieve convective 

stability only when we satisfy both conditions 

(A + D)ga~ VT + (A + F)g¢;71 < (A + D)(A + F)(D + F) (7.48) 

and 
F ga.6. VT D g¢V71 ADF 

T + 71 < . (7.49) 
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Figure 7.5. Shows the roots in sector D, at ~'\IT= 3.0, '\!Jl = -4.0. The negative 
one is real. The positive one is a complex conjugate pair, which we indicate 
with a dashed line. This zone of vibrational instability is the semiconvection 
reg1on. 
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Figure 7.6. Shows the roots in sector E, at ~'\IT = -5.0, '\!Jl = -5.0. All roots are 

stable. The dashed line indicates the root is a complex conjugate pair. Note 
that we use a on the horizontal axis, since there is no attractor, a0 • 
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Starting at sector A again, let us move through the .6. 'VT- 'V'"ji plane in Figure 

7.2 counterclockwise. As we cross from sector A to H, s~ increases. (On the 

boundary, s~ = -si.) There is still one real growing mode, and two real decaying 

modes, as shown in Figure 7.7. Note that there is a small, unlabeled region in 

Figure 7.2 to the right of the critical line and bounded by the dashed line. We 

discuss this for greater completeness. On this dashed boundary we have s~ = s~, 

and left of the boundary s~ and s~ are a complex conjugate pair, with -si < 

~(s~) = a?(s~) < O. 

As we cross from sector H to G, s~ and s~ merge and become a complex 

conjugate pair, as shown in Figure 7.8. In this region, !R(s~) = !R(s~) < -si < o. 

The growing mode is real. The decaying modes are vibrationally stable. We 

identify sector G with the salt finger instability. Note that the nature of the 

equilibrium solutions have not undergone any bifurcations as we have moved from 

sectors A to G. 

Finally, as we move from sector G to F, si changes sign from positive to 

negative. All the modes, plotted in Figure 7.9, are stable to convection. The equi

librium u undergoes a transcritical bifurcation. The dotted line, which separates 

sectors E and F is defined by si = !R(s~) = !R(s~); i.e. the roots are triply degener

ate along the dotted line. As we saw earlier, we must satisfy both equations 7.45 

and 7.46 in order to have stability. 
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Figure 7.7. Shows the roots in sector H, at ~'\IT= -2.0, 'VJI = 7.0. All roots are 
real; one is positive. 
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Figure 7.8. Shows the roots in sector G, at ~'\IT= -4.0, 'V7I = 3.0. The positive 
one is real. The negative one is a complex conjugate pair, indicated by a dashed 
line. 
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Figure 7.9. Shows the roots in sector F, at ~ '\lT = -3.0, '\lJl = 0.0. All roots are 

stable. The dashed line indicates the root is a complex conjugate pair. Note 
that we use a on the horizontal axis, si nee there is no attractor, a 0 . 

7. 7.3 Special Cases: The Ledoux Criterion 

To see more clearly how the Ledoux criterion is a special case of the more 

general stability criteria given by equations 7.44 and 7.45, we study the limit where 

A= D = F = 1. The results would be qualitatively the same for any three equal 

values. The lines of critical stability are drawn as heavy lines in Figure 7.10. Since 

D = F, the points at which the lines cross is moved out to infinity. i.e. the lines 

are parallel. The upper line is defined by equation 7.45 and the lower by equation 

7.44. If also A= D = F, one can show that equation 7.47 is satisfied for all~ '\lT 

and '\l J.l.· Therefore, unlike Figure 7.2 where the dotted line is defined by equation 

7.47, there is no corresponding line here. Equation 7.47 implies s~ + s~ = s~ + s~, 
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Figure 7.10.The ~ "VT-"V'"ji plane for A = 1.0, D = 1.0, F = 1.0. The heavy solid 
lines are lines of critical stability. The dashed line separates all real roots from 
a real and a complex conjugate pair of roots. Sectors A-D are labeled with the 
root structure. The dots show the locations for the calculations of Figures 7.11 
and 7.12. 
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Figure 7 .11. Shows the roots, s~ _ 3 , as a function of a/ a0 in sector A, at ~ 'VT = 5.0, 
'VJl = 2.0. All roots are real and equally spaced; one is positive. 
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Figure 7.12. Shows the roots in sector B, at ~ 'VT = 2.0, 'VJi = 0. All roots are 
real, one is positive . 
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as it did earlier. Equivalently, we can write s~ - s~ = s~ - s~. If the three single 

particle eigenvalues are real, then they are evenly spaced. 

