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Abstract 

Atmospheric turbulence causes severe degradation of the resolving and signal

to-noise properties of present optical telescopes. Diffraction-limited resolution can 

be recovered through the use of a deformable ('adaptive') optical element to correct 

the atmospheric wavefront error. An adaptive optics system operating in the near 

infrared (1.7 - 3.5 J.Lm) has been developed for use at the Multiple Mirror Telescope 

(MMT), an array of six co-mounted 1.8 m telescopes, in which six flat mirrors are 

used to correct the wavefront tilt across each aperture, and the phase differences 

between apertures. This can reduce the error sufficiently to achieve a diffraction

limited image with a central peak of 0.06 arcseconds full width at half maximum at 

2.2 J.Lm wavelength. A number of algorithms are used to drive the adaptive mirror 

in a closed servo loop, including a trained artificial neural network which deduces the 

wavefront aberration from a pair of simultaneous in- and out-of-focus images of a 

star, taken at the combined focal plane of the telescope. Computer simulations have 

shown that the net is capable of deriving the wavefront for the full six-mirror 

aperture, and in practice, the net has been demonstrated in the lab to maintain two

and three-aperture diffraction-limited beam profiles in the presence of distorting 

effects. On the sky, with a real star, the net has successfully restored the diffraction 

limit for two adjacent MMT segments. High resolution images have been obtained 

of various objects with a wide-field camera looking in the field around the wavefront 

reference star. Work has also been carried out to characterise the wavefront 

aberration at the MMT, which confirms the Kolmogorov model of turbulence. 

Finally, a new algorithm is discussed which shows great promise for correction of 

phase errors in array telescopes. 
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Foreword 

A century ago, the relationship between a graduate student and his or her 

professor tended to resemble that of an apprentice to the master, with the student 

performing specific tasks under more or less strict supervision. Nowadays, professors 

are somewhat less authoritarian, but the projects they and their students work on can 

in general no longer be handled by a single person, requiring instead the co

ordinated efforts of a group of skilled workers, including students, postdocs, and 

perhaps other professors. To the student, this arrangement is highly beneficial in 

terms of the contact with other thinkers and the experience gained. There is a 

drawback, however, when the time comes to prove to the scientific community that 

one is capable of independent original research, and is worthy of the title Doctor of 

Philosophy. This is the purpose of the doctoral dissertation, and as such, it must 

represent the work of the student alone. Yet that work would not have been possible 

without major contributions from all the other members of the student's group. A 

difficult balance must be struck then, when assigning credit, and between reporting 

the results of experiments for which one is primarily responsible, and those in which 

one played only a minor role. hut which provide crucial supporting evidence. An 

additional conflict arises because of the objective impersonal writing style 

traditionally used to report scientific findings. This problem, confronted by many 

students before, now faces me here. I see no altogether satisfactory solution, but I 

have listed below by chapter and section those portions which describe work carried 

out by members of the Steward Observatory Adaptive Optics Group for which j did 

not provide the major driving force, and indicate where the credit belongs. In 

addition, I have tried throughout the text to mention names of those other than 

myself who have been responsible for specific pieces of work. I am very grateful in 

particular to Peter Wizinowich, D'nardo Colucci, Dave Wittman, Brian McLeod, Don 
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1.1 The need for adaptive optics 

Chapter 1 

Introduction 
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The resolution of all ground-based optical telescopes is presently impaired by 

atmospheric 'seeing'. Typically, image resolution is limited to 0.5 to 1 arcsec. 

Thermal gradients in the atmosphere create variations in refractive index which 

distort the optical wavefront from astronomical objects. Temperature differences 

also drive turbulence which leads to continually changing random fluctuations in the 

shape of the wavefront. 

In the absence of atmospheric distortion, the image of a star will have a 

resolution limited by the diffraction properties of the telescope. The effect of seeing 

is to degrade the instantaneous image from a beam profile dominated by a narrow 

central peak to a pattern of random speckles. Figure 1.1 illustrates the seeing 

observed at the NOAO 3.8 m telescope on Kitt Peak in Arizona. The top picture 

is a 30 ms snapshot taken at 0.5 j.£m wavelength of the star r Orionis. This is in stark 

contrast to the lower picture which shows a computer simulation of the image which 

would be obtained if the atmospheric effects could be removed. The bright core has 

a full width at half maximum (FWHM) of 0.027 arcsec. 

In the past two decades, a number of passive techniques have been developed 

to recover diffraction-limited information from long sequences of speckle images like 

figure 1.1a, by post-processing in a computer. The first, speckle interferometry 

(Labeyrie, 1970) extracts the two-dimensional Fourier amplitude of the object of 

interest. A few years later, Knox and Thompson (1974) demonstrated a recursive 

algorithm for estimating phase as well, using additional near-simultaneous 

observations of a point source, allowing restoration of a diffraction-limited image. 
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a) 

b) 

Figure 1.1 'Ine effect of atmospheric seeing. a) A short-exposure speckle image of 
a star from a 3.8 n1 telescope at 0.5 J.Lm (courtesy E.K. Hege ). b) i\ simulation of the 
same image with no atmospheric effects. The vertical size is 1.2 arcsec in both 
Images. 
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The triple correlation, or bispectrum method (Weigelt, 1977) also produces an image, 

by finding closure phases. Bates (1976) proposed the method of shift-and-add in 

which the individual frames are co-added on the brightest speckle, thus reconstructing 

a far-field image with a diffraction-limited component. Lynds et al. (1976) suggested 

an improved version of shift-and-add, using all the speckles in each specklegram, not 

just the brightest. Further refinements to this method have been made by Christou 

et al. (1986). The methods of differential speckle interferometry (Beckers, 1982), 

and speckle holography (Primot et aI., 19S5; Hege, 1989; section 6.2) utilise 

simultaneous wavefront information to deconvolve the instantaneous atmospheric 

point spread function from each specklegram. Each of these methods, while of great 

value in many instances, is severely limited in application first by the requirement 

that a bright point source (a nearby star, or a point within the object itself) be used 

to determine the instantaneous atmospheric distortion (Hege, 1989), and second by 

a big reduction in signal-to-noise ratio (SNR) over the diffraction-limited case, since 

light from the object of interest is scattered over a large detector area, so that only 

relatively bright objects are amenable to analysis. 

In principle, diffraction-limited resolution can also be restored through the 

techniques of adaptive optics, in which the shape of the wavefront is sensed and 

corrected in real time by deformable optics which cancel the distortion. 'rhis 

approach has the enormous advantage that it concentrates the light from the object 

of interest, which greatly improves the SNR. The requirement that a bright star be 

used to sense the wavefront still holds, and presently limits the application of 

adaptive optics to some small fraction of the sky. Work has been in progress for the 

last ten years in several military, and later civil, programmes to try to overcome this 

limitation through the use of artificial laser stars (Foy and Labeyrie, 1985; 

Primmerman et aI., 1991; Fugate et aI., 1991). In this technique, a laser pulse fired 
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through the telescope is detected back on the ground after either Rayleigh 

backscattering at an altitude of roughly 10 km, or resonant scattering from the 

mesospheric sodium layer at about 90 km. The laser guide star approach, though 

currently still at an embryonic stage, promises to be tremendously powerful in the 

future. 

The general approach adopted by all adaptive systems is shown in figure 1.2. 

Light from a star (or laser beacon) close to the object of interest is used to 

Control 
computer 

/ 

Adaptive 
mirror Aberrated 

wavefront 

Corrected 
wavefront 

Wavefront 
sensor 

Beamsplitter 

High resolution 
image 

Figure 1.2 The basic features of any adaptive optics system - the deformable optic, 
wavefront sensing detector and computer, and imaging camera. 
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determine the wavefront, since the desired shape, a plane, is known. After correction 

by the deformable optical element, part of the light is separated from the beam and 

diverted to a small format, fast readout detector. The detector signal is sent to a fast 

processor, which deduces the wavefront, and closes the control loop by applying 

appropriate corrections to the deformable optic. The remainder of the light goes to 

a separate detector where high-resolution images are obtained. 

In the future, all new and existing large telescopes can benefit from the 

application of adaptive optics. When adaptively corrected, the new generation of 8-m 

class ground-based astronomical telescopes planned for the 1990s (Martin et aI., 

1991) will have the potential to obtain images with a resolution of a few hundredths 

of an arcsecond. The highest resolution will be obtained when this method is applied 

to imaging arrays of telescopes, or long baseline interferometers. For instance, when 

the two William M. Keck telescopes (Nelson and Mast, 1990) are completed on 

Hawaii, it will be possible to use them as an interferometer with a baseline of 100 m. 

1.2 Atmospheric turbulence 

The imaging properties of an optim lim phased array of telescopes in which the 

light is brought to a combined foclls are the same as for a single telescope masked 

with apertures in the positions of the array elements. For such arrays at infrared 

wavelengths, the biggest errors caused by atmospheric seeing are the variations in 

path length between array elements, and wavefront tilt across each element. 

The degree to which the diffraction-limited image profile of an array can be 

restored by the piston and tilt correction of individual elements can be calculated 

from atmospheric turbulence theory. Kolmogorov (1961) predicted a spatial 

correlation of turbulence which is in accord with measurements by other workers, 

and also new interferometric work presented in chapter 3. Tatarski (1961) showed 
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that the spatial structure function of a wavefront perturbed by Kolmogorov 

turbulence has the form 

E (d) = 6.88 ( :. ) ~ 1.1 

where "i:.(d) represents the mean square phase difference in rad2 between points 

separated by a distance d. The length ro is Fried's turbulence distance scale (Fried, 

1965), or the atmospheric correlation scale, a measure of seeing quality which 

depends on wavelength. In the same paper, Fried showed that the mean square 

phases over a circular segment of Kolmogorov-distorted wavefront before and after 

removal of the best fit plane are given by 

1.2 

O.130( ~ ) ~ 1.3 

respectively, where D is the segment diameter. If each element of an array is 

corrected with the tilt and piston motion of an adaptive mirror segment, this error 

is also appropriate for the entire array. 

The wavefront over a large single- or multiple-aperture telescope may be 

thought of as being filled with patches roughly ro in size. Since the wavefront is 

correlated only over areas of this size, in the long exposure image, the light from 

different patches will add incoherently, and the result is close to the expected 

diffraction-limited image for a telescope with diameter roo In particular, Kolmogorov 

theory predicts that the FWHM of the integrated image is given by (Martin, 1987) 
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FWHM 1.4 

A measure of the quality of a near-diffraction-limited image is its Strehl ratio, 

the ratio of the peak intensity to that of the diffraction-limited image. Figure 1.3 

shows the behaviour of the Strehl ratio as a function of!J.. For small phase errors, 

!J. < 1 rad2
, the Strehl ratio can be approximated by 

1.5 

Strehl ratios less than unity correspond to loss of contrast rather than resolution, so 

most of the advantage for astronomical imaging and spectroscopy is maintained for 

1.0 

0.8 

o 0.6 -o 
L.. 

J:: 
Q) 

.!:; 0.4 
if) 

0.2 

0.0 
o 2 3 4 567 8 9 10 

Mean square phase (rod2
) 

Figure 1.3 Strehl ratio as a function of mean square phase error !J. across a single 
circular aperture. 
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Rs > 0.5, corresponding to 

D 
- < 2.7 1.6 
'0 

At visible wavelengths (). = 0.5 J,Lm), ro is typically 15 cm at good sites 

(Cromwell et aI., 1990), and the element size satisfying the above condition is rather 

small. The situation is more attractive in the infrared since ro scales as ).6/5. This 

also implies slower correction rates because the timescale for fluctuations is r - rolv 

where v is the windspeed of the turbulent air. At 2.2 J,Lm wavelength, ro::::: 1 m and 

r ::::: 50 ms, and array elements of 2 m diameter can be used. Other advantages of 

the infrared include a higher density of field stars for wavefront sensing and a larger 

isoplanatic patch (the area of sky over which the wavefront correction deduced from 

a central reference star is valid). For these reasons, the adaptive optics work 

described here has been carried out in the near infrared, specifically in the J, H, and 

K photometric bands (1.25 J,Lm, 1.65 J,Lm, and 2.2 J,Lm centre wavelengths). 

1.3 Methods of wavefront sensing 

A practical method to sense the wavefront is required. Several techniques are 

under investigation by various groups at present. A shearing interferometer shifts a 

portion of the wavefront and allows it to interfere with an adjacent portion. The 

phase of the two-beam interference fringes thus generated gives the phase difference, 

and thus the slope of the wavefront, between the two parts of the aperture. The 

Shack-Hartmann method divides the pupil into subapertures of size roo The centroid 

of the image formed by each subaperture also gives the local wavefront slope. A new 

method by Roddier (Roddier, 1988; Roddier et aI., 1991) measures the second 

derivative, or local curvature. In each case, an integration must be made across the 
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pupil to obtain the shape of the wavefront. 

These techniques can work well for single-aperture telescopes, but break down 

when the aperture is discontinuous, as for an array. One possible method currently 

being explored at Steward Observatory is a hybrid of interferometry and Shack

Hartmann, described in chapters 4 and 9. A second approach which we have 

demonstrated in computer simulation, and in real time on the sky, is to use an 

artificial neural network trained to determine wavefront aberrations from far-field 

images. The method makes use of the fact that a wavefront can be reconstructed 

entirely from the information contained in an in-focus and out-of-focus pair of 

images, taken simultaneously. This work has been performed at the Steward 

Observatory 2.3 m telescope, and at the Multiple Mirror Telescope (MMT), located 

on Mt. Hopkins in Arizona. 

Both of these approaches exploit the spatial coherence of starlight to sense 

directly the phase error across well-separated portions of the wavefront. This is a 

distinct advantage over methods which measure the local slope, since it eliminates 

the integration errors which grow progressively larger as the integral moves across 

the aperture. From equations 1.2 and 1.5, which are independent of scale, it is 

evident that high resolution imaging with good Strehl ratio can only be achieved if 

the wavefront error is corrected to the same tolerance on all scales. The large-scale 

errors introduced by the integration have a deleterious effect which is illustrated by 

the plots of figure 1.4. Simulations of four different adaptive schemes are compared 

for the case of a single filled 6.5 m circular aperture. The Shack-Hartmann sensor 

was simulated as an array of hexagonal subapertures, and a local least-squares 

algorithm was used to match the edges of the adaptive mirror elements in integrating 

the measured slope across the pupil to determine phase errors ('wavefront 

reconstruction'). Substantial improvement in the mean square phase error is 
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Figure 1.4 Improvement in mean square phase error as a function 
of ro for four different wavefront sensing/correction systems, 
modelled on a 6.S m circular aperture. In order, from the top 
down, the first line shows the error when no correction is applied. 
The next two show the effect of using a Shack-Hartmann sensor to 
correct over 19 hexagonal subapertures, each 1.6 m across, without 
and with an independent global tilt corrector. The next line shows 
the improvement obtained by using 37 smaller subapertures, about 
1.2 m across. At the bottom, the best correction is obtained by 
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tips and tilts. All simulations were noise-free, 
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obtained with this sensor, particularly if a separate system is included to remove 

global wavefront tilt. However, the system which best reduces the residual phase 

error is one in which the piston errors of the subapertures are determined and fitted 

explicitly. This system is clearly superior over the Shack-Hartmann sensor. The 

source of error which reduces the effectiveness of the tilt-only method of sensing the 

wavefront is two-fold. Firstly, a true centroid measurement, given by equation 4.5, 



25 

is impossible to measure since that requires that all diffracted light from the 

reference source passing through the telescope be taken into account, for which an 

infinite detector is needed. Secondly, the true centroid does not measure the slope 

of the best fit plane, but rather the edge-to-edge slope. Removal of this slope does 

not minimise the residual mean square phase error. Thus, astronomers stand to 

benefit significantly by making use of the freely-available property of coherence of 

starlight across large baselines. 

1.4 Applications of adaptive optics 

Adaptive correction is of benefit to all telescope users who seek sharper 

images. There are many existing problems for which higher resolution in the infrared 

will be of great value. Observations of Cepheid variables and red supergiants are 

generally performed in the infrared to minimise the uncertainty from extinction. 

Since these objects occur in crowded fields, improved resolution will help separate 

them from nearby stars, allowing more accurate determination of their fluxes. This 

will lead to better estimates of the distance scale. 

The search for low-mass companions to main sequence stars can be aided by 

the ability of adaptive correction to concentrate light from the observed objects. The 

secondary component is typically 5 or 6 magnitudes fainter than the primary (Henry 

et aI., 1991), and separated from it by typically a few tenths of an arcsecond. Under 

normal conditions, detection of the secondary is very difficult since it is almost lost 

in the seeing disc of the primary. Reduction of the effects of the atmosphere will not 

only allow faint companions such as brown dwarfs, or perhaps even large planets, to 

be imaged directly with the increased resolution, but will improve the dynamic range 

of the magnitude difference for which detection is possible. 

Both very young stars and very old stars often exhibit strong indications of 
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circumstellar material in the form of discs or shells, or strong outflows. Tenth 

arcsecond resolution of such objects will provide information on spatial scales of the 

order of the size of the solar system, which will contribute to the understanding of 

the physical processes involved in the formation of proto stellar discs, and the extreme 

mass loss observed from red supergiants. When adaptive optics is extended into the 

visible, the close giant a Orionis will have its disc resolved, allowing direct imaging 

of the surface, and a detailed study of temporally-evolving structure. 

In the realm of extragalactic observations, a prime application is the study of 

the nuclei of active galaxies. A number of theories based around the central black 

hole hypothesis for energetic phenomena can be tested with high resolution imaging. 

For instance, the increased discrimination between sources will permit the shape of 

the gravitational potential to be mapped much closer to the galactic core. This 

observation can distinguish between a single compact source, and a dense cluster of 

discrete sources as the central engine. 

The examples given here represent a small fraction of the large number of 

questions in astronomical fields for which adaptive optics can provide at least partial 

answers. Certainly, as with any technical innovation, there is the exciting prospect 

that the general application of adaptive wavefront correction, and the availability of 

images with high angular resolution will raise many more. 
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Chapter 2 

The MMT and the Adaptive Instrument 

2.1 The Multiple Mirror Telescope 

The MMT is a hexagonal array of six 1.83 m diameter mirrors on a radius of 

2.52 m, giving an edge-to-edge baseline of 6.86 m, currently the largest of any optical 

telescope. Figure 2.1 shows the apertures as they appea~ to an observer facing the 

telescope, and the letters commonly used to designate each mirror. Continuous 

coverage of the (u,v) complex visibility plane is provided by this arrangement, up to 

the cut-off at D/>... 

Figure 2.2 shows a side view of the telescope, illustrating how the six beams 

are brought to a combined focus. Prior to 1983, the full telescope was operated only 

in a mode where the six beams were stacked on top of each other incoherently, 

s s I Elev)ation 
C\l ~ 
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C\l LO 
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( 
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) 

Figure 2.1 The six 1.83 m MMT mirrors are placed on a circle of radius 2.52 m. 
The pupil is shown from the point of view of incoming photons. The commonly
used lettering scheme is shown. 
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Figure 2.2 Two of the six MMT telescopes in cross section, showing the path 
of incoming starlight to the composite image plane. The insert shows the six 
beams converging to a single image. 
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though Hege et al. (1985) had succeeded in co-phasing three of the six apertures by 

translating the beam combining mirror on an x,y stage. In 1983 however, Hege and 

Beckers realised that the MMT could also be operated as a coherent array by 

reconfiguring the beam combiner and the tertiaries so that the exit pupil has the 
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same shape as the entrance pupil. This ensures that the pathlength from every point 

on each primary to the image plane is the same, as though the MMT were a single 

large telescope masked with six apertures. The requirement on the exit pupil lead 

to a focal ratio of f/8.39. In 1988, under the direction of McCarthy, an articulated 

beam combiner was installed which allows the pathlengths of the six beams to be 

equalised, and maintained with open-loop corrections (McCarthy et aI., 1988). 

Operating as a cophased array, the FWHM of the central peak in the 

diffraction-limited image is equivalent to a single filled circular aperture of 7.64 m 

diameter (Born and Wolf, 1984). The 1.83 m element size is ideally suited for 

adaptive optics in the near infrared, since the median seeing at the MMT 

corresponds to ro = 0.79 mat 2.2 j..Lm (Chaffee and Cromwell, 1990), which satisfies 

the requirement of relation 1.6. 

