A SEARCH FOR ADDITIONAL PARANETERS IN THE INFRARED LUMINOSITY / 21 CM LINE-WIDTH RELATION FOR SPIRAL GALAXIES IN CLUSTERS OF GALAXIES
by
Mark Edward Cornell
A Dissertation Submitted to the Paculty of the DEPARTMENT OF ASTRONOMY
In Partial Fulfillment of the Requirements
For the Degree of DOCTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA

INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35 mm slide or as a $17^{\prime \prime} \times 23^{\prime \prime}$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

University Microfilms International
A Bell \& Howell Information Company 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

A search for additional parameters in the infrared luminosity/21 cm line-width relation for spiral galaxies in clusters of galaxies

Cornell, Mark Edward, Ph.D.
The University of Arizona, 1989
A SEARCH FOR ADDITIONAL PARANETERS IN THE INFRARED LUMINOSITY / 21 CM LINE-WIDTH RELATION FOR SPIRAL GALAXIES IN CLUSTERS OF GALAXIES
by
Mark Edward Cornell
A Dissertation Submitted to the Paculty of the DEPARTMENT OF ASTRONOMY
In Partial Fulfillment of the Requirements
For the Degree of DOCTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA

THE UNIVERSI'TY OF ARIZONA GRADUATE COLLEGE

As members of the Final Examination Committee, we cextify that we have read the dissertation prepared by Mark Edward Cornell entitled A SEARCH FOR ADDITIONAL PARAMETERS IN THE INFRARED

LUMINOSITY / 21 CM LINE-WIDTH RELATION FOR SPIRAL
GALAXIES IN CLUSTERS OF GALAXIES
and recomend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy -

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Dissertation Director Simon D. M. White

$$
\frac{3 / 16 / 89}{\text { Date }}
$$

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED: \qquad

ACKNOWLRDGENENTS

Before we begin, I would like to remember Professor Marc A. Aaronson, my advisor throughout most of my graduate career. Marc was killed in a tragic accident while observing at the $4-\mathrm{m}$ telescope on Kitt Peak. He loved astronomy and he loved observing. One could not help but become excited about science, just talking with him. Marc taught by example, and by expecting my work to be as good as that of anyone in the field; it did not matter that I was only a graduate student. I hope that he would approve of what I have written here. I miss him.

I would like to thank both of my dissertation advisors, Gregory D. Bothun and Simon D. M. White, for taking over and looking after me when Marc died. I would also like to thank them for putting up with a student as slow as I am. I would like to thank my friend, mentor, and cocomplainer, Ed Olszewski, for his moral and financial support these past several years. I would like to thank John T. McGraw and the Data General Corporation for teaching me poor computer-use habits and generally making it possible for me to complete a very CPU-intensive dissertation with a minimum amount of pain.

I would like to thank the graduate students more venerable than I, especially Mike Keane, Kem Cook, John Hill, and Roc Cutri, for making me feel welcome when I first arrived at Steward. And I would like to thank the graduate students who came after me, particularly Bill Latter, Buell Jannuzi, Dennis Zaritsky, and Diana Foss, for putting up with my advice, taste in politics, and pechant for practice prelims. I would like to apologize to Mike Dinniman for the basketball court, and I gratefully acknowledge many shots of bad scotch at the Saffer residence. I would like to thank Dave Silva for teaching me that collaborations can be fun, and Brad Smith for providing many entertaining memories. I would like to acknowledge John Salzer for giving me his job. Finally, I would like to thank my classmates, Richard Elston, Walt Kailey, and Chris and Connie Walker, for their support, encouragement, assistance, good humor, and friendship during some of the best years of my life.

There are many others I should acknowledge for their scientific contributions. I would like to thank Bob Schommer for several useful comments. I am particularly indebted to Michael Cawson for developing the GASP package and for many useful discussions. I am grateful to Scott McCurdy and Glenn Morrison for their help with some of the data reduction, to Lindsey Davis at NOAO for teaching me how to use GASP, and to Jeanette Barnes for her help in navigating the various NOAO computers. Finally, I would like to thank those who provided the financial support for my graduate career: the State of Arizona, Stemard Observatory, the National Science Foundation, and my parents, Dr. and Mrs. Edward H. Cornell.

TABLE OF CONTENTS

Page
Acknowledgements 5
Table of Contents 6
List of Illustrations 8
List of Tables 10
Abstract 12
Chapter 1: Introduction 14
Chapter 2: Observations and Reductions 18
The Sample 18
The Data 25
Basic Reductions 29
Surface Photometry 30
Calibration 36
Checks on the Surface Photometry 48
Aperture Photometry 57
Derived Parameters 61
Additional Parameters 66
Chapter 3: Scatter in the Tully-Fisher Relation 69
Introduction 69
Cluster Membership 70

table of contents Continued

The Infrared Tully-Fisher Relation 73
Cluster by Cluster Analysis 100
The Dispersion in Depth 151
Chapter 4: Reducing the Scatter about the Infrared
Tully-Fisher Relation 159
Introduction 159
The Second Parameter Search 160
Discussion 175
Interpretation 181
Conclusions 185
Append1x: The Data 186
References 264

LIST OF ILLUSTRATIONS

Figure Page
2.1a. Relative Frequency of Morphological Types Expressed as a Percentage of the Total Number 22
2.1b. Relative Frequency of Morphological Types Expressed as a Ratio to the Number of Sa Galaxies 24
2.2. Relative Frequency of Axis Ratios 26
2.3. A Comparison of the Surface Brightness Profile Derived Naturally from the Blue Data to the Blue Profile Obtained through Force-Fitting the Isophotes Derived from the Red Data 46
2.4. Reproducibility of Blue Surface Brightness Profiles 50
2.5. Reproducibility of Red Surface Brightness Profiles 52
2.6. Comparison of Our B Surface Brightness Profiles with the V Data of Watanabe et al. 58
3.1. Linear Infrared Tully-Fisher Relations for the Northera Clusters 74
3.2. Linear Infrared Tully-Fisher Relations for the Southern Clusters 77
3.3. Histograms of the Linear Tully-Fisher Relation Fit Parameters 81
3.4. Linear Tully-Fisher Relation Fit Parameters as a Function of Distance Modulus 84
3.5. Histograms of Infrared Magnitude for the Northern Clusters 86

LIST OF ILLUSTRATIONS Continued

3.6. Histograms of Infrared Magnitude for the Southern Clusters 89
3.7. Mean Infrared Magnitude as a Function of Distance Modulus 92
3.8. Parabolic Infrared Tully-Fisher Relation in the Northern Clusters 94
3.9. Parabolic Infrared Tully-Fisher Relation in the Southern Clusters 97
3.10. Northern Distance and Position Correlations 103
3.11. Southern Distance and Position Correlations 123
3.12. Maps of Northern Clusters 139
3.13. Maps of Southern Clusters 142
4.1. Second Parameter Search for Observables Derived from Surface Photometry at B 164
4.2. Second Parameter Search for the Bothun et al. (1985a) Data 166
A. 1 CCD Surface Brightness Profiles 222

LIST OF TABLES

Table Page
2.1. Mean Cluster Properties 20
2.2. Journal of Observations 28
2.3. Detector Characteristics 28
2.4. Average Surface Brightness Profile Characteristics 35
2.5. Photometric Transformations for the January 1987 CTIO run 43
2.6. Reproducibility of Surface Brightness Profiles 55
2.7. Reproducibility of Galaxy Parameters 67
3.1. Cluster Membership Rules 72
3.2. Linear Infrared Tully-Fisher Relation 80
3.3. Single-Slope Infrared Tully-Fisher Relation 83
3.4. Mean Cluster Infrared Magnitudes 91
3.5. Scatter About the Infrared Tully-Fisher Relation 99
3.6. Northern Distance and Position Correlations 137
3.7. Southern Distance and Position Correlations 137
3.8. Tully-Fisher Scatter from Depth Effects 155
3.9. Average Tully-Fisher Scatter from Depth Effects 155
4.1. Additional Parameters 162
4.2. Second Parameter Correlations 168

LIST OF TABLES Continued

4.3. Scatter About the Extra-Parameter Tully-Fisher Relations for the Blue Surface Photometric Parameters 170
4.4. Scatter About the Extra-Parameter Tully-Fisher Relations for the Bothun et al. (1985a) Parameters 172
A. 1 Photometric Parameters Derived from B-band Surface Photometry 188
A. 2 B-band Isophotal Magnitudes 195
A. 3 Photometric Parameters Derived from R-band Surface Photometry 202
A. 4 R-band Isophotal Magnitudes 209
A. 5 Photometric Parameters Derived from I-band Surface Photometry 216
A. 6 I-band Isophotal Magnitudes 219

Abstract

The relationship first pointed out by Tully and Fisher between the luminosity of spiral galaxies and their maximum rotation velocity, as measured by the 21 cm line-width, continues to be one of the best methods available to measure relative distances. At infrared wavelengths, the observational scatter about this relation is typically 0.35 to 0.50 magnitudes, permitting relative distance estimates with an accuracy of about 20 percent. The Malmquist bias in a magnitude-limited sample is $1.38 \sigma^{2}$, and while the solution to the general problem is complex, it is clear that reducing the scatter about the Tully-Fisher relation by even a factor of two would make a large difference in our ability to determine the local velocity field from distances and velocities of individual galaxies.

In this dissertation we discuss the scatter in the Tully-Fisher relation at infrared wavelengths, and look for ways to reduce that dispersion through the inclusion of additional observational parameters. The data for this study are derived from a CCD survey of 244 spiral galaxies in twenty clusters falling in the redshift range 3,000 to 11,000 $\mathrm{km} \mathrm{s}^{-1}$. From surface brightness profiles and elliptical aperture photometry, we obtained isophotal and total magnitudes at B, R, and I, isophotal diameters, mean and nuclear surface brightnesses, and a concentration parameter indicative of the bulge-to-disk ratio. These

quantities were then combined with colors and HI-content measures taken from the literature in a search for correlations with Tully-Fisher residuals. None of the trial second-parameters resulted in a substantial decrease in the scatter about the fiducial Tully-Fisher relation. An examination of the properties of the cluster samples shows that many of the clusters exhibit considerable substructure. While it is possible that the implied depth effects are important to the scatter about the magnitude/line-width relation, calculated lower limits to the dispersion in depth turn out to be rather small.

CHAPTER 1: INTRODUCTION

The leading method for determining extragalactic distances appears to be the relationship between galaxian luminosity at infrared wavelengths and rotation speed as measured by the velocity width of the neutral hydrogen 21 cm line profile (Aaronson and Mould 1986). This relation was first proposed as a distance indicator by Tully and Fisher (1977), and hence bears t' $\because f$ name, although in fact, a fairly accurate distance determination to M31 was made using similar principles as early as 1922 (Oepik). The magnitude/line-width relation used by Tully and Fisher had a serious deficiency, as first pointed out by Sandage and Tammann (1976), in that it was based on blue magnitudes which are subject to large and uncertain corrections for internal absorption. The problem is that the measured rotation velocities must be reduced to edge-on values in order to be meaningful, and this correction is large unless the objects are nearly edge-on to the line of sight. However, for these highly inclined objects the corrections necessary to reduce the blue magnitudes to faceon values are large and have a considerable random component. Aaronson, Huchra, and Mould (1979) largely solved this problem, by utilizing the relation at infrared (1.6 m or H -band) wavelengths. In the infrared, corrections for internal extinction within the object under study, as well as for Galactic absorption along the line of sight, are greatly reduced.

We have been involved for the past several years in a program to improve various technical aspects of the practical application of the infrared Tully-Fisher relation to the determination of the extragalactic distance scale. To that end, we have conducted a survey of spiral galaxies in clusters of galaxies using charge-coupled devices (CCD's), very sensitive detectors with linear response, in order to obtain twodimensional maps at optical mavelengths of the brightness of each program object on a fine grid of points on the sky. The first application of these data was an improvement of the galaxy diameter system upon which the H-band photometry used in the infrared Tully-Fisher relation is based (Cornell et al. 1987). In this dissertation, we are interested in another potential improvement in the determination of extragalactic distances. We would like to know if we can improve distance estimates by considering other information about the objects under study, in addition to the 21 cm line-width and H magnitude. The interesting question is whether we can improve our ability to predict the absolute magnitude of a spiral galaxy by adding additional parameters to the basic rotation velocity measurement.

The question of the dimensionality of apiral galaxy properties, the extent to which a spiral property such as absolute magnitude can be accurately deduced from a single observable guch as 21 cm line-width, has had a checkered history. On one hand, Aaronson and Mould (1983) found no significant dependence of the infrared Tully-Pisher relation on
morphological type. Furthermore, Tully, Mould and Aaronson (1982) found tight relationships between $\mathrm{B}_{\mathrm{T}^{-H}} \mathbf{H}_{-0.5}$ color and mass or luminosity, independent of type, suggesting that spiral properties are predominantly dependent on a single parameter, which they identify as total mass. On the other hand, Rubin et al. (1982), for example, find strong type dependence in their blue Tully-Fisher relations. Whitmore (1984) has argued that this difference comes mostly from different selection effects in the two samples, but that the two-dimentionality does not disappear at H-band, in conflict with the Tully, Mould, and Aaronson result. Whitmore finds two principal components in his data, one identifiable with a "scale" (blue magnitude and diameter) and the other with a "form", B-H color or bulge/total luminosity ratio.

Thus there is evidence for two dominant dimensions in the space of spiral properties, and there is some hope that considering additional information would improve Tully-Fisher distances by adding knowledge about the other dimension. Aaronson et al. (1982a) explicitly searched for such an improvement using a hybrid surface brightness, type, inclination, and 21 cm flux as trial second-parameters. While they were unsuccessful, Whitmore's (1984) conclusions, plus a recent Principal Component Analysis by Watanabe, Kodaira, and Okamura (1985) which showed that the two dimensions in spiral properties could be identified using optical surface photometry alone, encouraged us to use our new CCD survey data to once more address this issue.

The organization of this dissertation is as follows. The selection and properties of the $C C D$ survey sample, and its extension to the southern hemisphere, as well as the observational techniques, reductions, and the derivation of photometric parameters are discussed in Chapter 2 . In Chapter 3 we examine the scatter about the infrared Tully-Fisher relation on a cluster by cluster basis, and attempt to estimate the importance of dispersion in depth and substructure in the cluster samples themselves to the observed scatter about the magnitude/line-width relation. In Chapter 4 we apply the observational data derived in Chapter 2 to a search for additional parameters in the infrared Tully-Fisher relation, with largely negative results. We present the complete set of our surface brightness profiles and derived parameters in the Appendix.

CHAPTER 2: OBSERVATIONS AND REDUCTIONS

THE SAMPLE

The new data presented in this thesis consist of CCD (charge-coupled device) frames of 244 spiral galaxies taken as part of two surveys: one of objects in clusters of galaxies in the northern hemisphere (see Cornell et al. 1987) and one of cluster spirals in the south. The northern survey covers a subset of the galaxies studied by Bothun (1981) and hence follows the selection criteria given in that reference. Bothun's sample is basically a magnitude-limited selection of cluster spirals falling in the redshift range $3,000 \mathrm{~km} \mathrm{~s}$ to $12,000 \mathrm{~km} \mathrm{~s}^{-1}$, with declinations between 0° and 40° (i.e. accessible by Arecibo). The southern clusters surveyed for this thesis lie mostly in the Hydra-Centaurus supercluster and the Telescopium-Grus/Pavo-Indus chain of galaxy clusters (see Tully and Fisher 1987). These clusters were chosen for study as part of the Aaronson et al. (1989) study of large-scale motions in the southern hemisphere.

The twenty clusters discussed here provide a variety of environments and exhibit a wide range of spiral fractions, densities, and velocity dispersions. The positions and mean redshifts of each cluster are listed in Table 2.1, together with some of their global properties. Column (1) gives the name of the cluster. Columns (2) and (3) list the position of
the cluster center. The northern positions are taken from Aaronson et al. (1986) and the southern positions are the averages of the coordinates for those objects listed in Sandage (1975). We give the mean cluster redshift in column (4), corrected to the Local Group velocity centroid via $300 \sin 1 \cos b$. Here the northern velocities come from Aaronson et al. (1986) and the southern velocities are taken from the sources listed in the notes. The same is true of the cluster velocity dispersions listed in column (5). The northern velocity dispersions were estimated as the quoted error on the mean velocity, multiplied by the square root of the number of objects that went into the mean. The mean distance modulus for each cluster is given in column (6), with the northern data from Aaronson et al. (1986) and the southern data from Aaronson et al. (1989), unless otherwise noted. For a few clusters it was necessary to estimate the distance modulus from the redshift, after applying the linear bi-infall model of Aaronson et al. (1989) for the large-scale streaming motions in the south. Column (7) contains the relative spiral, so, and elliptical fractions of each cluster. The northern data come from Table 1 of Bothun et al. (1985a) and the sources listed therein. The relative frequency of each type for the southern clusters was derived from the T types listed In the ESO (B) catalog (Lauberts 1982) for normal, non-interacting galaxies within 5 degrees of the cluster center. The ratios for the southern data reflect the subjective bias noted in the introduction to the ESO catalog against classifying galaxies as ellipticals. Column (8) gives the adopted foreground reddening in the direction of each cluster.

Table 2.1. Mean Cluster Properties

Name	Position (1950)		$\left.\mathrm{V}_{\mathrm{o}} \mathrm{~km}^{-1}\right)^{\sigma}$		$\begin{gathered} \mathrm{m}-\mathrm{M} \\ (\mathrm{mag}) \end{gathered}$	\%Sp:S0:E	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ (\operatorname{mag}) \end{gathered}$
	α	δ					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Pisces	$01^{h_{00}}{ }^{m}$	$+30^{\circ} 00^{\prime}$	5274	426	33.59		0.18
A400	0255	+05 50	7154	649	34.55	36:53:11	0.54
A539	0514	+06 23	8561	778	34.89	40:50:10	0.95
Cancer	0818	+21 14	4790	830	33.82	71:18:11	0.18
A1367	1142	+20 07	6427	762	34.35	43:40:17	0.00
Coma	1257.4	+28 15	6931	769	34.51	18:47:35	0.00
274-23	1400	+09 34	6025	943	34.25	62:28:10	0.00
Hercules	1603	+1756	11077	1156	35.25	51:35:14	0.09
Pegasus	2318	+0755	4078	614	32.97	59:29:12	0.18
A2634/66	2340	+24 00	8783	853	34.65		0.18
Virgo	1228.3	+1240	1073	723	30.82	62:19:18 ${ }^{\text {a }}$	0.00
NGC 1209	0301	-15 33	$2913{ }^{\text {b }}$	$425{ }^{\text {b }}$	$32.35{ }^{\text {C }}$	91: 9: 0	0.18
Antlia	1027	-35 35	2667 d	$293{ }^{\text {e }}$	32.34	75:20: 5	0.18
Hydra	1034	-27 15	$3455{ }_{\text {f }}^{\text {d }}$	$1031{ }_{f}^{\text {e }}$	33.18	74:24: 2	0.18
Centaurus 30	1247	-41 03	2804 f	577 f	32.44	62:34: 4	0.50
Centaurus 45	1247	-41 03	4337 f	$262{ }^{\text {f }}$	33.33	62:34: 4	0.50
Telescopium 27	2012	-46 44	$2765{ }^{\text {b }}$	$616{ }^{\text {b }}$	$32.46{ }^{\text {C }}$	78:19: 3	0.02
Telescopium 56	2012	-46 44	$5594{ }^{\text {g }}$	$611{ }^{\text {g }}$	$33.93{ }^{\text {c }}$	78:19: 3	0.02
Pavo	2012	-70 54	3229 d	$503{ }^{\text {e }}$	32.48	82:17: 1	0.18
Indus	2104	-47 43	$5033{ }^{\text {b }}$	$346{ }^{\text {b }}$	$33.68{ }^{\text {C }}$	61:34: 5	0.18

a Sandage, Binggeli, and Tammann (1985), types E-Sm only.
Huchra (1988).
C Distances derived from the linear bi-infall model of Aaronson et al. (1989: Table 9, Model 1).
d Aaronson et al. (1989).
e Mould (1988).
f Lucey, Currie, and Dickens (1986a).
g Mean and standard deviation for those objects within a radius of 4° of the listed center in a copy of The Center for Astrophysics Redshift Catalogue obtained from the Astronomical Data Center.

The northern extinctions were taken from Bothun et al. (1985a) and are based on H I column densities measured by Heiles (1975) and a calibration given by Bothun et al. Estimates of the absorptions to the southern clusters were made using H I maps given by Cleary, Heiles, and Haslam (1979) and the Bothun et al. calibration.