We discuss the properties of the three roots of equation 7.41 in each of the 

sectors labeled in Figure 7.10. In sector A, both stability criteria given by equations 

7.48 and 7.49 are violated. In this zone all roots are real, and one represents a 

growing mode, as shown in Figure 7.11. 

From previous analysis, we know that two roots have opposite sign on the 

critical line separating sectors A and B. In particular, s~ = -s~. The roots in 

sector B are shown in Figure 7.12. As before, there is one real growing mode. 

We know that on the lower critical line, one of the roots becomes zero. In 

particular, s~ = 0 on the critical line and becomes negative in sector C. Then all 

modes are stable, and the equilibrium u undergoes a transcritical bifurcation. We 

do not graph these roots because of the similarity to the previous figures. There 

would be no growing modes and no attractor. 

As we approach the dashed line, the three roots, s~, s~, and s~, merge, and 

they are equal on the line. This implies that ab - 3c = O. Then equation 7.46, 

which defines the boundary between all real and some real and some complex roots, 

simplifies to 3b - a 2 = O. This defines the dashed line. Below this line, in sector 

D, s~ = ~(s~) = ~(s~) < O. Then all modes are stable and triply degenerate. 

Finally, in the limit that A = D = F = 0, the two critical lines merge to form 

the traditional Ledoux stability boundary. This is shown in Figure 7.13. One can 

show that c = 0 for all ~ "VT and "VJi. Everywhere s~ = 0 and s~ = -s~. Then 

in sector A, the roots are all real, and one of the modes is growing. The roots 
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Figure 7.13. The ~ \lT-\lJi plane for A = 0, D = 0, F = 0. The heavy solid line 
is the traditional Ledoux stability criterion. The dashed line in Figure 7.10 has 
also merged with this line. Therefore, it also separates the regions with all real 
roots from those with a real and a complex conjugate pair of roots . Sectors A 
and B are labeled with the root structure. 
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would look qualitatively like those in Figure 7.11. On the stability boundary, 

the roots merge, with s~ = s~ = s~ = 0, and the equilibrium q undergoes a 

transcritical bifurcation. The roots are triply degenerate. In sector B, s~ and s~ 

become a complex conjugate pair, and the roots remain triply degenerate, with 

all real parts equal to zero at q = O. This is because there are no damping terms 

in the absence of convection. 

7.8 Summary 

In this chapter we have developed a local theory of mixing-length convection 

in fluids with composition gradients using our moment method formalism. We 

have identified a molecular weight with each fluid element, in addition to positions, 

velocities, and temperatures, and we derived the equations that govern the rates of 

change of each of these quantities. We took velocity, temperature, and molecular 

weight momen~s of the Boltzmann equation, up to second order. The resulting 

set of ten equations (2.36, 2.39, 7.14, 7.15, 7.20-7.25) is a local theory of time 

dependent convection. 

From an analysis of the second moment equations, as well as from the analysis 

ofthe motions of a single particle, we derived two stability criteria, equations 7.34 

(7.44) and 7.35 (7.45). These stability criteria define stability regimes in the Do \1T

\1"ji plane. These regimes and their stability properties are illustrated in Figure 

7.2. This figure summarizes the main results of this chapter. In particular, it shows 

that the regimes of salt finger and of semi convective instabilities are not defined 

by criteria as simple as those described in the introduction to this chapter. The 
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Schwarzschild, Rayleigh-Taylor, and Ledoux stability criteria are all special cases 

of the more general results derived here. When the salt finger or semiconvective 

mechanisms operate, neither of the two stability criteria resemble the Ledoux 

criterion. Thus, the usual description of when these processes operate must be 

modified. 

Derivation of the third moment equations, and, hence, the development of 

a non-local theory of time dependent mixing-length convection with molecular 

weight gradients, would be straight forward. Additionally, it is evident that we 

could identify a molecular weight with each of the particles of the GSPH code and 

use the evolution equations of section 7.3 to simulate convection with molecular 

weight gradients. We could then proceed to search for closure approximations, 

much like we did in Chapters 3 and 4. This extension of the moment calculation, 

however, goes beyond the scope of this work, but we plan to develop non-local 

convection in composition stratified fluids more fully in the future. 
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CHAPTER 8 

FUTURE POSSIBILITIES 

8.1 Introduction 

In this chapter we give a brief outline of how the work presented in this thesis 

might be extended to address issues that we cannot address with our current tools. 

Some advances can be made with relatively modest changes to the analytic work 

and/or to the GSPH code, while others will require more extensive efforts. We will 

discuss also issues that it may be possible to address in the more distant future, 

although the way to proceed is less obvious. 