2.2 The adaptive instrument - optical components 

The adaptive instrument constructed for the MMT is shown schematically with 

its control system, in figure 2.3 (see also Wizinowich et aI., 1991a). It is mounted at 

the combined f/8.39 focus of the telescope. A mirror just after the telescope's 

primary focus folds the six beams to a 20 cm diameter, f/3 parabola, which collimates 

the beams. The adaptive mirror is positioned at the focus of the parabola, and just 

in front of a reimaged pupil plane. The beam is brought to a second focus at f/8.39 

after another reflection off the parabola. The focal ratio and pupil are unaffected 

by this optical arrangement, which will be true whatever telescope the instrument is 

attached to. From the point of view of any detector bolted to the bottom, nothing 

is affected by the instrument. Image quality is better than the diffraction limit of the 

telescope over a one arcminute field. 

The adaptive mirror, manufactured by Thermo Electron Technologies Corp. 
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Figure 2.3 A schematic view of the MMT adaptive system which mounts at the 
Cassegrain focus of the telescope. 
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(Hulburd and Sandler, 1990) is shown in figure 2.4. The mirror consists of seven 

25 mm diameter flat Zerodur mirrors mounted on tubular piezo-electric actuators 

with 10 J.£m stroke. The actuators each have three electrodes placed at 1200 around 

the tube, allowing motion in two tilt axes, and piston. The maximum wavefront tilt 

which can be applied by a mirror segment is ± 3.2 arcsec. The central mirror is used 

for optical alignment. Figure 2.5 shows two views of the box containing the adaptive 

relay optics, with the adaptive mirror in place, and the parabola at the end of the 

horizontal arm. 



Figure 2.4 The adaptive mirror, made by 
rfhermo Electron Technologies, for the MMT 
adaptive instrun1ent. The ruler is 6 inches long. 
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Just after the second focus, a 45° flat mirror with a 2 mm central unaluminised 

disc allows the light from the reference star to pass through~ while the field around 

the star is sent via reimaging optics to a NICMOS 2 detector, provided by M. Rieke. 

This is a 128-square (HgCd)Te array, with 30 electrons read noise per pixel. The 

plate scale is adjustable between 0.06, 0.12, and 0.24 arcseconds/pixel. The central 

5 arcseconds, containing the reference star, is transmitted through the glass of the 

mirror and a barium fluoride relay lens, which magnifies the beam from f/8.39 to 

f/45, to a 62x58 InSb diode array, with 76 J.£ill square pixels (McCarthy et al., 1990). 

Plate scales of 0.02, 0.04, and 0.15 arcseconds/pixel may be selected. Pixels are 

individually addressable, and can be read at a rate of 2 pixels every 18 JJ.S with 300 

electrons noise. 

Since a bare glass/air interface exists at the on-axis portion of the pick-off 



Figure 2.5 Two views of the adaptive optical relay mounting. The horizontal 
arm is about 1 m long. 
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mirror, roughly 4% of the light from the reference star is reflected into the wide-field 

camera. This turns out to be a helpful way to register different exposures of the 

same part of the sky, while providing a 3.5 magnitude decrease in brightness, so the 

wide-field image is not dominated by scattered light from the reference star. The 

folding flat can also be moved vertically, which has the effect of shifting the field of 

view of the wide-field camera, while maintaining the image of the reference source 

on the InSb array. 

In front of the InSb camera is an assembly of two polarising beamsplitter 

cubes and a right-angle prism, seen in more detail in figure 2.6, which generates the 

simultaneous in- and out-of-focus images required to determine the wavefront 

Beamsplitter 
cubes 

p-polarization ~ 

Out-of-focus 
1m age 

s-polarization 

/ 

In focus 
1m age 

Barium flouride 
pr1sm 

Figure 2.6 Plan view of the arrangement of polarising beamsplitter cubes and 
prism used to generate simultaneous in- and out-of-focus beams. 
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unambiguously. The p-polarisation is transmitted directly through both beamsplitters, 

while the s-polarisation is reflected to the prism where it experiences two total 

internal reflections before being reflected by the second beamsplitter. A peak-to

valley defocus of about 0.5 waves at 2.2 /.Lm is introduced this way. The two images 

are placed side by side on the InSb detector. The prism and cubes are mounted on 

stages so that the amount of defocus and the lateral separation of the two images on 

the camera may be adjusted. 

2.3 The adaptive instrument - control system 

The infrared speckle camera is controlled and read out by a computer built 

by 10 Inc., based on the 68020 processor. The software used to run the camera as 

part of the adaptive system was written by B. McLeod. In addition to these tasks, the 

10 computer performs fast readollts of small subarrays, typically 26x20 pixels, from 

the 62x58 array. Image data are then transferred over a SCSI link to a second 

computer which determines the wavefront and issues commands via a set of digital

to-analogue converters to the adaptive mirror actuators. The wavefront computer 

is an array of 21 transputers, designed pri marily for high speed implementation of the 

neural network algorithm described in chapter 5, but also capable of running other 

routines for real-time adaptive correction. 

The output voltages of the 18 DACs are amplified by driver circuits, designed 

and built by D. Wittman, to ± 220 V, the range required by the piezo-electric 

actuators. Figure 2.7 shows the circuit diagram of the high voltage driver. The 

incoming analogue signal is presented as a 4 to 20 rnA current. Current loops are 

used in preference to voltage signals because of the 20 m long cables, and the 

electrically noisy environment at the telescope. The current flowing in VRI develops 

a voltage which is buffered by the first low voltage op amp. VRI is also used to set 
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Figure 2.7 Circuit diagram of the driver circuit for the piezo-electric actuators 
on the adaptive mirror. 
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the gain of the whole driver. The second stage amplifier is used to subtract a 

constant voltage bias, set by VR2, so that when the DAC is set to its mid-range value 

of 12 rnA, the output of the driver circuit is zero. The final amplification stage uses 

an Apex PA88 high power op amp at a gain of 82 which directly drives the actuator. 

The capacitance of the piezo-electric crystal is only 5 pF, and the driver has 

an output impedance of 36 kn, so the electrical response time of the circuit is very 

short. However, when a mechanical load in the form of a mirror segment, which 

weighs 7 g, is placed on the actuator, the response time is lengthened; it has been 

measured as 1 ms for a voltage swing of 200 V. This is short enough for the present 

adaptive optics work in the near infrared, but in the future, when the technology is 

pushed towards the visible region of the spectrum, the cycle time for the entire 

system must be no more than a few milliseconds, and a more sophisticated driver, 

with active compensation of the mirror resonance will have to be built. 
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2.4 The transputer parallel-processing array 

Operation of the adaptive system in real time requires that the atmospheric 

distortion does not change substantially in the interval between measurement and 

correction. Most of the time in this interval must be devoted to integrating light on 

the detector in order to obtain as high a SNR as possible. That means that time 

spent on other activities, which include readout of the detector, calculation of the 

wavefront, and adjustment of the adaptive mirror, must be minimised. 

The requirement on the wavefront computer is presently set by the readout 

rate of the InSb camera. Calculation of the wavefront can begin as soon as the first 

pixel value is available from the 10 computer, and can run in parallel with the 

readout. Two 26x20 subarrays can be read in 9.4 ms. The most computationally 

intensive wavefront algorithm we have used is the neural network; a single pass 

through the net represents some 160,000 floating point operations. Thus, to 

maximise performance, a machine was required which can sustain a computation rate 

of at least 17 Mflops. The 10 computer is capable of this speed, but to achieve it, the 

machine would have to be programmed in microcode, an extremely cumbersome and 

difficult task. 

The structure of the net is essentially parallel. Rather than using a brute 

force serial processing approach, we turned instead to transputers, microprocessors 

specifically designed to operate in parallel computing architectures. The speed of a 

transputer-based machine is inversely proportional to the number of transputers. 

Expansion of the array to include extra transputers is readily done, and the array is 

easily programmed in the high level language Occam2, written with parallel computa

tion in mind (Inmos, Occam2 reference manual). 

The transputer array developed for the MMT adaptive system consists of 

sixteen 25 MHz and four 20 MHz T800 transputer modules, manufactured by Inmos. 
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Figure 2.8 Transputer architecture for the MMT neural network. Transputers 
on board care 20 MHz devices. The rest run at 25 MHz. 
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Each transputer has a 32 bit internal data bus, and four external serial 

communication links which allow it to exchange data or code with up to four other 

transputers at a rate of 20 Mbaud. Each module also carries 1 Mbyte of on-board 

memory. Figure 2.8 shows the pipelined ring architecture adopted for the array. The 

system resides on two motherboards, a and b, which occupy 16 bit slots in a host PC, 

and a third board c external to the host computer. The transputer labelling in figure 

2.8 refers to the motherboard slot number and letter. Communication with the host 

occurs over one of the links of the root transputer Oa through an on-board serial-to-
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parallel interface. A second channel to the PC is available, though unused, from 

transputer Ob. Links 1 on transputers Oa and Ob connect to additional T212 

transputers, which are 16 bit integer processors dedicated to the software control of 

the link architecture on each motherboard. This control is convenient for a machine 

where flexibility is at a premium, but has been bypassed on the MMT system since 

it is achieved with a sacrifice of 20% in communication speed. 

Images are shipped to the transputers over the SCSI interface at the centre 

of the array, where a third dedicated T212 transputer copies the pixel values to all 

the other transputers in the array. Each transputer then computes partial results, and 

transmits them around the ring to the root transputer, where the final results are 

accumulated and passed to the host. The tree structure ensures that no transputer 

is further than three data transfers from either the SCSI port or the root transputer. 

Benchmarks for the 25 MHz and 20 MHz devices on matrix multiplication 

problems (very similar to the neural net) showed them capable of 1.3 Mflops and 

1.0 Mflops respectively. Thus, we expected our array to achieve 25 Mflops, which it 

does in practice. Since large amounts of data must be shipped around during 

computation, this is only possible by running data transfer and computation in 

parallel, something which fortunately, the transputers are designed to do. 
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Considerable effort has been devoted by many groups over the last thirty years 

to characterising the turbulent effects of the atmosphere. Recently, the need for a 

clear understanding of the nature of the wavefront perturbation became more 

pressing as computer technology progressed to the point where realistic adaptive 

optics systems could be envisioned. Despite attempts to provide a universal theory 

however, it is clear that only the gross features of the causes of seeing are 

understood, and that details are highly site-specific. Hence the present work has 

been carried out to provide a detailed view of the seeing at the MMT in the near 

infrared. The driving force for this investigation has been the need for accurate 

computer simulations of atmospherically-distorted images to train the neural net. 

The most widely accepted theory of atmospheric turbulence is that due to 

Kolmogorov, outlined in chapter 1. This theory is often modified by the addition of 

two extra parameters, the inner and outer scales of turbulence. Between these scales, 

the effect of the turbulence is described by the structure function of equation 1.1. 

The outer scale Lo is the characteristic dimension of whatever process is supplying 

the energy which creates the turbulence, and there is very little knowledge of the 

behaviour of phase fluctuations beyond Lo' The inner scale has been measured by 

Roddier (1981) as less than 1 em, and can be disregarded for most astronomical 

applications since the phase errors caused by fluctuations on such small scales are 

much less than 1 radian. 

Evidence reported in the literature for the true shape of the turbulent 

spectrum is somewhat confusing and occasionally apparently contradictory. Bester 
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et al. (1991) claim that their results with an infrared interferometer on Mt. Wilson 

in California are consistent with an outer scale of a few tens of metres, but Colavita 

et al. (1987) see no hint of an outer scale in measurements over several kilometres 

with the Mark III stellar interferometer, also on Mt. Wilson. Certainly, one does not 

expect to find values of Lo longer than the scale height of the atmosphere, roughly 

7 km. Nightingale and Buscher (1991) believe from their work at the \Villiam 

Herschel telescope on La Palma that the seeing there is dominated by low-altitude 

turbulence with La about 2 m. In laser propagation experiments over horizontal 

distances less than 150 m, close to the ground, Clifford et al. (1971) and Matsumoto 

and Tsukahara (1984) find close agreement with the Kolmogorov theory, while Bester 

et al. (1991), in similar experiments report significant departures from the theory. 

There is good reason to believe that the nature of turbulence, at least within 

a few hundred metres of the ground, will be highly dependent on the topography of 

the site, and other local phenomena such as trees or the telescope enclosure itself. 

Kolmogorov turbulence is the result of relaxation of the velocity distribution in the 

free atmosphere after some initial disturbance (Tatarski, 1961). Variations in 

refractive index are dominated by this behaviour, resulting in the phase retardation 

described by equation 1.1. At low altitudes, relaxation is inhibited by the presence 

of structures on the ground, whose effects may only be neglected safely at heights 

greater than ten times the height of the structures (Panofsky and Dutton, 1984). For 

example, local vegetation warmer than the night air may provide a source of 

convection and humidity with distributions not dominated by the velocity structure 

of the atmosphere. The effects on refractive index will not then be in accord with 

Kolmogorov theory. Additionally, the relative contributions to the measured phase 

fluctuations of the ground level and upper atmosphere, which may be expected to 

obey Kolmogorov statistics more closely, seem to depend on the site, with the result 
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that measurements made at sites dominated by low-level turbulence will not match 

the theory as well as measurements from sites where the effects of higher layers are 

more important. This can explain the result reported by Bester et al. (1991) that the 

Kolmogorov model is a better fit to their data when the seeing is poor than when it 

is good. Presumably changes in seeing are dominated by high altitude turbulence, 

since conditions on the ground are not highly variable. Thus, when the upper 

atmosphere is active, and seeing is bad, the wavefront perturbation is largely 

determined by Kolmogorov statistics, but when local effects are dominant, the phase 

will appear to obey more random statistics. 

3.2 Two-beam interferometry at the M MT 

Much can be deduced about the temporal and spatial characteristics of the 

atmospheric phase perturbations from the motion of the fringes formed by a star in 

the focal plane of a two-beam interferometer. Figure 3.1 illustrates the effect on the 

beam profile of phase differences between the apertures. The MMT is well suited 

for this purpose; the geometry of the telescope allows pairs of mirrors to be selected 

with three different baselines. During telescope runs in June and September 1991, 

we used the MMT in this mode, with the adaptive instrument attached, and a pupil 

mask inserted at the adaptive mirror, but with no control being applied. The InSb 

array was used to record the fringes in a 26x20 pixel subarray, since the 10 computer 

is able to read a box that size on the camera at a rate of 100 Hz. Long sequences 

of frames were taken looking at a bright star; the pupil configurations and other 

parameters are summarised in table 3.1. 

The phase difference between the two apertures can readily be found by 

examining the Fourier transform of each image at the point corresponding to the 

spatial frequency of the interference fringes, which is determined by the baseline of 



............ 
en 
~ 
c 

1.0 

0.8 

::J 0 .6 
>. 
I... 
0 
I... ..... 

L) 
I... 

~0. 4 

>. 
:::: 
en 
c 
<V c 0.2 

' I 
rl 

I 1\ ~ 
I I 

I I\ I 
I I 

I : ~ 
I \ II 

I : 
I 

I : I ~ 
I \ II I ; 

Foca l plane position 

Figure 3.1 Profiles for three irnages of two coherent bean1s, 
unaberrated except for piston error. Solid - zero error; short dashed -
1 radian of relative phase error; long dashed - 2 radians of error. 

Table 3.1 

June SeQtember 

Pupil masking o0 e .o. oo~ ~0~ 0~0 
oo• 0 0 0 OoGJ 0 0 0 OQO 

Baseline 2.52 m 4.36 rn 3.09 m 5.35 m 6.16 rn 

Aperture diarneter 1.83 m 0.70 m 

Plate scale 0.04 0.04 0.04 0.02 0.02 
( arcseconds/pixel) 

Exposure time 10 ms 10 ms 

Frame rate 100Hz 100Hz 

Length of data sets 11 s 22 - 45 s 
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the interferometer. Ambiguities of 21r are avoided by assuming that the phase at 

2.2 J,Lm does not change by more than 1r in the 10 ms between frames. In fact, as will 

be seen shortly, the typical phase change in this time is a few tenths of a radian. 

Figure 3.2 shows a reconstruction of the phase from 45 s of data taken at the 6.16 m 

baseline (mirrors B and E) on the night of September 23 1991. The mean square 

value for the phase is 70.3 rad2
, which from equation 1.1 gives r 0 = 1.53 m. 

Part of another phase reconstruction is shown in figure 3.3, this time with 

mirrors A and C at the 5.35 m baseline, which is oriented parallel to the direction 
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Figure 3.2 Phase difference across a two-beam interferometer derived 
from the Fourier transform of image-plane fringes recorded at 100Hz. 
The baseline is 6.16 m, and the wavelength is 2.2 J,Lm. The mean 
phase has been subtracted. 
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of the azimuthal drive of the telescope. This drive is known to jitter at a frequency 

close to 3.5 Hz, and indeed the obvious feature in figure 3.3 is a component which 

turns out to be at 3.57 Hz. The global wavefront tilt (as seen by an instrument on 

the telescope) caused by the oscillation in the drive introduces an effective phase 

error between the two apertures. The magnitude of the jitter measured from the 

phase data is 6.53 radians at 2.2 J..Lm, which corresponds to 0.09 arcseconds on the 

sky. The fact that this effect is seen so clearly is evidence of the high precision of 

the phase retrieval method. 

An instructive way to analyse the phase data is to examine the structure 

function, defined as 
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3.1 

where 11¢(t) is the phase difference between the apertures at time t. Figure 3.4 

shows the structure function for the phase plot in figure 3.2, and also that for a data 

set taken with a 2.52 m baseline at 1.65 .urn, using mirrors A and F, on the night of 

June 2 1991, for which ro = 0.95 m (1.34 m at 2.2 .urn). Physically, these temporal 

structure functions represent the mean square change in phase difference between 

the apertures after a time t. To begin to understand the shape of the curves, one 

may calculate the expected structure function for the simple case of a 'frozen' 

wavefront, which does not vary with time, being blown across the interferometer by 

a wind (the Taylor hypothesis). Figure 3.5 shows the structure function derived from 

a computer simulation, in which a frozen wavefront was constructed to obey 

Kolmogorov statistics. The atmospheric simulation code used here is described in 

chapter 5. The baseline B of the interferometer was 6.16 m, and the wind velocity 

v was 5 m/s. There are obvious similarities to the real data. The first part of each 

curve has a slope on the log-log plots of roughly 5/3, as expected from the theory, 

separated from a flat portion by a knee at t - B/v. 

In the first regime, t ~ Blv, the wavefront has been shifted only a small 

fraction of the baseline between phase measurements. Equation 1.1 predicts a mean 

square phase change of 2::(vt) for each aperture. The measured mean square phase 

change between apertures is 22::(vt), since by the above condition, the changes in 

phase at each aperture are uncorrelated. 

In the regime where t ~ B/v, the change in phase of each aperture given by 

equation 1.1 is larger than the expected change in phase between the apertures. 

There is a significant common component of the phase change caused by turbulent 

waves with wavelengths longer than B which is not sensed by the interferometer. 
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Thus the structure functions of figures 3.4 and 3.5 saturate at a value 2~(B). The 

form of the simulated temporal structure function is then 

13.76 f;:f (vt ~ B) 

S 3.2 

13.76 f~ r (vt ~ B) 

The important point is that in the unsaturated part of the curve, the temporal 

structure function gives directly the dependence of the spatial structure function on 

distance 

However, both plots derived from real data show significant deviations from 

the simulated data. In particular, there is another break at t - 0.1 s before the 

curves flatten out. This suggests that there are two distinct contributions to the phase 

fluctuations occurring at different places in the atmosphere. 

Previously, the idea that two well-separated layers in the atmosphere are 

primarily responsible for the wavefront aberration has been put forward by Woolf 

(1982). Variation of the refractive index 11 in the atmosphere obeys a power law in 

the Kolmogorov theory; the mean square difference in n between two points 

separated by r can be written as D.n 2 = c/ ;'/3. The amount of refraction suffered 

by a ray passing through the atmosphere is proportional to the square root of the 

integral along the ray of the refractive index structure constant C/ Barletti et al. 

(1976) have measured C
l1

2 as a function of height, and their data match fairly well 

the semi-empirical model of Hufnagel (1978), modified by Valley and Ulrich (Ulrich, 

1988), shown in figure 3.6. This model has two peaks, one at ground level, the other 

at the tropopause, at about 10 km altitude. 
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A good match with the observed temporal structure function can be obtained 

from a simple model of the atmosphere in which there are two independent thin 

Kolmogorov phase screens, each specified by two parameters. These are the 

correlation length ro and the windspeed v. The height of each layer cannot be 

determined from the present data, because there is no angular resolution on the sky. 