The original aim of the $C C D$ surveys was to improve the diameter system used to define the H magnitudes necessary in the distance-scale work of Aaronson et al. (1986, 1989 and references therein). Although some effort was made to choose a random subset of spiral galaxies, the final selection of cluster members was biased toward objects appropriate for distance determinations via the H-magnitude $/ 21 \mathrm{~cm}$ line-width relation. There are two potential selection effects. The first comes from the tendency to observe objects with previous H I detections, and hence 21 cm line-width measurements. This process selects against galaxies with relatively little neutral hydrogen, i.e. early type spirals. We investigate this potential bias in Figure 2.1a, where we plot the relative frequency of the morphological types of the objects in our sample. The T types are Hubble types taken from the UGC (Nilson 1973) and the ESO catalog, coded according to the prescription given by de Vaucouleurs, de Vaucouleurs, and Corwin (1976, hereafter RC2). For comparison, we plot the morphological types of all of the objects with $T \geq-3$ (SO's and spirals) in the RC2. Also plotted are types for those RC2 galaxies which fall within the search radil on the sky given by Aaronson et al. (1986)

Figure 2.1a. Relative Frequency of Morphological Types Expressed as a Percentage of the Total Number.
for our northern clusters and a search radius of 5 degrees for the southern clusters. Relative frequency is expressed as a percentage of the number in each sample. The number of typed objects in each sample is given in parentheses. At first glance, an H I selection bias is readily apparent in our sample. We have essentially no SO or So/a galaxies ($3 \leq T \leq 0)$ and apparently quite a few more $S c$'s $(T=6)$ than either of the RC2 samples. However, this interpretation is not obviously correct. The $T=5$ bin in our sample is misleading and probably should be ignored because it consists of objects which are thought to be spirals, but no further information is available. (The ESO or UGC catalogs give them a Hubble type of "S..."). Because 20 percent of the objects are not fully typed, expressing frequency as a percentage of the total is not quite right. Figure 2.1 b contains the same frequency information as Figure 2.1a, but the counts are expressed as a ratio to the number of $\mathrm{Sa}(\mathrm{T}=1)$ galaxies. The number of Sa's in each sample is given in parentheses for reference. Finally, objects classified in the ESO catalog and the UGC as "Sc" galaxies are mapped into $T=6$ by the $R C 2$ prescription, even though the RC2 itself has several bins, $T=5,6$, and 7 , for these late-type spirals. We therefore have to use somewhat coarser binning to make a meaningful comparison of the frequency of these types. If we count up the objects known to fall in the bins $T=5,6$, and 7 for the three samples and compare their frequency to that of Sa 's, we find that the ratios are $2.29 \pm 0.56,3.49 \pm 0.27$, and 1.64 ± 0.31 for our sample, the total RC2 sample, and the cluster RC2 sample respectively. The error estimates

Figure 2.1b. Relative Frequency of Morphological Types Expressed as a Ratio to the Number of Sa Galaxies.
assume root-n errors in the counting statistics. Thus our sample actually has relatively fewer Sc's than the total RC2 sample and a similar number to that in the general cluster sample.

The other selection bias in our sample is more straightforward. In order to avoid large and uncertain corrections to the 21 cm line-widths for inclination, objects used for Tully-Fisher distances are constrained to be inclined more than 45°. Although we tried to include face-on objects, Figure 2.2 shows that our sample exhibits this edge-on bias. Figure 2.2 is constructed similarly to Figure 2.1 , but shows histograms of the logarithm of the ratio of the major to minor axis of each object. Thus a face-on spiral has $\log R=0.0$, and an edge-on spiral has a large value of $\log R$.

Our sample overlaps with the infrared Tully-Fisher samples of Aaronson et al. (1986) and Aaronson et al. (1989) such that CCD surface photometry is presented here for about half of their northern spirals and 15 percent of the southern spirals.

THE DATA

The new data discussed here consist of CCD surface photometry obtained with a direct camera operating at the cassegrain focus of the

Pigure 2.2. Relative Prequency of Axis Ratios.
0.9 m telescopes at Kitt Peak and Cerro Tololo. A summary of the seven observing runs allocated for this project is given in Table 2.2. All of the detectors used for the project were RCA CCD's with a 320×512 pixel format and 30 micron square pixels. The operational parameters of the devices we used are listed in Table 2.3. Briefly, the RCA\#4 chip used at Tololo is a much lower noise device than the ones used at Kitt Peak, but it is subject to a high radiation event rate, make additional steps to deal with the affected pixels necessary in the reductions.

Over the course of seven observing runs, about 250 spirals were observed in the R band, with approximately 200 of these observed in the B band as well. About 40 southern objects were observed at B, R, and I bands. The filters used were from the Mould set. As discussed below, the northern data was calibrated to the Johnson filter system (see Johnson et al. 1966), and the southern data to that of Kron-Cousins (see Cousins 1976). Exposures of 450 s at R and 900 s at B were sufficient to reach well below the 25 th B mag $\operatorname{arcsec}^{-2}$ isophote in the Kitt Peak data. The Tololo exposures were somewhat longer, 1200 s at $\mathrm{B}, 600 \mathrm{~s}$ at R , and 600 s at I, and went correspondingly deeper.

Table 2.2: Journal of Observations
Weather

a Almost all of the images were poorly focussed.

Table 2.3: Detector Characteristics

CCD Name	Readout Noise $\left(e^{-}\right)$	$\begin{gathered} \text { Gain } \\ \left(\mathrm{e}^{-} / \mathrm{ADU}\right) \end{gathered}$	$\begin{gathered} \text { Dark } \\ \left(\mathrm{e}^{\text {Count }} \mathrm{pix}^{-1}\right) \end{gathered}$	Radiation Event Rate (min ${ }^{-1}$)	$\begin{gathered} \text { Image } \\ \text { Scale } \\ \left(\operatorname{arcsec} p i x^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { Field } \\ & \text { Size } \\ & \text { (arcmin) } \end{aligned}$
RCA*1	80	10.5	40	low	0.86	7.3x4.6
RCA\#2	80	13.4	40	low	0.86	$7.3 \times 4.6{ }^{\text {a }}$
RCA\#4	42	1.2/1.8 ${ }^{\text {b }}$	6	6	0.495	$4.2 \times 2.6{ }^{\text {c }}$

${ }^{2}$ RCA\#2 has a three-column region of low sensitivity at column 187.
b August 1986/January 1987.
c Column 265 is bad in RCA*4.

BASIC REDUCTIONS

The preliminary reduction and flattening of the raw data was carried out at the telescope using the standard NOAO mountain reduction software. The electrical DC offset in each frame was removed by subtracting the average value in the overscan region from the data on a row by row basis. Once this operation is complete, each frame is trimmed to a 320 by 512 (or slightly smaller) pixel format. Next, the remaining low spatial frequency variation in each frame is removed with the two-dimensional subtraction of an averaged bias frame. Finally, pixel-to-pixel variations in sensitivity are removed by dividing a high signal-to-noise dome flat taken through the appropriate filter at the beginning of the night into each bias-corrected data frame. There was little or no residual fringing left after performing the above steps for almost all of the frames, so sky flattening was not done. Because the dark current was small and subtracting it would just add noise, no explicit dark subtraction was performed. Note that the mean value of the dark current gets subtracted out automatically when the sky subtraction is done. In the Kitt Peak data the cosmic ray and/or radiation event rate was low and no attempt was made to correct for these events or other one- or two-pixel problems in the data. However, the Tololo data were subject to a high radiation event rate and each event of ten involved more than one pixel. An IRAF script was designed to replace these corrupted pixels with the median value of the pixels in the 3 by 3 pixel box centered on the radiation event. Bad
pixels were defined as having a value greater than 1.5 times the median value in the neighboring pixels. This procedure selected out and replaced fewer than 0.3 percent of the pixels in a typical 1200 exposure. Most of these replaced pixels were along the bad column in RCA\#4.

After the above reduction steps, the only serious defect remaining in the data is the group of three or so bad columns near column 187 of RCA\#2. This region is a problem because it is near the middle of the chip and it is difficult to avoid it when placing large objects on the frame. Row-averaged plots of the data in a typical frame show that in addition to the dead column 187, columns 188 and 190 are systematically low and high respectively. Therefore in all frames obtained with RCA\#2, columns 187, 188, and 190 were interpolated across linearly on a row by row basis. The purpose of the interpolation was to provide an estimate of pixel values for the photometry programs, rather than improve the surface brightness profiles as the profile-fitter is capable of ignoring bad data.

SURFACE PAOTONETRY

Surface brightness profiles were extracted from the flattened data using a set of FORTRAN programs known as the "GAlaxy Surface Photometry" (GASP) package. GASP was written by M. Cawsor to run on a VAX/VNS system and was subsequently modified by M. E. Cornell to run on a Steward

Observatory MV/10000 under the AOS operating system. The principal features and algorithms of GASP were summarized quite well by Davis et al. (1985, section IV), so the discussion here will be kept short. The theory behind the algorithms was discussed in some detail by Cawson (1983). The surface photometry for the first four of our observing runs was obtained using GASP on an NOAO VMS VAX 11/750, the fifth run was processed with GASP running on a VAX $11 / 780$ at Caltech and reductions for the sixth and seventh runs and all subsequent processing were done at Steward.

The ultimate limit to surface photometry accuracy is the uncertainty in the sky background measurement. We measured the sky background by taking the average of the pixel values within a box of user-specifed size positioned in the frame using a cursor on an interactive display device. Pixel values more than three standard deviations from the mean were rejected and the mean and standard deviation were recomputed. The adopted background for each frame was the average of the sky values found in four 31 by 31 pixel boxes located near the galaxy of interest, with care taken to avoid both extended galaxy light and stars. The uncertainty of the sky value was estimated as the standard deviation of the various box values, divided by the square root of the number of different measurements. Sky values found in this way during dark time at Kitt Peak were typically about 22.2 mag $\operatorname{arcsec}^{-2}$ in the blue and $20.4 \mathrm{mag} \operatorname{arcsec}^{-2}$ in the Johnson R bandpass, with errors of about 0.5 percent at both B and R. The background at Cerro Tololo was somewhat fainter and bluer at about 22.4,
21.1, and 19.3 mag $\operatorname{arcsec}^{-2}$ at B, Kron-Cousins R, and I bands respectively. Our Tololo measurements are brighter and bluer than those quoted for the mountain by Geisler (1988), perhaps affected by some moonlight.

Images can be specified for subsequent analysis by GASP in one of two ways. For most of the data frames, it was sufficient to use a cursor and display device to manually mark the centers of the galaxies to be analyzed. Then a file of images is created, containing for each object the $x-y$ position and starting values of zero for the object's ellipticity and position angle. One of the virtues of GASP is its ability to ignore specified regions of the data, such as bad pixels, columns with poor charge transfer or low sensitivity, or regions containing an overlapping object such as a star or galaxy. Under the manual-entry scheme, circular or elliptical regions to be deleted are chosen by moving a cursor around on the display and the parameters describing the region are entered in a deletions file.

[^0]or estimates the parameters at that level for merged images from the known parameters at higher levels. The user then goes through the output file and specifies which images are to be analyzed and which are to be deleted.

The GASP program that extracts a surface brightness profile from the data is called PROF. PROF begins with the $x-y$ center, semi-major axis, position angle, and ellipticity stored in the file of images to be analyzed, and then samples the $C C D$ data around the ellipse specified by the starting parameters. The variation of the pixel values around the ellipse are then analyzed as a function of angle from the major axis. This periodic function can be Fourier transformed to find the mean intensity around the ellipse along with the first and second Fourier components. If the ellipse parameters are correct, there will be no deviations around the ellipse and the sine and cosine components will be zero. If these terms are not zero, then the ellipse parameters are not correct, but can be corrected in the right direction using the magnitudes of the various Fourier components. This process is repeated iteratively until the fit is declared sufficiently good by passing a residual test, or the maximum number of iterations, typically 50 , is reached.

In practice, a true Fourier transform is not performed, but instead the data are least-squares fit to the equation for the Fourier components. In this way, data in the contaminated regions specified in the deletions
file can simply be left out of the fit. Once a fit is achieved for the semi-major axis at hand, the semi-major axis is increased by a user-chosen factor, typically 1.1 (logarithmic sampling), and the fitting process is repeated. PROF terminates when too small a fraction of the ellipse lies in uncontaminated data, when the image profile starts to rise by too much, or when the profile intensity becomes sufficiently close to the background value. The output from PROF is a list of mean intensities, ellipticities, position angles, and $x-y$ centers as a function of semi-major axis. Note that because the parameters of the elliptical isophotes are allowed to vary with major axis, the surface brightness profile determined by PROF will not follow a straight line through the galaxy if the position angles or centers of the fitted ellipses are different at different radii.

Some characteristics of typical surface brightness profiles generated in this way are given in Table 2.4. The fit of the isophotes to the data was checked visually by overlaying the ellipses found by PROF for some of the galaxies onto the appropriate CCD frame on a display device. We found that most isophotes were a reasonable fit, but there were galaxies for which the last couple of isophotes were a poor fit, having reached the maximum number of iterations without passing the residual test. But of en even isophotes for which the fit falled to converge completely seemed to be a reasonable fit visually. Plots of the ellipses found by PROF for each galaxy show that in most cases the last isophote is noticeably different from the previous ones, indicating either

Table 2.4: Average Surface Brightness Profile Characteristics

Band	KPNO	CTIO data
B: Dynamic range of the profile	5.6	5.8 mag
Limiting isophote	26.6	27.0 mag arcsec ${ }^{-2}$
Error in the limiting isophote	0.4	0.7 mag arcsec ${ }^{-2}$
Fraction of sky of the limiting isophote	3.1	2.6 percent
Error at the 25 mag arcsec $^{-2}$ isophote	0.10	0.08 mag arcsec ${ }^{-2}$
R_{J} : Dynamic range of the profile	6.0	
Limiting isophote	25.3	25.5 mag arcsec ${ }^{-2}$
Error in the limiting isophote	0.6	0.5 mag arcsec ${ }^{-2}$
Fraction of sky of the limiting isophote	2.6	2.0 percent
Error at the 23.5 mag arcsec ${ }^{-2}$ isophote	0.08	0.06 mag arcsec ${ }^{-2}$
I: Dynamic range of the profile		$4.7 \mathrm{mag} \quad-2$
Limiting isophote		23.4 mag arcsec ${ }^{-2}$
Error in the limiting isophote		1.0 mag arcsec ${ }^{-2}$
Fraction of sky of the limiting isophote		1.2 percent -2
Error at the $22.5 \mathrm{mag} \operatorname{arcsec}^{-2}$ isophote		0.09 mag arcsec ${ }^{-2}$

that the region of reasonable signal-to-noise has been axceeded or that the frames are not perfectly flat. No attempt was made to correct the surface brightness profiles for the effects of seeing. Not much information is lost by ignoring the seeing-dominated inner core of the surface brightness profiles. Our distant northern clusters are 72 Mpc away, on average, making pixels there 300 pc across. We would never detect in the northern data potentially interesting features like the luminosity spike observed in the center of M87 (e.g. Young et al. 1978).

CALIBRATION

The B and R major axis surface brightness profiles extracted with PROF from the Kitt Peak data were calibrated with the multiaperture photoelectric photometry of Bothun et al. (1985, Table 6). Those authors tabulate $V, B-V, V-R$, and error estimates if the errors exceed 0.04 mag in $V, 0.02$ mag in $B-V$, and 0.02 mag in $V-R$. For the galaxies with no error listed, these cutoff values were assumed here in order to estimate the uncertainty in the derived magnitude zeropoint. The photoelectric measurements given by Bothun et al. were made through 23.4, 35.6, 58.6, and 82.5 arcsec apertures, with three or four apertures measured for brighter galaxies and one or two for fainter objects. The magnitude zeropoints necessary to convert our instrumental magnitudes to the UBVR J system used by Bothun et al. were determined as follows. Simulated
aperture photometry was produced at integer pixel radii from the center of the galaxy to the nearest edge of the CCD frame using the GASP program APERT. (APERT makes no attempt to interpolate between pixels to make round apertures, but this approximation makes a difference only at extremely small apertures.) Linear interpolation between the tablulated instrumental magnitudes produced an instrumental magnitude for each aperture for which Bothun et al. quoted a magnitude. The difference between the quoted magnitude and our instrumental magnitude produces a value for the magnitude zeropoint correction. If Bothun et al. quoted more than one aperture for the galaxy, the zeropoints calculated for each aperture were averaged together. The uncertainty in the mean zeropoint was taken to be the larger of either the standard deviation between the various zeropoint estimates divided by the square root of the number of zeropoints or the quoted errors in the photometry divided by the square root of the number of zeropoints, with both calculations weighted by the adopted photometric errors. A few northern galaxies did not have photometry by Bothun et al. and were calibrated using the photometry given by Longo and de Vaucouleurs (1983), assuming photometric errors of 0.05 mag.

The zeropoints obtained above were applied to the isophote intensities found by PROF to produce surface brightnesses. Error estimates for the surface brightnesses include the zeropoint error, the uncertainty in the sky background, and the standard deviation of the
intensity values around the ellipse divided by the square root of the number of points that PROF used to derive that ellipse.

In order to check the photometry of Bothun et al., a few Landolt (1983) standard stars with $U B V(R I)_{K C}$ photometry were observed each night. Three nights of photometric weather were reduced and transformations between our instrumental magnitudes and colors and the UBV(RI) KC system found. For four or five galaxies each night that have aperture photometry in Bothun et al. (1985a), B magnitudes and B-R colors were derived from the standard star measurements for each aperture with published photometry using a transformation consisting of a zeropoint and a color term. Our results were then compared to the quantities in Bothun et al., after the Bothun et al. V-R colors were converted from the Johnson system to the Kron-Cousins system using the transformations given by Bessell (1979). The mean differences for the three nights between our photometry and that of Bothun et al., in the sense of (ours - theirs), were 0.02, -0.07 , and 0.06 mag for the B magnitudes with an overall mean of 0.00 mag, and $\mathbf{- 0 . 0 2 ,}$ -0.02 , and 0.06 mag for the $B-R$ colors with an overall mean of 0.01 mag. Thus the photometry derived from the standard stars agrees with the aperture photometry used here to calibrate the bulk of the northern profiles, to within the quoted errors.

The calibration of a few of the northern surface brightness profiles was adversely affected by a defect in the reduction procedures. As we
discussed above, the profile-fitting program is capable of ignoring bad regions of the data when it does the ellipse-fitting. The aperture photometry code was designed to interpolate over these bad regions, but in the calibration photometry the bad pixels were ignored instead. This effect can be important when columns within calibration apertures were masked and ignored, leading to an underestimation of the object's brightness by 0.10 magnitude or more. Galaxies whose calibration is potentially affected by this problem are noted in Cornell et al. (1987).

No calibrated aperture photometry was available for the southern galaxies, so the data were calibrated using observations of Landolt (1983) equatorial and Graham (1982) E-region standard stars made each night. Typically, we observed 10 to 12 standard stars through each of the three bandpasses during the night, and measured at least two with a wide spread in color at two elevations separated by 0.5 to 0.8 airmasses in order to determine the first and second order extinction coefficients following Hardie (1962). The E-region fields were useful because they of ten have two or more calibrated stars that fit on a CCD frame at the same time.

Total instrumental magnitudes for the standard stars were determined with the circular aperture photometry program APERT by growing the aperture radius a pixel at a time and looking for the asymptotlc value of the growth curve. Close stars and nearby bad pixels were interpolated over by replacing the offending pixel with the mean value in the annulus
at that radius (computed without including the bad pixels). Asymptotic magnitudes were typically reached at a radius of 20 pixels or about 10 arcsec. This procedure for determining the total magnitude is somewhat subjective, but agreed pretty well with small-aperture measurements that were corrected to a total magnitude via a mean growth curve.

The transformation coefficients necessary to convert the instrumental magnitudes discussed above into standard Johnson B and KronCousin R and I magnitudes were determined using a set of DAOPHOT auxiliary programs, CCDOBS, CCDOBS, and CCDSTD, written by Peter Stetson (see Stetson 1987 for information on DAOPHOT and the documentation for each of above the programs). CCDSTD determines the coefficients for a usersupplied transformation equation via a weighted least-squares fit. The program allows the user to change the number and type of terms in the transformation and to fix values for previously determined coefficients while the remaining ones are computed. This feature allows one to iteratively approach a solution, including any a priori knowledge available. The program also produces error estimates from error estimates for the input data and the quality of the fit, so that the significance of each term in the transformation can be determined.

Transformations of the form:

$$
\begin{aligned}
& b=B+A 0+A 1 *(B-R)+A 2 * X, \\
& r=R+B 0+B 1 *(B-R)+B 2 * X, \text { and }
\end{aligned}
$$

$$
1=I+C 0+C 1 *(B-R)+C 2 * X
$$

were fit to each night's data, and the coefficients $A 0, A 1, A 2$, etc. were determined. Here, b, r, and i are the instrumental magnitudes, B, R and I are the magnitudes in the standard filter system, and X is the airmass. The terms $A O, B O$ and $C O$ will be referred to as the zeropoints of the transformations. The coefficients $A 1, B 1, C 1$ are the color terms, and A2, B2, and $C 2$ are the extinction coefficients. This formulation of the transformation equations allows one to combine observations taken at different airmasses, or even on different nights, another important feature of CCDSTD.

We experimented with additional, second-order terms in the transformations of the form $A 3^{*}(B-R) * X$ and $A 4^{*}(B-R)^{2}$, for example, but the values of the coefficients so determined were either not significantly greater than their errors and did not repeat well from night to night, or they tended to distort the determinations of the first-order coefficients toward non-physical values. At any rate, acceptable fits to the data were obtained using only the first-order coefficients, so the second-order terms were ignored.

[^1]estimates of 0.01 mag for our instrumental magnitudes and the internal errors given by Landolt (1983) for the standard magnitudes plus an additional 0.01 mag to allow for transformation to the standard filter system. Also listed are the number of Landolt standards that went into the fits, the mean coefficients, and the 1σ standard deviations in the 5 nights of coefficients. The average color terms and extinction coefficients at B and R are in pretty good agreement with those determined independently by Mateo (1987) based on data taken with a similar filter/detector combination on the same telescope in July 1987.

While we were determining the transformations for each night of photometry, it became apparent that weather for the first CTIO run, in August/September 1986, was much less photometric than that for the second run in January 1987. The photometric transformations we found for the first run were not very repeatable from night to night and differed quite a bit from typical Tololo values. Since we used basically the same filters and the same $C C D$ detector for both runs, the color terms in the transformations, which just measure how different the observational bandpasses are from the standard ones, should have been very similar for both runs. And for the most part, seasonal variation in the extinction coefficients should not have been all that great (see Rufener 1986). We therefore adopted the mean values of the color terms and the extinction coefficients from the five nights of photometry in January 1987 as the color terms and extinction for all of the Tololo data (see Table 2.5).

Table 2.5: Photometric Transformations for the January 1987 CTIO run.