In section 8.2, we discuss how we could extend the analytic work presented 

in Chapters 2 and 7. In section 8.3, we consider what modifications of the GSPH 

code, outlined in detail in Chapters 3 and 6, would be helpful. In section 8.4, we 

discuss the scientific issues that we could address with these improved tools. 
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8.2 Analytic Work 

In Chapter 7 we derived the local theory of convection in a composition strat

ified fluid. We found the criteria for instability to convection, to semiconvection, 

and to salt-finger mixing. These criteria define where the accelerations on fluid 

elements are stabilizing. Just as in convection without composition gradients, 

however, convection does not stop where accelerations go to zero, but where ve

locities go to zero. That is, there can be overshooting in the various regimes of 

stability, and, hence, a non-local theory of convection in fluids with composition 

gradients is desirable. This would require two major ingredients. The first would 

be the moment equations, up to third order. Recall that we only derived up to 

the second moment equations in Chapter 7. The second ingredient would be the 

closure relations. There are a large number (15) of fourth moments, and their 

relationships to the lower moments is not obvious. Indeed, the closure relation

ships were not .obvious in the much simpler problem of convection in a fluid of 

homogeneous composition. We performed the GSPH simulations in Chapter 3 to 

aid our search for suitable closure relations. We would have to perform similar 

simulations here. Whereas we were looking for relationships among the moments 

of a two-dimensional phase space in Chapter 3, here we would have to search for 

relationships among moments of a three-dimensional phase space. 

We would like to include the self-gravity of the fluid, via Poisson's equation, 

explicitly in the moment equations. Thereby, the instability for 'Y < 4/3 should 

come out of a stability analysis. It would be interesting to see how this instability 

interacts with the convective instability. In particular, we discussed in Chapter 6 
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how overshooting may be more extensive for 'Y near 4/3, and we expect a proper 

treatment of self-gravity is required to predict this. 

It would be interesting to look at time dependent convection in the context 

of pulsating stars. It is well-known that stars (e.g. Cepheids) are unstable to 

pulsation if a"'R/ aT > 0 or aK / aT < 0 in some region. On the inward stroke of 

pulsation, the temperature goes up and the opacity goes up in the driving region. 

The enhanced opacity contains the radiation and increases the pressure until the 

star pulses outward. Therefore, one would expect convection to be more vigorous 

on the inward pulse and less on the outward. 

Finally, we would like to solve the present set of non-local equations, as well 

as more advanced equations, for all parameter regimes and physically reasonable 

models. For reasons unknown to us, the present code that solves the moment equa

tions does not converge for "big dynamic range" models or if the initial guess of 

solutions is not sufficiently close to the true solution. If the present scheme cannot 

be made more robust, a shooting method, wherein the equations are integrated 

outward from central boundary conditions, may prove useful. 
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8.3 Improvements to the GSPH Code 

We have discussed in Chapter 6 how we would like a robust GSPH code 

in spherical symmetry with self-gravity. We developed a spherical code with self

gravity, but because of the Eulerian grid, we could use, at best, very poor resolution 

if the inner boundary of the simulations was at r = O. For a simulation with 10 

bins, the outermost bin would have approximately 100 times more particles than 

the central bin. Furthermore, we have never been able to simulate convection if 

the inner boundary is at r = O. In addition, in self-gravitating regimes, the outer 

boundary pressure, and therefore density, must be much smaller than at the inner 

boundary. Thus, there may be very few particles in the outer bins. 

We could overcome these problems if we adopted a Lagrangian grid. That is, 

we would like each bin to encompass roughly equal numbers of particles. As the 

fluid moved, the grid could adjust to maintain a sufficient number of particles in 

each bin for robust numerical simulations. 

We would like to add the effects of molecular weight to the code so that we 

can investigate the consequences of composition gradients. As mentioned above, 

this will be required to develop the non-local moment theory with composition 

gradients. The necessary modifications should be straight forward. We would 

associate a molecular weight with each particle, just as we associate a velocity and 

entropy with each particle. We could calculate the mean molecular weight on the 

grid with precisely the same SPH averaging applied to the other variables. Then, 

the difference between particle molecular weight and grid molecular weight would 

contribute to the buoyancy force in basically the same way as the temperature 



331 

difference contributes. We would continue to calculate the density on the grid by 

the weighted particle positions, just as we did in Chapters 3 and 6, but we would 

have to modify the equation of state to include the molecular weight dependence. 

For example, for an ideal gas, 
p = kBpT. 