In principle though, one could obtain the height from triangulation by looking at the 

correlation of single-beam image motion for two stars, separated by some small angle 

and imaged in two separate telescopes, as a function of the baseline (figure 3.7). 

However, on the basis of the work of Barletti et aI., Hufnagel, and others, one 

expects to find a layer within a few hundred metres of the ground with a low 

windspeed, typically 0 to 15 mis, and a second layer at a height of 5 to 10 km, with 

a windspeed of 15 to 35 m/s (Merrill et aI., 1987). 

A fifth parameter of the model is the outer scale of turbulence ~ of the lower 
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Figure 3.7 A possible scheme for measuring the height of the upper turbulent layer 
by triangulation. The height h of the common path shared by the light beams is 
determined by 

h = 
B 
e 

where B is the baseline, and can be varied by changing B. The correlation of the 
image motion between the two telescopes will peak when the common path occurs 
at the turbulent layer. 
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layer. There is assumed to be a sharp cut-off, with no turbulence on scales larger 

than~. The model is not very sensitive to the value except when ~ is comparable 

to or less than the baseline. An outer scale smaller than this value will show in plots 

of the phase as a lack of low spatial frequencies, which will also be evident in the 

temporal structure function as a drop at large values of t. For the present instances, 

the best results were obtained when ~ was fixed at 200 m. The difference between 

these models and identical cases with infinite ~ is small but noticeable; the main 

justification for the finite value is the physical argument that one does not expect to 

find waves at any given height Iz ahove the ground with wavelengths longer than h. 

Roddier (1981) and Coul man (1987) have concluded that an outer scale Lu 

in the range 10-100 m exists also for the upper atmosphere. Again, the model is very 

insensitive to values larger than the haseline of the interferometer, though if there 

is a sudden drop in the power spectrum of turbulence as the outer scale is exceeded, 

then frequencies near the peak, that is with wavelengths close to Lu' which contain 

most power, are expected to appear explicitly in the structure function. In fact, both 

plots in figure 3.4 show oscillatory hehaviour for times greater than -1 s, which 

seems to repeat in other data sets taken at about the same time in each case. This 

behaviour is conceivably caused by a value of Lu of roughly 50 m. However, the 

assumption of a sharp cut-off in the turbulent spectrum is probably highly unrealistic. 

A more likely case in which the power spectrum drops slowly, or not at all for some 

way beyond Lu would have the effect of washing out low-frequency oscillations in the 

temporal structure function. Thus it is probably not correct to interpret the observed 

fluctuation as the effect of an outer scale. 

The results of two models summarised in table 3.2, are shown in figure 3.8. 

The exciting things to note about table 3.2 are the large values for fo at the upper 

layer, despite the seeing conditions which were not excellent. The isoplanatic angle 
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Layer 

Wavelength 

Fried length m 

Windspeed m/s 

Table 3.1 

June 

Lower Upper 

1.65 j..Lm 

0.84 2.0 

1.4 16.0 
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September 

Lower Upper 

2.2 j..Lm 

1.3 7.6 

5.4 36.0 

for a given layer is roughly ro/h. Thus, the ground layer has a large isoplanatic angle 

by virtue of its small value of Iz, and the model suggests that the high altitude layer 

also has a relatively large isoplanatic patch. This could be exploited in a system with 

two adaptive mirrors, one conjugate to each layer, in which case the diameter of the 

isoplanatic patch would be limited by the upper layer to several arcminutes. This 

would be a major improvement over current single-conjugate systems, which are 

limited to roughly one arcminute fields. 

While the lower layer dominates the observed phase fluctuations, and thus 

determines the magnitude of the required wavefront correction, the upper layer is 

moving much more quickly. Thus it is this layer which sets the rate at which 

corrections must be made by the adaptive optics system. If this layer were moving 

more slowly, at about the speed of the ground layer, its effects would not be 

noticeable in the temporal structure function, and the results would look similar to 

those obtained by ColaviCa et al. (1987), and Nightingale and Buscher (1991). 

Bester et aI. (1991) found a slope for the structure function below the break 

at B/v ~ 1 s of about 0.79, which they describe as conflicting with the standard 

Kolmogorov model. However, their data were collected at a rate of 10 Hz, which 

may not be sufficient to observe the effects of a second higher layer. The mean 

slope for the MMT data in the range 0.1 s < t < 1 s is 0.82, and it is only for t < 
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0.1 s that the expected value 1.67 is approached. It should be noted that Mt. Wilson 

and Mt. Hopkins lie under approximately the same part of the upper atmospheric 

wind. 

It is worth commenting on the fact that the lower turbulent layer is observed 

to fit the Kolmogorov model so well, with quite a large outer scale, which contrasts 

with some of the work mentioned in section 3.1. The MMT is placed on the top of 

a very steep, relatively isolated peak about 2,000 m above the surrounding plain. 

There are no tall structures or trees in the immediate vicinity of the telescope, and 

the prevailing wind is roughly from the southwest. In this direction from the 

telescope, there is a sheer drop of about 100 m before any significant variation in the 

surface is encountered. Thus turbulence in the air moving over the telescope has had 

time to relax in the manner leading to the Kolmogorov velocity spectrum. 

The model provides further confirmation of the Kolmogorov theory of 

atmospheric turbulence, from scales of a few centimetres to tens of metres, 

determined by the temporal resolution of the data and the length of the data sets 

respectively. In particular, the slope obtained by averaging the temporal structure 

functions of 15 data sets taken throughout the June and September runs, for t < 0.1 s 

is 1.53, on = 0.15, which the Kolmogorov theory predicts to have an asymptotic value 

of 1.67. Additionally, the mean square phase values for six data sets, taken two 

apiece at the 3.09 m,5.35 m, and 6.16 m baselines within a period offive minutes are 

respectively 23.2, 17.6, 56.5, 57.7, 70.2, and 69.2 l.id2• Equation 1.1 allows a 

consistency check; the six corresponding values of ro are 1.49, 1.76, 1.51, 1.49, 1.53, 

and 1.54 m. The similarity of these values is evidence that the five-thirds power law 

is the correct description of the statistical behaviour of the wavefront over scales of 

a few metres. The anomalously high value 1.76 is probably due to a brief drop in the 

windspeed at ground level which occurred during this particular data set. Long 
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wavelengths of turbulence are not sufficiently sampled in the time spanned by the 

data to contribute fully to the expected phase error. 

3.3 Error analysis 

Measurement of the phase difference from each image is subject to 

uncertainty, due mainly to readout noise of the detector. However, the error in each 

derived phase difference is independent, which makes analysis of the effects of the 

error straightforward. If the r.m.s. error in each phase difference is 0, then the 

measured value for the temporal structure function at a time difference M will be, 

assuming a power law dependence n 

3.3 

where AM" is the true value. The error term 202 will only become apparent for 

small values of M, when IJiI - 0
2
/ A, and has the effect of artificially raising S. This 

effect can be seen in the plots of figure 3.4, where the value of the structure function 

at 0.01 s is higher than would be expected if it were obeying the 5/3 power law. It 

seems reasonable to attribute this to measurement error since the alternative is to 

suppose that there is an extra atmospheric source of turbulence creating only very 

low amplitude wavefront distortion in a specific range of high frequencies, which 

seems unlikely. An estimate of the error can be made from the first few points of 

each plot in figure 3.4 on the basis of equation 3.3. The deviation from a power law 

requires 0 = 0.30 radians for the September data, which corresponds to a phase 

measurement uncertainty of 0.05 waves. For the June data, 0 = 0.23 radians, giving 

a phase uncertainty of 0.04 waves. The error is due largely to readout noise from the 

detector, which limits the SNR of the data to about 20. 

It should be noted that the model atmosphere presented here is based on data 
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taken when seeing conditions were above average. It is as good or better about one 

night in three (Cromwell et aI., 1990). Fringe data were also taken on the nights of 

September 20 to 22. On all three nights, the seeing was somewhat worse than 

median, and the fringe contrast would frequently drop to zero, making it impossible 

to use the interferometric technique to study the behaviour of the phase for more 

than a few seconds at a stretch. Information on low spatial frequencies of turbulence 

is thus lost, but it is possible to compute structure functions for the higher 

frequencies (figure 3.9), and these have the same general shape as those of figure 3.4, 

which confirms that the two layer model is still applicable. The fact that the seeing 

was substantially worse, or ro was smaller, when the data for figure 3.9 were taken 
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shows as a vertical shift of the entire plot compared to figure 3.4. This is to be 

expected on a log-log plot, since from equation 3.2 

logS a -~logro 
3 

3.4 Optical image motion data 

3.4 

An alternative approach to interferometric sensing of the phase is to follow 

the motion of the image of a single aperture, which is a measure of the phase 

difference across the diameter of the aperture (Martin, 1987; Cromwell et aI., 1990). 

During the June run optical (>. = 0.7 I.Lln) centroid data from individual MMT 

telescopes were gathered at a 60 Hz rate simultaneously with combined-focus 2.2 J,Lm 

images. 

These optical data, gathered by a system completely independent of the inter

ferometer except for four mirrors in the telescope itself can also be used as a check 

ofthe atmospheric model. Figure 3.10 shows the temporal structure function for 17 s 

of data. The two layer structure, though less striking, is still evident. Some 

smoothing of the transition regions of the curve is to be expected from the averaging 

effect of the filled aperture on phase, which does not occur in the two-beam inter

ferometer. 

3.5 Instrumental aberration 

One further quantity of interest can be extracted from the fringe motion. The 

phase data of section 3.2 include the effects of the atmosphere and telescope 

vibration only. Static instrumental errors are not detected. On the other hand, the 

FWHM of the seeing disc in the integrated image created by summing the individual 

fringe frames is a direct measure of the total system aberration including the effects 
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of atmosphere and instrument. The total FWHM can be expressed as a sum in 

quadrature 

2 
a tot 

3.5 

where the contributions are due to the atmosphere, telescope vibration, and static 

errors in the optics. 

The value of r0 for the 2.52 m baseline data of figure 3.4 was 0.95 m. This 

can be related to the FWHM through equation 1.4, which gives a contribution 

aatm = 0.35 arcsec to the seeing width. The MMT structure is extremely stable in the 

declination axis, so a 1e 1 can be ignored. The integrated image gives a 101 of 0.58 

arcsec, which implies that ablur = 0.46 arcsec. This is consistent with the 

measurements of Cromwell et al. (1990), who report an instrumental blurring of 0.47 
' 

± 0.03 arcsec at 0.7165 J..LID wavelength. In terms of the mean square phase error A 
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across each 1.83 m aperture, the blur component contributes 8b1ur :::: 0.13 rad2
• 

The value of Cl: b1ur can also be obtained from single-mirror image motion data. 

The centroid motion derived from a 50 s sequence of 10 ms, 2.2 J..Lm snapshots of a 

star from mirror A with the full 62x58 InSb array (approximately a 2.5 arcsec square) 

is shown in figure 3.11a. The r.m.s. value of the motion a is 0.163 arcsec, which can 

be related to the FWHM contribution via 

FWHM 3.6 

= 0.423 arcsec 

(Martin, 1987). Figure 3.11b shows a cut through the centre of the integrated image, 

which has a FWHM of 0.644 arcsec. The optical blur component is thus estimated 

at 0.49 arcsec. 

There are several sources of this addition to the FWHM of the integrated 

image. Residual focus errors, primary mirror support print-through (section 7.1), and 

errors in the optical surfaces are thought to be responsible. Their effect is principally 

to take light from the central diffraction peak of the single-mirror image and put it 

into the Airy rings without significantly affecting the resolution. Figure 3.12 shows 

a section through a single frame selected from a large 2.2 J.Lm data set for its peak 

intensity and quality of appearance. Also plotted is a cut through the theoretically 

perfect image with the same energy. The broadening effect on the FWHM is only 

apparent when the instrumental beam profile is convolved with a seeing halo. 
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Figure 3.11 a) The centroid position in one dimension for 332 snapshots of a star 
taken over a 50 s' period. b) The image profile of the resulting integrated image. 
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Figure 3.12 The profile of a single short-exposure image of a star taken with the 
adaptive instrument through the telescope, compared with the theoretical profile. 
Energy is· displaced into the Airy rings, but the resolution is unaffected. 
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Chapter 4 

First Telescope Tests of the Adaptive Instrument 

4.1 Tipltilt correction and adaptive phasing 

During the first run at the MMT with the adaptive instrument in June 1991, 

two simple techniques for wavefront sensing and control were investigated. Single

mirror tip/tilt correction was used to remove blurring due to image motion, which 

from equations 1.2 and 1.3, is the dominant source of wavefront aberration for a 

single-aperture telescope. Secondly, an algorithm referred to as adaptive phasing was 

implemented to control the relative phase between two telescopes. In this method, 

the focal plane position of the brightest interference fringe was used to steer the two 

adaptive mirror segments as if they were parts of a single larger rigid tip/tilt mirror. 

This had the effect of moving the image as a whole across the detector array to bring 

the bright fringe to the centre. In equivalent terms, the tip control applied to the two 

segments introduces a piston change between them, which removes the atmospheric 

phase error, or the phase error of the interference fringes in the image. The result 

is that the position of the brightest fringe is stabilised in the image plane. 

Together, these methods can form the basis of a more complex control system 

in which image motion is removed separately for each of the six beams with indepen

dent tip/tilt sensors, and interference between two or more telescopes is used to 

measure and remove piston errors. Chapter 9 outlines an algorithm for recovery of 

these phase errors. 

4.2 Theoretical background for two-beam interference 

At this point, it is worth reviewing briefly the theory of two-beam interference 

to provide a framework in which to evaluate the results of adaptive phasing (and 
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later, the neural network). In the absence of atmospheric turbulence, each telescope 

of an array will form a diffraction-limited image. These images may be stacked on 

top of each other. An overall tilt of the wavefront will simply shift the position of 

the combined image, while tilts between' telescopes will cause the images to become 

unstacked. 

The nature of the combined image depends on the degree of coherence 

between the beams. The beams will be coherent if the images are formed in mono

chromatic light, or if the optical path difference (OPD) is smaller than the coherence 

length for the filter in white l!ght. For a filter with a bandpass A)., centred on 

wavelength )., the coherence length is ). 2/ A).. The coherent image formed by a two

telescope array is a series of Young's fringes. Figure 4.1 shows the expected image 

of a point source for two coherent beams in the K band, a product of the single-

Figure 4:1 The theoretical image which would be seen in the focal plane of a two
mirror telescope, with 1.63 m apertures on a 2.88 m centre-to-centre baseline in the 
absence of atmo~pheric aberration. The wavelength is 2.2 ,urn, and the plate scale 
is 0.04 arcsec/pixel. The FWHM of the interference fringes is 0.1 arcsec, and the 
FWHM of the Airy envelope is 0.28 arcsec. 
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mirror Airy pattern with interference fringes. If the beams are superposed 

incoherently, the resulting signal at any point in the image will simply be double that 

for a single aperture. Figure 4.2 compares the two cases. If there is partial 

coherence between the two beams I I (Cix,Ciy) and I2( Cix,Cty ), then the intensity 

distribution in the image is given by 

4.1 

where the fringe contrast "( depends on the degree of coherence, Ct is the angle from 

the optical axis, and cp(Cix,O"y) is the phase difference between the beams (Thompson 

and Wolf, 1957; Tyson, 1991). For the case with no aberration and zero OPO, 

¢ = (2'11" /).)(CtxOx + CtyDy), where D is the centre-to-centre separation of the two 
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mirrors, implying a fringe spacing of .A/D, and a FWHM of .A/2D. 

The fringe contrast, or visibility, is defined as 

Y = 
1 - 1 max min 

lmax + lmin 

4.2 

where Imax and Imin represent the maximum and minimum intensity of the inter

ference pattern. Imax and I min can be measured on the optical axis (ex = 0) by varying 

the OPD between the two telescopes. For a time-integrated image where the OPD 

fluctuates with an r.m.s. value less than 1f but has zero mean, there will be a bright 

central fringe flanked by minima which do not go to zero. (If the r.m.s. OPD is 

greater than 1f, the fringes will be completely washed out.) Imilx is then the on-axis 

intensity, and Imin is the minimum intensity weighted by the ratio of the on-axis peak 

to the intensity which would be present if interference were neglected (figure 4.3). 

4.3 Relationship of Strehl ratio, fringe contrast, and mean square phase 

Equation 4.1 and figure 1.3 can be used to relate the Strehl ratio of a partially 

coherent two-beam image with the mean square phase error across each aperture. 

If the mean square phase error is known, then figure 1.3 gives the Strehl ratio Rsm 

which would result if an image were formed from just a single mirror. Assuming 

11 = 12, and there is no scintillation, then equation 4.1 predicts 

1 = 21 (1 + y) c sm 4.3 

where Ie and Ism are the peak intensities for the combined and single-mirror images. 

Equation 4.1 also says that the peak intensity of the unaberrated combined image is 

4 times that of the single-mirror image. Thus, the Strehl ratio of the combined image 

is given by 
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Figure 4.3 Calculation of the fringe contrast 'Y for the time
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the profile of the envelope with which the interference term is 
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R = R 2(l+y) 
C SIll 4 

In particular, if'Y = 0 (completely incoherent), then Rc = Y2Rsm ' 

4.4 Practical considerations for adaptive correction 
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0.3 

4.4 

Under normal conditions at the MMT, the windspeed at the boundary of the 

tropopause where high altitude turbulence occurs is typically 15 to 35 m/s. Since ro 
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measured from image motion is roughly 1 m at 2.2 J.Lm, the required closed-loop 

correction rate is about 30 Hz. In its present configuration, the instrument is capable 

of running at about 75 Hz closed-loop correction rate. Exposures of 10 ms are taken 

at a 100Hz rate which then require abou't 8 ms processing time before the adaptive 

mirror is adjusted, with an effective sense-to-correction time of 13.2 ms. Figure 4.4 

is a schematic of the timing diagram. After a 10 ms integration, a 26x20 pixel 

subarray is read out from the InSb camera in a nondestructive mode. The pixel 

values are copied to a separate part of memory, so that another readout may begin 

while processing is still occur~ing, and the previous frame is subtracted. An 

algorithm, discussed below, is used to determine the co-ordinates of the centre of the 

image, which are transferred over the SCSI link to the transputers. The transputer 

array converts the co-ordinates into driving voltages for the adaptive mirror. 

Changes to the actuator values are made every 10 ms, at the end of each 

Integration time 1 Oms 

1/0 readout 4. 7ms 

Copy 1.5ms 

Bright pixel 2.0ms 

SCSI transfer 1 .2ms 

Set DACs 2.3ms 

TOTAL TIME 13.2 ms 
(sense to c<!>rrection) 

1.2 ms 1 r- 13.2 ms~ 

Figure 4.4 Timing scheme for the adaptive phasing and tip /tilt algorithms. 
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exposure. But since the calculated corrections are not available until about 10 ms 

after readout of the frame for which they are appropriate, a complete exposure and 

correction have been made in the meantime. This overlap of integration time with 

computation means that the actuator adjustments must be applied to the values 

which the actuators had prior to the most recent change. Thus, the tracking 

programme must maintain a record not only of the present actuator values, but their 

immediately previous values as well. 

Since the detector is operated in a nondestructive read mode, it must be reset 

every few frames as the pixel wells fill with electrons. This introduces a 6.8 ms break 

in the flow of data, but is faster than using a destructive readout, when the camera 

would have to be reset after each frame. 

4.5 The tracking algorithm 

The same computer code was used both for single-mirror tip/tilt, and two

beam adaptive phasing. The two processes are equivalent in that adaptive phasing 

is identical to steering the combined image with a single large mirror, as discussed 

in section 4.1. All of these initial experiments used the co-ordinates of the brightest 

pixel inside a box of specified size around the optical axis to drive the adaptive 

mirror. The size of the search box was set equal to about twice the size of the 

diffraction-limited component we were attempting to stabilise. Thus, we used 0.6 

arcsec for the single mirror case, and 0.2 arcsec for the two-mirror experiments. The 

purpose of limiting the search area is to prevent the algorithm from jumping from 

speckle to speckle (or fringe to fringe) between frames. Such large adjustments 

cause blurring of the image structure on the camera, as the image moves. 

Steering on the brightest pixel is equivalent to performing shift-and-add in 

post-processing with the exception that had a second camera been available to image 
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a large field of view around the reference star, the photon noise statistics of the 

integrated image would have been those appropriate to the long exposure, not the 

10 ms snapshot time. 