Band	Date	N	Zeropoint	Color Term	Extinction
B	5 Jan	21	-22.7214 ± 0.0415	-0.1489 ± 0.0080	0.1946 ± 0.0296
	6 Jan	21	-22.8225 ± 0.0394	-0.1493 ± 0.0072	0.2060 ± 0.0284
	7 Jan	21	-22.8325 ± 0.0386	-0.1298 ± 0.0078	0.2028 ± 0.0275
	8 Jan	23	-22.7207 ± 0.0608	-0.1476 ± 0.0132	0.1724 ± 0.0421
	9 Jan	23	-22.7347 ± 0.0540	-0.1441 ± 0.0117	0.2080 ± 0.0372
	Mean:		-22.7664 ± 0.0562	-0.1439 ± 0.0082	0.1968 ± 0.0145
R	5 Jan	23	-21.8313 ± 0.0275	0.0119 ± 0.0050	0.0719 ± 0.0202
	6 Jan	23	-21.8942 ± 0.0239	0.0088 ± 0.0042	0.0834 ± 0.0177
	7 Jan	23	-21.8780 ± 0.0361	0.0230 ± 0.0071	0.0691 ± 0.0257
	8 Jan	23	-21.8777 ± 0.0285	0.0147 ± 0.0061	0.0885 ± 0.0198
	9 Jan	23	-21.8836 ± 0.0273	0.0169 ± 0.0058	0.1065 ± 0.0188
	Mean:		-21.8730 ± 0.0242	0.0151 ± 0.0054	0.0839 ± 0.0150
I	5 Jan	20	-21.1041 ± 0.0292	-0.0019 ± 0.0055	0.0624 ± 0.0215
	6 Jan	17	-21.1232 ± 0.0301	-0.0071 ± 0.0057	0.0439 ± 0.0225
	7 Jan	17	-21.1318 ± 0.0276	-0.0047 ± 0.0059	0.0492 ± 0.0199
	8 Jan	17	-21.1508 ± 0.0238	-0.0093 ± 0.0057	0.0844 ± 0.0167
	9 Jan	17	-21.0756 ± 0.0367	-0.0083 ± 0.0088	0.0439 ± 0.0254
	Mean:		-21.1171 ± 0.0286	-0.0063 ± 0.0030	0.0568 ± 0.0172

After fixing these quantities, we reran the fits to determine a new zeropoint for each night. Zeropoints determined in this way had typical CCDSTD errors of $0.01,0.005$, and 0.005 mag at B, R, and I respectively for the January 1987 data, and 0.02 mag in each band for the August/September 1986 data.

Once the transformation coefficients were determined, the transforiation equations were inverted to give each standard magnitude in terms of the instrumental magnitudes. The transformations were then applied to the instrumental surface brightnesses output by PROF. The instrumental b-r magnitude for the isophote at a given major axis was computed from the ellipses having the same major axis in the B and R profiles. The only subtle point about this calculation is that while the blue and red ellipses were chosen to have the same major axis, the other fit parameters, i.e. ellipticity, position angle, and center, were not constrained to be the some in the two fits, so small differences in these parameters from band to band could result in a computed color that differs slightly from the true color of that region. We performed the following test in order to estimate the size of this error in the color. We ran PROF in an interactive mode on two blue frames, forcing it to compute the mean blue surface brightness of each ellipse for which parameters were derived in the normal way in the corresponding R data. We then computed at each semi-major axis the difference between the blue surface brightness derived in the normal way and the surface brightness derived from the
forced fit. These differenced profiles are shown in Figure 2.3. The objects plotted are: a) NGC 7541, an object with 111-behavé isophotes that are non-concertric and have parameters that vary a great deal across the galaxy, and b) NGC 7631, a galaxy with well- behaved ellipses having ellipticities, position angles, and centers that do not vary much with radius. For NGC 7541, the mean difference for 53 ellipses is $\mathbf{- 0 . 1 4 1}$ mag $\operatorname{arcsec}^{-2}$ and the rms difference is $0.212 \mathrm{mag} \operatorname{arcsec}^{-2}$. These differences translate directly into errors in the derived instrumental colors. However, as the instrumental colors enter the calibration of the surface brightness weighted approximately by the color term, even a surface brightness difference as large as $0.5 \mathrm{mag} \operatorname{arcsec}^{-2}$ leads to an error of at most 0.07 mag arcsec ${ }^{-2}$ for a typical B-band transformation (see Table 2.5). For NGC 7631, the mean difference for all 47 isophotes of only -0.006 mag arcsec ${ }^{-2}$ and the rms difference of only $0.086 \mathrm{mag} \operatorname{arcsec}^{-2}$ would lead to negligible errors in the calibration of the surface brightness profile.

There is one additional calibration step necessary before the southern surface brightness profiles can be compared to the northern data. The R-band aperture photometry of Bothun et al. (1985a) used to calibrate the KPNO data was defined on the Johnson system, while the CTIO R data was reduced on the Kron-Cousins filter system. We devised and applied a simple transformation between the two systems for our data consisting of a zeropoint shift only. To determine the shift we took the Johnson V-R

Figure 2.3. A Comparison of the Surface Brightness Profile Derived Naturally from the Blue Data to the Blue Profile Obtained through Force-pitting the Isophotes Derived from the Red Data.

Figure 2.3. Continued.
colors for all of the galaxy aperture photometry given by Bothun et al., transformed them to Kron-Cousins $V-R$ colors via the transformations given by Fernie (1983), and then computed the observed R magnitude on the KronCousins system using the tabulated V Bothun et al. magnitudes. We then computed the mean difference between the Johnson and Kron-Cousins R magnitudes. The average result for 486 points of aperture photometry was $\left\langle R_{J}-R_{K C}\right\rangle=-0.2399$ mag, with a standard deviation of 0.0319 mag. This procedure works because the dispersion in color for the spirals in our sample is not very great.

CHECKS ON THE SURFACE PHOTONETRY

We can check the reproducibility of our surface photometry by intercomparing the reduced surface brightness profiles of objects observed more than once. We made repeat observations of 12 northern spirals at B and of 15 objects at R. For each pair of profiles, we plot the difference between the surface brightnesses against the mean surface brightness at each measured isophote in Figure 2.4 for the blue data and Figure 2.5 for the red. For those pairs of frames where the grid of isophote major axes did not match, the profiles were interpolated to a common grid before subtraction using a cubic spline interpolation routine from the IMSL subroutine library.

Examination of Figures 2.4 and 2.5 shows that the agreement is quite good in general. The problem areas tend to be in the center of the galaxy, where the first few ellipses can be quite different due to centering errors and seeing differences, and the very outer regions, where small errors in the sky determination have a large affect on the inferred surface brightnesses. The worst agreement is seen in $N 6045$, an S-spiral with an atypical morphology and a nearby companion that was probably deleted differently in the two reductions, and in N7591, where one of the frames must have had a bad sky value. A summary of the agreement between repeated measurements is presented in Table 2.6. There we list the mean and standard deviation of the surface brightness differences in the part of the data which would be expected to exhibit the best agreement. We skip the central region within a radius of 3 arcsec to de-emphasize centering and seeing differences and include only those isophotes with an observed surface brightness higher than 26 mag arcsec ${ }^{-2}$ at B or 24.5 mag $\operatorname{arcsec}^{-2}$ at R, to mimimize effects from errors in the background.

It is useful at this point to compare our surface brightness profiles to CCD su.face photometry of other authors, but this is possible for only two of the galaxies in the sample, NGC 7541 and NGC 7631, which have been observed by Kent (1984) as part of his CCD surface photometry survey of field galaxies. This comparison was fully discussed by Cornell et al. (1987) where it was shown that Kent's Gunn-r profile of NGC 7631 agreed with our Johnson-R profile to about 0.03 mag, after taking the

Figure 2.4. Reproducibility of Blue Surface Brightness Profiles.

Figure 2.4. Continued.

Figure 2.5. Reproducibility of Red Surface Brightness Profiles.

Pigure 2.5. Continued.

Figure 2.5. Continued.

Table 2.6: Reproducibility of Surface Brightness Profiles

Object	B			R		
	N	Mean	σ	N	Mean	σ
11173	26	0.062	0.128	24	-0.017	0.049
11179	24	0.018	0.138	14	-0.003	0.038
N3883	35	0.062	0.044	35	-0.014	0.034
N6045	28	-0.145	0.180			
N7541				37	0.028	0.126
N7591	35	0.008	0.133	35	-0.004	0.164
N7631	31	-0.010	0.045			
U10085	26	-0.053	0.086	26	-0.056	0.144
U10195	27	-0.100	0.172	28	-0.097	0.097
U12494	29	-0.026	0.071	29	-0.067	0.141
U12497				28	-0.103	0.079
U4329				28	0.081	0.187
Z108098				22	-0.003	0.170
2108107	23	0.039	0.086			
Z108139	25	-0.079	0.061	25	-0.049	0.267
2406042				25	-0.143	0.061
Z406042a				26	0.038	0.121
2406082	21	-0.016	0.099			
Z421011				25	-0.002	0.038

transformation between the two bandpasses into account. On the other hand, the agreement for NGC 7541 was poor, probably due to a difference in fitting techniques. The only major difference between the ellipse-fitting procedure used by Kent and the one in GASP is that the GASP routine allows the X and Y centers of the ellipse to vary with semi-major axis, while Kent holds his center fixed. Cornell et al. showed that this difference can account for most or all of the large disagreement between the two profiles.

In addition to the CCD surface photometry discussed above, there is photographic surface photometry in the literature that can be compared with our profiles. The problem with comparing our CCD data with photographic data is that in addition to differences in observed bandpass and reduction techniques, there are added complications resulting from using plates, i.e. non-linear, low-sensitivity detectors. We can expect the agreement with our data to be poorer, in general, than can be achieved with other CCD's. Nevertheless, we present in Figure 2.6 a comparison of the photometry for the three objects that we have in common with Watanabe, Kodaira, and Okamura (1982: NGC 4380) and Watanabe (1983: NGC 4246 and NGC 4651). For each of these Virgo spirals, we plot the difference between our B GASP surface brightness profile and their V major axis profile against (a) our B surface brightness, and (b) distance from the center of the galaxy. The error bars include our estimated errors and assume an error of 0.1 mag for their surface brightnesses, probably an
underestimate. A B-V comparison is potentially subject to problems due to color gradients, but this effect is visible only in NGC 4246. The agreement is pretty good, with the typical B-V color being consistent with normal spirals. As with the repeat observations, the centers and the last couple of isophotes are a problem area. Also, NGC 4246 and NGC 4651 have strong arms which show up noticeably in the difference plots because GASP tried to follow the shifting isophotes more closely than did the major axis cuts of Watanabe et al.

APERTURE PHOTONETRY

A grid of elliptical aperture photometry was produced for each $C C D$ frame by summing the counts in the pixels within the ellipses determined by PROF for the corresponding R-band frame, after suitable adjustment of the ellipse centers. If no R frame was available, the B frame ellipses were used instead. The KPNO photometry was then calibrated using the zeropoint determination described above. Bad pixels were replaced with a value obtained from an approximate linear interpolation along the surface brightness profile between the nearest neighboring isophotes as derived from the frame being analyzed. For each isophote the magnitude within that isophote and the mean surface brightness within that isophote were tabulated. Aperture photometry for the CTIO data mas produced in a similar way, and then calibrated using the photometric transformations

Figure 2.6. Comparison of Our B Surface Brightness Profiles with the V Data of Watanabe et al.

Figure 2.6. Continued.

Figure 2.6. Continued.
discussed above. Choosing a standard photometric band for the reference ellipses makes it possible to compute colors by subtracting the magnitudes directly without having to worry about pathological objects with different ellipse-fits in the different bandpasses.

DERIVED PARAMETERS

For each object, several standard parameters were derived from the surface brightness profiles and the aperture photometry described above. Axis ratios, inclinations, and isophotal diameters were extracted from the profiles and various definitions of magnitude, surface brightness, and concentration parameter were computed from the photometry.

The ratio of the major to minor axes for each object was computed from the average ellipticity of the outer isophotes as determined by PROF for the R-band CCD frame. Specifically, we included ellipses with a R_{J} surface brightness between 22.5 and 24.0 mag arcsec ${ }^{-2}$, skipping the very outer three isophotes which are of ten adversely affected by errors or nonflatness in the background. If an R frame was not available, the B frame was used in its place, including ellipses in the corresponding blue surface brightness range, 24.0 to 25.5 mag $\operatorname{arcsec}^{-2}$. On average, 4 ellipses were used to determine the mean ellipticity and the dispersion in that ellipticity was 0.027 . Given the axis ratio, the inclination to
the plane of the sky was computed using the standard relation

$$
\cos ^{2} i=\left[(b / a)^{2}-q_{0}^{2}\right] /\left(1-q_{0}^{2}\right),
$$

where a is the major axis, b is the minor axis, and q_{0} is the true axial ratio of the disk, taken to be 0.2 here, independent of galaxy type.

There are two possible approaches to correcting isophotal parameters for the effects of Galactic extinction, internal absorption, and Kdimming. A common method has been to derive diameters and magnitudes in terms of an "observed", i.e. uncorrected, isophote and then apply corrections to each derived parameter that are based on simple Galactic extinction models and mean galaxy growth curves. Because estimates of the line-of-sight absorption to each cluster are available from H I maps, and we have surface brightness profiles for each object, we prefer to make straightforward corrections to the profiles before deriving the desired quantities. Therefore, to obtain an isophotal diameter, for example, we first correct the surface brightness profile for line-of-sight absorption, apply a simple inclination correction, correct for K-dimming and the cosmological $(1+z)^{4}$ effect, read off the radii bracketing the radius where the adjusted surface brightness falls below the required value, and linearly interpolate to the desired "corrected" surface brightness. We then express the diameters in units of kpc, using the distance moduli given in Table 2.1.

Foreground reddening estimates at B-band are given in Table 2.1. The relative reddenings at the Johnson R-band and at the Kron-Cousins Iband were determined using the interstellar reddening curve given by Johnson (1968, Table 12) and the Johnson/Kron-Cousins transformations of Fernie (1983). We find that the ratio A_{R} / A_{B} is about 0.56 and the ratio A_{I} / A_{B} is 0.44.

Inclination corrections remain controversial and, as it turns out, there is no one simple correction scheme that removes the inclination dependence from all derived parameters. There are two competing effects. When a galaxy disk is viewed at an angle to the line of sight, the path through the galaxy is longer than it would be if the galaxy were viewed face-on. Thus more stars are intersected, and the surface brightness appears higher in the inclined object than in the face-on one, by a factor of secant 1 . We correct for this affect by adding a $2.5 \log R$ term to the observed surface brightness, where R is the ratio of the major to the minor axis. Following Tully and Fouque (1985), we limit this correction is the maximum value achieved when the axis ratio corresponds statistically to an inclination of 90°. But even as projection tends to increase the surface brightness with increasing inclination, the observer's line of sight passes through more and more interstellar dust, reducing the surface brightness. This affect is taken into account using a correction of

$$
A_{1, B}=0.20(\text { secant } 1-1),
$$

with an upper limit of $A_{1, B}=0.6 \mathrm{mag}$, following Bothun et al. (1985a). The corrections at R and I bands are reduced by the ratios derived above. This particular correction is not very different from the corresponding one discussed by Tully and Fouque.

The final corrections applied to the surface brightness are an adjustment to allow for the $(1+z)^{4}$ dimming of surface brightness with redshift and a K-correction for the B-band using the interpolation formulae given by Bothun (1981), which were based on calculations by Pence (1976). For this last correction, a numerically coded morphological type T of 5 was assumed for all spirals. Even at B this correction is at most 0.06 mag for the Hercules objects, so the K-corrections at R and I were ignored.

The derivation of isophotal magnitudes and the mean surface brightness within the standard isophote proceeds in the same manner as that of the diameters. Once the radius in the profile corresponding to the corrected isophotal level is known, we interpolate along the photometric growth curves to get the desired magnitude and surface brightness. At this point the quantities correspond to the correct isophote, but still need to be corrected for reddening, inclination, and K-dimming, so the corrections discussed above are applied, as appropriate.

For each object, we calculate the axis ratio and inclination in the R-band (or at B, if necessary), and the diameter, magnitude, and mean surface brightness through our adopted standard isophotes of $25,23.5$, and 22.5 mag arcsec ${ }^{-2}$, at B, R, and I, respectively. We also compute a concentration parameter, defined as the ratio of the flux through the isophote with a diameter 15 percent that of the standard diameter to the flux through the standard isophote. This concentration parameter is then related to the ratio of the bulge light to the total luminosity. The fraction of 15 percent represents a compromise between the desire to make the central aperture as small as possible in order to maximize the contrast between the bulge and the total magnitude, and the need to keep the central aperture large enough to minimize the effects of seeing and centering errors. The average value of the logarithm of the blue diameter of our objects corresponds to 70 arcsec, so our central apertures are typically 10 arcsec across. Next, we estimate the total magnitude in each band from the aymptotic value of the growth curve formed by plotting the magnitude within each isophote against the surface brightness of that isophote. This realization of the growth curve is more useful than a standard magnitude/aperture relation because it allows one to confirm directly that the apertures under consideration are large enough to encompass the entire galaxy. If the surface brightness axis extends down to the typical limiting isophote, and the curve has a well-defined asymptote, one has some confidence that the derived total magnitude is meaningful. Nevertheless, total magnitudes derived in this way are
somewhat subjective, and hence not as preferable as our isophotal magnitudes. Finally, we compute a nuclear surface brightness, defined as the mean surface brightness through the isophote with a diameter 15 percent that of the standard diameter in the relevant bandpass.

One way to measure the uncertainty in our derived parameters is to see how well repeated measurements of the same object agree. We present this comparison for the 12 objects observed twice at B and the 14 objects observed more than once at R in Table 2.7. There we list the mean of the absolute value of the difference between two measurements of the same parameter for all of the objects at B and at R. Also listed are the standard deviation of the differences and the number of measurements in each mean. We performed this test for the logarithm of the axis ratio and the inclination in degrees computed at R (or at B, if necessary), the logarithm of the diameter, the mean surface brightness within the standard isophote, the logarithm of the concentration parameter, the nuclear surface brightness, the isophotal magnitude, and the total magnitude.

ADDITIONAL PARAMETERS

In addition to the parameters we derived from the CCD surface photometry, there are several other measureable quantities available from Bothun et al. (1985a) for many of the objects. These include the total

Table 2.7: Reproducibility of Galaxy Parameters

Parameter	B			R		
	N	\|Diff ${ }^{\text {l }}$	σ	\bar{N}	\mid Diff \mid	σ
$\log R$	16	0.0249	0.0160			
1 (deg)	16	2.4	2.0			
$\log \mathrm{D}$	10	0.0183	0.0229	13	0.0169	0.0175
<SB>	8	0.088	0.094	12	0.040	0.038
$\log C$	8	0.0270	0.0347	10	0.0328	0.0304
$\langle\mathrm{SB}\rangle_{\mathrm{n}}$	9	0.215	0.249	11	0.203	0.172
M	8	0.057	0.055	12	0.051	0.080
M_{T}	8	0.15	0.12	13	0.13	0.18

optical colors $B-V$ and $U-B$, and the $H-b a n d$ magnitude and $B-H$ color, all derived from photoelectric photometry. The H magnitudes and the $B-H$ colors are referred to the aperture with $\log A / D_{1}=-0.5$, where D_{1} is the galaxy diameter as defined in Aaronson et al. (1982b). Bothun et al. quote nominal errors of 0.02 mag in $\mathrm{B}-\mathrm{V}, 0.04 \mathrm{mag}$ in $\mathrm{U}-\mathrm{B}, 0.03 \mathrm{mag}$ in $H_{-0.5}$, and 0.2 mag in $(B-H)_{-0.5}$. The $H_{-0.5}$ magnitudes were subsequently revised by Aaronson et al. (1986) using new diameters based on the work of Cornell et al. (1987). The new versions of the $\mathbf{H}_{-0.5}$ magnitudes are used in the discussion that follows, although the parameters derived by Bothun et al. that are based on those magnitudes were not updated. Also available are parameters derived from 21 cm observations made with the Arecibo 305 m radio telescope. The derived parameters consist of a linewidth measured at the 20% of peak level, the total H I mass implied by the H I flux integral, and the distance-independent measures of $\mathrm{H} I$ content, M_{H} / L_{B} and M_{H} / L_{B}, normalized to the total luminosity at H and at B, respectively. Bothun et al. estimate that the typical error in the linewidths is about $20 \mathrm{~km} \mathrm{~s}^{-1}$ and that the flux integrals are good to about 30 percent or about 0.13 in the logarithm. With total magnitudes that are probably good to 0.2 mag, we estimate that the errors on the H content measures are typically about 35 percent or 0.15 in the log. Finally, we will make use of the Bothun et al. and Aaronson et al. (1989) redshifts below. Bothun et al. find the internal error in their heliocentric velocities to be about $10 \mathrm{~km}^{-1}$.

CHAPTER 3: SCATTBR IN THE TULLY-RISHER RBLATION

INTRODUCTION

The relationship first pointed out by Tully and Fisher (1977) between the luminosity of spiral galaxies and their maximum rotation velocity, as measured by the width of their neutral hydrogen line profile, continues to be one of the best methods available to measure relative distances. The method works because it relates an objectively-determined distance-independent observable, the line-width, to a distance-dependent observable, the magnitude in some bandpass. The physical basis for the correlation is easy to understand in a crude way, as both the intrinsic luminosity and maximum rotation velocity of the galaxy are related to the total galaxian mass. In the infrared, the observational scatter about this relation is typically $0.35-0.50$ mag (Aaronson and Mould 1983; Aaronson et al. 1986), permitting relative distance estimates with an accuracy of about 20 percent. The classical Malmquist bias in a magnitude-limited sample is $1.38 \sigma^{2}$, and while the solution to the general problem is complex (see Feast 1987), it is clear that reducing the scatter about the Tully-Fisher relation by even a factor of two would make a large difference in our ability to determine the local velocity field from distances and velocities of individual galaxies. Furthermore, reducing the scatter in the cluster Tully-Fisher relations used by Aaronson et al.
(1989) to determine the peculiar velocities of various nearby concentrations of matter by this same factor of two would allow us to measure 1σ random motions as small as $160 \mathrm{~km} \mathrm{~s}^{-1}$ for a typical cluster.