7i 
(8.1) 

As we have emphasized in Chapters 4, 5, and 6, real answers to the extent of 

convective overshooting requires more realistic simulations than we have perfonned 

i.n this thesis. In particular, we need the proper dependence of opacity (or diffusion 

coefficient, K) on density and temperature. This is especially important because 

the opacity versus position determines the force that decelerates particles as they 

overshoot into stable regions. We would also like to include the heating/cooling 

rate, Q, as a function of density and temperature. This would make the realistic 

simulation of burning cores possible. 

In principle, one could perform GSPH simulations in three dimensions. If we 

pennitted horizontal velocities, we could include the Coriolis force in the dynamics 

of particles. We could then investigate convection in rotating stars. Likewise, 

we could include the Lorentz force and investigate convection in the presence of 

magnetic fields. One could even calculate the magnetic fields self-consistently from 

an SPH calculation of the current density. Clearly, these improvements are in the 

more distant future. These modifications would require, most likely, completely 

new codes and the way to proceed is not as straight-forward as the improvements 

discussed previously. 
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8.4 Science 

One issue we would like to consider is the effect of fluid compressibility on 

convective overshooting. In particular, we would like to know if the overshooting 

distance is strongly influenced by the changing density of the background. Such 

simulations would have to be performed in a fluid many pressure scale heights deep. 

It would be interesting to see if the overshooting distance is proportional to the 

mixing length, i. e. dover'" fM. If it is not, perhaps because of the dependence of 

diffusion coefficient on density and temperature, the overshooting distance might 

be only weakly dependent on mixing length. This clearly would be fortunate, if 

true, because the mixing length is a free parameter in stellar evolution calculations. 

We would like to study the extent of overshooting for , ~ 4/3. We discussed 

this in somewhat greater depth in Chapter 6. This would be relevant to fluids 

dominated by radiation pressure, such as the cores of massive stars. Such fluids 

are nearly neutrally stable. It is possible that the turbulent fluctuations of the 

background, which may be more violent because of the weak stability, could in

teract with the particles to make overshooting more extensive than for fluids with 

larger ,. 

With the addition of molecular weight to the code, we could investigate the 

poorly-known rate of semiconvective mixing. Semiconvection occurs when the 

temperature gradient, ~ '\IT, is destabilizing and the composition gradient, '\Ill, 

is stabilizing. As the fluid mixes, it will become more homogeneous and the 

stabilizing influence of '\lJi will become weaker. Eventually, the fluid will make 

a transition to convective instability. As the composition structure of the fluid 
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changes, the thermal equilibrium structure will change accordingly. The transition 

of stability regimes may lead to faster mixing and a different composition and 

thermal structure than in computations that use erroneous convection criteria. 

Similarly, it would be interesting to consider the stability transition that 

comes from mixing from a fluid that is unstable by the salt-finger mechanism. 

Stars that ignite He-burning off center may have carbon fingers that extend down 

into the unburnt center. This mixing may affect the luminosity and lifetime of 

core He-burning. 

Finally, incorporating most of the physical effects discussed above, we would 

like to follow the evolution of a burning stellar core. A partial outline of how this 

might be done was discussed in Chapter 6. As the core burns and the abundance 

of fuel drops, the entropy generation declines. However, the core should contract 

and get hotter, making the core burning more vigorous and sustaining the entropy 

generation rate. During core H-burning, the convective core withdraws to lower 

mass shells during the evolution. The extent to which the core H-burning lifetime 

is extended and composition structure is modified by convective overshooting is 

both interesting and important for the evolution of stars. (See, for example, the 

discussion of blue loops in Chapter 5.) Finally, once the core has burned to com

pletion, it must contract and get hotter. (Note that it only gets hotter if we are in 

a self-gravitating regime.) Eventually, the next burning stage should ignite. We 

would like to investigate non-local convection in these advanced burning stages 

also. The details of composition structure and the differences from calculations 

that use other mixing rates and stability criteria are results that would have im

portant impacts on more detailed stellar evolution calculations. 
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We demonstrate the equivalence between the absolute and relative Boltzmann 

equation approaches to second and higher moment calculations by using the w 2 

moment as an example. We will show that the absolute approach leads to equation 

A.3, which is equivalent to equation 2.48. However, equations 2.48 was derived 

using the relative Boltzmann equation. 