4.6 Observations 

Figure 4.5 is a series of integrated images, obtained with and without adaptive 

phasing in the case of the two-mirror images, or bright speckle tracking for the 

single-mirror case. These images were made by directly co-adding 1,000 frames of 

100 Hz data. On the right of figure 4.5 are cuts through the peaks of the integrated 

images. Table 4.1 lists the observational parameters and measured results from the 

integrated images (Wizinowich et a!., 1991 b). 

The extraordinarily good seeing conditions indicated by the large values of ro 

can be seen in the small FWHM of the uncorrected images, and the fact that fringes 

are still faintly discernible in the integrated uncorrected images c and d. The value 

of ro for the single mirror case is rather tentative - it has been derived from the 

FWHM of the uncorrected image (equation 1.4), assuming instrumental broadening 

of 0.48 arcsec. 

An excellent illustration of the performance of the adaptive phasing 

mechanism is provided by figure 4.6. This shows the phase for the two images of 

figure 4.5c, derived from the individual images by finding the phase of the 

appropriate Fourier component, as in chapter 3. 

4.7 Improved tracking algorithms for the future 

Using the brightest pixel as a method of tracking the image is a rather crude 

way to recover diffraction-limited imaging. In images where D/ro is large, and there 

are multiple speckles, it throws away all information in the other speckles, and worse, 
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1: K filter. 1.83m telescope 

0-Qol-r. :;~._,oh.J_.___.__.__+,o. 1,........_.....-'-;;-';-o. 1.......__._---'--r<-'o. 3;-'-'----'--n'o.:; 
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II : K tiller (narrow). 0 = 2.52m 
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ELEVATION ( orcseconds} 
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Figure 4.5 Integrated images, each consisting of 1,000 co-added frames, without 
(left) and with adaptive correction. a) A single telescope (mirror A); b) two 
telescopes (A and F); c) and d) (overleaf) telescopes A and C. Images a, b, and c 
are at 2.2 JLm; image d is at 1.65 J.Lm. The plate scale in a and b is 0.04 arcsec/pixel, 
and 0.02 arcsec/pixel for c and d. On the right are shown image profiles through the 
brightest pixel in the direction across the fringes. 
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Ill: K filter. 0 4.36m 

-0. 1 0 . 1 O.J 0.5 
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IV: H filter. D 4.36m 
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Table 4.1 

Image a 

Star name a Bootis 

A, &A (lLm) 2.20,0.42 

Baseline, D (m) 1.83 

A/D (arcsec) 0.25 

Plate scale (arcsee/pixel) 0.04 

Corrected image results 

Fringe contrast y 

Uncor./cor. FWHM (aresec) 0.52/0.34 

Ratio of cor. to uneor. Strehl 1.27 

Phase errors 

M.S. piston (uncor./cor., rad2
) 

ro (m) 2.2 (?) 

b c 

K Ophiuchi B Cygni 

2.26,0.22 2.20,0.42 

2.52 4.36 

0.19 0.10 

0.04 0.02 

0.63 0.60 

0.34/0.10 0.25/0.06 

1.96 1.34 

5.20/0.32 11.0/0.36 

3.0 3.3 

d 

B Cygni 

1.64,0.34 

4.36 

0.08 

0.02 

0.38 

0.35/0.07 

1.82 

23.7/1.17 

2.1 

-....) 
~ 
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Figure 4.6 Phase for the two images of figure 4.Sc. a) uncorrected, 
and b) with correction by the adaptive phasing algorithm. 
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dumps the energy into a broad halo. Even in the single-mirror case with D/ro < 2.7, 

where the image is characterised by a single diffraction spike moving around in the 

image plane, residual wavefront error across the aperture can make the brightest 

pixel appear somewhere other than the centre of the spike. 

The energy centroid is commonly used to steer a tip/tilt mirror to improve 

resolution. Again, this is a poor technique, since it gives zero weight to the brightest 

part of the image, and greatest weight to the outlying low energy portions, exactly the 

opposite of the desired effect. In addition, the centroid always underestimates the 

required correction because energy lost off the edge of the detector is not included 

in the calculation. In theory, the true centroid derived from an infinite array detector 

(which sees all the energy) measures the mean slope of the wavefront (in the one 

dimensional case, the edge-to-edge phase difference); see for example, Hufnagel 

(1978). For a two-dimensional circular aperture of radius R, the centroid (cx,cy) is 

_1_ f<l>(R,8)cos8de 
27tR 4.5 

c = _1_ f <J> (R, 8 ) sin 8 de 
y 21tR 

where the integrals are taken over the circumference. However, this is not where 

most of the energy in the image lies. To achieve the best integrated images, the 

wavefront must be corrected with a plane which minimises the squared phase error. 

In the low D/ro regime of the present experiments, excellent results should be 

obtained by fitting an Airy pattern to the image, or even simply fitting a Gaussian to 

the central spike, in the case of a single mirror. For the two mirror case, fitting a 

cosine wave across the fringes should provide a substantially better estimate of the 

phase error. This can be done by maximising the product f3 of the image intensity 

with a cosine wave of variable phase 
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[
21tX. 1 

f3 = ~ Ii COS f -<I> 
4.6 

with respect to the phase of the fringes ¢; f is the fringe spacing, determined by the 

baseline. Ii and Xi are the intensity and x co-ordinate of pixel i, where the x-axis is 

perpendicular to the fringes. Thus we would require 

4.7 

which the transputers could solve very rapidly. The centroid can still be used in an 

improved fringe tracking scheme, since with a realistic finite detector it is a measure 

of the location of the bulk of the energy. The aim would be to tilt the mirrors 

individually on the basis of the centroid, bringing the energy to the centre of the 

detector, something which the technique used for the images in figure 4.5b-d did not 

attempt. The phase measurement of equation 4.7 would then be used to adjust the 

piston to bring a fringe into the bright centroid. 

The best of these techniques still controls only three of the five degrees of 

freedom in a two mirror system, and its application to more complex optical arrays 

would be very clumsy. Nevertheless, the hybrid tilt and piston control system 

envisioned in section 4.1 would benefit from the algorithms outlined above, which are 

substantially more refined than those presently in general use. 

4.8 Infrared versus optical centroid 

An improvement in the overall SNR of the hybrid wavefront sensor can be 

achieved if visible light, which is wasted in an all-infrared system, is used to 

determine the six wavefront tilts. Infrared photons could then all be used to find 
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phase errors. This is possible provided that the optical centroid is a good measure 

of the wavefront slope in the infrared. To test this theory, an experiment designed 

by P. Wizinowich, and I. Scott-Fleming of the MMT staff, was performed during the 

June run in which images of a star from single MMT mirrors were obtained simul

taneously in the visible and infrared. A dichroic beamsplitter in the beam sent 

visible light to a Pulnix CCD camera, with a mean response around 0.7 J.,Lm, read at 

60 Hz, while infrared was transmitted to the JnSb array. 

Figure 4.7 is a plot of the infrared image centroid against the optical value in 

elevation. The slope of the best fit line is unity to better than 1 %, with an r.m.s. 

variation of 0.039 arcsec. The r.m.s. difference between two successive measurements 
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Figure 4.7 Infrared image motion versus optical centroid position 
for a single 1.83 m telescope. 
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of the optical centroid separated by 1/60 s, is 0.041 arcsec. Thus, a correction rate 

of about 50 Hz will be adequate to achieve 0.066 arcsec imaging with the full MMT 

under the same seeing conditions. The seeing can be estimated from the r.m.s. 

infrared centroid motion, which was 0.086 arcsec from 17 s of data. This can be 

related to ro through equations 1.4 and 3.6 which yield the value ro = 2.5 m, further 

evidence of the extremely good seeing pertaining during the run. In addition, image 

motion scales as ro-
5/

6
, so under median conditions, we expect a delay of 1/60 s in 

applying the tilt correction to introduce an r.m.s. error of about 0.09 arcsec. This 

should still not cause problems provided that the phase correction is fast enough. 

From equation 1.1, the r.m.s. wavefront slope scales as d5
/

6
, so the r.m.s. phase error 

across the longest centre-to-centre baseline of the MMT, 5.04 m, caused by the same 

delay will be 0.55 rad, sufficiently small that, although the contrast of the integrated 

image will be reduced, the resolution will not be affected. 

4.9 A CCD for tipltilt sensing 

The requirement for the tip/tilt sensor is that wavefront slope information 

with minimal noise be available as fast as possible. The ideal is a small-format, low 

noise CCD chip which will allow separate images from each of the six telescopes to 

be read out and centroided. An excellent chip fur this purpose has been designed 

at the instigation of R. Angel, by J. Geary of the Smithsonian Institution. It is a 

frame transfer device, with an active area 24x48 pixels in size, each pixel being 30 

J.,Lm square. There are four readout amplifiers which may all be run in parallel with 

a suitable controller, though any pixel may be channelled through any amplifier, 

allowing great flexibility. The noise specification requires that the chip be readable 

at a 50 kHz pixel rate with 6 electrons noise per pixel. With all four amplifiers 

running, this will permit a read time of less than 3 ms. Thus, a very fast tip/tilt 
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correction loop should be possible, which can be integrated as part of the overall 

hybrid adaptive corrector. 

Since the devices are physically so small (figure 4.8), it has proved possible to 

include them on the edges of a standard· 3 inch circular silicon wafer, while most of 

the area is devoted to much larger devices. Two hundred chips have been made at 

very low cost in this manner by Loral Inc., during a manufacturing run of large CCDs 

for another customer, and they are now (November 1991) ready for mounting and 

testing. . 

Figure 4.8 The Loral frame transfer CCD with 3 ms 
read time, and 6 electrons noise. The format is 24x48 
pixels, each 30 p,m square. 
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Chapter 5 

The Neural Network Wavefront Sensor 

5.1 Introduction to artificial neural networks 

An artificial neural net is an array of simple processors, called nodes or 

'neurons' connected by links, or 'synapses'. Each node performs a sum of the signals 

sent to it by other nodes, weighted by the strengths of the connections linking the 

nodes. The output of the node is then some function (referred to as the node's 

activation· function) of the sum. _Figure 5.1 illustrates a small perceptron neural net 

(Lippmann, 1987), where the neurons are arranged in layers, the outputs from one 

layer feeding into the next. It turns out that this simple architecture can be trained 

to perform various tasks by adjusting the connecting weights and the processor 

Input 
vector 

Hidden 
layer 

Figure 5.1 A simple 3-layer perceptron neural net. 

Output 
vector 
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functions in an iterative manner. This is the class of neural net we have worked with. 

In succeeding sections, the notation {i, j, k} is used to denote such a net with i 

inputs, j hidden nodes and k outputs. The appendix provides some brief examples 

of very simple neural nets whose operation can be understood at an intuitive level. 

In operation, a vector is fed into the input layer, one component per node. 

The information propagates forward to the 'hidden' layer, so called because it does 

not communicate directly with the outside world. There may be several layers of 

hidden nodes, but in the end an output vector appears on the final layer, which if the 

net has been trained correctly, contains information decoded from the input vector. 

If the activation functions in all the nodes are linear, the action of the neural net 

reduces to a single matrix multiplication, which is only sufficient to solve linear 

problems. The power of the net as a general parallel-operating problem solver is not 

realised until the hidden nodes are made nonlinear. 

The most common node function used in neural net applications is the 

sigmoid. This is essentially a step function which switches on when the node's input 

reaches some threshold 8. It is readily differentiable which is an advantage for the 

training algorithm (section 5.3). Figure 5.2 illustrates the behaviour of the sigmoid 

as a function of the weighted sum input to the node for the case where 8 = 1. 

Consider a net with a single layer of hidden nodes which uses the sigmoid 

activation function. Each hidden node can be essentially either on or off, and so it 

divides the space spanned by the input vector into two regions separated by a plane. 

The purpose of the hidden nodes in a trained net is to partition the input space with 

a set of planes in such a way that the vectors in each region have in common 

precisely one of the features to be identified in the output vector. 

The node values in the output layer form a vector which approximates the 

true value of the function mapping the input space to the output space. The 
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Figure 5.2 The sigmoid function commonly used as the nonlinear 
activation function for a neural net's hidden nodes. The threshold 
value in this case is B = 1. 
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closeness of the approximation depends on how well the net is trained. A helpful 

figure of merit in evaluating the performance of a neural net with a particular 

architecture is the global error, a single number which is the r.m.s. error averaged 

over all the output vector components for all possible inputs. The global error 

depends of course on the values of all the connecting weights. Thus the global error 

can be visualised as a surface in a space of 11 + 1 dimensions, where 11 is the number 

of weights in the net. Each point on the surface specifies a different net. Training 

is designed to alter the weights to bring the net to the lowest minimum in the global 

error surface. 

5.2 The neural net simulation code 

The initial work to demonstrate that a neural network could indeed be trained 

to deduce the wavefront over the discontinuous aperture of the MMT from a pair of 

in- and out-of-focus images in the near infrared was done in computer simulation. 

Sandler et al. (1991a) had found that a trained neural net was capable of recognising 

low-order aberrations (the first 18 Zernike terms) from pairs of images formed by 
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passing a Kolrnogorov-distorted wavefront through a single circular aperture. 

However, their work had been based on images determined largely by geometric 

optics, whereas the effects of interference are critical in determining the phase errors 

across an array. It was not clear, then, how well a neural net would work, since the 

mapping from wavefront to image is extremely nonlinear, though the nonlinear 

structure of the net seemed well suited. 

The simulation code was written in C for a SUN 4 computer. It is divided 

into three sections. The first generates random Kolmogorov wavefronts by summing 

sine waves with wavelengths As spaced logarithmically between an inner and an outer 

scale. These two scales are adjusted so that the structure function computed over a 

large number of independent wavefronts is within a few percent of the true 

Kolmogorov structure function (equation 1.1) over distances from a few millimetres 

to a few hundred metres. Figure 5.3 illustrates the simulated structure function for 
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Figure 5.3 The structure function of the simulated Kolmogorov 
wavefronts used to generate training images for the neural net, with 
ro = 1 m. The slope is everywhere very close to 5/3. 
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ro = 1 m. The amplitude of the turbulent waves goes as A5
5

/
6

, and each is assigned 

a random phase and orientation for each wavefront realisation. 

The second section of the code uses a Fraunhofer diffraction calculation to 

trace the wavefront from the six apertures to detectors in the far-field image plane. 

The formal Fraunhofer integral is replaced by a sum over discrete points in the pupil 

5.1 

D represents an extra term added in the case of the defocussed image, a 

parabolic approximation to the spherical shape of the out-of-focus wavefront, 

D o in focus, 5.2 

8 2 2 D = 21t -(x. +y.) R I I 
out of focus 

R is the radius of the telescope array, and b. is the peak-to-valley defocus in waves, 

which for these simulations was set to O.S. 

At the 'detector', the discrete points just represent the pixel values I(xj,yJ 

Care must be taken though, to ensure that the density of phase sampling points in 

the pupil plane is sufficient to prevent aliasing in the image. The criterion is that the 

field of view of the detector must be less than AId, where A is the observed 

wavelength, and d is the spacing between phase sample points. 

The final section of code incorporates the neural net and its training 

algorithm. Figure 5.4 is a schematic illustration of the net as part of the control loop 
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Figure 5.4 Schematic illustration of the neural net wavefront sensor. 
Each pixel represents an input node to the net. The net outputs are 
connected, in a real system, to the adaptive mirror drivers. Here only 
two of the six MMT segments are shown. 
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in a real system. Each piXel from the two images is normalised by the total intensity 

in the in-focus image, and is then fed to an input node of the net. The normalisation 

ensures that when in operation on the sky, the inputs to the net will be minimally 

affected by changes in the flux from the reference star. 

A single layer of hidden nodes is used. At each hidden node a weighted sum 

over all the input pixel values is formed. This sum is then passed through a sigmoid 

function to form the node output 

O. = 
J 

1 
5.3 

W is a matrix of weights connecting the pixels to the hidden nodes, and the Os are 
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constant thresholds. In these first simulations, there were 18 output nodes, 

representing x tilt, y tilt, and piston for each of the six MMT mirrors. Their signals 

are weighted sums over the hidden node outputs (the activation function for the 

output nodes is linear) 

5.4 

5.3 The backpropagation training algorithm 

The goal of net training is to determine optimum values for the weights 

connecting the input, hidden, and output layers, and the sigmoid offsets. Initially all 

are set to small random values. The net is then shown a large set of image pairs 

calculated from random distorted wavefronts, for a given wavelength and value of rD. 

For each image pair the net outputs are compared to the known wavefront tilts and 

pistons, and the net weights and offsets are adjusted to bring the outputs into better 

agreement. 

The formal backpropagation training algorithm, derived by Rumelhart et al. 

(1986), is based on the least squares method. It is a local method in that the change 

in each weight is derived solely from the values of the nodes to which it connects. 

In other words, the algorithm looks only at the local slope of the error surface to 

determine which direction is 'down' towards the nearest minimum. The advantage 

of the method is that it is fast; the time taken to compute the correction on the basis 

of a single image pair is roughly equal to the time for a forward pass of an image 

pair through the net. The drawback is that since it does not look at the global error 

surface, the algorithm runs the risk of becoming trapped in a local minimum which 

may be a poor solution compared to the overall minimum. Some luck is required 
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in setting up the initial random weights so that the net starts off close to the best 

minimum. During several training runs, the phenomenon of trapping was observed; 

the net would stop learning before it had reached an acceptably low mean error. 

The changes in weights resulting from image pair n are given in equations 5.5 

to 5.7, in which the desired output vector is {td. 

5.5 

1)2 . W;j Ii . OJ (1 - 0) . L 0 ~'k + cx 2 · 0 W;j {n -1 } 5.6 
k 

5.7 

These formally derived equations may be understood on an intuitive level in that the 

correction to each weight is proportional to its contribution to the error in the output 

nodes to which it is connected. In this spirit, 8Wjk is the product of the error in node 

k, (t,,-o,,), and the contribution of Wjk to the output node sum, OJ Wjk. There is also 

a gain factor Tit. The learning rate is proportional to this gain factor, so the 17S are 

set as high as possible without the learning process becoming unstable. If this occurs, 

the errors grow geometrically, instead of decaying. The second term in equation 5.5, 

called the 'momentum' term, adds a fraction a I of the previous change. This is an 

attempt to speed up the training by preventing individual image pairs from causing 

large oscillations in the values of the weights. 

Equation 5.6 follows the same pattern for the Wijs, with the addition of a new 

factor,oj(l-oj). This is the derivative of the hidden node's activation function, in this 

case a sigmoid, with respect to the node input. In fact, the derivative is also present 

in equation 5.5, but the activation function is linear, so this factor is unity. The 
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sigmoid derivative has a bearing on the distribution of the initial random values for 

Wij and OJ. These values must be arranged such that for a typical image pair, the 

hidden node outputs OJ are close to the linear portion of the sigmoid, that is ~Wijli 

:::: OJ. If this is not the case, then OJ ::::: 0, or OJ ::::: 1, and from equation 5.6 8Wij is very 

small. The net will then be extremely slow to learn. 

The adjustment to the sigmoid offsets in equation 5.7 is made by treating the 

8s as extra weights connecting inputs of constant value to the hidden layer. 

5.4 Results of training 

For the purpose of modelling, an ro of 1 m was assumed, at a wavelength of 

2.2 j.Lm, typical of good seeing at the MMT. Chaffee and Cromwell (1990), and 

Cromwell et al. (1990) have measured the median MMT seeing at 0.72 j.Lm as corres

ponding to 0.72 arcsec FWHM in the integrated image. Assuming Kolmogorov 

statistics (chapter 3), this is equivalent to a value of ru at 2.2 /Lm of 0.79 m. 

The simulated net was trained with two 13x 13 detector arrays, or 338 inputs, 

and 150 hidden nodes. It is desirable to reduce both numbers as far as possible 

without sacrificing performance, to keep the amount of computation required to a 

minimum. This is crucial in a real system, where it is imperative to apply the 

deduced wavefront correction as soon as possible after the measurement has been 

made. It is also important when training is being done on a machine as slow as a 

SUN 4. A single forward and backward pass through a net of the size used here 

requires some 430,000 floating point operations. The calculation of the wavefront 

and image pair takes even more. The SUN was bench marked on the training 

algorithm at 0.75 MflOPs, and the training rate actually achieved was one image pair 

every three seconds. Since the net requires abollt 250,000 simulated image pairs to 

learn to an acceptable level, a typical training run lasted more than a week. 
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A further consideration when deciding the size of the net is the number of 

degrees of freedom, or the number of weights. The size of the training set must be 

several times this number, or the net will simply memorise the training data, and will 

not be forced to generalise. 