In this chapter we will discuss the scatter in the Tully-Fisher relation at infrared wavelengths, and in the next chapter we look for ways to reduce that dispersion through the inclusion of additional observational information about the galaxies under study.

CLUSTER MERBERSHIP

A well-defined cluster of galaxies provides the appropriate environment to study the intrinsic scatter in the luminosity/line-width relation because, by definition, all of the objects are at nearly the same distance. In this study we have to combine data from several clusters, but at least our knowledge of the distance to each group improves as the square-root of the number of objects in the sample. Since we then assign to each object in a cluster the mean distance of that cluster, it is important to select cluster samples that are as free from interlopers (1.e. non-members that appear accidently in the same region on the sky) as possible. Before we examine the cluster Tully-Fisher relations in detail, we should discuss how cluster membership was determined for the objects in our CCD survey sample.

Cluster membership is fairly secure for our objects in the northern hemisphere, where we have complete redshift information from Bothun et al. (1985a) and a magnetic tape version of The Center for Astrophysics Redshift Catalogue, obtained from the Astronomical Data Center. We have basically adopted the selection criteria from Aaronson et al. (1986) as to acceptable redshift range and angular distance from the cluster center. These criteria are reproduced in Table 3.1 below. In practice, if a galaxy was listed as a cluster member by Aaronson et al., we considered it a member also. If those authors did not list it, then we applied the redshift range and angular distance cutoffs listed in Table 3.1. In the case of the Pisces cluster, the angular distance criterion is not particularly helpful, as the Pisces "cluster" is actually just a collection of galaxies taken from the middle of a linear structure that is part of the Pisces-Perseus Supercluster (see Figure 1 in Giovanelli and Haynes 1985). We therefore accepted any object that falls along that structure and has an appropriate redshift.

The situation in the southern hemisphere is not as good. We adopted redshift search ranges for Antlia, Hydra, Centaurus, and Pavo from Aaronson et al. (1989), and obtained those for NGC 1209, Telescopium, and Indus from velocity histograms kindly provided by Huchra (1988). We chose angular distance cutoffs to correspond roughly to the mean spatial radius of the northern cluster limits of 4.1 Mpc . In the south, almost all of

Table 3.1. Cluster Membership Rules

Name	Search Radius (${ }^{\circ}$)	Search Radius (Mpc)	$\begin{aligned} & \text { Search } \\ & \text { Velocities }{ }^{a} \\ & \left(\mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}\right) \end{aligned}$
(1)	(2)	(3)	(4)
Pisces	4	3.6	4200 to 6400
A400	3	4.2	5400 to 8800
A539	3	5.0	6600 to 10200
Cancer	4	4.0	3200 to 7000
A1367	3	3.9	4600 to 8800
Coma	3	4.2	5000 to 8800
274-23	3	3.7	4000 to 7400
Hercules	3	5.9	8400 to 14400
Pegasus	4	2.7	2600 to 5400
A2634/66	4	5.9	6800 to 10200
Virgo	6	1.5	-600 to 3000
NGC 1209	6	3.1	2200 to 3600
Antlia	6	3.0	2000 to 3600
Hydra	5	3.8	1700 to 5600
Centaurus 30	6	3.2	1700 to 4100
Centaurus 45	5	4.0	4100 to 5600
Telescopium 27	6	3.2	1800 to 3400
Telescopium 56	4	4.3	4400 to 6800
Pavo	6	3.2	2800 to 5000
Indus	6	5.7	4200 to 6000

${ }^{a}$ Heliocentric velocities.
the objects were chosen to be within 5° of the cluster centers listed in Table 2.1, but redshifts are only available for 40 percent of the objects. Objects with bad redshifts were rejected, but for many galaxies no further decision could be made and thus they were declared cluster members. In the case of Centaurus, where there are two components, a foreground cluster and a background cluster, objects were assigned to one of the two groups through a cut in a diameter histogram. Objects that seemed too small to be in the front group were assigned to the back. A similar situation exists for the Telescopium groups, but there we had redshifts for all of the objects that were assigned to the background group.

THE INFRARED TULLY-RISHER RELATION

As a starting point for our discussion of the scatter in the TullyFisher relation, let us examine the data presented by Aaronson et al. (1986) for ten distant clusters in the north and that of Aaronson et al. (1989) for seven relatively-nearby southern clusters. We present plots of the infrared Tully-Fisher relation in each of the northern clusters in Figure 3.1, and similar plots for the southern clusters in Figure 3.2. In each case, the H ($1.6 \mu \mathrm{H}$) magnitude, referred to the aperture where log $A / D_{1}=-0.5$, is plotted against the logarithm of the 21 can line-width. The magnitudes have been placed on an absolute scale using the mean cluster distance moduli listed in Table 8 of Aaronson et al. (1989).

Figure 3.1. Linear Infrared Tully-Fisher Relation for the Aaronson et al. (1986) Northern Clusters. The dashed lines are the "single-slope" fit described in the text. Clusters are Pisces, A400, A539, and Cancer.

Figure 3.1. Continued. Clusters are A1367, Coma, Z74-23, and Hercules.

Figure 3.1. Continued. Clusters are Pegasus and A2634/66.

Figure 3.2. Linear Infrared Tully-Fisher Relation for the Aaronson et al. (1989) Southern Clusters. The dashed lines are the "single-slope" fit described in the text. Clusters are Antlia, Hydra, N3557, and Cen30.

Figure 3.2. Continued. Clusters are Cen45, E508, and Pavo.
(Distances for many of these clusters are listed here in Table 2.1). Otherwise, the data are taken directly from Table 2 of each reference. On each plot we have included the best-fit line from a standard linear least-squares fit made assuming errors only in the magnitude direction. The coefficients of these fits are listed in Table 3.2 below. The points are labelled 0 through 9 and 0 through 7 , for membership in the corresponding northern or southern cluster, with the order as listed in Table 3.2. The dispersions about these least-square fits as tabulated in Table 3.2 are thus the least observational scatter we can find for Individual cluster Tully-Pisher relations.

Let us examine the fits in Table 3.2 in more detail. It is clear from the large estimated errors in the derived slopes and zeropoints that the fit coefficients are not very well constrained. In particular, the large errors make difficult any attempt to look for cluster-to-cluster variations in the Tully-Fisher relation with these data. However, the tabulated slopes are actually quite similar, with just over half the values within 1σ of the mean slope of $\mathbf{- 9 . 5 0}$, and 76 percent of the slopes within 2σ. Histograms of the slopes, zeropoints, and scatter about the relations are given in Figure 3.3. While the distributions of the slopes and zeropoints are not exactly gaussian, most of the clusters would be compatible with a single-sloped relation. We looked for such a relation by determining the slope that minimized a figure-of-merit equal to the rms scatter about the 17 cluster fits, normaliaau by the number of degrees of

Table 3.2. Linear Infrared Tully-Fisher Relation

Cluster	N	Slope	Zeropoint		r	σ
(1)	(2)	(3)	(4)		(5)	(6)
Pisces	20	-10.55 ± 0.57	5.45	± 1.47	0.98	0.36
A400	7	-7.56 ± 1.45	-2.47	± 3.83	0.92	0.33
A539	9	-8.30 ± 1.77	-0.53	± 4.67	0.87	0.38
Cancer	22	-9.23 ± 1.18	2.07	± 2.99	0.87	0.65
A1367	20	-9.91 ± 1.34	3.73	± 3.48	0.87	0.49
Coma	13	-9.26 ± 1.00	2.03	± 2.63	0.94	0.34
274-23	13	-12.76 ± 1.53	10.93	± 3.84	0.93	0.52
Hercules	11	-6.55 ± 1.37	-5.09	± 3.60	0.85	0.40
Pegasus	22	-8.86 ± 0.99	1.38	± 2.43	0.89	0.55
A2634/66	11	-6.68 ± 1.24	-4.87	± 3.34	0.87	0.32
Antlia	10	-9.50 ± 1.09	2.70	± 2.82	0.95	0.36
Hydra	10	-7.86 ± 0.85	-1.47	± 2.21	0.96	0.38
N3557	5	-12.00 ± 4.32	9.02	± 11.03	0.85	0.41
Cen30	10	-9.19 ± 1.46	2.06	± 3.64	0.91	0.57
Cen45	6	-12.10 ± 3.84	9.42	± 9.89	0.84	0.71
E508	7	-8.16 ± 1.25	-0.54	± 3.11	0.95	0.37
Pavo	8	-12.95 ± 0.89	11.41	± 2.20	0.99	0.34

Figure 3.3. Histograms of the Linear Tully-Pisher Relation Fit Parameters from Table 3.2: a) Slope, b) Zeropoint, c) Scatter about the Relation, and d) Fixed-Slope Zeropoint.
freedom for the 18-parameter fit. Each cluster zeropoint mas allowed to float in order to account for possible cluster-to-cluster variations in the Tully-Pisher relation or for relative distance errors. The resulting fit is thus the best we can find for which all cluster relations share the same slope. The rms scatter about this fit was 0.488 mag, only a little worse than the corresponding value of 0.474 mag computed for the completely independent cluster fits. The zeropoints and the dispersion about each fit are listed in Table 3.3 for all 17 clusters. The singleslope fits are plotted for reference in Figures 3.1 and 3.2 as dashed lines. A histogram of the fixed-slope zeropoints is given in Figure 3.3d. As the typical error in the mean cluster zeropoint is 0.15 mag , none of the clusters has a zeropoint that is more than 2σ from the weighted mean zeropoint of 2.828.

Despite the rough correspondence with a universal single-sloped relation, the coefficients in Table 3.2 exhibit some disturbing trends. The slopes in particular depend on distance, as can be seen in Figure 3.4 where we plot the slope, zeropoint, scatter, and fixed-slope zeropoint about the fit against mean cluster distance modulus. In each plot, the zeroes correspond to northern clusters and the ones correspond to southern clusters. Particularly beyond a distance modulus of about 33.6 mag, or a redshift with respect to the Local Group of approximately $5200 \mathrm{~km} \mathrm{~s}^{-1}$, the slopes and zeropoints show a fairly strong trend with distance. Even if this trend is not strictly monotonic, at least the distant clusters

Table 3.3. Single-Slope Infrared Tully-Fisher Relation
Slope fixed at $\mathbf{- 9 . 5 3}$, rms scatter $=0.49$ mag.
Cluster N <Zpt> σ
(1) (2) (3) (4)

Pisces	20	2.84	0.39
A400	7	2.74	0.38
A539	9	2.72	0.39
Cancer	22	2.84	0.65
A1367	20	2.74	0.49
Coma	13	2.75	0.34
Z74-23	13	2.83	0.62
Hercules	11	2.74	0.50
Pegasus	22	3.01	0.56
A2634/66	11	2.78	0.41
Antlia	10	2.77	0.36
Hydra	10	2.84	0.46
N3557	5	2.72	0.43
Cen30	10	2.90	0.57
Cen45	6	2.81	0.75
E508	7	2.87	0.41
Pavo	8	3.02	0.64

Figure 3.4. Linear Tully-Fisher Relation Fit Parameters from Table 3.2 Plotted Against Distance Modulus: a) Slope, b) Zeropoint, c) Scatter about the Relation, and d) Zeropoint of the Fixed-Slope Relation.
have smaller slopes and zeropoints in the mean than the nearer clusters. This effect does not go away if one considers only the subsample of those clusters which exhibit a small (0.30 to 0.45 mag) scatter about the TullyFisher relation.

Aaronson et al. (1986) alluded to the above effect and explained it in terms of a selection bias working in tandem with a Tully-Fisher relation that is intrinsically curved rather than linear in $\log \Delta V$. The selection bias in question is that in increasingly distant clusters, only the higher-luminosity, larger-line-width objects are included in the sample, at the expense of the intrinsically fainter objects. The trend in the slopes in Figure $3.4 a$ is then explained by a Tully-Fisher relation that is in fact curved with a shallower slope at larger line-widths. The selection effect is clearly present in the data, as can be seen from the histograms of H-magnitude presented in Figure 3.5 for the northern clusters and in Pigure 3.6 for the southern clusters. The mean infrared magnitudes for all 17 clusters are listed in Table 3.4, and are plotted against cluster distance modulus in Figure 3.7. The mean absolute magnitude for the distant cluster samples is clearly brighter than that for the nearby clusters. The Tully-Fisher relation is also clearly curved, as can be seen in Figure 2 of Aaronson et al. (1982b), for example. Thus Aaronson et al. (1986) were driven to adopt a curved relation for their magnitude calibration. Their adopted parabolic fit, whose shape is based on data from the 306 -object Local Supercluster sample

Figure 3.5. Histograms of the Infrared Magnitudes for the Aaronson et al. (1986) Northern Clusters. Clusters are Pisces, A400, A539, and Cancer.

Figure 3.5. Continued. Clusters are A1367, Coma, 274-23, and Hercules.

Figure 3.5. Continued. Clusters are Pegasus and A2634/66.

Figure 3.6. Histograms of the Infrared Magnitudes for the Aaronson et al. (1989) Southern Clusters. Clusters are Antlia, Hydra, N3557, and Cen30.

Figure 3.6. Continued. Clusters are Cen45, E508, and Pavo.

Table 3.4. Mean Cluster Infrared Magnitudes

$$
\text { Cluster } \quad m-M \quad N \quad\left\langle H_{-0.5}^{c}\right\rangle \quad \sigma
$$

(1)	(2)	(3)	(4)	(5)
Pisces	33.59	20	-21.567	1.558
A400	34.55	7	-22.467	0.756
A539	34.89	9	-22.358	0.715
Cancer	33.82	22	-21.282	1.283
A1367	34.35	20	-21.996	0.964
Coma	34.51	13	-22.235	0.966
Z74-23	34.25	13	-21.027	1.350
Hercules	35.25	11	-22.293	0.720
Pegasus	32.97	22	-20.243	1.206
A2634/66	34.65	11	-22.825	0.627
Ant11a	32.34	10	-21.940	1.103
Hydra	33.18	10	-21.769	1.220
N3557	32.67	5	-21.588	0.670
Cen30	32.44	10	-20.834	1.302
Cen45	33.33	6	-21.707	1.180
E508	32.24	7	-20.856	1.046
Pavo	32.48	8	-20.393	1.902

Figure 3.7. Mean Infrared Magnitude Plotted Against Distance Modulus. Zeroes represent northern clusters, and ones southern clusters.
discussed by Aaronson et al. (1982b), is plotted on the northern cluster data in Figure 3.8, and on the southern cluster data in Figure 3.9.

We need to adopt a fiducial Tully-Fisher relation for our secondparameter searches, and have essentially two reasonable choices: the single-slope fit discussed above, or the Aaronson et al. (1986) parabolic relation. While the unpleasant distance-dependence of the fit parameters for the individual linear relations has been greatly reduced in the single-slope relation, the zeropoints from our best fixed-slope fit still exhibit a slight trend with distance (see Figure 3.4d). The average zeropoints decrease about 0.15 mag, going from near to distant clusters. As the typical error in any cluster zeropoint is about 0.15 mag as well, this trend is only a 1σ effect. While any such trend has been eliminated by construction in the Aaronson et al. (1986) parabolic fit, that fit is worse in terms of rms scatter than the fixed-slope fit in almost every cluster. In Table 3.5 we have summarized the rms scatter about the fit for each of the three types of relations discussed so far. Colums 1 and 2 have the cluster name and number of objects in the sample, respectively. In Column 3, we list the scatter about the independent linear leastsquares fit. This scatter is the smallest one can derive for these data. In Column 4, we give the dispersion about the fixed-slope fits, and in Column 5 we list the rms scatter about the Aaronson et al. parabolic fit. The sumary section of the table gives the rms scatter for all 204 galaxies in the combined sample, normalized by the number of degrees of

Figure 3.8. Parabolic Infrared Tully-Fisher Relation for the Aaronson et al. (1986) Northern Clusters. Clusters are Pisces, A400, A539, and Cancer.

Figure 3.8. Continued. Clusters are A1367, Coma, 274-23, and Hercules.

Figure 3.8. Continued. Clusters are Pegasus and A2634/66.

Figure 3.8. Parabolic Infrared Tully-Fisher Relation for the Aaronson et al. (1989) Southern Clusters. Clusters are Antlia, Hydra, N3557, and Cen30.

Figure 3.9. Continued. Clusters are Cen45, E508, and Pavo.

Table 3.5. Scatter About the Infrared Tully-Fisher Relation

Cluster (1)	N (2)	σ_{1} (3)	$\sigma_{f:}$ (4)	$\sigma_{\mathbf{p}}$ (5)
Pisces	20	0.36	0.39	0.41
A400	7	0.33	0.38	0.44
A539	9	0.38	0.39	0.40
Cancer	22	0.65	0.65	0.74
A1367	20	0.49	0.49	0.52
Coma	13	0.34	0.34	0.37
274-23	13	0.52	0.62	0.61
Hercules	11	0.40	0.50	0.48
Pegasus	22	0.55	0.56	0.68
A2634/66	11	0.32	0.41	0.38
Antlia	10	0.36	0.36	0.36
Hydra	10	0.38	0.46	0.58
N3557	5	0.41	0.43	0.54
Cen30	10	0.57	0.57	0.70
Cen45	6	0.71	0.75	0.87
E508	7	0.37	0.41	0.72
Pavo	8	0.34	0.64	0.47
Rms		0.474	0.488	0.494
$\mathrm{N}_{\text {free }}$		170	186	201

freedom in each fit. In almost every case, the parabolic fit is worse than the corresponding fixed-slope fit, and the rms scatter for all 204 objects taken together is largest for the parabolic fit. Thus we shall adopt the fixed-slope fit as our fiducial relation in the second-parameter analysis that follows. As we shall see, however, this choice is not very critical.

CLUSTER BY CLOSTER ARALYSIS

Now that we have identified the observational scatter about the infrared Tully-Fisher relation in the seventeen clusters in the Aaronson et al. (1986, 1989) samples, we must examine the causes of that scatter. For the present purpose, we will discuss the scatter in terms of two components: a) the "intrinsic" scatter, having to do with the dispersion in the properties of individual galaxies and how well we can measure those properties, and b) the "extrinsic" scatter, resulting from the properties of the samples of galaxies from which we compute the scatter about the Tully-Fisher relation. Bothun and Mould (1987) give an extensive discussion of many of the obervational errors that account for the noncosmic part of the "intrinsic" scatter. These include photometric errors, errors in the line-widths, diameters, and inclinations. While we have explicitly chosen to examine the luminosity/line-width relation in clusters of galaxies, where all of the objects are supposed to be at the
same distance, in order to minimize the "extrinsic" component of the scatter, this single-distance assumption may not be valid. The extent to which our clusters can be approximated as ideal, bound groups exhibiting a small dispersion in spatial extent determines how small we can make the "extrinsic" scatter. Since this component of the scatter is fixed once we have determined the sample and we cannot make it any amaller by introducing additional information (as we hope to do with the "intrinsic" component), it is important to understand the size of the effect.

We are hampered in investigating the properties of our clusters by an imperfect knowledge of where each object is in space. We know where each object appears on the sky; we have a redshift made up of a distancedependent component and a random component, and an approximate distance, based on the very relationship we are trying to explore. An ideal cluster would exhibit a small dispersion in apparent extent on the sky, a narrow and random distribution in depth as measured by redshift or Tully-Fisher distance, and a fairly narrowly-peaked distribution in velocity with distance or position on the sky. We look for these characteristics in the Aaronson et al. northern and southern clusters in Figures 3.10 and 3.11, respectively.

For the objects in each cluster, we examine the relationships between the following parameters: distance modulus as derived from the Aaronson et al. (1986) calibration of the infrared Tully-Fisher relation,
projected distance in Mpc from the cluster center in Right Ascension (X) and Declination (Y), redshift, and peculiar velocity. Cluster centers are taken from Table 1 of Aaronson et al. (1986) for the northern clusters and Table 8 of Aaronson et al. (1989) for the southern clusters. Angular separations were converted to projected distances using the mean cluster distance moduli derived in the above references. Galaxy coordinates were taken from Table 7 of Bothun et al. (1985a), where available, or from the UGC or the ESO catalog. For the southern clusters it was more convenient to compute coordinates corresponding to Galactic Longitude (X^{\prime}) and Galactic Latitude (Y^{\prime}) instead of Right Ascension and Declination. Redshifts are referred to the centroid of the Local Group, and peculiar velocities are in the microwave background frame by assuming a motion of the Local Group of $600 \mathrm{~km} \mathrm{~s}{ }^{-1}$ in the direction $1=268^{\circ}, b=27^{\circ}$.

Thus we have eight plots for each cluster: distance modulus against X (or X^{\prime}), distance modulus against Y (or Y^{\prime}), redshift against each spatial coordinate, peculiar velocity against the two spatial coordinates, distance modulus against redshift, and peculiar velocity against redshift. A search for correlations among these distance and position parameters is summarized in Tables 3.6 and 3.7 , where we have tabulated the slopes of the linear least-squares fits plotted on each graph. The slopes are expressed in units of their standard deviations, 80 that their significance may be more easily judged. For reference, maps of each of the northern clasters are presented in Figure 3.12 as Y versus X, with

Figure 3.10. Distance and Position Correlations for Pisces: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. Pisces Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for A400: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. A400 Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for A539: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. A539 Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for Cancer: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. Cancer Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for A1367: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. A1367 Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for Coma: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. Coma Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for Z74-23: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. Z74-23 Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for Hercules: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. Hercules Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for Pegasus: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. Pegasus Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.10. Distance and Position Correlations for A2634/66: distance modulus and redshift against projected distance in Mpc from cluster center in Right Ascension (X) and Declination (Y) directions.