Starting with the absolute Boltzmann equation, 2.37, take the v 2 moment 

and obtain 

(A.l) 

To introduce the velocity perturbation into this equation, we use the identities 

v = v + w, v 2 = v 2 + w2 , and v3 = v 3 + 3Vw2 + w3 • Using equation 2.24 for v and 

the continuity equation 2.38 in part of the first term, we find 

D'V Dw2 8 - - 8P 2aw08P 
2pv Dt + Pm + 8z (2pvw 2 + pw3

) + 2pvg + 2V 8z + T 8z 

_ 8 2v 
+ 2p(A + Ba)w2 

- 2Gpv 8z2 = O. (A.2) 

Making the substitution for D'V / Dt from equation 2.41, we finally get 

Dw2 1 8 - 2awO 8P ( Ov)--- + =-(pw3 ) + -=-- + 2 A + Ba + - w2 = 0, 
Dt p8z pT 8z 8z 

(A.3) 

which is equivalent to equation 2.48. 
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As one basic demonstration that the moment equations of sections 2.3 and 

2.4 are correct, we want to show that they can be manipulated into an energy 

conservation law. The sum of the energies (kinetic, thermal, and potential) within 

the whole fluid must change only as a result of the source/sink term Q. We should 

be able to combine the equations in such a way as to obtain a conservation equation 

which resembles (Landau and Lifshitz 1959) 

au a [(v2 )] . 
at + az pv "2 + H = Q, (B.1) 

where U is the sum of all the kinetic and thermal energy densities and H = € + p / p 

is the enthalpy. In our problem we also have a gravitational field, and so we will 

also add the gravitational potential energy density to U. 

We define the energy densities of the turbulent fluid with the aid of the dis-

tribution function. The kinetic energy density is 

J 
2 -

V P 2 -
UKE = - fAdvdT = -(v + w2 ). 

2 2 
(B.2) 

There are two pieces to the kinetic energy: the mean background kinetic energy 

and the turbulent kinetic energy. The thermal energy density is 

(B.3) 



336 

to first order in the Taylor expansion of € at constant P. The gravitational poten-

tial energy of a fluid element does not depend on v or T, but only on its position. 

Therefore, the potential energy density is 

UPE = ljJ J fAdvdT = PljJ· (B.4) 

We would like to relate the time derivatives of the energy densities to equations we 

have already derived in the moment calculations. By substituting the continuity 

equation 2.38 wherever we get a Op/at, we can show that 

aUKE 1 a --3 __ - __ Dv 1 Dw2 

-at = -'2 az (pv + pvw2
) + pv Dt + '2 Dt . (B.5). 

As suggested by this equation, we will be substituting equation 2.41 for Dv / Dt and 

equation 2.48 for Dw2 / Dt. By using the first law of thermodynamics, equation 

2.16, for En/at, equation 2.17 for TfJs/at, and the continuity equation, we get 

aUTE - a DT aT ap 
-- = -H-(pv) +pcp- -pcpv- - £1'-, at az Dt az at 

(B.6) 

where we define the mean enthalpy as H = E + P /p. We will substitute equation 

2.43 for dT / Dt. Since the gravitational potential only depends on position, we 

find 

(B.7) 

By adding equations B.5, B.6, and B.7, we obtain 

a a [p -3 _- - __ -;:aT] at (UKE + UPE + UTE) = - az '2(v + 3vw2 + w3
) + pv¢ - R at 

+ cp~ (v
Ov

) + v
ap 

(a - 1) - H ~(pv) 
az az az az 

aT a - w()ap 
- pcpv az - az (pcpw() + T az £1'(£1' - 1) 

+Q. (B.8) 
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Each term in this equation can be interpreted in a physically meaningful way. We 

identify the first three tenns on the right with the kinetic energy flux, which we 

define as 

FKE = p(lfJ + 3vw2 + w3 )/2 = pv3 /2. (B.9) 

This flux has contributions from both the background and turbulent motions of 

the fluid. The next tenn is the potential energy flux, defined as 

(B.I0) 

and the next is the radiative flux, 

FRad = -K8T/8z, (B.ll) 

while the following term arises from the presence of viscosity. Also, the presence 

of the source term Q term is easy to understand. With the application of the 

identity 
dP ()dP 

dH = cpdT - (a - I)-=- - a(a - 1) -T ' 
p p 

(B.12) 

which is an expansion of equation 2.18 for dH, we can interpret the remaining 

tenns. From this identity we can show that 

8H 8T 8P 
pv- = pcpv- - (a - l)v-. 