The images used in training were a careful balance between pixel resolution 

and field of view. For the sake of minimising the size of the net, the number of 

pixels needed to be as small as possible but the pixel size must be no larger than the 

diffraction-limited resolution of the telescope, 0.066 arcseconds. In addition, the field 

of view must be big enough that the net sees most of the energy, and thus most of 

the wavefront information in the image. The compromise which worked best was to 

use 0.05 arcsecond square pixels, in a 13x13 image, giving a field of view of 0.65 

arcseconds. To avoid energy being lost outside the image, the mean wavefront slope 

was removed before imagipg; this correction is similar to using a fast steering mirror 

to track the energy centroid. 

Part of the learning curve for the best simulated net is shown in figure 5.5. 

The r.m.s. value for the error in the 18 outputs is plotted as a function of the number 

of training pairs the net has seen. Fairly quickly, the net learns the right order of 

magnitude for the outputs but then takes much longer to reach the final state. The 

units for the error in figure 5.5 are not useful since the error is an average of tilts, 

measured in radians of phase per metre, and piston error, measured in radians. 

After 250,000 image pairs, the r.m.s error for the tilts alone was 0.18 rad/m in each 

axis, and the piston error was 0.20 radians. Summed in quadrature, these give the 

final global error of 0.32. 

The ability of the trained net to determine wavefront errors is illustrated in 

figure 5.6. A typical simulated wavefront is shown in figure 5.6a, with superposed 

circles representing the MMT mirrors. Figure 5.60 shows the resultant in-focus 
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Figure 5.5 Part of the learning curve for the six-mirror neural net. The r.m.s. 
output error averaged over the IS outputs is shown as a function of the number 
of training images. 
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speckle image. The corresponding in-focus and out-of-focus images, binned to a 

13x13 format for input to the neural net are shown in figure 5.6c and d. From these 

images, the net derived the tilt and piston errors shown in figure 5.6e, which can be 

seen to have the same character as the original wavefront. After applying these 

corrections, the mean square wavefront error was reduced from 2.27 rad2 to 

0.41 rad2
• The corresponding corrected image, figure 5.6f, is quite similar to that of 

the unaberrated array. The Strehl ratio of figure 5.6f is 0.66, in agreement with the 

prediction of equation 1.5. 

As a simulation of continuous on-line correction, 500 individual images 

corrected by the net were added together. Before correction, the mean brightest 
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b) 

c) d) 

Figure 5.6 Passage of a single speckle image at 2.2 J.Lm wavelength through a trained 
neural network. a) The initial simulated wavefront with mean tilt removed (the 6 
MMT mirrors are superposed); b) the corresponding in-focus speckle image; c) the 
in-focus, and d) the out-of-focus images binned to a 13x13 format for input to the 
net; e) (overleaf) the net-derived wavefront for each aperture; f) (overleaf) the image 
corrected by rernpving the net-derived wavefront tilts and pistons. The grey scale in 
a) and e) represents a total phase difference of 7.4 rad. The image scale in b) and 
f) is 0.90 arcseconds along a side, and in c) and d) is 0.65 arcsec. 
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f) 
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a) 

b) 

c) 

Figure 5.7 a) A long exposure image at 2.2 ~LID wavelength obtained by adding 500 
simulated speckle images with no correction. The peak intensity is only 0.0045 that 
of the unaberrated image, and the FWHM is 0.45 arcseconds. b) The same 500 
images after correction by removing the tilt and piston for each mirror as determined 
by the neural net wavefront sensor. The Strehl ratio is now 0.66. This should be 
compared to c) the unaberrated image profile of the cophased MMT. The scale for 
all three plots i~ 1.3 arcsec along each side. The vertical scale in a) has been 
magnified x22. 
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pixel Strehl ratio in the individual images was 0.24, though the integrated image, 

figure 5.7a, has a Strehl ratio of only 0.0045. The result after correction is an 

integrated image that is nearly diffraction limited, figure 5.7b. This image also has 

a Strehl ratio of 0.66; equations 1.3 and 1.5 predict 0.70 if the wavefront were 

corrected perfectly using 1.83 m segments. The extra 4% loss is attributable to errors 

made by the net in deriving the wavefront. These errors, given above, translate in 

terms of mean square phase to 0.0088 rad2 in each tilt axis and 0.04 rad2 in piston. 

Thus the total mean square error in the net's determination, averaged over many 

wavefronts, is 0.0576 rad2
• When this term is included, the predicted Strehl ratio 

drops from 0.70 to 0.66. The energy lost from the perfect image pattern, whose 

central spike has a FWHM of 0.06 arcsec, is spread into the expected low-level 

seeing disc (Beckers, 1988; Hardy, i 989; Rousset et ai., 1990), with a FWHM ~ Afro 

= 0.45 arcsec. The success of the demonstration is best appreciated by comparing 

figure 5.7b with 5.7c, which shows the theoretical unaberrated point spread function 

of the cophased MMT. These results have been reported in Angel et al. (1990). 

5.5 Internal structure of the net 

Training the net on the SUN 4 required some 200 hours of CPU time. Any 

understanding of the net's internal functioning which might allow that time to be 

shortened was therefore highly desirable. 

An image pair may be thought of as occupying a point in an I8-dimensional 

space, whose axes are the tips, tilts, and pistons of the six mirrors. The point's 

position vector is the set of values corresponding to the best fit of the six mirrors to 

the wavefront. The origin represents the undistorted diffraction pattern; moving 

away from the origin, the images become progressively degraded. A given value of 

ro defines a volume V(ro) centred on the origin, containing images of wavefronts 
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characterised by a Fried length ~ r0• The smaller r0, the larger is V. In the process 

of net training at a particular r0, say R, images are drawn from a volume V(R). The 

net outputs correspond one-to-one to the spatial axes, so each hidden node j of the 

net may also be thought of as a point in the space, specified by the weights Wjk 

connecting it to the outputs. The job of training then is to distribute the hidden 

nodes throughout the space such that the mean wavefront fitting error over all 

images in V(R) is minimised. 

Figure 5.8 is a plot of the input weights for four hidden nodes, each weight 

plotted in the position of the ~ixel to which it connects. A large positive weight 

(white) will tend to turn the node on when energy is present at that pixel (see 

equation 5.3). Energy at a pixel with a negative weight (dark) will tend to switch ·the 

node off. The input weights act as filters for the input images, allowing each hidden 

node to pick out certain features of any image presented to the net. 

As a limiting case, the features to which each hidden node responds may be 

Figure 5.8 The features encoded in input weights of four hidden nodes. The 
left half of each pair corresponds to the in-focus image, the right half to the out
of-focus image. 
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precisely those of the images associated with the same point as the node. In that 

case, when such an image pair is shown to the net, the corresponding node will turn 

hard on (output = 1). If the images are chosen to be orthogonal, all the other 

hidden nodes will remain essentially off (output = 0). The output weights Wjk are 

then just the components of the node's position vector, which are the 18 best fit 

parameters for the image pairs associated with the same point. To ensure orthogo

nality, the sigmoid thresholds OJ are to be adjusted such that, on moving away from 

any node, its output switches off just as its nearest neighbour's output begins to 

switch on. It is thus feasible to construct a net which requires little or no training to 

achieve its aim, by specifying the position vectors ()f the hidden nodes and deter

mining the corresponding images. 

This exercise has been successfully carried Ollt for the very simple case of a 

much smaller net controlling the tip and tilt of just one mirror, a 1.83 m diameter 

circle. For this problem, it is sufficient to examine only the in-focus image. The net 

took as input 2.2 j.£m images on a 9x9 pixel array of Kolmogorov-distorted wavefronts 

with ro = 1 m, and had two outputs, representing the wavefront slope in each 

direction. The plate scale was set to 0.08 arcsec per pixel. Eight hidden nodes were 

specified in the two-dimensional output space, at (tip, tilt) locations (0.8, 0.8), 

(1.4,0), (0.8, -0.8), (0,1.4), (0, -1.4), (-0.8, 0.8), (-1.4,0), and (-0.8, -0.8) radians per 

metre. The input weights for each hidden node were set equal to the normalised 

pixel values created by imaging a flat wavefront over a 3.66 m aperture, with slopes 

determined by the hidden node's output weights. The sigmoid offsets were 

determined from the requirement that the activation regions of the hidden nodes in 

output space should touch, but not overlap 

For comparison, a second net with identical architecture was set up in the 

usual way, with random initial weights, which was then trained to a minimum of the 
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Figure 5.9 A comparison of the learning curves for two identical nets. Solid 
line - artificially constructed initial weights. Dashed line - random initial 
weights. 
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error surface. The artificially constructed net was also trained in the same way, but 

as figure 5.9 shows, although the two nets end up with the same global error, the 

artificial net achieves that level from the outset, with no training at all, whereas the 

randomly initialised net requires roughly 100 image pairs. 

For this particular example, there is no great time saving to be achieved since 

the random net learns to solve the problem with rather few training images. 

However, the same technique can readily be applied to generate nets designed to 

analyse much more complex images, which might otherwise require training sets of 

lOS to 106 images. Image simulation code such as that described here can produce 

the desired input weights very rapidly, leading to fast production of well-optimised 

nets (Lloyd-Hart et aI., 1991). 
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Figure 5.10 Shown here is the degradation of the Strehl ratio of the integrated 
corrected image as the K magnitude of the reference star increases, for three 
different levels of detector readout noise. 

5.6 Effects of noise and isoplanicity 
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The results of section 5.4 were all obtained assuming zero detector and 

photon noise. Shortly afterwards, the code was modified to include the effects of 

both. The current state of infrared detector technology is such that K band detectors 

with 10 electrons read noise should shortly be available. Simulations with this much 

noise showed that the neural network would work well at the MMT for reference 

stars as faint as K magnitude 10. Figure 5.10 shows how the Strehl ratio of the 

simulated image degrades as the reference star becomes progressively fainter, for two 

cases with very low noise detectors, and also the case for our present JnSb array. 
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The calculations assumed an exposure time of 10 ms, and an overall system efficiency 

(including optics and detector quantum efficiency) of 0.5. 

The remaining major concern which could be addressed by the simulation is 

the question of how much of the sky is available to high resolution imaging using this 

technique. By applying corrections derived by the net from an on-axis source to an 

off-axis portion of the wavefront, it is possible to make an estimate of how quickly 

the Strehl ratio worsens as a function of angular separation from the reference star. 

This is illustrated in figure 5.11 for the case of r 0 = 1 m. The bottom axis shows the 

linear separation of the off-axis source on the wavefront, and the top axis shows the 

angular separation, assuming a height above the telescope for the turbulent layer of 

4 km (about 7 km above sea level). If the isoplanatic patch is defined as the circle 

centred on the reference star within which the corrected Strehl ratio is at least 50% 
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of the on-axis Strehl ratio, in this case about 0.35, then figure 5.11 shows it to be 

about one arcminute across. The average density of stars with K magnitude less than 

10 is about 20 per square degree (Allen, 1973). Thus, in this analysis, the neural net 

wavefront sensor can open up a total of some hundred square degrees of sky to high 

resolution imaging. 

However, the results of the model in chapter 3 indicate that the median value 

of fO for the high turbulent layer at 2.2 j1.m at the MMT may be closer to 5 m than 

1 m. If this is the case, then the isoplanatic angle is considerably larger. It is not 

surprising that the edge of the isoplanatic patch, as defined above, occurs at a place 

where the wavefront is shifted about one half the atmospheric coherence length ro 

from the reference wavefront (figu re 5.11). An increase of a factor of 5 in r 0 

therefore corresponds to a 25-fold increase 111 isoplanatic area. The area of sky 

available for investigation with this technique would then be on the order of several 

thousand square degrees. 
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Chapter 6 

First Efforts with Real Light 

6.1 Post-processing 2.3 m images 

The first work towards taking the net out of the idealised world of computer 

simulation was performed at the Steward Observatory 2.3 m telescope in September 

1990. The 62x58 InSb array was used to gather images to be shown later to the 

neural net, off-line in the laboratory, by masking the telescope aperture with a pupil 

stop having the same geometry as the MMT. The arrangement which was used is 

shown in figure 6.1, with the projected dimensions on the primary mirror. To make 

a good test of the net, we needed to match the value of D/ro which would be 

observed at the MMT at 2.2 IJ.m wavelength. Since the projected scale is smaller 

than the actual MMT by about a factor of 3, the required wavelength in equivalent 

60cm 

( ) 

2.28m 
Figure 6.1 The pupil mask for the 2.3 m telescope used to collect test 
images for the MMT neural network. 
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seeing conditions was about 0.9 J,.Lm. However, the seeing on Kitt Peak is consistently 

somewhat worse than on Mt. Hopkins, so a wavelength of 1.65 j.Lm, the H band, was 

chosen. This wavelength was a convenient compromise in that the infrared camera 

had good sensitivity in H, and snapshots could be taken with short enough exposures 

to freeze out turbulent motion of the wavefront. In addition, the plate scale at H 

was easily adjusted to 0.113 arcsec/pixe!. This is the value required to scale the 0.05 

arcsec/pixel value used in training the net, for the decrease in both wavelength and 

aperture size. 

Since no independent wavefront information was available apart from the 

image pairs themselves, there could be no direct confirmation that the answers given 

by the net were correct. Two methods though, allowed indirect assessment of the 

net's results. First, the 18 outputs of the net define six planes which are nominally 

the best-fit planes to the six pieces of the wavefront. It is possible to create a 

simulated image on the basis of these six plane wavefronts, which will resemble the 

original image shown to the net to the extent that the net's answers are correct, and 

wavefront aberration with high spatial frequency does not distort the real image. 

Figure 6.2 shows an in- and out-of-focus pair as shown to the net, and the 

corresponding simulated pair calculated on the basis of the net's derived wavefront. 

Qualitatively, there is some indication of success in that the net has correctly deduced 

the overall wavefront tilt, and put most of the energy in the right place. The details 

of the speckle structure though, are highly dependent on small changes in the net's 

outputs, so it is not easy to estimate the error. An encouraging note is illustrated in 

figure 6.3 which shows the mean wavefront deduced from 388 image pairs. It is not 

fiat, but shows an aberration, which looks a little like defocus. One of the results 

from the speckle holographic deconvolution (section 6.2) was that the actual plate 

scale at the telescope was slightly coarser than the net had been trained for with the 



Figure 6.2 The four panels show, on the left (top) an example of the in-focus 
images obtained at the 2.3 m, and shown to the net; (bottom) the 
corresponding defocussed image. Right, the pair of images generated from the 
wavefront derived by the net from the first pair. 
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result that the image as a whole was slightly too small. One way to restore the larger 

image is to introduce a small amount of defocus which spreads the energy. This is 

possibly what the net is trying to do. A similar effect has been observed with a real

time net on the s'ky (section 7.3). 
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Figure 6.3 The mean wavefront derived by the net from 388 image pairs taken at 
the 2.3 m telescope. Note that the wavefront is not averaged to zero, but retains a 
constant component reminiscent of defocus. The gray scale spans a range of 3.9 rad. 

6.2 Speckle hologra~ 

The second technique with which the performance of the net on these data 

could be evaluated is that of speckle holography (Primot et al., 1988; Hege, 1989), 

which provides a much more quantitative analysis. With this method, the wavefront 

derived by the net is deconvolved· from the actual image. If the estimate of the 

wavefront is perfect, the deconvolution will recover the point-like nature of the 

source. The image i can be wiitten as a convolution of the object irradiance o with 

the speckle transfer function s 



103 

i = o®s + n®d . 6.1 

The second term represents the photon noise n convolved with the detector transfer 

function d. The image formed from the net outputs is an estimate of the wavefront 

w. By shifting to Fourier space (represented by capital letters) it is easy to form the 

cross spectrum of i with w 

IW· = OSW· + NDW" 6.2 

where a superscript asterisk represents the complex conjugate. The ensemble 

average (JW> can be computed for many observations of i and w, and if photon 

noise and wavefront distortion are uncorrelated then (Nut) = O. The speckle 

transfer function can be written as a further convolution of the atmospheric, 

telescope, and detector transfer functions 

S = ATD . 6.3 

The quantity we seek is the diffraction-limited image, but in the Fourier domain, we 

can go one step further, and deconvolve the telescope point spread function (PSF) 

to obtain an estimate of 0, Oeste From equations 6.2 and 6.3, 

o - F- 1 [ (Iw"> 1 
est - (ATW.) 

6.4 

where the detector transfer function is assumed constant, and so can be ignored. 

This usually corresponds to working with flat-fielded and sky-subtracted images. The 

atmospheric transfer function is just the wavefront estimate w, so finally we have 

o = F-1 [ (IW") 1 
est (WTW") . 

6.5 

In the case of the net, we already know 0est should come out to be a point, so we can 
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Figure 6.4 The results of deconvolving the net's wavefront estimate, and the 
telescope PSF from the speckle images, averaged over 1, 4, 16, 128, and 388 frames. 
Only the in-focus half of each image pair is shown. (Courtesy E.K. Hege.) 

' 
use the technique as a test of the wavefront estimate w. Figure 6.4 shows the result, 

obtained by E.K. Hege, of averaging oest for increasing numbers of the in-focus 

images, up to the 388 ii)lages of the data set, as deduced from the neural net's 

estimate of the wavefront. The central peak begins to emerge very rapidly, and can 

clearly be seen in the final panel indicating that individual wavefront estimates may 

contain large errors, but in the long term the net is performing well enough to 

recover real-time diffraction-limited resolution. The Strehl ratio of the final average 

deconvolved image is 0.3. 

6.3 Neural net performance on MMT data 

Further evidence of the net's ability to deduce the wavefront slope across 

individual apertUfes was provided by data gathered at the MMT in January 1991. 

In this experiment, combined focal plane images from two adjacent MMT mirrors 
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were recorded, while at the same time measurements were made of the optical 

centroid position from each of the mirrors separately. 

In work by D. Colucci, the infrared data set was scanned to find two image 

pairs without significant relative tilt, representing the extremes of relative piston 

variation, zero and 1[. These images were reproduced in computer simulation by 

introducing known telescope aberrations. A net was trained on simulated images 

with Kolmogorov turbulence at ro = 1.2 m added to the base aberrations, to find the 

relative tilts and piston for just the two mirrors. The real images were then passed 

through the trained net. Figure 6.5 is a plot of the net tip output converted to 

elevation against the visible centroid result. While this plot does show correlation 
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Figure 6.5 Plot of net tip output versus measured visible (elevation) 
image motion. (Courtesy D. Colucci, P. Wizinowich.) 



106 

there is a fair bit of scatter. The r.m.s. difference between the net output and 

centroid value is 0.049 arcsec. This can be compared to figure 4.6, which plots the 

infrared image motion against the visible centroid with a scatter of 0.039 arcsec. 

These numbers can be interpreted as an error in the net output of 0.03 arcsec, 

roughly 30% of the output's average value. Part of the scatter is due to the fact that 

the net was trained to output the wavefront tilt, which is somewhat different from the 

centroid (section 4.7). 

6.4 Possible adaptive control with pre-existing hardware 

A separate goal of the January run was to determine whether the existing 

hardware at the MMT could be used for adaptive control. Piston motion of the 

articulated beam combiner which already allowed control of the path lengths between 

the six mirrors in a slow open-loop mode, might be adequate for phasing the tele

scope at adaptive rates. Tip and tilt would be controlled by the secondaries which 

can be driven in two axes with stepper motors linked to the mirrors via harmonic 

drives. This control is routinely used by the telescope operator to stack the six 

beams. 

Tests showed that all the required motions could be obtained at a correction 

rate of 30 Hz, but not much faster. This is marginal for adaptive control in the near 

infrared, and there was also some concern that prolonged operation of the stepper 

motors at that frequency would cause mechanical wear and ultimately failure. Thus 

the decision was made to build the new adaptive instrument described in chapter 2, 

at a cost of five more reflective surfaces in the beam train. 

6.5 Optical bench experiment 

The first demonstration of closed-loop wavefront correction by a neural net-
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work with a real system was performed by D. Wittman with a simple scheme in the 

lab. The optical setup illustrated in figure 6.6 was used to try to recover Young's 

fringe pattern for a pair of apertures. Helium-neon laser light was expanded and 

collimated, and used to illuminate two mirrors of a small 16 segment adaptive mirror, 

masked as a scale model of two of the MMT primaries. The mirror and mask are 

shown in figure 6.7. Training images with known wavefront aberrations were 

generated using the adaptive mirror, and recorded on a video rate CCD camera. 