Figure 3.10. A2634/66 Continued. Peculiar velocity against projected central distance in Right Ascension (X) and Declination (Y) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. Distance and Position Correlations for Antlia: distance modulus and redshift against projected distance in Mpc from cluster center in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions.

Figure 3.11. Antlia Continued. Peculiar velocity against projected central distance in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. Distance and Position Correlations for Hydra: distance modulus and redshift against projected distance in Mpc from cluster center in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions.

Figure 3.11. Hydra Continued. Peculiar velocity against projected central distance in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. N3557 Continued. Peculiar velocity against projected central distance in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. N3557 Continued. Peculiar velocity against projected central distance in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. Distance and Position Correlations for Cen30: distance modulus and redshift against projected distance in Mpc from cluster center in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions.

Figure 3.11. Cen30 Continued. Peculiar velocity against projected central distance in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. Distance and Position Correlations for Cen45: distance modulus and redshift against projected distance in Mpc from cluster center in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions.

Figure 3.11. Cen45 Continued. Peculiar velocity against projected central distance in Galactic Longitude $\left(X^{\prime}\right)$ and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. Distance and Position Correlations for E508: distance modulus and redshift against projected distance in Mpc from cluster center in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions.

Figure 3.11. E508 Continued. Peculiar velocity against projected central distance in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Figure 3.11. Distance and Position Correlations for Pavo: distance modulus and redshift against projected distance in Mpc from cluster center in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions.

Figure 3.11. Pavo Continued. Peculiar velocity against projected central distance in Galactic Longitude (X^{\prime}) and Latitude (Y^{\prime}) directions. Distance modulus and peculiar velocity against redshift.

Table 3.6. Northern Distance and Position Correlations

Cluster	$\mathrm{m}-\mathrm{M}$	m-M	V_{0}	v_{0}	$V_{\text {pec }}$	$V_{\text {pec }}$	m-M	$V_{\text {pec }}$
	X	Y	X	Y	X	Y	V_{0}	V_{0}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Pisces	3.2	1.7	0.1	1.3	2.7	2.3	0.5	2.4
A400	1.7	1.5	1.1	1.2	2.1	1.1	0.2	0.4
A539	0.7	0.7	0.1	0.9	0.7	0.8	2.7	3.6
Cancer	2.3	0.7	2.5	1.7	1.2	0.4	6.0	1.1
A1367	1.3	0.3	0.4	0.3	1.4	0.0	0.5	2.2
Coma	0.1	1.3	4.4	1.2	1.0	2.0	0.5	0.7
774-23	0.7	0.1	1.6	0.4	0.2	0.2	4.0	0.1
Hercules	2.5	0.3	1.2	0.7	1.9	0.1	3.0	0.8
Pegasus	0.3	1.3	1.1	0.5	0.3	1.5	3.0	0.1
A2634/66	1.0	1.0	1.5	0.4	0.3	1.0	3.0	0.0

Table 3.7. Southern Distance and Position Correlations

Cluster	$\mathrm{m}-\mathrm{M}$	$\mathrm{m}-\mathrm{M}$	V_{0}	V_{0}	$V_{\text {pec }}$	$V_{\text {pec }}$	$\mathrm{m}-\mathrm{M}$	$V_{\text {pec }}$
	X^{\prime}	Y^{\prime}	X^{\prime}	Y^{\prime}	X'	Y^{\prime}	\mathbf{V}_{0}	V_{0}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Antlia	4.0	0.5	1.2	0.7	2.5	0.9	1.4	0.1
Hydra	0.9	3.0	0.3	1.2	1.0	2.0	0.8	0.4
N3557	0.2	0.5	0.6	0.7	0.4	0.6	0.6	1.1
Cen30	1.3	0.3	0.3	0.8	1.8	0.4	0.8	1.3
Cen45	0.2	0.8	1.2	0.2	0.0	0.7	2.0	1.3
E508	1.8	0.3	0.1	0.2	1.6	0.2	0.1	0.6
Pavo	0.5	2.1	0.1	1.0	0.9	2.2	3.0	0.8

similar plots of Y^{\prime} versus X^{\prime} given for the southern clusters in Figure 3.13.

The most striking feature of the data given in Figures 3.10 and 3.11 and Tables 3.6 and 3.7 is that half of the clusters show a significant (greater than 2σ) slope in the plot of distance modulus against redshift. Many of the clusters break up into two or more well-defined clumps in this space, leading one to question whether these clusters are, in fact, single dynamical units. Bound clusters should exhibit no correlation between distance and redshift, and the assumption that all of the objects are at the same distance would then be a good one. However, since at least half of the clusters exhibit some substructure, it is clear that cluster depth will have a considerable effect on the observed scatter about any distance indicator we may choose. Let us examine this substructure in more detail, on a cluster by cluster basis.

Pisces

The "cluster" we call "Pisces" is not really a cluster at all, but rather a portion of the long, quasi-linear chain of galaxies and clusters of galaxies that makes up the Pisces-Perseus Supercluster. The map of the Aaronson et al. (1986) objects in Pisces shown in Figure 3.12 shows this linear structure. The distance modulus plots in Figure 3.10 indicate that the southwest portion of this chain is more distant, on average, than the

Figure 3.12. Projected distance in Mpc from cluster center in Declination (Y) direction against projected distance in Right Ascension (X) direction for Aaronson et al. (1986) Northern Clusters. Clusters are Pisces, A400, A539, and Cancer.

Figure 3.12. Continued. Clusters are A1367, Coma, 274-23, and Hercules.

Figure 3.12. Continued. Clusters are Pegasus and A2634/66.

Figure 3.13. Projected distance in Mpc from cluster center in Galactic Latitude (Y^{\prime}) direction against projected distance in Galactic Longitude (X^{\prime}) direction for Aaronson et al. (1989) Southern Clusters. Clusters are Antlia, Hydra, N3557, and Cen30.

Figure 3.13. Continued. Clusters are Cen45, E508, and Pavo.
northeast end of the segment. The gradient is about 0.7 mag across 10° on the sky. On the other hand, there is a clump of objects to the north with a mean redshift about 750 km s , three times the clump internal velocity dispersion, higher than the group to the south, leading to a fairly strong gradient in the computed peculiar velocity with position. Despite these two correlations, distance modulus and redshift are uncorrelated and the two subgroups are at nearly same Tully-pisher distance, indicating that these objects are apparently part of a bound group with not very much dispersion in depth. This fact may be why it was possible for Bothun and Mould (1987) to find such a low dispersion (0.2 mag) in their I-band Tully-Fisher relation for Pisces.

A 400

A400 is not very well sampled, partly due to a lack of HI detections of objects in the region. However, the objects that are detected clump together fairly well in all plots, with the exception of two outliers: UGC 2285 to the west and UGC 2414 to the south, which appear to be in the foreground and background, respectively, from their Tully-Fisher distances, Both exhibit redshifts that are about $700 \mathrm{~km} \mathrm{~s}^{-1}$, or about the same as A400's velocity dispersion, higher than the remainder of the objects. A400 has essentially no dependence of distance modulus on redshift, as appropriate for a bound cluster.

A539

A539 is pathological in that while it exhibits a fairly strong correlation of distance modulus with redshift, the correlation is in the opposite sense of what one would expect for an unbound cluster that was simply taking part in the general Hubble expansion. Perhaps we are seeing a signature of infall onto the cluster (see Ostriker et al. 1988). The distance/redshift diagram seems to break up into two very tight clumps with one outlier at low redshift. These clumps do not separate out particularly well in apparent position on the sky, however.

Cancer

The Cancer cluster has been studied in detail by Bothun et al. (1983), who show that the system consists of at least five subgroups that are not bound to one another. This structure is readily apparent in the distance modulus/redshift plot, where the objects are spread out over almost three magnitudes in depth, well-correlated with redshift. The clumping can be seen in the map, and shows up in the other plots, as well. It is thus no surprise that Cancer exhibits the largest Tully-Fisher scatter for a well-sampled cluster. Most of the scatter must come just from dispersion in depth along the line of sight.

The spirals in the A1367 sample are spread out over a fairly large region of space, 10 by 10 Mpc in projection and 2 mag deep, but do not show any strong trends in Figure 3.10. The distance modulus/redshift diagram shows a main clump plus a few objects at higher redshift, perhaps members of the Coma Supercluster in which A1367 is embedded. The trend of peculiar velocity with redshift is fairly strong, but it is possible to get this effect when distance and redshift are uncorrelated, as is the case here.

Coma

Coma is another cluster that shows every indication of being a bound group, with possibly a couple of interlopers from the supercluster in which it is embedded. There are two or three clumps in redshift, but distance modulus and redshift are uncorrelated, and the observed dispersion in distance is fairly small.

274-23

Although fairly narrowly distributed on the sky, 274-23 has three subgroups in redshift, two at similar Tully-Fisher distances, but with the
remaining one almost a magnitude more distant. Again the dispersion in depth leads to a large scatter about the observed Tully-Fisher relation.

Hercules

With the exception of one outlier, UGC 10085, Hercules also shows a fairly narrow width in projection. However, it has a large breadth along the line of sight, and distance modulus correlates well with redshift. At least some of the objects are not bound to the main group, and the Tully-Pisher scatter is fairly large.

Pegasus

Pegasus shows little correlation of distance modulus, redshift, or peculiar velocity with position across the sky, but does show a strong trend of distance modulus with redshift. Most of the effect comes from two clumps in redshift, separated by $1100 \mathrm{~km} \mathrm{~s}^{-1}$, more than three times the internal velocity dispersion in either group. The higher redshift group is also the more distant one, by 0.68 mag in the mean. It is likely that these two groups represent separate dynamical units, and that lumping them together will again lead to large Tully-Fisher scatter.

This cluster, situated several thousand $\mathrm{km} \mathrm{s}^{-1}$ behind the PiscesPerseus Supercluster, exhibits a structure in redshift similar to that of Pegasus. The distance modulus/redshift plot breaks cleanly into two groups, one at about $8000 \mathrm{~km} \mathrm{~s}^{-1}$ and one at about $9300 \mathrm{~km} \mathrm{~s}^{-1}$. Both groups have similar internal velocity dispersions, at 226 and $264 \mathrm{~km} \mathrm{~s}^{-1}$, respectively. They are separated by 0.41 mag in depth, or about 17 Mpc in Tully-Fisher distance. Again these groups appear to be distinct entities and the depth contribution to the observed Tully-Fisher scatter in A2634/66 ought to be fairly large.

Antlia

The Antlia cluster lies in the middle of a larger, roughly linear structure called the Antlia-Hydra cloud by Tully and Fisher (1987, plate 17) that runs at a slight angle to a great circle with Galactic Latitude 20°. Apparently this structure is tube-like, with one end in the Aaronson et al. (1989) data about 0.8 mag farther away than the other, as can be seen from the strong correlation of distance modulus with Galactic Longitude in Figure 3.11. Redshift is pretty constant along this chain, 80 the peculiar velocities reflect the correlation of distance modulus with position. The distance modulus/redshift diagram shows a principle clump with a few outliers about 0.4 mag more distant. Note the non-zero

mean peculiar velocity exhibited by the Antlia spirals. This is one of the significant results of Aaronson et al. (1989).

Hydra

Hydra has a fairly strong correlation of distance modulus with Galactic Latitude, possibly indicating a similar kind of structure as observed for Antlia (see Lucey, Currie, and Dickens 1986b, plate 1). This correlation is reflected in the peculiar velocity/latitude plot, as well. Otherwise there are no significant correlations in Figure 3.11, and only one object, E501-82, has a redshift significantly different from the others. Hydra just has a large scatter in depth, and hence a large scatter about the Tully-Fisher relation.

N3557

This sample has already been pruned by Aaronson et al. (1989) to separate out unwanted subgroups, as the original sample exhibited a strong correlation of distance and redshift. Even so, the Tully-Fisher scatter is still pretty large.

Centaurus

The Centaurus region has a complicated structure in redshift that
does not correspond all that well to subgroups on the sky (see Lucey, Currie, and Dickens 1986b). There are two main groups in the redshift histogram (Lucey, Currie, and Dickens 1986a) and Aaronson et al. (1989) attempted to assign their objects to either the foreground group ("Cen 30 ") or the background group ("Cen45"). It is not clear that they were entirely successful, as two of the Cen45 objects, E322-48 and E323-25 really look like they might be associated with Cen30, instead. Cen30 has a couple of low redshift outliers, as well, and both Cen30 and Cen45 exhibit considerable Tully-Fisher scatter. Depth is clearly important in the observed scatter.

E508

The E508 cluster is not particularly well-sampled, but does not exhibit any significant correlations in Figure 3.11.

Pavo

Pavo exhibits a significant trend of distance modulus with redshift, arlsing from a background pair, IC 4934 and IC 4962, and one extreme redshift and distance outlier, IC 4992. Only the elimination of IC 4962 from the sample, homever, would decrease the computed scatter about our fixed-slope Tully-Fisher relation, as the other two objects fall right along the fiducial relation. Pavo has a very tight Tully-Fisher relation
when it is fit independently of the other clusters, but as remarked above, the derived slope for the independent fit is the most discrepant one of the seventeen clusters we have examined. Aaronson et al. (1989) point out that the mean redshift survey cluster velocity and the sample mean velocity disagree at the 2.5σ level, suggesting that the objects we have examined may poorly sample a more complicated structure.

THE DISPBRSION IN DBPTH

We can try to make a numerical estimate of the dispersion in depth for each of our clusters from the available redshift and distance information. Consider the dispersion in the observed radial velocities for objects in a cluster of galaxies. The dispersion comes from three sources: 1) the mean square measurement error of the velocities, 2) the dispersion in the galaxy peculiar velocities, and 3) any dispersion in distance. Formally,

$$
\begin{equation*}
V_{\text {pec }}=V-H_{o} r, \tag{3.1}
\end{equation*}
$$

where $V_{\text {pec }}$ is the peculiar velocity, V is the redshift, H_{0} is the Hubble constant, taken to be $92 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ here, and r is the object distance in Mpc. Then,

$$
\begin{equation*}
V=V_{\text {pec }}+H_{o} r \tag{3.2}
\end{equation*}
$$

and the observed dispersion in redshift is

$$
\begin{equation*}
\sigma_{V, o b s}^{2}=\sigma_{V, e r r}^{2}+\sigma_{V}^{2}{ }_{p e c}^{2}, t+H_{o}^{2} \sigma_{d}^{2}+2 H_{o} \sigma_{d, V_{p e c}^{2}}^{2} \tag{3.3}
\end{equation*}
$$

Here, the first term represents the measurement error in the velocities, the second the true dispersion in the peculiar velocities, the third the true dispersion in depth, and the fourth term comes from any correlation between the true peculiar velocity and true distance. If we now compute the dispersion in distance, r, estimated from the Tully-Fisher relation, we obtain

$$
\begin{equation*}
\sigma_{r}^{2}=\sigma_{d}^{2}+\sigma_{r, e r r}^{2} \tag{3.4}
\end{equation*}
$$

where the first term is again the true dispersion in depth and the second is the dispersion due to measurement errors. Next, we compute the dispersion in $V-H_{0} r$, to obtain the observed dispersion in the peculiar velocities. This quantity will contain contributions from measurement errors in redshift and distance, and from any correlation between observed redshift and distance error, so

$$
\begin{equation*}
\sigma_{V}^{2}{ }_{\text {pec }}=\sigma_{V, p e c}^{2} t^{+} \sigma_{V, e r r}^{2}+H_{0}^{2} \sigma_{r, e r r}^{2}-2 H_{o} \sigma_{V, o b s i r}^{2}, e r r \tag{3.5}
\end{equation*}
$$

This last term is expected to be small and we will neglect it in the following discussion. Now, if we take the difference between the sum of the observed dispersions in redshift and distance and the observed dispersion in peculiar velocity, we can isolate the term for the true dispersion in depth. Thus, after a little algebra, we see that

$$
\begin{equation*}
\sigma_{V, o b s}^{2}+H_{o}^{2} \sigma_{\mathrm{r}}^{2}-\sigma_{\mathrm{V}}^{2}{ }_{\mathrm{pec}}^{2}=2 \mathrm{H}_{\mathrm{o}}^{2} \sigma_{\mathrm{d}}^{2}+2 \mathrm{H}_{0} \sigma_{\mathrm{d}, \mathrm{~V}_{\mathrm{pec}}}^{2} \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
H_{o}^{2} \sigma_{\mathrm{d}}^{2}=\frac{1}{2}\left(\sigma_{V, o b s}^{2}+H_{o}^{2} \sigma_{r}^{2}-\sigma_{V}^{2} \underset{p e c}{2}-H_{0} \sigma_{d, V_{p e c}^{2}}^{2}\right. \tag{3.7}
\end{equation*}
$$

Here, $H_{o}^{2} \sigma_{d}^{2}$ is the true dispersion in depth, expressed in ka s^{-1}. Given the mean distance of the cluster, we can convert this quantity into a dispersion in magnitudes about the Tully-Fisher relation.

Unfortunately, the above expression cannot be applied directly to our observational data. The problem arises with the last term, the covariance between the true distance and the true peculiar velocity. We cannot compute this quantity from the observed numbers because errors in distance will produce a large and spurious correlation. We would need to know the very quantity we are trying to derive in order to sort this out. We are therefore forced to appeal to a model to proceed further.

Consider again our expression (3.7) for the true dispersion in depth. The first term on the right hand side is equivalent to the covariance between the observed redshift and the observed distance. That is,

$$
\begin{equation*}
\frac{1}{2}\left(\sigma_{V, o b s}^{2}+H_{o}^{2} \sigma_{r}^{2}-\sigma_{V}^{2}\right)=H_{0} \sigma_{V}^{2}, r^{\prime} \tag{3.8}
\end{equation*}
$$

and thus

$$
\begin{equation*}
H_{0}^{2} \sigma_{d}^{2}=H_{0} \sigma_{V, r}^{2}-H_{o} \sigma_{d, V_{p e c}}^{2} \tag{3.9}
\end{equation*}
$$

Now consider two limiting models. First assume that all of the galaxy clusters are fully collapsed and virialized. Then velocity is independent of position and the redshifts carry no distance information. There would be no correlation between observed redshift and distance and
the first term on the right hand side of equation (3.9) vanishes. In this case, the observational data cannot help us separate depth-induced dispersion from error-induced dispersion.

In the other limiting model, we assume that the clusters are unbound and simply expanding with the Hubble flow in the mean. Then the true peculiar velocities are zero, and the second correlation term in equation (3.9) vanishes. Under these circumstances, we can use the observational data to make a direct measurement of the dispersion due to depth. Since our real clusters are probably somewhere in between the fully virialized and completely unbound states, we can only set a lower limit on the dispersion due to depth equal to the square root of the correlation between observed redshift and observed distance in the appropriate units.

The results of such a computation are presented in Tables 3.8 and 3.9. In Table 3.8 we compute the lower limit to the dispersion in depth for each cluster, and in Table 3.9 we compute the average limit for the northern and southern clusters. In columns (1) and (2) of Table 3.8 we list the cluster name and number of objects with the necessary data. Colums (3) and (4) give the mean and standard deviation of the observed redshift, corrected for notion with respect to the center of the Local Group. Columns (5) and (6) contain the mean and standard deviation of the distance moduli derived fron the Aaronson et al. (1986) calibration of the infrared Tully-Fisher relation. The corresponding mean and dispersion of

Table 3.8. Tully-Pisher Scatter from Depth Effects

Cluster		$\begin{aligned} & \left\langle V_{0}\right\rangle \\ & (\mathrm{km} \end{aligned}$	$\begin{gathered} \sigma_{V_{0}} \\ -1)^{0} \end{gathered}$	$\langle m-M\rangle$ ($m-M$		$\begin{gathered} \left\langle V_{\text {pec }}\right\rangle \\ (\mathrm{km} \end{gathered}$	$\begin{aligned} & \sigma_{V_{p}} \\ & \left.s^{-1}\right)^{2} \end{aligned}$	$\begin{gathered} \sigma_{d} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	σ_{d} (mag)	$\begin{gathered} \sigma_{\text {obs }} \\ \text { (mag) } \end{gathered}$		$\begin{gathered} \sigma_{\mathrm{t}} \\ (\text { mag }) \end{gathered}$
(1)	(2)	(3)	(4)	(5)	(6)	(7) (8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
Pisces	20	5274.5	433.4	33.59	0.39	52.98 .4	-96.6	997.8			0.389		
A400	7	7855.4	356.3	34.54	0.36	82.114 .0	60.7	1294.1	234.0	0.067	0.381	3.1	0.375
A539	9	8536.4	305.7	34.88	0.34	96.015 .3	-218.3	1641.8			0.389		
Cancer	22	4788.9	872.8	33.82	0.70	61.220 .8	-512.0	1513.1	1036.3	0.400	0.654	37.4	0.517
A1367	20	6486.0	634.3	34.35	0.49	76.017 .3	-118.4	1785.7			0.493		
Coma	13	7310.0	474.2	34.51	0.34	80.712 .8	138.5	1177.2	328.8	0.096	0.342	7.9	0.328
274-23	13	5938.5	972.4	34.25	0.55	72.818 .2	-484.4	1316.2	1002.1	0.325	0.618	27.7	0.526
Hercules	11	10732.7	807.9	35.25	0.43	114.121 .7	219.6	1632.2	992.2	0.205	0.499	16.9	0.455
Pegasus	22	4274.6	618.6	32.97	0.64	40.912 .0	-46.2	927.0	612.5	0.354	0.560	40.0	0.434
A2634/66	11	8693.5	714.2	34.65	0.34	86.213 .7	183.4	1050.4	708.1	0.194	0.405	22.9	0.356
Antlia	10	2662.2	214.4	32.34	0.32	29.64 .3	531.7	347.7	205.3	0.164	0.361	20.6	0.322
Hydra	10	3444.4	110.7	33.18	0.51	44.29 .7	-22.7	860.8	338.1	0.181	0.462	15.3	0.425
N3557	5	2753.0	143.8	32.67	0.38	34.65 .9	155.8	605.2	...		0.431	...	
Cen 30	10	3157.7	571.3	32.44	0.62	31.88 .8	741.4	853.0	352.2	0.261	0.567	21.2	0.503
Cen45	6	4478.5	343.3	33.40	0.67	50.017 .4	390.8	1389.9	615.3	0.290	0.746	15.1	0.687
E508	7	2692.7	179.8	32.22	0.59	28.77 .3	536.6	695.9	0.413	...	
Pavo	8	3229.8	355.4	32.50	0.40	32.16 .0	371.3	326.4	401.0	0.295	0.635	21.6	0.562

Table 3.9. Average Tully-Fisher Scatter from Depth Effects
Sample N

 $\begin{array}{llllllllllll}\text { South } & 56 & 3178.0 & 347.0 & 32.66 & 0.48 & 35.5 & 8.5 & 399.2 & 710.4 & 314.1 & 0.209\end{array}$
the distances are listed in columns (7) and (8). In columns (9) and (10) we list the mean peculiar velocity, in a frame at rest with respect to the Cosmic Microwave Background, and the corresponding standard deviation. Column (11) contains the estimated lower limit to the dispersion in depth for each cluster, in units of $\mathrm{km} \mathrm{s}^{-1}$, calculated as described above. We express that dispersion in magnitudes in column (12), and include for reference the observed scatter about the Tully-Fisher relation in column (13). The lower limit to the dispersion in depth is given as a percentage of the observed variance (1.e. square of the dispersion) in column (14). Finally, we tabulate in column (15) the difference in quadrature between the observed scatter and the lower limit to the dispersion in depth. For a few clusters, the depth computation yields a non-physical result and the affected columns were left blank.