8z 8z 8z 
(B.13) 

We can also use equation B.12 to show that the velocity-enthalpy correlation is 

--- -- wf) 
w8H = cpwf) + a(a -1)-=dP. 

pT 
(B.14) 

Then all the tenns that were not identified above can be written as 8/8z(pvH), 

where vH = v H + w 8H is the sum of the background and turbulent enthalpy 

fluxes. 
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Substituting all the above definitions into equation B.7, we get 

(B.15) 

This equation is essentially equation B.1, after modifications to include the tur-

bulent energies and fluxes, and with the addition of potential energy and radiative 

flux terms. This equation can be compared with Landau and Lifshitz's (1959) 

equations 6.1 and 16.1, where the density in the viscosity term appears inside the 

derivative because they are discussing an incompressible fluid. 



APPENDIX C 

Derivation of Equation 3.15 for Boundary 

Density Corrections 

If the true density profile is p( z ), the density on the grid is given by 

_ J p(z)Wk(z)dz 
Pk= JWk(z)dz . 
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(C.1) 

This is essentially equation 3.14 written in continuous form. Since we linearly 

interpolate density, we assume that p(z) is piecewise linear. We assume we know 

the true densities at the boundary and neighboring cells. That is, we know PI = 

p(zI) and P2 = P(Z2)' In the first fictitious mirror cell we have P-I = Pl. The slope 

changes from a nonzero value to zero at Zl. Using equation 3.13 as the smoothing 

kernel, it is simple to show that 

(C.2) 

The SPH representation of the density does not correspond to the true density. 

(See Figure 3.2.) 

For the interior grid points, we assume the SPH representation of the density 

is the true density, and, therefore, P2 ~ P2. This approximation is good so long 

as the slope of p( z) changes slowly at Z2. We invert equation C.2 to obtain an 

improved approximation to the true density. We get 

_/ 6_ 1_ 
PI = -PI - -P2' 5 5 

(C.3) 

This is equation 3.15. 
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APPENDIX D 
Calculating the Background Grid by Two-Line Fitting 

In convectively stable fluids, the particle values of velocity, entropy, and tem-

perature commonly develop piecewise linear structures, as represented in Figure 

3.2. We can find a best fit to the cusps by simultaneously fitting lines to the left 

and right data. We fit the data with 

T(z) = {Tk + T;(z - Zk), 
Tk + T+(z - Zk), 

(D.l) 

where T!.. and T.t are the slopes of the segments and Tk is the value we want. 

The quality of the fit for bin k can be measured by the weighted mean square 

deviation, given by 

We define the functions 

S+i = {~ 

S-i = {~ 

Hence, we can rewrite equation D.2 as 

Zi > Zk 
Zi < Zk 
Zj > Zk 

Zj < Zk. 

(D.2) 

(D.3a) 

(D.3b) 

(DA) 

We minimize equation D.2 by setting the derivatives with respect to each of the 

three parameters equal to zero. Solving for T k , we get 
d-~ _ Le_ 

- c+ c_ 
Tk = b2 b2 

a - .:± - --=-c+ c_ 

(D.5) 
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where we define 

a =:L Wk(Zi) (D.6a) 

b+ = L Wk(Zi)S+iZj (D.6b) 

b_ = L Wk(Zi)S-iZj (D.6c) 

c+ = L Wk(Zi)S+i Z[ (D.6d) 

c_ = L Wk(zi)s-izl (D.6e) 

d = :L Wk(zj)Tj (D.6f) 

e+ = :L Wk(Zj)s+jzjTj (D.6g) 

e_ = :L Wk(Zj)s_jzjTj. (D.6h) 

Equation D.5 gives the best two-line fit to the data. 
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Evaluation of Equation 6.4 for the "Effective" 

Spherical Volume Element 
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We evaluate here equation 6.4 for the "effective" volume element to use in the 

GSPH calculation of density in the spherical code. Let us define rk as the radius 

at the center of bin k, with width ~z. For all interior bins (i. e. excluding the two 

boundary cells), equation 6.4 is simply 

1
+.6.Z 

~Vk = 47l'(rk + z?Wk(z)dz, 
-.6.z 

(E.1) 

where the SPH kernel, Wk(z), is defined by equation 3.13. We evaluate this integral 

to obtain 

(E.2) 

for all interior k. 

The calculation is somewhat different at the two boundaries because of the 

reflecting boundary conditions. Outside the boundaries of the fluid, we want the 

ficticious volume elements to be the mirror image of the real volume elements. The 

reason we need to know the ficticious volume elements is because the SPH'kernel 

falls outside the boundaries for the calculation of the boundary volume elements. 

Then, for the innermost bin, k = 1, the volume element is 



Integrating, we get 

2 ( 1 ~z 1 ~Z2) 
~Vl = 47rrl~z 1 + --- + --2- . 