The net was trained with 10,000 random images distributed uniformly over a 

~.~Ptical 
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/ Pinhole 
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Reimaging 
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Adaptive 
mIrror 

Computer 

Figure 6.6 Optical configuration for the first closed-loop neural net 
wavefront corrector. 
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range of ± 25 arcsec in tip and tilt, and ± 1r radians in piston, which represent scaled 

values of the observed image motion at the telescope. The x and y diffraction

limited angular resolutions were 9 and 21 arcsec respectively. (Throughout this and 

succeeding sections, x andy, and the net outputs tip and tilt, refer to directions across 

and along the interference fringes respectively.) Mirror motions were applied 

equally, but with opposite signs, to maintain the image position on the detector. 

To test the trained net, random mirror settings were applied without 

consideration for the image position. An energy centroid calculation was performed 

to determine the location of the !n- and out-of-focus images, and 9x9 regions around 

the two images were fed to the net. The x and y co-ordinates of the energy centroid 

and the relative tip, tilt, and piston outputs from the net were then used to correct 

the mirrors. Figure 6.8 shows the integrated in-focus images obtained for a set of 

1,000 random mirror settings. The three images correspond to the uncorrected 

.. 

2 8rnnl 

0 c 
Figure 6.7 The 16 segment adaptive mirror used in the 
first closed-loop neural net wavefront corrector. Circles 
show the masks used to simulate two adjacent MMT 
mirrors. The apertures are 6 mm in diameter. 
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image, the image With centroid removed, and the net-corrected image. The latter has 

very clearly defined fringes at the diffraction limit, and a Strehl ratio of 0.98. Using 

equation 1.5 to relate the Strehl ratio to the mean square phase error, one finds the 

error in the net was 0.02 rad
2

, corresponding to only about 1/50 wave. 

Figure 6.8 Integrated in-focus images. From bottom: uncorrected, 

centroid error removed, and corrected by the neural net. 
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Chapter 7 

The Real-Time Neural Network 

7.1 Training on the adaptive instrument 

With the adaptive instrument completed, it became possible to train the net 

using the instrument itself. An artificial star at 2.2 J.l.m wavelength was created by 

imaging a white light source onto a 10 J.l.m pinhole placed at the position of the 

MMT prime focus. Distorted images were generated by deliberately misaligning the 

adaptive mirror elements by known random amounts. The magnitude of the 

misalignments was matched to the seeing which we expected to be dealing with at 

the telescope, corresponding to ro ::::: 1 m. This procedure ensured that the quality of 

the training data was as close as possible to the images which the net would 

eventually be asked to correct on the sky. 

Figure 7.1 shows four images obtained with a two-mirror configuration at the 

telescope, which illustrate the errors the net is asked to control. The difference 

between the laboratory training data and the real images can be seen by comparing 

figure 7.1a, which has been chosen as containing only telescope and residual atmo

spheric distortion, with the theoretically perfect image of figure 4.1. 

In operation, the camera control computer reads out the in- and out-of-focus 

images, contained in two 26x20 pixel subarrays on the InSb detector. A plate scale 

of 0.04 arcsec/pixel is used. The result of an energy centroid calculation performed 

on the in-focus image is used to locate two 15xlO pixel subarrays containing the bulk 

of the energy in each image, which are transmitted, along with the centroid co

ordinates, over the SCSI link to the transputer array. The network thus has 300 

inputs. Before the corrections derived by the net are applied to the mirror, two extra 

operations are performed. First, a global tilt is added to take account of the shift of 
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a) b) 

c) d) 

Figure 7.1 Four examples of 10 ms exposures taken at the telescope with two 
adjacent MMT mirrors. a) An example with minimal atmospheric aberration. 
Comparison with figure 4.1 illustrates the effect of fine-scale atmospheric 
turbulence and residual telescope errors in reducing the quality of the image. 
b), c), d) Images in which the primary wavefront errors are relative tip (across 
the fringes), tilt (along the fringes), and piston respectively. Tip and tilt errors 
cause the Airy patterns of the two mirrors to become unstacked, while piston 
error moves the fringes with respect to the Airy envelope. 
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the energy centroid from the optical axis. Then the mean phase is subtracted from 

the piston values; this ensures that the actuators do not creep in one direction, which 

would prevent the full range from being used. 

The piezo-electric mirror actuators have sufficient range to correct the phase 

in all but the very worst seeing. This also means that if the net loses control of a 

mirror, it can go a long way from its nominal position. A safeguard built into the 

Pupil 
geometry 

Neural net 
structure 

{300,36,6} 

Table 7.1 

{300,36,6} {300,54, 10} 

code checks the actuator values before they are' sent out to the DACs. If any are out 

of range, then all the actuators are sent back to their mid-range value to give the net 

a new start. 

In preparation for the September 1991 run, nets were trained for three 

different pupil geometries, shown in table 7.1. The hidden nodes all have the 

sigmoid activation function of equation 5.3. It was found empirically that the net 

learned to derive piston more accurately if it was given two output nodes per piston 

value rather than one, and trained to find the sine and cosine of each phase 

difference separately. This scheme circumvents a difficulty which occurs when the 

net is confronted with two image pairs, identical except for a single phase value, close 
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to 1T in one pair, and close to -1T in the other. In this case, a net with a single output 

per phase is asked to give very different estimates of the phase on the basis of very 

similar input data, and the possibility exists for a large error. Since the sine and 

cosine functions are continuous, the problem is avoided with the use of the extra 

output. 

The backpropagation learning algorithm implemented on the transputers was 

able to process 20 image pairs per second. This was limited not by the computer, 

which could perform a complete forward and backward pass for the two mirror nets 

in about 4 ms, but by the necessity Ol integrating light on the camera long enough 

to obtain a high signal to noise ratio. It took 30,000 image pairs, or about 25 

minutes before the output error from the two mirror nets reached an acceptably low 

value of 0.05 rad2• The same level was attained with the three mirror net after about 

60,000 image pairs. A {300, 144, 22} net was also trained to control all six mirrors, 

but failed to reach a low enough error. This was probably because the 

backpropagation routine found a shallow local minimum on the error surface and 

became trapped. The solution is to begin training again with a different set of 

random initial weights. 

To accustom the net to seeing images including the effects of turbulence with 

high spatial frequencies, additional training was performed with 10,000 computer

simulated images of Kolmogorov turbulence, which also included the worst telescope 

aberration. This is trefoil caused by the three hard points which form part of the 

support system for each primary mirror. The effect of the hard points is clearly seen 

in figure 7.2 which shows a single 10 ms snapshot of a star from mirror A at 2.2 J,J.m 

during good seeing. The first Airy ring is broken into short arcs. The magnitude of 

the effect depends on the ambient air pressure since most of the weight of the 

primaries is supported on sealed air bags. The trefoil was modelled as three 
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Figure 7.2 This short exposure image of a star from a single MMT mirror 
shows the effect on the Airy pattern of the three-point hard . support under 
each primary mirror. The first ring is broken into short arcs, which impairs 
the neural net's ability to recognise atmospheric aberrations unless the effect 
is incorporated into the training data. 

Gaussian bumps on the ~urface of each primary mirror at a radius of 64 em, with a 

FWHM of 5 em. Though it does not closely resemble the classic trefoil tern1, this 

model gave images which were a fair match to those observed at the telescope. We 

did not know before the run what the air pressure would be, so nets were trained for 

two cases, zero trefoil, and 1 J.,Lm surface error. 

Since there was not sufficient time in the correction scheme to flat-field the 

images as they were read out, the net had to be trained on images where the 

quantum efficiency varied from pixel to pixel. This was dealt with by using the same 

two subarrays on the camera for training and adaptive correction in the lab, and on 

the sky. The simttlated training images, for which a flat detector response is normally 

assumed, were multiplied by the flat field for the appropriate portion of the detector 
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before being shown to the net. This process simulates the response of the real 

camera. The net thus had the effects of the flat field implicitly trained into it. 

After training, the net's first test was also conducted in the laboratory with the 

artificial star. Random voltages were again applied to the mirror actuators, and the 

resulting image pair shown to the net. A second image pair was taken after the net's 

derived actuator voltages had been subtracted. Typical results are shown in figure 

7.3 for the nets for mirrors A and F, and A, C, and F. The Strehl ratio for all the 

corrected in-focus images, including the integrated images, is in excess of 0.95. 

It is worth noting that resetting the amount of defocus in the out-of-focus 

image, and the relative positions of the two images on the camera, if they should 

come out of adjustment, is very easily accomplished using the net itself. It was found 

that with the instrument in full operation using the white light artificial star, if either 

the defocus or the position was incorrect, the net would drive the mirrors randomly. 

As the appropriate optical element was brought into range, the net would suddenly 

lock on, and the expected Young's fringe pattern would stabilise. 

7.2 Operation of the neural network adaptive system 

In the correction of atmospherically-induced distortion, speed is essential. The 

limiting factor in the MMT adaptive system is the readout of the InSb camera which 

takes 18 J..LS per pixel pair at an acceptable noise level. It is therefore desirable to 

have independent processes in the adaptive system running in parallel. The timing 

for the entire closed-loop system is shown in figure 7.4. After an integration of 

10 ms, the in-focus image is read out. Readout of the out-of-focus image begins 

immediately, while the CPU copies the first image to local memory, and performs 

the centroid calculation. The 15x 10 pixel box is extracted from the in-focus image, 

and the SCSI transfer to the transputers is initiated. Half way through the transfer, 
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Figure ·7.3 (See also overleaf) Neural net wavefront recovery from 2.2 1-Lm images from 
mirrors A and F in the lab. The images are of an unresolved white light source imaged 
through the adaptive instrument. Slope and piston aberrations are introduced with the 
adaptive mirror. The distorted images are typical of those used to train the net. On the 
right are in-focus images resulting from the integration of 100 frames before and after 
correction. The plate scale is 0.04 arcsec/pixel. ........ 
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Figure 7.3 The same as the previous page, but for the three-mirror pupil A, C, F. 
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Figure 7.4 Timing diagram for the real-time neural network adaptive control 
system. 

the computer finishes reading the out-of-focus image, and the CPU is free to copy 

this image 'and extract the 15x10 out-of-focus box. On completion of the first SCSI 

transfer, the neural net begins to compute the contribution to the weighted sums at 

the hidden nodes from the in-focus image. The net finishes the calculation after the 

second SCSI transfer is completed. Figure 7.4 shows the case for the two mirror net, 

which takes a total of 2.4 ms to perform a forward pass. The three mirror net takes 

a little longer, 3.3 ms, and the six mirror net requires 6.8 ms, which means that the 

second SCSI transfer must be slightly delayed. Finally, the mirror actuators are set 

by the DACs. 

The effective bandwidth is given by the sum of the times from the beginning 

of the readout to the end of the net calculation, plus half the integration and mirror 

setting times. This comes to about 15.0 ms, giving a closed-loop correction rate of 

67 Hz. Because of the overlap of computation with exposure time, the derived 
I 

actuator corrections must be added to the values of the actuators prior to the most 
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recent change, as discussed for the adaptive phasing mechanism in section 4.4. 

7.3 ResL!lts of real-time correction of a star 

During most of the run, the seeing was consistently worse than 1 arcsec at 

2.2 J..Lm (ro = 45 cm). This is well outside the net's range of training values and so 

the net had no chance of succeeding. The first period of better seeing occurred on 

September 20, and the net achieved its first on-sky success in significantly reducing 

the atmospheric phase fluctuations from the image of the star l/J Pegasi, which has 

a K magnitude of + 0.03. 

The simplest net was used, controlling the two adjacent mirrors A and F, and 

trained with 1 J..Lm of trefoil error. Figure 7.5 shows two 10 s exposures taken at 

2.2 J..Lm, each obtained by adding 1,000 consecutive 10 ms frames. No correction was 

applied during the first exposure (figure 7.5a), and the result is an image with seeing

limited resolution of 0.62 arcsec FWHM in the vertical direction. Horizontally, the 

FWHM is 0.68 arcsec, the difference being attributable to residual stacking error in 

the two beams. The interference fringes have been completely washed out by the 

atmospheric phase fluctuations. A second exposure (figure 7.5b) was taken 

immediately after the first during which the two corresponding adaptive mirror 

segments were under the control of the neural network. This image exhibits strong 

interference fringes on top of a broad seeing-limited halo. Figures 7.6 and 7.7 show 

cuts through the brightest pixels of both the corrected and uncorrected images in the 

horizontal and vertical directions. (These images, and all those in subsequent figures, 

have been normalised to the same total energy.) The FWHM of the diffraction

limited component across the fringes is 0.1 arcsec, which is the expected resolution 

at this wavelength from a two-beam interferometer with a 2.52 m baseline (section 

4.2). 



120 

a) 

b) 

Figure 7.5 Two 10-second exposures of the star l/J Pegasi at 2.2 J..Lm wavelength; 
obtained by adding 1,000 10 ms snapshots taken at 100 Hz using two adjacent MMT 
mirrors. a) An uncorrected image, FWHM = 0.62 arcsec, Strehl ratio = 0.15, and 
b) an image recorded immediately afterwards in which the neural network wavefront 
sensor was controlling the adaptive mirror at a closed-loop correction rate of 67 Hz. 
The image shows high contrast diffraction-limited interference fringes with a Strehl 
ratio = 0.27. The resolution across the fringes is 0.1 arcsec. 
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figure 7.5. 
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Figure 7.7 Vertical cuts along the bright fringe for the images of figure 7.5. 
Solid - corrected by the net; long dashed - uncorrected; short dashed - the 
image resulting from stacking the uncorrected frames on the energy centroid, 
with a two frame delay to simulate the effect of the centroiding part of the 
correction' scheme alone. The FWHM are respectively 0.41, 0.62, and 0.58 
arcsec. 
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Some compansons are worth making. First, the sensitivity of the net to 

changes in the character of the input images is demonstrated by figure 7.8, which 

compares the corrected image of figure 7.5 with another image also corrected by a 

neural net taken in the same seeing conditions. Training for the second net was 

identical to the first except that no trefoil error was included in the simulated data. 

It is plain that the second net which had never before seen the extra aberration, very 

atypical of Kolmogorov turbulence, did not perform as well. 

Figure 7.9 shows the result of the net-corrected image and a second taken 

within a few minutes, for which _adaptive phasing correction was used (section 4.1). 

The difference is that the net controls four more degrees of freedom, and some 

improvement is to be expected. In fact, the Strehl ratio is increased in the image 

corrected by the net, and the fringe contrast is slightly better. This illustrates the 

importance of correcting the relative tilt errors between segments. 

0.5 

~0.4 
c: 
:::J 

..0 
I... 
0 

'-' 0.2 

(f) 

c 
Q) 

:f 0 .1 

I 
I 
~ 

\ 

' 
\ 

\ 

" 

0 . 0 -f--r-....---....--r--.-r-m--,--.--.,.---,-,--,---,....---,---,-,-.....-.-m--,--.--.,.---,-,--,---,..,.-,--m-,--,-,---,--,-,.-,-...,-, 

-0 .5 -0 .3 -0.1 0.1 0.3 0.5 
Focal p lane position (arcsec) 

Figure t7.8 A comparison of two image profiles obtained using 
nets trained with (solid line) and without (dashed line) hard
point trefoil error in the wavefront. 
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Figure 7.9 Comparison of the image corrected by the neural 
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(dashed). The net controls the wavefront with four more 
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Figure 7.10 The net-corrected image (solid) compared to the 
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Finally, figure 7.10 compares the integrated net-corrected image with the 

result of applying the shift-and-add technique to the uncorrected images. In the 

uncorrected image, the fringe spacing is narrower than for the corrected case. In 

fact, the spacing is 0.153 arcsec, about 11% lower than is expected for a 2.52 m 

baseline. A clue to the problem is that the FWHM of the single-mirror image with 

the identical instrumental setup is 0.28 arcsec. This is 12% higher than would be 

expected at 2.2 J.tm from a 1.83 m aperture. The conclusion then is that the effective 

baseline was larger than originally believed, and the effective aperture was smaller. 

An analysis by D. Colucci has ~hown that third order spherical aberration arises 

because the image of the pupil at the adaptive mirror is formed from an off-axis 

portion of the parabolic mirror. This leads to barrel distortion at the adaptive 

mirror, resulting in vignetting at the pupil mask, as shown in Figure 7.11. The length 

of the baseline was increased to 2.88 m, and the aperture size reduced to 1.63 m. 

It is encouraging to note that the neural net interpreted the narrower fringe spacing 

· ~~Pupil mask 

~ ~ 
~ ~upil 1mage 

~ Shape of a reimaged 
square 

Figure 7.11 lllustration of the barrel distortion at the adaptive mirror pupil 
mask, shown shaded. The effect of vignetting is to lower the mean effective 
aperture size of mirrors A and F to 1.63 m, and raise the effective baseline 
to 2.88 m. Later in the optical beam train, the aberration is removed, so 
there is no effect other than this vignetting on the final image. 
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as a relative tip, and successfully corrected for it to restore the fringe spacing it had 

seen during training. 

7.4 Image analysis 

The FWHM of the corrected image is 0.45 arcsec (figure 7.6), an improve

ment of 50% over the uncorrected image. This includes a substantial reduction in 

the residual stacking error seen in figure 7.5a, corrected by the net's tip outputs. In 

the perpendicular direction, along the fringes (figure 7.7) the FWHM is 0.41 arcsec, 

52% better than the uncorrected image. Also shown in figure 7.7 is the profile of an 

image generated by stacking the uncorrected 10 ms exposures, each centred on the 

energy centroid from two frames back. This simulates the effect of applying just the 

global centroiding part of the correction with the 20 ms delay between sensing and 

correction, and the net outputs switched off. In this case, the FWHM is only reduced 

to 0.58 arcsec, and there are no interference fringes visible in the image. 

The improvement in relative piston error can be seen in figure 7.12 which 

compares phase reconstructions from the individual frames of the two images using 

the technique described in section 3.2. It was observed at the telescope that while 

the adaptive mirror was under the control of the net, there were periods when the 

beam profile was well stabilised, interspersed with times when the net lost control for 

several frames. The effect on the final integrated image is not severe because these 

frames contain very little energy; in general, the two beams were driven well outside 

the area of the detector which the net saw. Control would be regained when one of 

the actuators reached a limit, and the software reset all the actuators to their mid

range. It is not possible to follow the evolution of the phase through the entire set 

of corrected snapshots because of the periods when the beams were driven outside 

the field of view. In figure 7.12, the phase in these frames has been arbitrarily set 
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Figure 7.12 Phase difference between the two apertures A and F. 
The top plot shows the fluctuations when IlO control was applied. 
The bottom plot shows the improvement obtained with the neural 
net controlling the relative piston. 
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to zero. 

The results of sections 1.2, 4.2, and 4.3 can be used to calculate the various 

contributions to the mean square phase errors for the images of figure 7.5, and thus 

to evaluate the performance of the net. The mean square value of the uncorrected 

phase of figure 7.12 yields a value of ro = 1.19 m. This implies from equation 1.2 

that the mean square phase over each aperture due to the atmosphere alone was 

1.71 rad2
, and from equation 1.4 that the atmospheric contribution to the FWHM is 

aatm = 0.37 arcsec. This is consistent with an optical blur component (section 3.5) 

in figure 7.5a of a b1ur = 0.49 arcsec. 

It is possible to calculate the Strehl ratio for the uncorrected image from the 

mean square phase error contributions over each aperture (of diameter D = 1.63 m) 

due to the atmosphere and optics (Ab1ur = 0.13 rad2
), 

1.013 ( ~ ) ~ + 0.13 = 1.84 Tad' . 7.1 

The Strehl ratio predicted by figure 1.3 from A is 0.29, but since we have two 

apertures interfering incoherently (1 = 0), the Strehl ratio is 0.15 (section 4.3). The 

corrected integrated image has a peak intensity 1.76 times that of the uncorrected 

image, and thus has a Strehl ratio of 0.27. An alternative method of finding the 

Strehl ratio is to compute the image with the same ratio of energy in the brightest 

fringe to total energy. Since light has clearly been lost outside the field of view, this 

requires that a seeing disc profile be fitted to the data. The method yields the value 

0.26. The difference is likely to be due to an overestimate of the amount of energy 

scattered outside the field of view. 