Table 3.9 contains information similar to that in Table 3.8, with a few computational differences. The standard deviations in the redshift, distance modulus, and distance refer to the dispersion in the difference between the relevant quantity and the mean for the cluster. Thus we list the mean redshift for the sample (for reference), but give the dispersion in the difference between each object's redshift and the mean redshift of the corresponding cluster. The peculiar velocities can be directly compared, so the simple mean and standard deviation of the measurements are listed in columns (9) and (10). The lower limit on the dispersion in depth is computed as in Table 3.8.

The lower limits to the dispersion in depth listed in Tables 3.8 and 3.9 are, for the most part, not very big. If they had turned out to be large, we would have been tempted to suggest that it was likely that our clusters were closer to the second limiting model discussed above, i.e. expanding freely with the Hubble flow. Then our lower limits would have been near the true value. However, the numerical limits we can set on the importance of depth effects are not very stringent. A typical lower limit amounts to about twenty percent of the observed variance, and up to forty percent in extreme cases such as Cancer and Pegasus. If we subtract these lower limits from the observed dispersions, we obtain the upper limit to the "true" scatter listed in column (15) of Table 3.8, which amounts to 0.458 mag in the mean, with a standard deviation of 0.108 mag for 12 clusters. This upper limit to the observational scatter about the Tully-Fisher relation is quite a bit larger than other recent estimates of small Tully-Fisher scatter near 0.25 mag (e.g. Bothun and Mould 1987, Pierce and Tully 1988). Bothun and Mould (1987) discuss the various sources of observational error in the H-band Tully-Fisher relation and estimate their relative importance. These errors include photometric errors, line-width errors, diameter errors, and errors in inclination. The Bothun and Mould estimates of the size of these errors account for about 0.2 mag of the observed scatter in the relation. As our average observed scatter, partially corrected for depth effects, is 0.46 mag , the difference in quadrature between that and known sources of observational
error amounts to over 0.4 mag. Since we do not know how large the depth effects really are, there is still room in these data for a fairly large cosmic scatter in the H-band Tully-Fisher relation, although not nearly as large as some authors would suggest (e.g. Kraan-Korteweg, Cameron, and Tammann 1988).

CHAPTER A: REDUCING THE SCATTER
ABOUT THE INFRARED TULLY-PISHER RBLATION

INTRODUCTION

Now that we have defined a fiducial infrared Tully-Fisher relation and explored some of its properties in Chapter 3, it is time to come to the central point of this dissertation. We wish to know whether we can reduce the scatter about the observed cluster Tully-Fisher relations by including additional information about the galaxies under study. That is, can we improve distance estimates through the inclusion of an extra parameter in the H-band magnitude/21 cm line-width relation? From our discussion of the cluster sample properties in the previous chapter, it is apparent that depth effects can make a significant contribution to the observed scatter. Additional information about the properties of individual objects cannot eliminate that portion of scatter, as long as we must assume that all of the cluster galaxies are at the same distance. However, the numerical limits we can set on the contribution from depth effects leave a fair amount of scatter potentially unexplained. And, as we mentioned in the introduction to Chapter 3 , extragalactic distances to individual objects are sufficiently uncertain that any significant improvement in the situation would be of considerable value.

In Table 4.1 we list the parameters that we have available for most of our objects in addition to the H-band photometry and 21 cm line-width measurements used to define an infrared Tully-Fisher relation. The data come from three sources. First there are parameters derived from the CCD surface photometry survey of cluster spirals discussed in Chapter 2. In addition to the blue measurements listed, similar information exists for many objects in the R and I bands. Next we include the morphological type, numerically coded from UGC or ESO catalog Hubble types according to the prescription given in the RC2. Finally, there are several quantities taken from the Bothun et al. (1985a) catalog of radio, optical, and infrared observations of spiral galaxies in clusters. They give a complete description of the derivation of each of their parameters, although some discussion of them was given here in Chapter 2.

THE SBCOND PARAMETER SBARCH

Our strategy for searching for additional parameters in the infrared Tully-Fisher relation is simple. We plot the residuals about the fixedslope, floating zeropoint Tully-Fisher relation defined in Table 3.3 against each trial second parameter in turn, looking for a significant reduction in the scatter about the fit.

There are a couple of technical points that should be discussed before we present the results of this search. Whether an object appears in any given plot depends on the availability of the three parameters necessary to make that plot, i.e. H magnitude, 21 cm line-width, and the trial second parameter. The H-band photometry and the line-widths are taken from Aaronson et al. (1986) for their northern clusters and Aaronson et al. (1989) for their southern clusters. Because we derived the zeropoints of our fixed-slope fits from their data, we are restricted to considering their clusters below. Their clusters are listed here in Table 3.2 , for example, and do not exactly overlap in the southern hemisphere with the CCD survey clusters listed in Table 2.1. This means that H magnitudes, line-widths, and Tully-Fisher zeropoints are not available for some of the CCD survey clusters. Even for those clusters that do appear in both samples, the overlap on an object-to-object basis is patchy. It therefore turns out that our second parameter search using surface photometric parameters is largely limited to northern objects. Southern objects are included where possible, but their contribution is relatively unimportant. The Bothun et al. (1985a) catalog is limited exclusively to the northern hemisphere and some clusters are better observed than others, due mostly to imperfect cooperation of the weather. Thus no southern data appears in those plots, and some northern clusters are under-represented for some parameters. Finally, morphological types were extracted from the catalogs for only those objects observed in the CCD survey discussed in Chapter 2.

Table 4.1. Additional Parameters

Parameters based on data presented here:	
$\log R$	Axis Ratio defined in the R - (or $\mathrm{B}-$) band
$\log \mathrm{D}_{\mathrm{B} 25}$	Blue Isophotal Diameter
$\log C_{B}$	Blue Concentration Parameter (like B/T)
$\left.{ }^{\langle S B}\right\rangle_{\mathrm{Bn}}$	Blue Nuclear Surface Brightness
$\langle\mathrm{SB}\rangle_{\text {B }},-0.5$	Blue SB in aperture with $\log (A / D)=-0.5$
$\langle\mathrm{SB}\rangle_{\mathrm{B} 25}$	Mean Blue Surface Brightness
B_{25}	Blue Isophotal Magnitude
Parameters	from catalog data:
T	Numerically coded Morphological Type
Parameters taken from Bothun et al. (1985a):	
B_{T}	Total Blue Magnitude
U-B	Total U-B color
B-V	Total B-V color
B-H	$B-H$ color in aperture with $\log (A / D)=-0.5$
$\log \mathrm{M}_{\mathrm{HI}}$	Mass of Hydrogen Gas
$\log \mathrm{M}_{\mathrm{HI}} / L_{\mathrm{B}}$	Gas Content normalized by Blue Luminosity
$\log \mathrm{M}_{\mathrm{HI}} / \mathrm{L}_{\mathrm{H}}$	Gas Content normalized by IR Luminosity

In Pigure 4.1 we present the results of the second parameter search for the blue surface photometric properties listed in Table 4.1. For each trial second parameter, we plot the Tully-Fisher residual in the sense "observed" - "predicted", against the quantity under consideration. The point for each galaxy is labelled according to the cluster to which it has been assigned. The clusters are numbered 0 through 9 , and then A through J, following the order in which they are listed in Table 2.1. We have not included the corresponding R-band plots as they are almost indentical to those at B. Similar plots for the Bothun et al. (1985a) parameters are presented in Figure 4.2.

In Tabie 4.2 we list the coefficients of a linear least squares fit of all of the objects taken together for each parameter. These fits are also plotted on Figures 4.1 and 4.2. The table includes the fits for parameters derived from R-band surface photometry. For each trial second parameter we list the number of points used in the fit, the slope, zeropoint, linear correlation coefficient, and scatter in magnitudes about that fit. These dispersions about the two-independent-parameter fits can be compared with the scatter of 0.488 mag about the fiducial fixed-siope Tully-Fisher relation.

From our discussion of cluster properties in Chapter 3, we should expect some clusters to be more suitable than others for assessing the

Figure 4.1.
Second Parameter Search for the Observables Derived from Surface Photometry at B. Trial parameters are logarithm of the axis ratio, Blue Isophotal Diameter, Blue Concentration Parameter, and Blue Nuclear Surface Brightness.

Figure 4.1. Continued. Parameters are Blue Surface Brightness within aperture with $\log (A / D)=-0.5$, Mean Blue Surface Brightness, Blue Isophotal Magnitude, and numerically coded Morphological Type.

Figure 4.2. Second Parameter Search for the Bothun et al. (1985a) Data. Trial parameters are Total Blue Magnitude, U-B color, $\mathrm{B}-\mathrm{V}$ color, and $\mathrm{B}-\mathrm{H}$ color.

Figure 4.2. Continued. Parameters are Mass of Hydrogen Gas, Gas Content Normalized by Blue Luminosity, and Gas Content Normalized by Infrared Luminosity.

Table 4.2. Second Parameter Correlations

potential gain from including a second parameter. A large dispersion in distance will tend to wash out any gain made by including a second parameter. We are therefore tempted to make second-parameter fits for each cluster independently. However, most of the cluster samples do not contain very many objects, and thus individual cluster fits would be rather uncertain and would not necessarily span the possible range in value that any given trial parameter can take. Therefore we have chosen to take all of the clusters together when making the above secondparameter plots (Figures 4.1 and 4.2) and least-squares fits (Table 4.2). But we will tabulate below the scatter in the observed additionalparameter Tully-Fisher relations on a cluster by cluster basis. Then we will be able to assess separately the effectiveness of each trial second parameter in each cluster.

We present the observed dispersions about the second-parameter fits from Table 4.2 in Tables 4.3 and 4.4. Table 4.3 pertains to the parameters derived from the B-band surface photometry and Table 4.4 lists the scatter about relations using the Bothun et al. (1985a) catalog data. For each parameter there are four columns. The first column lists the number of objects in each cluster which have a measurement of the trial parameter, as well as an H-band magnitude and a 21 cm line-width. The second column gives the scatter about the fixed-slope Tully-Fisher relation for that cluster using only those objects that can be included in the second-parameter fit. This number represents the "control" of the

Table 4.3. Scatter About the Extra-Parameter Tully-Fisher Relations for the Blue Surface Photometric Parameters

Cluster	$\log R$				$\log \mathrm{D}_{\mathrm{B} 25}$			
	N	$\sigma_{\text {fs }}$	$\sigma_{\text {sp }}$	P	N	σ_{fs}	${ }_{\mathbf{\sigma}} \mathbf{s p}$	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Pisces	13	0.356	0.357		10	0.381	0.345	0.168
A400	5	0.206	0.227		3	0.232	0.511	
A539	5	0.359	0.313	0.269	3	0.376	0.258	0.165
Cancer	16	0.713	0.696	0.387	9	0.696	0.537	0.035
A1367	13	0.435	0.443	...	11	0.446	0.379	0.064
Coma	7	0.286	0.318		5	0.258	0.398	
274-23	6	0.708	0.668	0.420	6	0.708	0.549	0.093
Hercules	7	0.459	0.428	0.337	6	0.492	0.528	. . .
Pegasus	14	0.473	0.456	0.320	13	0.484	0.497	
Cen30	3	0.604	0.601	0.879	3	0.604	0.591	0.735
Pavo	3	0.598	0.524	0.413	3	0.598	0.430	0.193
Total	98	0.508	0.499	0.063	78	0.512	0.463	<0.001

Table 4.3. Continued

Cluster	$\log C_{B}$				$\langle S B\rangle^{\text {b }}$			
	N	$\sigma_{\text {fs }}$	$\sigma_{\text {sp }}$	P	N	$\sigma_{\text {fs }}$	${ }_{\mathbf{\sigma}}^{\text {sp }}$	P
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Pisces	10	0.381	0.319	0.065	10	0.381	0.314	0.055
A400	3	0.232	0.318	...	3	0.232	0.282	
A539	3	0.376	0.351	0.555	3	0.376	0.222	0.099
Cancer	8	0.714	0.663	0.294	9	0.696	0.605	0.121
A1367	11	0.446	0.395	0.110	11	0.446	0.475	
Coma	5	0.258	0.247	0.536	5	0.258	0.308	
274-23	6	0.708	0.619	0.223	6	0.708	0.606	0.189
Hercules	6	0.492	0.540	. . .	6	0.492	0.442	0.276
Pegasus	12	0.475	0.552		12	0.475	0.446	0.233
Cen30	3	0.604	0.496	0.314	3	0.604	0.525	0.395
Pavo	<3	. .			3	0.598	0.460	0.245
Total	75	0.512	0.493	0.019	77	0.511	0.463	<0.001

Table 4.3. Continued

Cluster	$\langle\mathrm{SB}\rangle_{\mathrm{B}}$				$\xrightarrow{\langle S B}\rangle$ B25			
	N	$\sigma_{\text {f }}$	${ }_{\mathbf{o}} \mathbf{s p}$	P	N	$\sigma_{\mathbf{f s}}$	$\sigma_{\text {sp }}$	P
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Pisces	10	0.381	0.317	0.061	10	0.381	0.349	0.199
A400	3	0.232	0.304		3	0.232	0.319	
A539	3	0.376	0.223	0.100	3	0.376	0.236	0.122
Cancer	9	0.696	0.605	0.122	8	0.714	0.645	0.217
A1367	11	0.446	0.470	. . .	11	0.446	0.461	
Coma	5	0.258	0.322		5	0.258	0.344	...
274-23	6	0.708	0.604	0.184	6	0.708	0.630	0.256
Hercules	6	0.492	0.456	0.362	6	0.492	0.454	0.347
Pegasus	13	0.484	0.482	0.767	13	0.484	0.459	0.255
Cen30	3	0.604	0.569	0.582	3	0.604	0.611	
Pavo	3	0.598	0.524	0.411	<3			
Total	78	0.512	0.475	0.001	76	0.513	0.487	0.006

Table 4.3. Continued

Cluster	B_{25}				T			
	N	$\sigma_{\text {fs }}$	$\sigma_{\text {sp }}$	P	N	$\sigma_{\text {fs }}$	$\sigma_{\text {sp }}$	P
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Pisces	10	0.381	0.285	0.019	11	0.290	0.287	0.619
A400	3	0.232	0.499		5	0.206	0.288	
A539	3	0.376	0.262	0.173	3	0.396	0.378	0.628
Cancer	8	0.714	0.532	0.035	9	0.656	0.561	0.102
A1367	11	0.446	0.393	0.101	6	0.520	0.366	0.048
Coma	5	0.258	0.414		5	0.313	0.387	
274-23	6	0.708	0.533	0.076	6	0.708	0.624	0.236
Hercules	6	0.492	0.495		4	0.542	0.604	
Pegasus	13	0.484	0.484		13	0.454	0.443	0.429
Cen30	3	0.604	0.599	0.829	3	0.604	0.615	
Pavo	<3				3	0.598	0.680	
Total	76	0.513	0.451	<0.001	74	0.500	0.476	0.008

Table 4.4. Scatter About the Extra-Parameter Tully-Fisher Relations for the Bothun et al. (1985a) Parameters

Cluster	B_{T}				U-B			
	N	${ }^{\sigma_{f s}}$	$\sigma_{8 p}$	P	N	$\sigma_{\text {f3 }}$	${ }^{\text {sp }}$	P
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Pisces	18	0.369	0.299	0.007	18	0.369	0.352	0.196
A400	7	0.322	0.362	. . .	7	0.322	0.342	
A539	5	0.359	0.361	...	5	0.359	0.366	
Cancer	19	0.654	0.583	0.038	19	0.654	0.644	0.446
A1367	18	0.405	0.363	0.049	18	0.405	0.416	. . .
Coma	12	0.316	0.327		12	0.316	0.324	
274-23	7	0.693	0.579	0.126	7	0.693	0.654	0.384
Hercules	8	0.475	0.501	...	8	0.475	0.501	
Pegasus	19	0.494	0.540	\ldots	19	0.494	0.481	0.312
A2634/66	<3	-••	. \cdot	-••	<3	-••	-••	. .
Total	114	0.481	0.457	0.001	114	0.481	0.479	0.319

Table 4.4. Continued

Cluster	B-V				B-H			
(1)	N (2)	σ_{fs} (3)	$\sigma_{\mathbf{s p}}$ (4)	(5)	(6)	σ_{fs} (7)	σ_{sp} (8)	(9)
Pisces	18	0.369	0.357	0.274	18	0.369	0.349	0.161
A400	7	0.322	0.340	. . .	7	0.322	0.347	...
A539	5	0.359	0.369	...	4	0.352	0.361	\ldots
Cancer	19	0.654	0.654	0.876	19	0.654	0.661	
A1367	18	0.405	0.403	0.681	18	0.405	0.396	0.375
Coma	12	0.316	0.329	. . .	12	0.316	0.322	
274-23	7	0.693	0.661	0.434	7	0.693	0.644	0.327
Hercules	8	0.475	0.503		8	0.475	0.508	
Pegasus	19	0.494	0.479	0.272	19	0.494	0.481	0.310
A2634/66	<3	<3
Total	114	0.481	0.481	0.773	113	0.481	0.480	0.398

Table 4.4. Continued

Cluster	$\log \mathrm{M}_{\mathrm{HI}}$				$\log \mathrm{M}_{\mathrm{HI}} / L_{\mathrm{B}}$			
	N	$\sigma_{\text {fs }}$	$\sigma_{s p}$	P	N	$\sigma_{\text {f } 8}$	$\sigma_{\text {8p }}$	P
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Pisces	18	0.369	0.351	0.188	18	0.369	0.324	0.032
A400	7	0.322	0.323	. . \cdot	7	0.322	0.366	...
A539	9	0.343	0.365		5	0.359	0.270	0.107
Cancer	22	0.624	0.621	0.672	19	0.654	0.606	0.091
A1367	20	0.468	0.451	0.229	18	0.405	0.393	0.296
Coma	13	0.315	0.315		12	0.316	0.318	-
274-23	12	0.592	0.566	0.312	7	0.693	0.698	
Hercules	11	0.451	0.446	0.604	8	0.475	0.527	
Pegasus	22	0.534	0.554		19	0.494	0.451	0.064
A2634/66	10	0.384	0.386	-••	<3
Total	144	0.476	0.477		114	0.481	0.463	0.004

Table 4.4. Continued

Cluster	$\log \mathrm{M}_{\mathrm{HI}} / \mathrm{L}_{\mathrm{H}}$			
	N	σ_{fs}	$\sigma_{\mathbf{S p}}$	P
(1)	(2)	(3)	(4)	(5)
Pisces	17	0.377	0.314	0.014
A400	7	0.322	0.363	\ldots
A539	9	0.343	0.295	0.109
Cancer	22	0.624	0.608	0.294
A1367	20	0.468	0.451	0.236
Coma	12	0.327	0.330	\ldots
Z74-23	11	0.616	0.553	0.133
Hercules	10	0.471	0.515	\ldots
Pegasus	22	0.534	0.483	0.036
A2634/66	10	0.384	0.435	\ldots
Total	140	0.482	0.466	0.002

experiment. The third column contains the dispersion about the secondparameter fit for the same objects. The fourth column gives the results of an F -test to assess the significance of the improvement, if any, in the fit obtained by adding the additional parameter. This test is described in more detail below. The results of this second-parameter search are listed separately for each cluster with at least three objects with H magnitudes and line-widths, and then for all possible cluster objects taken together.

Each of the dispersions listed in Tables 4.3 and 4.4 is the square root of the sum of the squares of the residuals about the corresponding fit, divided by the number of degrees of freedom. The fixed-slope fit was derived using a superset of the data used in any of the second-parameter fits. Therefore, in the computation of the scatter about the fixed-slope fit for an individual cluster, no degrees of freedom were used up in the derivation of the applied $f i t$, and the number of degrees of freedom was taken to be the number of points in the cluster sample. Even the scatter for the total sample was computed from a different (sub-) set of data from that used to derive the fit coefficients, so again the number of degrees of freedom was taken to be the number of points. In the case of the residual fits, a single least-squares fits was performed on the total aample, using up 2 degrees of freedom in the total scatter, but no degrees of freedom for any particular cluster. Note that these assumptions are not exactly correct, as the data sets overlap in each case, and hence were
not completely independent.