12 Tl 8 Tl 

For the outermost bin, k = kmax, the volume element is 

We evaluate the integrals to get 

2 ( 1 ~z 1 ~Z2 ) 
~Vkmax = 47rrkmax~z 1- ---- + --2-- . 

12 rkmax 8 r kmax 
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(E.4) 

(E.5) 

(E.6) 

We see that when Tk ~ ~z, all volume elements reduce to the usual volume 

element for a spherical shell of vanishing width. The correction terms are only 

important for shells whose radius is comparable to the bin width. For example, 

for the special case when the inner boundary is at r = 0 and the innermost bin 

center is at rl = ~z/2, the correction term in equation E.4 is 5/3. The volume 

element is ~ VI = 57r~Z3 /3, which is larger than the volume of a sphere of radius 

~z. This is because there is a contribution of the r2 dependence of the integrand 

of equation E.3 from the k = 2 bin. 
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Glossary of Symbols 

This glossary of symbols does not include separate entries for variables with 
subscript or superscript indices. Dummy variables and summation indices are not 
included. Some variables that are used only once in the text are not included. 
Also, some auxiliary variables which we used in derivations, but which have no 
physical significance unto themselves, have not been included. In most cases the 
page reference refers to the first or most rigorous definition given in the text, but 
in many cases, not to the only definition. 

"VRad 

(3 

'Y 

~"VT 

~t 

~v 

Logarithmic temperature gradient. 

Adiabatic logarithmic temperature gradient. 

Logarithmic temperature gradient if all the energy flux 
were carried by diffusion. 
Coefficient of thermal expansion. 

Ratio of central mass to mass in simulation. 
i. e. Mcentral/ Mshell. 

Ratio of radius of inner boundary of simulation to width 
of simulation. i. e. ro / D z. 
Ratio of specific heats. 

Superadiabatic gradient. 

Critical ~ "VT, above which a fluid is unstable to the onset 
of convection. 
The superadiabatic gradient a fluid would have if all the 
energy flux were carried by diffusion. 
Time step. 

Effective spherical volume element. 

Bin size. 

80 

80 

81 

59 

127,267 

127,267 

79 

24,58 

75 

77 

119 

265 

121,267 
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~ZB Width of boundary region. 116 

f Specific thermal energy of a single particle. 57 

E Specific thermal energy of the averaged background. 58 

( Bulk viscosity. 61 

( Proportionality constant in closure approximations. 193 

TJ Third moment correction constant for improved closure 194 
approximations. 

(J Temperature excess. i.e. T-T. 59 

()2 A second moment. 67 

02
0 Local steady-state second moment. 104 

Ov A second moment. 292 

()3 A third moment. 67 

Ov2 A third moment. 295 

()2v A third moment. 295 

04 A fourth moment. 

K:R Rosseland mean opacity. 23 

Jl Specific mass. 127,288 

'Ji A verage specific mass of background. 288 

v Specific mass excess. i. e. Jl - 'Ji. 288 

v Shear viscosity. 61 

Vrnic Microscopic shear viscosity. 62 

Vturb Turbulent viscosity. 62 

v2 A second moment. 292 

v3 A third moment. 295 
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p Density of a single fluid element. 57 

7i Average density of the background. 58 

U Turbulent velocity dispersion. 29,58 

U w Turbulent velocity dispersion. 144 

Uo Local steady-state turbulent velocity dispersion. 104 

U(J Temperature dispersion. 

Teonv Characteristic convective time scale. 30 

TH Hydrodynamic time scale. 122 

Tmix Time scale for convection to mix fluid across one bin of 121 
width .6.z. 

1Rad Thermal diffusion time scale. 122 

Tsteady Time that fluid reaches state of steady convection. 121 

Tv Viscosity damping time scale. 119 

¢> Gravitational potential energy. 58 

¢> Logarithmic derivative of density with respect to specific 288 
mass at constant pressure. 

XD Molecular weight diffusion coefficient for a single fluid 290 
element. 

XD Molecular weight diffusion coefficient for the average back- 290 
ground fluid. 

n Total gravitational potential energy. 268 

A Area of a horizontal plane. Used in defining the volume 57 
element for the distribution function. 

A Measures the contribution of microscopic viscosity to damp- 62 
ing the velocity excess, w. 

B Measures the contribution of turbulent viscosity to damp- 62 
ing the velocity excess, w. 

Cp Specific heat at constant pressure. 60 

Cs Speed of sound. 30 
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C Measures the microscopic viscosity damping of the back- 62 
ground, v. 