We can estimate the mean square phase error across each aperture in the 

corrected case by calculating the Strehl ratio of the image obtained by integrating the 
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Figure 7.13 The profile of the image resulting from applying 
shift-and-add to the individual net-corrected frames. The 
original integrated net-corrected image is also shown (dashed). 
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corrected frames on the brightest pixel (shift-and-add). A cut across the fringes 

through the brightest pixel of this image is shown in figure 7.13. For comparison, the 

original integrated corrected image is also shown. The shift-and-add result has a 

Strehl ratio of 0.38, which from reading figure 1.3 in reverse, gives a mean square 

error of 1.40 rad2
• The net's tip and tilt outputs have therefore reduced the error by 

0.44 rad2
• 

I. Centroid 

The remainder is due to errors in the tip and tilt outputs, and the separately 

applied centroiding. Some error is to be expected in the latter because of the time 

delay in making the correction. This error can be found from the uncorrected data 

set by explicitly computing the r.m.s. difference in the centroid vector components for 

frames separated by two time steps. The values come out to be 0.0278 arcsec in x 
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and 0.0268 arcsec in y. The actual centroid error can be found by examining the 

centroid positions of each corrected frame. These are 0.036 arcsec, and 0.031 arcsec 

respectively, which, subtracting the expected error in quadrature, leaves 0.023 and 

0.016 arcsec due to instrument error. This can be expressed in terms of mean square 

phase error through 

±(2lrt R6 r 
7.2 

0.062 rad z x 

0.058 rad z y 

where R is the aperture radius, 0 is the angular error, and all units are MKS. 

II. Tip/Tilt 

The effect of the time delay in causing error in the applied tips and tilts can 

be estimated from the structure function of the uncorrected phase of figure 7.12. 

The mean square phase change between the two mirrors, separated by a distance 

B = 2.88 m, in 20 ms is 0.77 rad2
• The mean square phase change across the dia

meter of a single mirror, with areaA and radius R, in that time is then approximately 

a 
R 5 

~ f (!...)3 2rtrdr 
A 0 B 7.3 

= 0.05 radz 

The error due to tip and tilt is thus (1.40 - 0.05 - 0.083 - 0.061 - 0.13) = 1.08 rad2
, 

where the terms are total mean square error, time delay, x- and y-centroid, and optics 

contributions. From equation 7.2, we can calculate that the average error per tip/tilt 

net output was 0.065 arcsec. 
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III. Piston 

Relative piston error may be evaluated from the corrected phase in figure 

7.12. There are three sources: the net's derived piston, the 20 ms delay in applying 

the corrections, and error in the x-component of the centroid vector. The latter is 

a global tilt in the direction separating the mirrors, and ihus involves a piston 

component. The mean square error is just the mean square value of the corrected 

phase, which is 2.87 rad2 (not including those phase values explicitly set to zero). 

The portion due to centroid error ex can be found from 

(~ B a )2 
A 2 x 7.4 

= 0.52 7ad 2 

The effect of the delay can be found from the same mean square difference 

of the uncorrected phase as for the tip/tilt case, 0.77 rad2. Finally, the error made 

by the net in estimating the piston is (2.87 - 0.52 - 0.77)1/2 = 1.26 radians, or about 

1/5 wave r.ill.S. wavefront error. 

IV. Effective improvement in ro 

It is possible to calculate an effective improvement in ro made by the net. We 

look for the value of ro required to achieve interference fringes in the long exposure 

image, using no correction, with the same contrast as in the net-corrected image. 

The perfect, unaberrated image from the pupil is the Airy pattern for a single mirror 

multiplied by a sine wave which creates the fringes. For the particular pupil 

geometry used with the net, if the two circular parts of the wavefront are undistorted 

but 7r radians out of phase, the two central fringes have a peak intensity of 0.578 

compared to the central fringe of the phased image. If the mean atmospheric phase 
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difference between the apertures is 1[ for a fractional time 0: and zero for a fractional 

time {J, then the ratio of the peak intensity of the integrated image to the intensity 

at the fringe minimum is 

2 x 0.578 f3 
a 

7.5 

The factor of two appears because there are two ways that the mean phase difference 

can be 1[, but only one way that it can be zero. The measured value from figure 7.6 

is Iminl1max = 0.518. Thus, {Jla. := 0.448. The distribution of mean phase error with 

time is approximately Gaussian, so we can write 

0.448 7.6 

:. 0 2 = 6.15 rad 2 • 

The variance of the distribution a2 can be equated with the value of the Kolmogorov 

structure function at the baseline separation 

0
2 

= 6.SS( :.)~ 7.7 

which requires that ro = 3.1 m. This is a lower limit to the required ro since none 

of the other sources of error have been included. It is a substantial improvement 

over the measured value of ro at the time of the observation. 

The ideal corrected image which would include only residual atmospheric and 

optics errors, and the effect of the time delay, would have a Strehl ratio of about 

0.55. The factor two reduction in achieved Strehl ratio is attributable to inadequacies 

in the training data which do not accurately model the images observed at the 
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telescope. The results of testing the net in the laboratory, though, are clear evidence 

that the net will work extremely well if asked to correct images with the same 

characteristics as those it was trained with. 

7.5 Structure in the net's weights 

It is possible to examine the weights of the two-mirror net, as was done in 

chapter 5. Figure 7.14 shows all the weights in the net except for the sigmoid 

thresholds. For every hidden node, each input weight is plotted in the position in the 

Figure 7.14 The internal weights of the two-mirror neural net. For each of 
the 36 hidden nodes, the weights connecting it to the input layer are plotted 
in the position of the pixels which they are connected to. The in-focus image 
is the left half of each pair. To the left of each pair are plotted the ·weights 
connecting tthe hidden node to the output layer, as a column. From top to 
bottom, each set of output weights represent tip and tilt for mirror A, tip and 
tilt for mirror F, and cosine and sine of the phase difference. 
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image of the pixel it is connected to. Beside the input weights, the weights 

connecting the hidden node to the outputs are shown. Structure evidently exists in 

the weights, though it is not at all clear what is happening. 

Sandler (1991b) reports seeing images of single Zernike polynomials when he 

takes the inner product of the input and output weights in his net, trained to deduce 

Zernike terms from single-mirror telescope images. Figure 7.15 shows the result of 

taking the same product for each of the two-mirror MMT net's outputs 

7.8 

The matrix Vij represents the action of the net if the sigmoid nonlinearity were 

removed and replaced by a linear function. From bottom to top of figure 7.15, the 

six panels represent the tip and tilt for mirror A, tip and tilt for mirror F, and the 

sine and cosine of the phase. The left half of each pair is the in-focus image. 

Comparing the two tip outputs, they have the general appearance of being negatives 

of each other; where one is white, the other is black. This can be understood in 

terms of the effect of a tip of a particular sign being applied to one mirror. Tip is 

(d¢/dx), and so a positive tip, which points one mirror towards the combined optical 

axis, moves the other mirror away from the axis. 

The panels for the two tilt components appear roughly to be mirror images 

of each other. The white portions of figure 7.15 are areas which will trigger the 

respective output to go positive if energy appears there. Correspondingly, the output 

will go negative if energy appears in the dark areas. Thus the fact that the light and 

dark areas of the tilt panels are arranged diagonally makes intuitive sense. 

Finally, the phase outputs show structure distinctly reminiscent of sine and 

cosine waves. They appear to have fringe structure, roughly 90° out of phase, but 

oddly, the dominant frequency seems to be 0.3 arcsec per fringe, about half the 
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Figure 7.15 The product of the input and output weights. Each pixel is 
connected to the hidden layer by a 36-element vector. The hidden layer is then 
connected to each output by another 36-element vector. Shown here are the 
inner products of those vectors, plotted as in- and out-of-focus images for each 
output. From bottom to top, the six panels represent tip and tilt for mirror A, 
tip and tilt for mirror F, and the sine and cosine of the phase. These images 
represent the tilters which would be applied by the outputs to the input image 
pair if the net were linear. 
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frequency of fringes in the images of starlight, though there is a weaker component 

at around 0.15 arcsec per fringe. 

Such patterns are precisely what would be expected for a linear net, since V 

would then be the action matrix of the net. It is not clear though, why this structure 

should be found here since it seems to ignore the effect of the sigmoid. Possibly it 

persists because in general, the hidden nodes do not work far from the linear region. 

Further work will be required to give insight into how the net works, with likely 

benefits for improving the quality of training and performance on the sky. 



136 

Cllilp t l' I' ~ 

Results from thc Widc-Ficld Imaging Cumcl'H 

R 1 The wide-field camera 

So far, discussion has focussed 011 the ability of thl! adaptive instrument to 

achieve diffraction-limited resolution of unrl!solvcd refcrl!nce stars. This in itself can 

be of value, for instance in stellar SPl!ctroscopic studies, since it concentrates more 

light onto the entrance slit of the spectrograph, but the primary aim of adaptive 

optics is to provide high-resolution imaging of l!xtel1lkd objects within the isoplanatic 

patch of the star. A first look at the wide field came aftl!r the NICMOS 2 array 

(section 2.2) was installed on the instrument for the September 1991 run. The dewar 

for this camera contains adjustuble optics whkh normally provide plate scales of 0.12, 

0.24, and 0.4~ arcsec/pixel at the I/H.39 MMT focus. This is not a high enough 

magnification to observe at the diffraction limit of the tell!scope, and so an optical 

relay with a x2 magnification was inserted between the corrected focus and the 

camera. 

The exposure time is set by a shutter inside thl! dewar, and readout of the 

128x 128 array takes about 0.5 s. with 30 d.;!ctl'Ons noisl! per pixel. Just inside the 

dewar is a re-imaged pupil plane, wlwrl! a mask is normally inserted to cut down 

thermal background radiation. With the x2 rclay in the bl!am, though, the size and 

position of the pupil were chunged. making the cxisting mask unusable. It requires 

substantial effort to open the camera to install a substitute, so for the first run we 

elected not to use a mask at all. This decision resulted in a pl!nalty in background 

level which significantly degrades thl! contrast of the resulting images. For 

subsequent runs. a new mask will be used, togl!tlwr with improved relay optics to give 

higher image contrast. 
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8.2 The Becklin-Neugebauer (BN) object 

This object in the Orion molecular cloud is a strong source of mid- and far

infrared radiation, at a distance of about 500 pc (Genzel and Stutzki, 1989). The 

region around BN, in particular the Kle'inmann-Low (KL) nebula 10 arcsec to the 

south is the site of very recent massive star formation. BN itself and the brightest 

source in KL, 1Rc2, have luminosities around 104 L
0

• The objects are buried in a 

very dense molecular region, and most of the radiation appears at wavelengths longer 

than 30 J..£ID. Strong outflows are also associated with the BN-KL complex. Since the 

region is · relatively close, and r~mains active, there are potential scientific rewards 

from examining it with high angular resolution. 

To give a taste of what will be possible with the adaptive optics instrument, 

figure 8.1 shows a 30 arcsec square around BN fro1n a single MMT mirror, obtained 

Figure 8.1 A 30"x30" region around the Becklin-Neugebauer (BN) infrared 
source in the Orion nebula, at 2.2 fLm wavelength. This image was obtained 
with a single mirror of the MMT, under adaptive tip /tilt control at 75 Hz, using 
BN itself as the reference star. It is a composite of five one-minute exposures. 
The resolution is limited by the pixel sampling, which is 0.24 arcsec. (Courtesy 
M. McCaughrean and D. Wittman.) 
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at the suggestion of M. McCaughrean. The object itself was used as the reference 

on the InSb array, at 2.2 /.Lm, to drive the corresponding adaptive mirror element as 

a tip/tilt corrector. While the BN image was stabilised, five one-minute exposures 

were taken on the NICMOS 2 camera, also in the K band, with the widest field of 

view, using the 0.24 arcsec/pixel plate scale. The wide-field camera was centred on 

the optical axis for these exposures, and the dark ellipse in the image is from the 

central unaluminised hole in the pick-off mirror, with the reduced reflection 

providing a view of the reference source. The object was close to transit at the time 

these images were taken, and since the MMT is on an alt-a2 mount, the field was 

rotating quite rapidly with respect to the instrument. The individual frames have 

been de rotated, and repixelised before being co-added. This operation, which 

reduces resolution and image contrast, and the low-resolution plate scale are the 

limiting factors in the overall resolution of the image, which is 0.5 arcsec FWHM. 

Simultaneous InSb array images of BN used to control the mirror, with a plate scale 

of 0.15 arcsec/pixel, give a long-exposure FWHM of 0.40 arcsec. This is a significant 

improvement over a separate image of BN recorded on the InSb camera at about the 

same time, when no control was used. The seeing was rather poor, as shown by the 

FWHM of this image which is 0.86 arcsec. 

8.3 Gamma Andromedae 

This trio of stars is at a distance of 77 pc. The primary "(1 And is a KOIII star, 

at a V magnitude of 2.18, separated from the remaining two stars, "(2 And, by about 

10 arcsec. The secondary and tertiary are B8V and AOV stars, with V magnitudes 

of 5.5 and 6.3 respectively, and are separated by 0.56 arcsec. (In fact, the B8 star is 

itself a spectroscopic binary. It consists of two B9.5V stars with a separation of 0.001 

arcsec.) This is an excellent system for demonstration of high resolution imaging in 
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the field. The primary is used as the wavefront reference, while the wide-field 

camera images the fainter two stars. Figure 8.2 shows a pair of such images from the 

NICMOS 2 array, taken with a single mirror. The exposures are each 5 s long, at 

2.2 J..£m and a plate scale of 0.062 arcsec/pixel. The pick-off mirror has been moved 

so that the field of view no longer contains the reference source. The top picture 

shows the binary with no correction; the lower picture is the result when bright pixel 

tracking is used on the image of 11 And on the InSb camera with a 20 ms cycle time. 

The FWHM is reduced from 0.45 to 0.31 arcsec, very close to the diffraction limit 

of 0.28 arcsec in the vertical diredion, and the binary is well resolved. The increase 

in FWHM is attributable largely to the time delay from sensing to correction. 

Horizontally, the FWHM is 0.59 arcsec. This larger value is caused by 

aberration at the pupil mask in front of the adaptive mirror. Introducing the pick-off 

mirror into the optical beam train to feed the NICMOS 2 camera causes a lateral 

shift in the beam seen by the InSb array (figure 8.3). This was compensated for by 

a slight tilt in the adaptive mirror, leading to vignetti~p on the mask. In future, this 

will be avoided by using a pick-off mirror with a central hole. A pellicle covering the 

mirror will provide a small amount of reflection at the hole without causing 

significant deviation of the beam. This reduced intensity image of the reference star 

on the wide-field camera can be used for astrometric purposes, and for registering 

multiple frames, as for the BN image above. 

In another experiment, the same bright pixel tracking algorithm was used on 

12 And using two coherently phased mirrors on a 2.52 m baseline. The results, with 

and without correction using the adaptive phasing algorithm of section 4.1, are shown 

in figure 8.4. In a dramatic illustration of the power of adaptive optics to correct 

over large fields, both components of the binary show stable interference fringes, with 

0.18 arcsec spacing. 
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a) 

b) 

Figure 8.2 K band images of the binary -y2 And, recorded with 5 s exposures on the 
NICMOS 2 camera using a single MMT mirror. a) The uncorrected image; b) the 
result when the image of -y1 And, 10 arcsec away, was stabilised with a rapid tip/tilt 
mirror tracking the brightest pixel. The separation of the two components is 0.56 
arcsec. 
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Figure 8.3 The effect on the reference star beam as a 
result of introducing the pick-off mirror which feeds the 
wide-field camera. A compensating tilt had to be 
introduced at the adaptive mirror. 
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a) 

b) 

Figure 8.4 Images of 12 And, taken with two coherently phased mirrors of the MMT. 
a) The uncorrected image; b) when the image of 11 And was stabilised with the 
adaptive phasing algorithm, interference fringes appear in both components of 12 

And. 
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8.4 Bright speckle tracking at J 

By going to a shorter wavelength, higher resolution is achievable. The simple 

bright speckle tracking routine was used to stabilise the image of J..L Cas from a single 

mirror in the J band in an attempt to obtain high resolution images of the faint 

companion. This work was done as part of a programme of McCarthy to measure 

the masses of astrometric binaries (McCarthy, 1986; Henry and McCarthy, 1990). In 

addition, IJ. Cas is a nearby Galactic halo star, and can yield information on the 

primordial abundance of helium (Dennis, 1965; McCarthy, 1984). 

Figure 8.5 shows a 100 s integration from the NICMOS 2 camera. Plainly 

there is a considerable amount of coma distortion in the optics which severely 

impairs the ability of the tracking algorithm to lock on to the true position of the 

guide star, because of the broader distribution of light. The resolution of the image 

is limited by the distortion. The FWHM is 0.32 arcsec, compared to the diffraction

limited value of 0.14 arcsec. Nevertheless, this still represents a substantial 

improvement over the uncorrected case, since the seeing was not good. A similar 

long-exposure image, with no correction, recorded immediately after that of figure 

8.5 on the InSb detector has a FWHM of 0.91 arcsec. 

The experiment did serve to illustrate the other major benefit of adaptive 

optics, apart from high resolution. By increasing the contrast of figure 8.5, as in 

figure 8.6, the faint companion is clearly revealed at a separation of 1.2 arcsec. 

Concentration of the light from the faint star, which is 4.6 magnitudes fainter than 

the primary at J, has brought the fainter signal well above the background set by the 

seeing halo of the primary. The SNR of the detection of the secondary is thereby 

improved by a factor of roughly the value (FWHM uncorrected image / FWHM cor

rected image)2 ::::: 8. 



Figure 8.5 An image of J.1. Cas at 1.25 J.J.m taken with a 
single MMT mirror while the bright speckle tracking 
algorithm was controlling the wavefront tilt. The plate 
scale is 0.062 arcsec/pixel. (This figure, and figure 8.6 
courtesy D. McCarthy, J. Freeman, and T. Hancock.) 

Figure 8.6 The same as figure 8.5 but with the contrast 
incr~ased by a factor of 6. 7. The faint companion to J.1. Cas 
can be clearly seen on the left of the image. This star is 
4.6 magnitudes fainter than the primary in the J band. 
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Chapter 9 

Finding Phase from the Fourier Transform 

9.1 A new way to measure phase 

Following a suggestion of Fried (1991), an investigation was begun into the 

possibility of using the Fourier transform of the combined focal plane image to 

derive piston errors. The image formed by each pair of mirrors individually is a set 

offringes with a well-defined spatial frequency and orientation. In the Fourier plane, 

this defines a point whose position is determined by the baseline and orientation of 

the mirrors. The phase of the transform at this point is directly the phase of the 

fringes, (see figure 3.1), or the piston error between the two mirrors. For multiple 

apertures, it is possible to obtain phase relationships for each pair by examining the 

appropriate points in the Fourier transform. 

Certain restrictions on symmetry apply, however. Figure 9.1 illustrates a case 

where the fringes generated by two different pairs of mirrors in an array are identical 

in appearance, and therefore occupy the same point in frequency space. The image 

will be a superposition of the two sets of fringes (multiplied, of course, by fringes 

generated by every other combination of two mirrors). The phases will add 

vectoriaIly, as shown in figure 9.2. The measured phase is ¢m. To find the individual 

phase differences ¢2.1 and ¢4.3' one must also look at the Fourier amplitude~. One 

finds 

4> = 4>. ±COS-' ( ;~) 9.1 

where ¢ = ¢2-1 or ¢4-3, and A is the amplitude for fringes produced by a single pair 

of mirrors, which in the absence of scintillation will be constant, and equal for all 
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Figure 9.1 A four-mirror pupil geometry in which the two pairs of 
parallel baselines (1-2, 3-4 and 1-3, 2-4) generate fringes in the 
combined image plane (shown schematically) with identical separation 
and orientation. Two other sets of fringes generated by the pairs 1-4 
and 2-3 are not shown. 

Imaginary 

Figure 9.2 Addition of the phase vectors in the complex plane from 
two identical baselines. The measured phase and amplitude of the 
combined • image plane fringes are ¢m and ~ respectively. The 
individual phases and amplitudes are ¢ 2_1, ¢ 4_3 and A. 
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mirror pairs. Unfortunately, without some separate source of information, it is not 

possible to tell which phase value applies to which pair of mirrors. In the case of the 

four-mirror array of figure 9.1, the phase values ¢ 3_1, ¢ 4_2, ¢ 3_2, and ¢ 4_1 may also be 

found, though once again the redundancy of baselines in the pupil makes the first 

two of these ambiguous. For this particular pupil, there are always two different 

combinations of phase for the four mirrors (disregarding multiples of 21r) which give 

identical images. The phases of the diagonal pairs are unambiguous, but there is no 

way, from a single combined-focus image, to relate the pairs 1-4 and 2-3 to each 

other except by applying one of _the possible ambiguous combinations at random to 

see if it works. This is unacceptable for adaptive optics where an incorrect 

adjustment to the wavefront is generally worse than no adjustment. 