Once we have computed the scatter about the fixed-slope Tully-Fisher relation, both with and without a second parameter, we wish to compare the two to see if there is any improvement with the addition of another observable. In cases where the dispersion including the extra parameter is in fact lower than that for the simpler fit, we can make a statistical test described by Bevington (1969) to see if the improvement is a significant one. We compute a statistic F_{X}, the ratio of the difference between the square of the "old" scatter and the square of the "improved" scatter, to the square of the "improved" scatter, divided by the number of degrees of freedom in the "improved" fit. This statistic should follow an F distribution with $\nu_{1}=1$, and $\nu_{2}=$ the number of degrees of freedom in the "improved" fit. We can therefore calculate the probability that this F_{χ} statistic would be as large as it is, if the simpler fit were actually a better representation of the data than the second-parameter fit. These are the probabilities, "P", tabulated in Tables 4.3 and 4.4. A small probability indicates that it is likely that adding the extra parameter made a significant reduction in the scatter.

DISCUSSION

Let us examine the results of the second-parameter search. The first point to consider is the nature of the trial parameters themselves.

There are two classes of additional parameters: those that depend on distance and those that do not. The most straightforwardly useful second parameter for distance scale work should be distance independent. Then consideration of this additional observational property allows us to essentially pick a subset of the possible objects to study, where this subset has a smaller intrinsic spread in properties, i.e. smaller scatter about a Tully-Fisher relation, than the entire set. Distant dependent second parameters may carry information about other dimensions in the space of galaxy properties, but are not as easy to apply to distance scale problems since the distance must be known to evaluate them in the first place.

None of the trial second parameters makes a major difference in our ability to determine distances. While several parameters allow statistically significant gains, none of the cluster or total dispersions about the additional parameter fits represent an improvement as large as 0.1 mag. Let us examine each type of parameter in turn.

Inclination

We included the axis ratio as a trial second parameter in order to test for any residual dependence on inclination in the magitudes or linewidths. The Tully-Fisher residuals do exhibit a 2σ slope with $\log R$, but including axis ratio as a second parameter does not make a very
significant difference in the measured dispersions.

Blue Magnitudes

The two definitions of blue magnitude included in the search, $\mathrm{B}_{\mathbf{2 5}}$ and B_{T}, make very statistically significant, although small, improvements in the Tully-Fisher scatter. In fact, the correlation coefficient for the B_{25} residual fit is the largest of any of the parameters. The origin of this correlation lies mostly in the least-squares fitting procedure itself. When we fit our adopted Tully-Fisher relation, we minimized the errors in the H magnitude direction only. Because the correlation between H magnitude and line-width is not perfect, residuals about a fit made in this way will still exhibit a small correlation with H magnitude. In fact, if we plot the Tully-Fisher residuals against H magnitude, we find a line with a correlation coefficient of 0.346 and a small but significant slope. Now, B_{25} and B_{T} both show good correlations with H, with $r=0.921$ and $\sigma=0.404$ mag for 78 points for B_{25} and $r=0.909$ and $\sigma=0.417$ mag for 114 points for B_{T}, so each of these parameters shows a relatively strong correlation with the residuals about our adopted fit. Although not very helpful for distance scale work, it is interesting that the correlation of the residuals with B_{25} is actually stronger than that with H magnitude. Perhaps some color dependence is contributing as well.

Diameter

The blue diameter is another distance-dependent quantity that correlates fairly well with Tully-Fisher residuals and leads to a small, statistically significant reduction in the scatter, about 0.05 mag in the mean. Blue diameters correlate well with magnitudes, even at H-band, with a correlation coefficient of $\mathbf{- 0 . 8 3 3}$ and a scatter of 0.097 in $\log \mathrm{D}_{\mathrm{B} 25}$ for the 80 overlapping points in our data. Therefore the residual correlation effect seen above for the blue magnitudes is probably involved here, too. Principal component analyses (e.g. Whitmore 1984; Watanabe, Kodaira, and Okamura 1985) do not find significantly different behavior for magnitudes and diameters when resolving the space of galaxy properties into its primary dimensions.

Concentration and Morphological Type

Our concentration parameter, C_{B}, is essentially a measure of the ratio of the bulge luminosity to the object's total luminosity, B / T. It is distance-independent, and correlates well with true B / T ratios derived from bulge/disk decompositions of surface brightness profiles. It has the advantage, though, of being independent of any bulge/disk model, and can be derived even when a formal bulge/disk decomposition fails. Our concentration parameter also correlates fairly well with Hubble type, and

Whitmore (1984) and Watanabe, Kodaira, and Okamura (1985) both find a morphological type, B / T ratio, or a concentration parameter to be a good measure of the second principal component of spiral properties. Thus we had hoped to find a significant reduction in Tully-Fisher scatter by including such a concentration parameter. Unfortunately, adding $\log C_{B}$ does not significantly improve our ability to measure distances. It is interesting, therefore, that T, a subjectively-defined morphological classification only crudely transferred to a numerical scale, actually results in a much more significant, although still pretty small, reduction in scatter.

Surface Brightness

Of the distance-independent parameters, surface brightness measures result in the largest reduction in H-band Tully-Fisher scatter. Indeed, Watanabe, Kodaira, and Okamura (1985) found that surface brightness was the best second-component from their principal component analysis. We find that the most significant reduction in Tully-Fisher scatter comes from using a nuclear surface brightness, rather than a surface brightness more characteristic of the entire object. This result might have been expected from the definition of the H-band magnitudes used in the magnitude/line-width relation. These magnitudes are small-aperture measurements, with the aperture adjusted relative to the diameter so that $\log (A / D)=-0.5 . \quad$ These magnitudes are thus more characteristic of the
bulge of the object, and it seems reasonable that the surface brightness of the object might be an important second parameter. It is interesting, though, that the blue surface brightness within that same aperture, with $\log (A / D)=-0.5$, does not do quite as well as the nuclear one, which typically represents an aperture half as large as that of $\langle S B\rangle_{B,-0.5}$.

Colors

The Bothun et al. (1985a) optical and optical/infrared colors do uniformly badly in reducing the scatter in the Tully-Fisher relation. This result is somewhat surprising in that Whitmore (1984) finds the B-H color to be a good representation of the second dimension in spiral properties. On the other hand, Tully, Mould, and Aaronson (1982) had previously reached essentially the opposite conclusion. Part of the disagreement may come from differences in the definition of the color, as Whitmore appears to have used some kind of total magnitudes, Tully, Mould, and Aaronson used a total B magnitude and a small-aperture H magnitude, while Bothun et al. (1985a) reduce both magnitudes to the same $\log (A / D)$ of $\mathbf{- 0 . 5}$ small aperture. At any rate, stellar population variations, as measured by optical or optical/infrared colors do not appear to make much difference in the final magnitude/line-width correlation. This result may simply reflect small variations in the behavior of the old disk light, as the major contributor to the total luminosity measured in the H-band.

Gas Mass and Gas Content

The total mass of the neutral hydrogen gas in the galaxy, as measured by the flux in the 21 cm line, a distance-dependent quantity, makes no difference in the Tully-Pisher residuals. The gas content measures, the gas mass per unit luminosity, are distance-independent parameters and allow only slight improvements in the Tully-Fisher scatter. Given that the $M_{H I} / L_{H}$ gas content correlates best with B-H color (e.g. Bothun 1984), we might have predicted this rather poor success, given our result for colors discussed in the preceeding paragraph.

INTERPRBTATION

Although we have approached the Tully-Fisher second-parameter search with the practical goal of improving distance estimates, an equivalent way of thinking about the problem is that we are trying to determine which parameters besides total mass determine the H-band luminosities that we measure. Most of the trial second-parameters we have available are based on optical photometry, and are strongly influenced by ongoing and bursts of star formation. In particular, we are trying to determine the dependence of the distribution and amount of H-band luminosity on galaxy properties measured in blue light. Detailed models by Bothun et al. (1984), as discussed by Bothun et al. (1985b), suggest that current star formation in mature, constant star-formation-rate galaxies does not have
a large effect on H magnitudes. On the other hand, observed integrated U-B colors together with population synthesis models indicate that the light at B may be enhanced through current star formation by up to 1 mag in some of our galaxies.

Consider what happens to the observed properties of a typical latetype spiral as the disk fades by 1 mag. To be concrete, take a Freeman (1970) disk with a central blue surface brightness of 21.65 mag arcsec $^{-2}$. Also assume a typical disk scale length of 5 kpc , and a total bulge-todisk ratio of $\mathbf{0 . 1}$. The bulge component might have a $\mathrm{B}-\mathrm{H}$ coior near 4.0 as is observed for bright ellipticals (e.g. Persson, Frogel, and Aaronson 1979) and the disk component might have a $\mathrm{B}-\mathrm{H}$ color more like 3.0. While the H-band profile is more or less unchanged, the disk in blue light then fades after a Gyr or so by 1 mag to a central surface brightness of $\mathbf{2 2 . 6 5}$ mag arcsec ${ }^{-2}$, an unchanged scale length of 5 kpc , and a new total bulge-to-disk ratio of $\mathbf{0 . 2 5}$. The bulge-to-disk ratio within one scale length, approximately the radius corresponding to $\log A / D=\mathbf{- 0 . 5}$, increases from 0.38 to 0.96 . The total $\mathrm{B}-\mathrm{H}$ color of the galaxy reddens from 3.14 to $\mathbf{4 . 0}$ and the $B-H$ color within the aperture with $\log A / D=-0.5$ goes from about 3.38 to 4.0 . These computations assume that the effective radius of the bulge is much smaller than the disk scale length, but relaxing this assumption does not change the basic result. In addition, the diameter at the blue 25 th mag arcsec ${ }^{-2}$ isophote decreases from 3.1 scale lengths to 2.2 scale lengths, a reduction of 30 percent. Thus the color, surface
brightness, concentration, and apparent size of this object vary considerably with star formation, while the H-band luminosity profile remains roughly constant. Therefore the H-band luminosity of this galaxy is largely decoupled from the trial second-parameters that we would have measured for it.

In the above example we neglected an effect which may explain some of our second-parameter correlations. In the practical application of the H-band Tully-Fisher relation, the H magnitudes are linearly interpolated along the object's photometric growth curve to a common aperture-to-bluediameter ratio of $\log A / D=-0.5$. This procedure leaves the H magnitudes directly sensitive to star-formation-induced second-order variations in the observed diameter. The slope of the (H mag, $\log A / D$) growth curve is about 2 for an Sb galaxy (see Aaronson, Huchra, and Mould 1979, Figure 1). Thus decreasing the blue diameter by 30 percent, as in the example above, will decrease the measured H-band luminosity by 0.31 mag, even if the H surface brightness remains unchanged. This effect may explain part of the good correlation of blue diameter, and blue magnitude which correlates very well with diameter, with Tully-Fisher residual.

It would have been easier to interpret the results of our secondparameter search if the measured galaxy properties were less subject to large random variations from current star formation. We are not completely out of luck, however, as the inner regions of many of our
objects can be expected to be dominated by bulge light. When the stellar population of the bulge dominates the measured light, we can expect much smaller variations from ongoing star formation and that the $B-H$ color there would be relatively constant. In that case, measuring the properties of the blue surface brightness profile ought to tell us directly what is happening to the H-band light distribution. A visual examination of the surface brightness profiles in Figure A. 1 reveals that about 55 percent of the profiles appear to be bulge-dominated within the aperture with $\log A / D=-0.5$. Thus we would expect blue parameters based on small aperture measurements like nuclear surface brightness, <SB>-0.5, and concentration to be more directly sensitive to changes in the H-band profiles. But since a large fraction of the profiles are still not obviously dominated by the bulge, even within the $\log A / D=-0.5$ aperture, we can still expect, and in fact observe, large random variations in the small aperture parameters. On the other hand, the bulge-dominated fraction will be even higher within the aperture used to define the nuclear surface brightness, typically half the size corresponding to log $A / D=-0.5$, probably explaining why the nuclear surface brightness proved to be the strongest second parameter. As we saw above, second-order variations in large-aperture, disk-light dominated observables influence the H magnitude primarly through their correlation with the blue diameter. This fact may explain why the parameters more characteristic of the entire object, e.g. total blue magnitudes, mean surface brightness, integrated
colors, and gas content, do not allow much improvement as potential TullyFisher second parameters.

CONCLUSIONS

We have discussed the scatter about the infrared Tully-Fisher relation and have shown that many of the cluster samples we examined exhibit considerable substructure, especially in the redshift/distance diagrams. Although this substructure suggests that depth effects may be important to the observed Tully-Fisher scatter, the numerical lower limits we compute for this dispersion in depth are, in fact, rather small. We then used data derived from a CCD survey of spiral galaxies in clusters of galaxies, as well as data from the literature, to search for additional parameters in the infrared magnitude/21 cm line-width correlation, with the goal of improving distance estimates based on that relation. We find no parameters that substantially reduce the Tully-Fisher scatter in our sample, although there are some observables, notably nuclear surface brightness, which do allow statistically significant improvements. Our results can be understood qualitatively by considering the effect of variations in the current star formation rate on the measured trial second parameters.

APPENDIX: THE DATA

We list in Tables A. 1 through A. 6 the photometric parameters derived from the CCD observations discussed in Chapter 2. Tables A. 1 and A. 2 give the B-band properties, Tables $A .3$ and $A .4$ the R_{J} measurements, and Tables A. 5 and A. 6 the Kron-Cousins I-band data. Objects are listed by cluster. Accurate coordinates for many of the northern galaxies are listed in Bothun et al. (1985a), and positions for the remaining objects may be found in either the UGC or the ESO catalog. Note that Tables A. 5 and A. 6 list only southern hemisphere objects, as we have little I-band data for our northern sample. There are two tables for each bandpass. The first contains various surface photometric parameters and the second table gives isophotal magnitudes at eight different isophotal levels. For each object we list the name, logarithm of the axis ratio a / b, logarithm of the diameter at the standard isophote, concentration parameter, nuclear surface brightness, surface brightness within an aperture corresponding to $\log (A / D)=-0.5$, surface brightness within the standard isophote, and an estimate of the total magnitude. The magnitudes in the second table are labelled as to their corresponding isophote. All surface brightnesses are in mag arcsec ${ }^{-2}$. All quantities are given in their fully corrected forms. In particular, the diameters and magnitudes have been expressed in absolute terms using distances from Table 2.1 or estimated from the redshift and the linear bi-infall model of Aaronson et al. (1989) in the
case of "miscellaneous" objects. Diameters are in kpc. Note that items are left blank if a measurement could not be made for some reason. Total magnitudes were not derived for the non-cluster objects.

In Pigure A.1, we present the surface brightness profiles for all of the objects in our CCD survey. For each observation of each object we plot surface brightness in mag arcsec ${ }^{-2}$ against semimajor axis in kpc. Up to three profiles are given for each observation. The solid lines are the B-band surface brightness profile, the dashed lines are the R_{J} profiles, and the dot-dashed lines refer to the I-band profiles. Each surface brightness has been fully corrected for the effects of Galactic absorption, redshift, and inclination according to the prescriptions discussed in Chapter 2. Objects are listed by cluster; in the order corresponding to that in the tables of photometry. Multiple observations of the same object are numbered with roman numerals. Distances are taken from Table 2.1, where availible, or derived for the miscellaneous objects at the end from redshifts listed in The Center for Astrophysics Redshift Catalogue and the linear bi-infall model of Aaronson et al. (1989).

Table A. 1
188
Photometric Parameters Derived from B-band Surface Photometry

Object	$\log R$	$\log D_{25}$	$\log C$	μ_{n}	$\mu_{-0.5}$	μ_{25}	\mathbf{B}_{T}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Pisces							
N296	0.5749
N338	0.3412	1.6202	-0.6141	20.994	21.786	23.805	-20.4
N444	0.6361	1.3615	-1.0237	22.900	23.046	23.902	-19.3
N452	0.5864	1.3366	-0.6126	21.760	21.859	23.165	-20.4
N523	
N536	0.5048	1.5571	-0.5645	21.283	21.980	23.336	-20.9
N582	0.6004	
U525	0.4733	1.3230	-0.9400	22.936	23.262	24.301	-19.1
U540	0.2317	1.1032	-0.9436	20.743	20.963	22.238	-19.6
U542	0.6649	1.4117	-0.5504	21.605	22.111	23.585	-19.7
U556	0.3107	1.1728	-0.9421	21.762	22.120	23.382	-18.9
U557	0.4195	1.2091	-1.0812	22.083	22.278	23.352	-19.0
U633	0.6000	\ldots
U679	0.6737	1.0838	-1.0880	23.829	23.884	24.433	-17.7
U987	0.5133	1.3730	-0.4859	21.094	21.524	23.188	-20.0
U1033	0.7429	1.4292	-0.3188	21.815	22.079	23.327	-20.1
A400							
U2367	0.5466	1.6474	-0.5937	22.124	22.566	23.781	-20.8
U2375	0.5532
U2399	0.0795	
U2405	0.4621	1.5229	-0.8218	22.044	22.233	23.338	-20.6
U2415	0.5054 ${ }^{\text {a }}$.			
U2444	0.1964	1.3876	-0.7167	21.192	21.461	23.134	-20.0
U2454	0.6533	1.4232	-0.9198	22.541	22.752	23.769	-19.7
A539							
D11	0.2422	\cdots	...	\cdots	\cdots	\ldots	...
U3236	0.3725	...	\ldots
U3248	0.4358	\cdots	\ldots	\ldots	\cdots	\ldots	
U3269	0.1335	1.4020	-0.9339	20.612	20.907	22.309	-20.9
U3282	0.1602	1.5443	-1.1070	21.329	21.749	23.306	-20.7
U3291	0.4381	1.4441	-1.2445	21.895	22.008	23.144	-20.5
Z421011	0.3760	1.4511	-0.8882	21.029	21.427	22.736	-20.7
Z421030	0.3594	1.3814	-0.9730	21.347	21.716	22.916	-20.5

Table A. 1 Continued
189

Object	$\log R$	$\log D_{25}$	$\log C$	μ_{n}	$\mu_{-0.5}$	μ_{25}	B_{T}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Cancer							
12308	0.2642						
12348	0.2718	1.0691	-0.5865	21.143	21.885	23.264	-18.4
N2554	0.1867	\ldots
N2558	0.1859						
N2562	0.1588	1.2123	-0.6346	20.351	20.675	22.773	-19.6
N2565	0.3589	1.4750	-0.4502	20.232	20.902	22.761	-21.0
N2575	0.1434	1.5101	-0.9212	21.898	22.255	23.384	-20.4
N2595	0.1131	...					
N2596	0.4251	1.4175	-0.8640	21.574	22.032	23.182	-20.2
N2599	0.0585	1.5420	-0.4000	20.085	21.222	23.152	-20.9
U4299	0.7339	1.4353	-0.6745	22.198	22.607	23.598	-19.8
U4329	0.0713	1.4512	...	21.609	22.408	...	-19.6
U4332	0.2535	1.3120	-0.9057	21.925	22.219	23.685	-19.4
U4361	0.4344
U4386	0.5126	1.5043	-0.6283	21.405	21.855	23.297	-20.4
U4399	0.4770			
U4400	0.7871	1.2151	-0.7290	22.776	23.008	24.000	-18.4
U4416	0.3052	1.5410	-0.8598	21.751	22.017	23.514	-20.4
Z119051	0.1894
Z119053	0.1322	...		\ldots	..		
Z119066	0.1846	1.2136	-0.8880	21.219	21.433	22.941	-19.5
Z119095	0.6204	\ldots
Z119107	0.6547	\ldots	...	\ldots	...	\ldots	\ldots
A1367							
12951	0.3358	1.4290	-0.5681	21.532	22.035	23.505	-20.0
MK181	0.2080	1.1908	-0.9440	20.080	20.435	22.183	-20.0
N3697	0.5073	1.6602	-0.7035	21.940	22.351	23.580	-21.1
N3816	0.2257						
N3832	0.1106	1.5604	-1.3024	22.398	22.498	23.742	-20.5
N3840	0.1207	1.3522	-0.5726	20.998	21.595	23.238	-19.8
N3859	0.5063	1.3562	-0.7830	21.390	21.504	23.094	-20.1
N3860	0.2357						
N3861	0.2558	1.6460	-0.5950	21.425	22.182	23.643	-20.9
N3883	0.0692	1.7169	-0.7416	22.225	22.847	24.023	-20.9
N3947	0.1076	1.4946	-0.7519	21.430	21.567	23.322	-20.5
N3951	0.2972	1.3664	-0.8481	21.219	21.501	22.950	-20.2
U6614	0.0409	1.4977	-0.4780	21.058	22.210	23.804	-19.8
U6686	0.8409	1.6109	-0.5356	23.069	23.358	24.143	-20.0
U6697	0.7394	1.5615	-1.2406	21.878	21.935	23.236	-20.8
U6876	0.1382	1.3254	-0.7940	21.356	21.779	23.311	-19.6
U6891	0.6333	1.4055	-0.5419	22.483	22.911	23.901	-19.6
Z97033	0.3308	1.1925	-0.8136	21.688	22.005	23.160	-19.1
Z97057	0.4493	1.1211	-0.9772	22.787	22.845	23.580	-18.4