Ccool Cooling coefficient. 117 

dover Overshooting distance. 43,165 

d Time derivative for a single particle. 57 Tt 

D Measures the contribution of thermal diffusion to damp- 64 
ing the temperature excess, e. 

Dz Depth of simulation. 127 

D Time derivative for the background. 58 Dt 

E Measures the contribution of turbulent diffusion to damp- 64 
ing the temperature excess, e. 

Eo Boundary heating rate. 117 

f(z) Heating/ cooling boundary profile function. 117 

fA Absolute distribution function. i. e. with respect to the 57,288 
absolute variables v and T. 

fR Relative distribution function. i. e. with respect to the 59,288 
relative variables wand e. 

F Me~sures the contribution of microscopic diffusion to damp- 291 
ing the specific mass excess, v. 

Fconv Convective flux. 29,175 

FKE Kinetic energy flux. 330 

FpE Potential energy flux. 330 

FTot Total energy flux transported by a fluid. 77 

9 Acceleration of gravity. 58 

g(z) Gravity boundary profile function. 116 

gB(Z) Gravity boundary profile function. 266 

G Gravitational constant. 

G Measures the contribution of turbulent diffusion to damp- 291 
ing the specific mass excess, v. 
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H Enthalpy. 60 

Hp Pressure scale height. 29 

kB Boltzmann constant. 127 

K Thermal diffusion coefficient. Usually radiative diffusion 23,57 
is implied. 

K Thermal diffusion coefficient of the background. 58 

Kturb Turbulent diffusion coefficient. 64 

fH Characteristic horizontal scale of a fluid element. 61 

fM Mixing length. 27 

fv Characteristic vertical scale of a fluid element. 61 

m Mass of a single fluid element. 124,265 

M Stellar mass. 

M0 Solar mass. 

Mcentral Mass interior to simulation. 127 

Mshell Mass in simulation. 127,267 

MTot(r) Total mass interior to r. 266 

N Nusselt number. 79 

P Pressure of the fluid. By the anelastic approximation, 57 
this is also the pressure of all the fluid elements at the 
same z. 

Pr Prandlt number. 40 

Q Heating/cooling rate of a single fluid element. 57 

Q Average heating/cooling rate of the background. 

Q" Neutrino cooling rate. 250 

r Radius within a star. 



ro 

R 

Ra 

8 

8 

8' 

t 

T 

To 

T!... 

T' + 

(~~) ad 

( ~~)Rad 
u 

u 

v 

Inner radius of simulation. 

Stellar radius. 

Solar radius. 

Rayleigh number. 

Entropy of a single fluid element. 

Eigenvalue of second moment stability analysis. 

Eigenvalue of single particle stability analysis. 

Time. 

Temperature of a single fluid element. 

Critical temperature where heating rate exceeds cooling. 

A verage temperature of the background. 

Minimum possible central temperature for hydrostatic 
equilibrium. 
Left hand slope of two-line fit. 

Right hand slope of two-line fit. 

Adiabatic temperature gradient. 

Temperature gradient of a fluid if all the energy flux were 
carried by diffusion. 

Dimensionless diffusion coefficient if Vrnic is negligible. 

Total thermal energy. 

Kinetic energy density. 

Potential energy density. 

Theraml energy density. 

Velocity of a single fluid element. 

A verage velocity of the background. 
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124,267 

40,76 

57 

104 

95,299 

57 

249 

58 

270 

125 

125 

24 

77 

81 

268 

328 

328 

329 

57 

58 
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V Dimensionless diffusion coefficient if Vmic is important. 81 

w Velocity excess. i. e. v-v. 59 

w2 A second moment. 67 

W20 Local steady-state second moment. 104 

wO A second moment. 67 

wOo Local steady-state second moment. 104 

W7J A second moment. 292 

w3 A third moment. 67 

w20 A third moment. 67 

w02 A third moment. 67 

w2v A third moment. 295 

wOv A third moment. 295 

wv2 A third moment. 295 

w4 A fourth moment. 

w3 0 A fourth moment. 

W202 A fourth moment. 

w03 A fourth moment. 

Wk{z) SPH weighting kernel. 123 

x{t) A perturbation to w20 104 

y{t) A perturbation to wOo 104 

z{t) A perturbation to 020 104 

z Position of a single fluid element with respect to the 57 
boundaries of the simulation. 

Zcrit Position where superadiabatic gradient is b. VTcrit 165 



Zmax Boundary of simulations. 

Position where the velocity dispersion reaches zero. 

351 

117 

165 
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