The problem can be resolved with extra information, such as a simultaneous 

out-of-focus image, or if the symmetry of the pupil is broken, say by the introduction 

of a fifth mirror, as in figure 9.3. Now, although there remains ambiguity between 

08 
0 

80 
Figure 9.3 Adding a fifth mirror to the pupil of figure 9.1 relieves the 
redundancy enough to allow all the phase relationships to be found. 
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¢2-1 and ¢4-3, ¢4-2 can be determined explicitly from ¢4-2 = ¢4-S + ¢S-2' and all five 

phases can be calculated unequivocally. 

A further caveat is that the mirror diameter must not be too large compared 

to the baselines separating them. An extreme example is a filled circular aperture, 

where there are no gaps. Then every baseline (except diameters) is multiply 

redundant, and there is no hope of using an analytic technique to extract a phase 

map across the pupil from the Fourier transform of a single image. 

9.2 Simulation results 

The pupil of figure 9.3 is that of the MMT with one of the mirrors removed. 

Computer simulations with this geometry have shown that if wavefront tilts are taken 

out by some other system, the Fourier technique is extremely powerful for correcting 

phase errors responsible for the degradation of image resolution. Because of the 

constraints on symmetry, the full six-mirror aperture is not amenable to analysis with 

this t~chnique in its present form. 

The simulations were carried out with the constraints of the MMT adaptive 

optics system very much in mind. The images used were each 26x20 pixels in size, 

at the 0.04 arcsec/pixel plate scale used for the neural net. As an illustration of the 

aim of the simulation, figure 9.4 shows the theoretical PSF for the five-mirror pupil. 

The dilution of the aperture means that the central peak contains only 28% of the 

total energy. The hexagonal symmetry underlying the pupil geometry is still evident. 

The method used to simulate the technique was to generate a set of images with 

random atmospheric and telescope aberrations, to compute the phase errors for each 

wavefront on the basis of the Fourier transform of the images, and finally to 

recompute the images with the derived piston errors subtracted. 

Figure 9.5 shows the amplitude of the Fourier transform, averaged over 300 



Figure 9.4 The theoretical point spread function 
of the five mirror pupil in figure 9.3 at 2.2 ,urn 
wavelength, with 0.04 arcsec pixels. 

' Figure 9.5 The . average amplitude for the 
Fourier transforms of 300 uncorrected simulated 
images from the five mirror pupil. 
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distorted images. Each baseline produces two spots, symmetrically positioned with 

respect to the centre of the pattern. The degenerate baselines give rise to over

lapping spots. The corresponding average phase, of course, is zero everywhere. 

Position and size of the spots of figure 9.5 are determined by the baselines Band 

diameter D of the individual apertures, according to 

nr N
BP 
A 9.2 

nd = N
DP 
A 

where nr and nd are the radial position and diameter, and N is the dimension of the 

image, all in pixels in the Fourier image. P is the plate scale. 

The first example of simulated correction with the technique at 2.2 tLm is 

shown in figure 9.6, an integration of 100 frames before and after phase 

compensation. A single layer of Kolmogorov turbulence was used, characterised by 

ro = 1.1 m, typical of values seen at the telescope. Random tilt errors of ±0.1 arcsec 

were assigned to the ten wavefront tilts in each image, to simulate the imperfections 

of a real tip/tilt servo system, but no noise was included. The FWHM of the 

unphased image, figure 9.6a is 0.32 arcsec, already a considerable improvement over 

the completely uncorrected image, which would have a FWHM of 0.41 arcsec. The 

Strehl ratio of figure 9.6a is 0.13. When the phase corrections are applied to the 

same images, figure 9.6b, a diffraction pattern very similar to that of figure 9.4 

appears, with a Strehl ratio of 0.75. This is within 1 % of the value which would be 

achieved by a perfect wavefront sensor, given the residual atmospheric and alignment 

errors. 

In an attempt to match more closely the conditions under which real adaptive 
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a) 

b) 

Figure 9.6 Simulated correction using Fourier transform phase retrieval. Wavefront 
tilt over the five individual apertures has been taken out, except for a ± 0.1 arcsec 
random error, and r0 = 1.1 m. a) Average of 100 uncorrected images, FWHM = 
0.32 arcsec; b) after phase correction, the same 100 images show a strong diffraction
limited core with a Strehl ratio of 0.75. 
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correction might be performed at the telescope, a second run of 100 images was 

made, this time including the readout noise from the JnSb detector, 300 electrons per 

pixel, and photon noise. Each exposure was composed of 500,000 photons, corre

sponding roughly to K magnitude 5.5 assuming a total system efficiency of 25%. Also 

included was a half wave (at 2.2 JLm) of defocus at each of the five telescopes, and 

about a half wave of error from the three point mirror support. This lead to images 

with about the same distribution of energy between the central diffraction spike and 

the Airy rings as is actually observed. Once again, ro of 1.1 m, and the 0.1 arcsec tilt 

error were used. The result is shown in figure 9.7. Surprisingly, it is very similar to 

the previous noise-free result. The Strehl ratio of the corrected image is down to 

0.53, but the decrease is due almost entirely to the telescope aberrations; a perfect 

phase sensor would have given 0.54. 

Finally, in an effort to push the technique to its limit, a third run of 1,000 

images was done. In this case, the same K magnitude, and detector and photon noise 

were included as for the previous case, though the telescope aberrations were not, 

and no tilt correction was used at all. Figure 9.8 displays the result. The 

uncorrected image has a seeing profile with a FWHM of 0.52 arcsec, and a Strehl 

ratio of only 0.048. No attempt was made to sense or correct tilt errors, and yet, 

after correction of the phase errors, figure 9.8b, the diffraction pattern is quite clear, 

with a Strehl ratio of about 0.22. These results demonstrate a remarkable quality of 

the technique of measuring phase from the Fourier transform, which is its apparent 

great robustness. Even in the presence of strong aberrations, the mean phase errors 

can still be found and subtracted from the wavefront. 

For efficiency as part of a real adaptive system, it is not necessary to compute 

the entire Fourier transform for every image. We are really only interested in the 

few points corresponding to centre-to-centre ba§elines of the telescope. The phase 
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a) 

b) 

Figure 9.7 The result of a second integration before and after phase correction. In 
this simulation, a half wave each of defocus and three point mirror support were 
added to the wavefront across each aperture. a) The uncorrected FWHM = 0.32 
arcsec; b) the Strehl ratio after correction jumps from 0.13 to 0.53, which is very 
close to the limiting value of 0.54 imposed by the telescope aberrations. 
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a) 

b) 

Figure 9.8 A third simulation was carried out with no tilt correction at all. Each 
image is an average of 1,000 frames. a) The FWHM is 0.52 arcsec, and the Strehl 
ratio is only 0.048; b) even with no tilt correction, recovery of the phase errors 
restores a diffraction-limited component to the image, with a Strehl ratio of 0.22. 
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retrieval algorithm should therefore include a routine to compute the position of 

these desired points, given a particular pupil, and should not spend time calculating 

the Fourier components anywhere else in the frequency plane. 

9.3 Phase closure with three-mirror data 

A critical test of the theory can be made by applying the technique off line to 

actual telescope images, where three of the MMT apertures were open. Such 

images, using mirrors A, C, and F and no adaptive correction, were obtained during 

the run of September 1991. They were intended as control tests against which the 

performance of the three-mirror net of chapter 7 could be evaluated, but they also 

provide an excellent way to check the Fourier phase retrieval method outside the 

realm of simulation. 

For each image, the phase differences for each baseline, ¢AO ¢CF' and ¢FA can 

all be determined independently. The test is then that the sum of the three phases, 

going around the triangle of the pupil, should be zero (or possibly ± 27r). The mean 

square value of the sum for 500 10 ms snapshots is 2.2 rad2
• This number can be 

used to compute the expected error in the derived phase values for a system based 

on this approach running at the telescope. Assume that each phase difference is 

measured with an r.m.s. error G, and that for a given image, the sum of phases is !J.¢ 

9.3 

Then we expect (!J.¢2) = 3a2 = 2.2 rad2• Thus, with the particular SNR of the data, 

about 10, we can expect to measure individual phase differences to an accuracy of 

0.86 rad. 

A further improvement can be obtained though, by fitting a plane to all three 

phase differences which minimises the squared error. If the phase differences on the 
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plane are PAC> PCF' and PFA' where 

9.4 

then we seek to minimise 

9.5 

with respect to PAC and PCF simultaneously. Writing PFA = -(P AC+ PCF)' we have 

o 
9.6 

Solving equations 9.6 leads to the three phase differences which should be applied 

to the mirror 

9.7 
PCF 

Each of the three values in equation 9.7 has an r.m.s. error of (2/3)1f2a. For stellar 

images with the same SNR as the present data, the phases can thus be corrected to 

an r.m.s. accuracy of 0.7 rad, which will be sufficient to recover a strong diffraction

limited component. If the wavefront tilts across each aperture are removed by an 

independent system, the effective SNR of the brightest pixels in the centre of the 

image will be improved by the concentration of the light, and so we would expect to 

be able to derive phase values with higher accuracies. 
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The requirement of phase closure, equation 9.4, can be applied to more 

complex pupil geometries to determine a least squares solution. In a fully non

redundant pupil with N apertures, there are N-1 phase differences to be determined 

from IjzN(N-1) independent baselines. The r.m.s. error in each phase difference can 

then be reduced to {(N-1)/[VzN(N-1)]}~a = (2/N)~a. 

9.4 Applications of the technique 

The technique of phase retrieval has several applications. The first is as a 

component of the hybrid tip/tilt and piston wavefront sensor described in chapter 4, 

in which the optical centroid from each primary mirror is used to remove tip and tilt. 

A Fourier transform routine implemented on the transputers will then make an 

excellent phase sensor. 

Such a wavefront sensor need not be limited in application to array telescopes. 

The aperture of a single mirror telescope can be divided into subapertures, and a 

conventional Shack-Hartmann sensor used to obtain the local tilts. Then, to avoid 

the propagation error associated with integration across the pupil to reconstruct the 

wavefront, asymmetric sets of the subapertures can be brought to a combined focus 

for analysis of the phase errors. Figure 9.9 shows how an 8 m telescope might be 

divided into three subsets of elements, each element being roughly 1.8 m across. 

Three images can then be used to determine phases within the subsets, and the three 

pieces related to each other by the Shack-Hartmann tilt information, since this only 

requires an extrapolation between adjacent segments. 

The method will be particularly powerful for pupil configurations laid out as 

Cornwell arrays (Cornwell, 1988). These are dilute arrays which provide nearly 

uniform coverage of the (u,v) plane for a given number of array elements, and a 

given resolution (or maximum baseline), by spacing the elements on non-redundant 
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Figure 9.9 A possible scheme for dividing up a circular aperture into 18 
subapertures, in three subsets distinguished by the hatching. The central Cassegrain 
hole is not included. Each subset is imaged independently to recover phase errors 
between its subapertures, and the three pieces are related to each other using Shack
Hartmann tilt data. 

baselines. 

With an appropriately designed multiple aperture pupil mask it will be 

possible to collect images at the MMT which contain simultaneous two-beam phase 

information on scales from a few centimetres out to the full 6.86 m diameter. Using 

this technique to extract the phases will provide direct measurements of both the 

spatial and temporal characteristics of the atmospheric fluctuations. 

Phase data from two, three, or five mirror configurations can be used to train 

the neural network directly on images from the telescope itself, including all the 

effects of telescope and instrument optics. With suitable modifications to the Fourier 

phase algorithm to include an out-of-focus image, the method could be applied to the 
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whole six mirror pupil. Separate simultaneous measurements of the optical centroids 

of each individual aperture can be used as the net's tip/tilt training data. Since the 

main problem hampering the net at present is the dissimilarity between the training 

images and those from the telescope, this method should provide nets with excellent 

performance on the sky. 
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Conclusions 
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If the coming generation of large ground-based telescopes is to achieve its 

potential for high-resolution imaging, then real-time adaptive correction of the 

atmospherically-induced wavefront distortion is essential. The fledgling adaptive 

optics programme at Steward Observatory has begun to explore a number of 

promising techniques for obtaining diffraction-limited resolution with large aperture 

telescopes, which rely on the spatial coherence of starlight to determine phase errors 

across widely separated portions of the wavefront. Such methods are applicable to 

both single-aperture telescopes, and dilute arrays. 

Computer simulations have demonstrated that an artificial neural network can 

be trained to recognise atmospheric wavefront aberrations for a discontinuous 

telescope aperture, from a pair of simultaneous in- and out-of-focus focal plane 

images. Based on this success, the MMT adaptive optics instrument was constructed. 

The wavefront computer was built as an array of transputers, providing ease of 

programming, and great flexibility in the algorithm used to determine and control the 

aberration. In particular, the computer is well suited for implementation of the 

neural network, in that both the hardware and software are parallel in nature. 

The adaptive instrument has been demonstrated to provide images with 

diffraction-limited resolution in the near infrared for pairs of the telescope's mirrors, 

using both a simple adaptive phasing algorithm controlling just the phase between 

the two mirrors, and also the neural net which controls five parameters of the 

wavefront. Results in the laboratory from a net trained on an artificial star with the 

adaptive instrument confirm the expectation that, if appropriate training data are 

used, the net is capable of deriving the wavefront with high accuracy. 
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It is expected that shortly, diffraction-limited imaging will be obtained with 

more, and eventually all six mirrors. A two-fold approach to this goal has been 

adopted. A neural network will be trained to derive all the wavefront parameters 

for the six-mirror case, and concurrently, a hybrid sensor using optical centroid 

information to control the wavefront slope across each aperture, and the Fourier 

transform phase retrieval method to control piston errors will be implemented. 

Currently, a plan is underway to upgrade the MMT to a single 6.5 m aperture; 

the mirror is expected to be spin-cast at the Steward Observatory Mirror Laboratory 

in February 1992. When this mirror goes into use, some time in 1994, the adaptive 

instrument can be used virtually as-is. The only required modification is to replace 

the six outer circular mirrors with tessellating 60° wedge-shaped pieces, or hexagons. 

Evidence has been presented that the atmospheric seeing above Mt. Hopkins 

is dominated by two layers which can be adequately described as thin Kolmogorov 

phase screens, one at the level of the telescope, and the other at some greater height, 

presumably several kilometres. The greatest contribution to the phase fluctuations 

comes from the ground layer, but the upper layer moves at a much higher speed, at 

least during the periods of observation reported here, and thus determines the 

required correction rate for any adaptive optics system built for use on the mountain. 

Possibly during seasons when the jet-stream is relatively quiescent, the effect of the 

upper layer will be completely swamped by the slower ground layer, and the required 

bandwidth will be reduced. Further measurement of phase fluctuations at speeds of 

100 Hz or so will be needed for a complete understanding of seasonal effects on 

seeing quality. Detailed information on the nature of the wavefront aberration 

obtained in this way will be of great value in providing the neural net with accurate 

training data, and in determining the required parameters of future adaptive 

correction schemes. 
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Appendix 

Examples of Elementary Neural Networks 

A.I The simple perceptron 

The way in which the neural network derives wavefront aberrations from the 

input images is, at least to the author, far from intuitively obvious. Some insight can 

be gained by studying a few elementary examples. Neural networks designed to solve 

simple problems of binary logic, of which three are presented here, are excellent for 

this purpose. More can be found for instance in Lippmann (1987). 

The simplest decision-making element is a single node with one input. The 

output of the node 0 is 0 or 1 depending on the value of the input I compared to 

some constant 8 

o { ~ (/< 8) 

(I ~ 8) 
Al 

If the node is given two inputs instead of one, it can make decisions based on the 

sum of the input signals, and it begins to resemble the biological neurons found in 

animal brains. This arrangement, shown in figure A1, is called a 'simple perceptron'. 

1------ 0 

I W2 
2 

Figure A.I The simple perceptron accepts two inputs. The output 
signal is 0 or 1 based on the sum of the inputs. 
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Each input is fed to the neuron along a connection with some specified 'strength' or 

weight, which premultiplies the input value. The output of the node is then 

(WIll + W212 < 8) 

(WIll + W2 12 ~ 8) 
A2 

As in the case of the wavefront sensing neural network, the perceptron can be 

generalised to accept an arbitrary number of inputs, each premultiplied by its own 

weight. For computational convenience, the step function represented by equations 

Al and A2 is usually replaced by the sigmoid function of equation 5.3. 

The simple perceptron can be used to solve the two input binary AND 

problem, with appropriate choices for WI' W2, and B. Figure A2 shows suitable 

values, and table Al lists the desired and actual output values for the four 

combinations of 11 and 12• Also shown in figure A.2 are the decision regions in input 

space. The region where 0 ~ 0 is separated from the region where 0 ~ 1 by a line 

12 
"-

" " 
" 

1 " " • 
" 0 1 

0 " " 
10 

0 0 "-
"-

"-
"-

0 " 
Ii 

Figure A2 Left - a simple perceptron with weight and threshold 
values suitable for the binary AND problem. Right - the input space 
for the problem is divided into two decision regions, separated by the 
dashed line. Possible inputs are shown as points. 
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whose position and slope are determined by the three parameters of the perceptron. 

In this case, only the point (1,1) of the four possible inputs is in the decision space 

0:::::1. 

A slightly different case is illustrated by figure A.3. In this instance, three of 

the points lie in the space 0 ::::: 1. Table A2 lists the outputs, which are appropriate 

for the binary OR problem. 

Table Al Table A2 

I] 12 Desired Actual I] 12 Desired Actual 
output output output output 

0 0 0 0.000 0 a a 0.007 
0 1 0 0.007 0 1 1 0.993 
1 0 0 0.007 1 a 1 0.993 
1 1 1 0.993 1 1 1 1.000 

12 
"-

" 

"- 1 • 
"-

"-
"- 0 1 

"-

0 "-
"-

10 0 "- 1 
11 

"-a 0 " " "-
Figure A.3 Left - the perceptron, with weights and threshold now set to solve the 
binary OR problem. Right - the 0 = 1 decision region now includes two more of 
the possible inputs. 
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A.2 The multiple perceptron 

The basic perceptron can be used as a building block in larger structures, 

capable of solving more complex problems. A simple multiple perceptron archi

tecture can be used to solve the two input exclusive-OR, or XOR problem. Table 

A.3 gives the truth table, together with results from the net of figure A.4. This net 

is arranged in layers, and has a {2, 2, I} structure in the notation of chapter 5. Here, 

each of the two 'hidden' nodes defines a line in the input space, shown on the right 

of figure A.4. A third node, in the output layer, is then required to determine which 

of the three regions of the space any given input vector falls into. 

Table A.3 

I) 12 Desired H ) H2 I Actual 
output output 

0 0 0 0.000 0.047 0.011 
0 1 1 0.047 0.953 0.983 
1 0 1 0.047 0.953 0.983 
1 1 0 0.953 1.000 0.011 

" 
12 

" " " " " 0 = 0 

" 1 " " " • 
" " " " " " 0 " " " "- "-

0 "- "-

0 "- "- 11 
" 0 0 " " " 

Figure A.4 A multiple perceptron neural net which solves the XOR problem. The 
two hidden nodes define lines in input space, and the output node discriminates 
between the three regions bounded by the lines. 
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In operation, if both inputs of the net in figure AA are zero, then both hidden 

nodes and the output node remain inactive. If one of the inputs goes to one, HI 

remains off since its threshold value has not been reached, but the threshold of H2 

has been exceeded, and so it switches on, and activates the output node. If both 

inputs go to one, HI switches on also, and since the weight connecting it to the 

output node is negative, it cancels the tendency of H2 to turn the output node on, 

and so the output is once more zero. 

These elementary considerations of dividing up the input space into regions 

bounded by lines (or in the case of the wavefront sensor, n-l dimensional hyper

planes, where n is the number of image pixels), and selecting an output value on the 

basis of the region defined by a particular combination of hidden node values, are 

all that drive the wavefront sensing neural net. Another way to think of the hidden 

nodes is to say that each one responds to some definite feature of the input vector. 

For instance, in the XOR net, HI indicates the tiUth of the statement 'both inputs are 

set to one' (the AND condition), while H2 determines the truth of the statement 'at 

least one of the inputs is set to one' (the OR condition). In the same way, the 

hidden nodes of the wavefront sensing net respond to the presence or absence of 

features in the input image pairs. However, only from experience can one tell how 

many hidden nodes are required to identify enough features for a unique and 

accurate determination of the wavefront. 
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