Object (1)	$\log R$ (2)	$\log D_{25}$ (3)	$\log C$ (4)	μ_{n} (5)	$\begin{gathered} \mu_{-0.6} \\ (6) \end{gathered}$	μ_{25} (7)	B_{T} (8)
Z97068	0.2323	1.3613	-0.7054	21.186	21.757	23.306	-19.9
Z97079	0.2676	1.0777	-1.7803	21.504	21.684	23.192	-18.6
Z97152	0.4352	1.2875	-0.6275	21.934	22.372	23.544	-19.3
Z97185	0.4235	
Z127056	0.5480		...				
Z127082	0.0985	1.2620	-0.8352	21.178	21.641	22.950	-19.7
Coma							
1842	0.3054	1.4217	-0.9206	22.122	22.435	23.463	-20.0
14088	0.5512						
N4848	0.5104	1.4649	-0.7503	21.414	21.647	23.011	-20.6
N4921	0.0435
N4934	0.7044	\ldots \cdot	...
N4944	...	\ldots	\ldots	\ldots	\ldots	\ldots	
N5081	0.4534	1.6195	-0.6980	21.808	22.313	23.769	-20.7
U8013	0.4725			
U8017	0.3471	1.3530	-0.9175	21.477	21.677	22.817	-20.1
U8161	0.3823	1.3532	-0.5926	21.739	22.121	23.474	-19.6
Z160058	0.4762	1.3203	-1.0828	22.220	22.360	23.411	-19.6
Z160086	0.1507	1.1506	-0.7198	21.078	21.592	23.204	-18.8
Z160106	0.1425	\ldots	. \cdot
Z74-23							
N5409	0.2382	1.5046	-0.6016	21.326	21.948	23.738	-20.3
N5416	0.2017	1.4230	-0.8079	21.189	21.664	22.993	-20.4
U8918	0.5184	1.3937	-0.8281	22.037	22.323	23.525	-19.8
U8948	0.3524	1.3279	-0.9388	22.477	22.727	23.848	-19.2
U8951	0.6123	1.2522	-0.9782	23.026	23.277	24.049	-18.6
U8967	0.6965	1.4962	-0.7662	22.465	22.757	23.790	-20.4
Z74010	0.3897	1.2528	-1.0259	23.375	23.518	24.284	-18.7
Z74045	0.0008	1.1980	-0.9267	20.548	20.920	22.521	-19.7
Hercules							
11173	0.3605	1.4389	-0.7557	22.167	22.406	23.589	-20.0
İ179	0.2393	1.4423	-0.8457	22.012	22.523	23.613	-20.0
I1182	0.1754	..	\cdots	\ldots
N6045	0.5295	1.5798	-0.6364	21.580	21.884	23.184	-20.9
N6050	\cdots
N6054	0.1876	1.4057	-0.7459	20.950	21.328	23.242	-20.0
U10085	0.1689	1.5230	-0.8330	21.487	21.964	23.267	-20.5
U10121	0.1961	1.5398	-0.8857	20.870	21.302	22.982	-21.0
U10190	0.6008
U10195	0.5331	1.5044	-0.5567	21.966	22.410	23.673	-20.2
Z108098	0.2228	1.3210	-0.8000	21.740	22.115	23.432	-19.4
Z108107	0.4059	1.3109	-0.8819	21.686	21.892	23.085	-19.7

Table A. 1 Continued
191

Object (1)	$\log R$ (2)	$\log D_{25}$ (3)	$\log C$ (4)	$\begin{aligned} & \mu_{n} \\ & (5) \end{aligned}$	$\mu_{-0.5}$ (6)	$\begin{aligned} & \mu_{25} \\ & (7) \end{aligned}$	$\begin{aligned} & B_{T} \\ & (8) \end{aligned}$
Z108108	0.2795	1.3119	-0.8054	21.416	21.731	23.085	-19.8
Z108127	0.1554	1.3187	-0.8470	21.446	21.808	23.192	-19.6
Z108139	0.3433	1.4769	-0.9254	22.380	22.604	23.639	-20.0
Z108154	0.0979	1.3070	-0.7958	21.208	21.650	23.160	-19.6
Pegasus							
I1474	0.3154	1.0837	-0.8881	21.720	21.941	23.152	-18.6
I5309	0.3244	1.1830	-0.8642	21.825	22.258	23.605	-18.8
N7518	0.1404	1.1337	-0.6491	21.099	21.502	23.167	-18.9
N7536	0.3476			
N7591	0.2998	1.2680	-0.6047	21.256	21.844	23.384	-19.4
N7593	0.1916	1.0755	-0.9258	21.159	21.323	22.681	-19.0
N7608	0.5262	
N7610	0.2600	1.4511	\ldots	22.313	22.905		
N7631	0.4213	1.2876	-0.7779	21.328	21.908	23.237	-19.6
N7643	0.2456	1.1808	-0.7270	21.124	21.504	23.131	-19.1
U12304	0.6763	1.2248	-1.4688	22.852	22.830	23.527	-18.9
U12361	0.5618	1.0049			23.630	24.273	-17.6
U12370	0.5583	1.1866	-0.7234	22.586	23.005	23.926	-18.4
U12423	0.8353	1.3046	-0.7061	22.953	23.013	24.125	-19.1
U12451	0.7163	1.1733	-1.0912	23.794	23.952	24.434	-18.0
U12467	0.6047	1.1118	-0.9502	23.490	23.613	24.371	-17.9
U12494	0.5023	1.1885	-1.1477	22.522	22.840	23.840	-18.5
U12497	0.5346	1.1590	-1.1339	22.686	22.923	23.850	-18.3
U12522	0.0792	1.0924	-1.2240	23.076	23.311	24.344	-17.6
U12561	0.5268	1.1465	-0.9118	23.126	23.354	24.311	-18.0
Z406031	0.4252	0.9305	-0.8766	22.257	22.487	23.420	-17.6
Z406042	0.1856	0.9985	-0.9948	22.688	22.914	23.910	-17.5
Z406079	0.3689	1.1113	-0.9571	22.244	22.554	23.769	-18.1
Z406082		
A2634/66							
U12721	0.3350	1.5481	-0.6579	21.877	22.389	23.768	-20.0
Virgo							
N4246	0.2829	0.9701	-0.9390	22.540	22.697	23.773	-17.5
N4380	0.2782	1.1477	-0.8587	21.875	22.517	23.681	-18.4
N4651	0.1842	1.1894	-0.7664	20.526	21.212	22.957	-19.3

Object (1)	$\log R$ (2)	$\log D_{25}$ (3)	$\log C$ (4)	(5)	$\mu_{-0.5}$ (6)	μ_{25} (7)	B_{T} (8)
NGC 1209							
eso024234-1730.6	0.1997	0.9313	-1.0847	22.762	23.246	24.288	-17.2
eso024524-1902.9	0.6812	0.8854	-1.0530	23.792	23.928	24.363	-16.7
eso024921-1816.5	0.7462	0.8910	-1.1429	23.404	23.442	24.261	-16.6
eso025754-1928.1	0.5927	0.7085	-0.6912	22.993	23.160	24.041	-16.3
eso030617-1754.8	0.3362	0.8560	-0.9364	21.940	22.200	23.416	-17.2
eso030719-1801.2	0.7061	0.9200	-1.0247	23.722	23.700	24.411	-17.1
eso031302-1805.9	0.2512	0.8546	-0.6056	21.593	22.292	23.545	-16.9
eso031339-1816.2	0.2806	0.8320	-0.9106	22.624	22.704	23.687	-16.8
Antlia							
esol01025-3428.9	0.2944	1.2075	-0.8863	22.719	22.985	23.846	-18.5
esol01232-3348.7	0.3634	1.0753	-0.8485	21.685	22.032	23.398	-18.2
esol01908-3932.9	0.1114	1.0718	-0.5578	20.914	21.692	23.341	-18.1
esol02507-3337.3	0.6813	1.0981	-1.1910	22.786	22.940	23.816	-18.0
esol02621-3239.9	0.6038	0.6505	...	24.283	24.280	24.654	-15.7
eso102750-3626.2
esol02936-3435.8			. \cdot	\ldots	
Hydra							
esol02210-2318.0	0.2350	1.1619	-0.8319	20.866	21.089	22.977	-19.1
esol03021-2716.2	0.4937	1.0680	-1.4012	22.599	22.906	23.748	-18.2
eso103140-2954.7	0.6849	1.2940	-0.8390	22.374	22.745	23.825	-19.0
esol03518-3211.1	0.8758	1.0680	-0.9498	23.103	23.338	24.102	-17.3
eso103542-2754.7	0.8534	0.8973	-0.8193	23.638	23.729	24.366	-16.3
esol03655-3002.3	0.7090	1.5128	-0.7001	22.188	22.494	23.718	-20.2
esol03656-2634.7	0.5035	1.3746	-0.6863	22.579	22.767	23.738	-19.5
Centaurus 30							
eso123654-4027.9	0.4471	1.2308	-0.6500	21.328	21.879	23.427	-19.1
esol24127-3614.2	0.6690	1.0926	-1.0064	22.262	22.386	23.665	-18.2
esol24410-4113.4	0.4428	1.1261	-0.7510	21.360	21.725	23.134	-18.8
esol25004-4010.8	0.2981	1.2382	-0.9359	21.694	21.965	23.111	-19.5
Centaurus 45							
esol23759-3628.0	0.6438	1.0573	-0.8324	22.220	22.262	23.556	-18.4
esol24841-4322.9	\ldots
esol24953-3845.4	0.2886	1.4613	-0.9410	21.216	21.604	22.975	-20.5
eso125142-3927.5	0.5162	1.0293	-1.0436	22.413	22.578	23.631	-18.0
Telescopium 27							
eso195939-4142.7	0.7423	0.8108	-0.9989	23.547	23.623	24.304	-16.3
eso200202-4807.3	0.7146	0.8163	-0.6855	23.563	23.791	24.401	-16.3
eso200211-4807.3	0.3161	1.0595	-1.2385	23.015	23.239	24.070	-17.8

Object (1)	$\log R$ (2)	$\log D_{25}$ (3)	$\log C$ (4)	(5)	$\mu_{-0.5}$ (6)	μ_{25} (7)	$\begin{aligned} & B_{T} \\ & (8) \end{aligned}$
eso200541-4629.8	0.5555	0.8559	-0.6896	22.459	22.660	23.750	-17.2
eso200735-4825.5	0.6949	1.0851	-1.0391	23.253	23.467	24.212	-17.8
eso200823-4617.6	0.6991	1.3252		22.602	23.023		-18.8
eso200826-4710.4	0.7164	0.8732	-0.8371	22.659	22.898	23.817	-16.9
eso201039-4858.8	0.1894	1.0571	-0.9014	22.932	23.634	24.262	-17.1
eso201301-4333.6	0.4608	0.8474	-0.9733	22.270	22.436	23.594	-17.1
eso201352-4440.3	0.3923	0.9371	-1.2977	22.426	22.520	23.637	-17.5
eso201442-4821.8	0.5688	0.9134	-1.0983	23.134	23.231	24.046	-17.1
eso201527-4514.2	0.6496	0.9757	-0.9141	22.763	22.945	23.865	
eso201730-4926.4	0.7073	0.8748	-0.7233	23.090	23.307	24.137	-16.8
eso202031-4409.5	0.3932	1.3254	-0.6103	20.545	21.116	22.945	-20.0
eso202423-4929.9	0.8570	0.8040	-1.0090	23.629	23.740	24.316	-15.9
Telescopium 56							
eso195443-4614.9	0.3464	1.4459	-0.8209	22.108	22.306	23.609	-18.5
eso200559-4928.7	0.6217	1.3447	-0.5045	21.464	22.073	23.334	-18.2
eso201006-4458.1	0.3743	1.4919	-0.9326	22.395	22.601	23.507	-18.8
eso201024-4440.7	0.0915	1.4943	-0.9271	21.566	21.943	23.208	-19.0
eso201302-4451.8	0.3737	1.3355	-1.1330	21.999	22.219	23.315	-18.2
Pavo							
eso191452-7219.1	0.0677	0.8963	-1.0662	22.325	22.857	23.931	-16.9
eso192513-7110.4	0.4511	0.8709	-0.9017	21.436	21.655	23.034	-17.7
eso195254-7035.3	0.5208	1.0114	-0.8554	22.397	22.749	23.737	-17.7
eso200710-6722.7	0.3160	0.9534	-0.7920	22.038	22.449	23.612	-17.5
eso201001-7251.8	0.1420	0.6686	-1.0511	21.132	21.374	22.723	-16.9
eso201125-7117.0	0.6350	0.8557	-1.0636	23.062	23.114	24.046	-16.8
eso201137-7402.4	0.3178	1.0997	-0.8141	22.243	22.585	23.642	-18.1
eso201810-7143.5	0.9429	1.3022	\ldots	22.794	23.007	...	-18.5
eso202552-6615.9	0.3119	0.8013	-0.6096	21.513	22.178	23.278	-17.1
eso204014-7134.7	0.3833	1.0068	-0.5155	21.192	21.559	23.210	-18.2
Indus							
eso205906-4341.3	0.5824	1.1677	-0.7191	21.854	22.322	23.561	-18.7
eso210003-4308.6	0.5625	0.9544	-0.7590	22.655	22.885	23.889	-17.4
eso210053-4506.0	0.8470	1.3177	-0.6992	23.504	23.745	24.377	-18.0
eso210101-4826.3	0.1924	1.1344	-0.7003	21.276	21.747	23.340	-18.7
eso210145-4759.3	0.6034	1.4425	-0.8849	22.414	22.969	23.973	...
eso210256-4822.2	\ldots
eso210500-4407.1	0.1969	1.2390	-0.9436	22.260	22.569	23.706	-18.9
eso210616-4736.6	0.2600	1.0810	-1.1238	22.583	22.777	23.729	-18.0
eso210740-4354.9	0.6179	1.2408	-0.5500	21.834	22.253	23.454	-19.1
eso210802-4243.7	0.1157	0.9072	-1.0535	22.054	22.294	23.402	-17.5
eso212713-4325.3	0.0743	1.0816	-1.0880	22.092	22.305	23.377	-18.3

Object	$\log R$	$\log D_{25}$	$\log C$	μ_{n}	$\mu_{-0.5}$	μ_{25}	$\mathrm{~B}_{T}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Miscellaneous							
l701	0.1465	1.2327	-0.9217	20.994	21.469	23.245	\ldots
I900	0.1741	1.4859	-1.1105	21.641	21.848	23.077	\ldots
I1401	0.4246	1.3686	-0.8545	22.036	22.305	23.477	\ldots
N173	0.1254	\ldots	\ldots	21.353	21.941	\ldots	\ldots
N4449	0.1873	0.6820	\ldots	19.640	20.720	\ldots	\ldots
N4475	0.2454	1.5506	-0.7712	22.183	22.597	23.874	\ldots
N4738	0.8020	1.4121	-0.7445	22.286	22.461	23.561	\ldots
N7537	0.5569	1.1762	-0.6357	21.293	21.791	23.218	\ldots
N7541	0.4661	1.4014	\ldots	21.699	21.781	\ldots	\ldots
N7570	0.2467	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
N7750	0.2922	1.2646	-0.9402	21.570	21.722	22.844	\ldots
N7757	0.1509	1.3097	-0.8784	21.964	22.372	23.440	\ldots
U673	0.4324	1.2547	-0.9116	22.477	22.763	23.901	\ldots
U1045	0.5268	1.3524	-0.7380	21.803	22.129	23.480	\ldots
U2509	0.5220	1.2467	-1.0154	21.734	22.011	23.140	\ldots
U4375	0.1740	1.1726	-0.9502	21.828	22.290	23.511	\ldots
U4404	0.5739	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
U4414	0.0502	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
U6586	0.1328	\ldots	\ldots	21.370	22.379	\ldots	\ldots
U7754	0.4167	1.1975	-0.8281	21.991	22.170	23.346	\ldots
U9558	0.2250	1.6200	-1.0348	22.505	22.750	23.602	\ldots
U12571	0.2905	1.0318	-0.9827	22.487	22.537	23.608	\ldots
Z160139	0.2394	1.1558	-1.2794	21.884	22.214	23.479	\ldots
Z501035	0.4240	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
es0025101-1748.3	0.2115	1.5499	-0.4600	21.461	21.540	23.323	\ldots
eso102742-3458.0	0.3857	1.0942	-0.4374	20.808	21.750	23.264	\ldots
eso191041-6629.7	0.7575	\ldots	-1.1684	24.264	24.334	24.637	\ldots
eso201327-4755.6	0.1208	1.3942	-0.8831	21.779	22.080	23.429	\ldots
eso212837-4616.8	0.2273	1.5152	-0.5611	21.269	21.846	23.331	\ldots

Table A. 2
195
B-band Isophotal Magnitudes

Object (1)	B_{22} (2)	$\mathrm{B}_{22.5}$ (3)	B_{23} (4)	$\mathrm{B}_{23.5}$ (5)	B_{24} (6)	$\mathrm{B}_{24.5}$ (7)	B_{25} (8)	B_{26} (9)
Pisces								
N296		
N338	-19.413	-19.789	-19.963	-20.135	-20.258	-20.348	-20.727	
N444	-16.471	-18.029	-18.718	-19.012	-19.157	-19.290
N452	-18.682	-19.127	-19.599	-19.749	-19.836	-19.913	-19.981	-20.267
N523	...	\ldots				
N536	-19.205	-19.499	-20.159	-20.395	-20.501	-20.589	-20.666	
N582				
U525	-14.041	-15.182	-15.694	-16.166	-17.025	-18.251	-18.661	-18.986
U540	-19.207	-19.367	-19.443	-19.493	-19.523	-19.546	-19.557	-19.576
U542	-18.215	-18.568	-18.895	-19.100	-19.341	-19.527	-19.615	-19.920
U556	-16.795	-17.544	-18.017	-18.243	-18.468	-18.586	-18.664	-18.811
U557	-15.453	-17.490	-18.131	-18.552	-18.872	-18.954	-18.991	...
U633	
U679	-14.988	-16.780	-17.245	-17.607
U987	-19.053	-19.328	-19.503	-19.682	-19.779	-19.883	-19.961	-20.025
U1033	-18.718	-19.020	-19.178	-19.598	-19.757	-19.851	-19.961	-20.088
A400								
U2367	-18.542	-19.118	-19.552	-19.934	-20.261	-20.503	-20.676	-20.795
U2375
U2399	\ldots		.					
U2405	-17.792	-19.073	-19.745	-20.086	-20.318	-20.432	-20.482	-20.560
U2415	\cdots \cdot.	
U2444	-18.997	-19.338	-19.529	-19.674	-19.746	-19.850	-19.922	-20.016
U2454	...	-16.839	-18.066	-18.754	-19.346	-19.467	-19.586	-19.670
A539								
D11	\ldots	\ldots	\ldots	\cdots	...	
U3236	\ldots \cdot
U3248	\cdots	\ldots	...
U3269	-20.459	-20.604	-20.734	-20.801	-20.824	-20.846	-20.864	-20.887
U3282	-18.246	-19.340	-20.174	-20.392	-20.462	-20.554	-20.658	
U3291	-17.439	-19.324	-19.691	-20.177	-20.306	-20.359	-20.397	-20.444
Z421011	-19.888	-20.264	-20.434	-20.518	-20.589	-20.634	-20.670	-20.707
Z421030	-18.808	-19.712	-20.046	-20.164	-20.247	-20.299	-20.330	-20.469

196

Object (1)	B_{22} (2)	$\mathrm{B}_{22.5}$ (3)	B_{23} (4)	$\mathrm{B}_{23.5}$ (5)	B_{24} (6)	$\mathrm{B}_{24.5}$ (7)	B_{25} (8)	B_{26} (9)
Cancer								
12308		
12348	-17.116	-17.360	-17.551	-17.764	-18.213	-18.298	-18.323	-18.359
N2554						
N2558								
N2562	-18.966	-19.112	-19.215	-19.325	-19.391	-19.458	-19.522	-19.595
N2565	-20.112	-20.201	-20.307	-20.737	-20.808	-20.833	-20.855	-20.920
N2575	-17.592	-18.713	-19.690	-19.952	-20.140	-20.239	-20.321	-20.394
N2595		
N2596	-17.927	-18.748	-19.682	-19.945	-20.037	-20.098	-20.149	
N2599	-20.024	-20.203	-20.336	-20.436	-20.662	-20.734	-20.797	.
U4299	-17.172	-17.758	-18.288	-19.041	-19.367	-19.500	-19.580	-19.722
U4329	-17.285	-18.156	-18.721	-19.076	-19.334	-19.564	...	
U4332	-17.023	-17.382	-17.925	-18.466	-18.749	-18.956	-19.090	-19.325
U4361	...							
U4386	-18.756	-19.150	-19.663	-19.969	-20.117	-20.205	-20.272	-20.362
U4399	\ldots	\ldots	
U4400		-15.054	-16.670	-17.270	-17.714	-17.955	-18.161	-18.247
U4416	-17.909	-18.874	-19.363	-19.894	-20.208	-20.316	-20.373	-20.414
Z119051				
Z119053	\cdots	.	\cdots	\ldots		
Z119066	-18.686	-18.900	-19.051	-19.180	-19.270	-19.330	-19.403	-19.475
Z119095
Z119107					
A1367								
12951	-18.359	-18.633	-18.905	-19.353	-19.600	-19.769	-19.867	-20.014
MK181	-19.633	-19.753	-19.861	-19.910	-19.949	-19.973	-19.987	-20.009
N3697	-18.766	-19.162	-19.803	-20.454	-20.746	-20.872	-20.962	-21.040
N3816
N3832	-15.235	-16.504	-18.952	-19.647	-20.019	-20.205	-20.333	-20.455
N3840	-18.679	-18.888	-19.052	-19.283	-19.542	-19.651	-19.710	-19.775
N3859	-19.129	-19.454	-19.611	-19.717	-19.804	-19.891	-19.969	-20.080
N3860	
N3861	-19.147	-19.557	-19.960	-20.142	-20.306	-20.643	-20.808	-20.895
N3883	-18.305	-18.518	-18.844	-19.248	-20.059	-20.489	-20.703	-20.885
N3947	-18.480	-19.392	-19.799	-19.972	-20.131	-20.254	-20.353	-20.442
N3951	-19.292	-19.650	-19.853	-19.956	-20.040	-20.095	-20.142	-20.179
U6614	-18.514	-18.674	-18.818	-18.923	-19.036	-19.623	-19.783	
U6686	...	-16.630	-18.041	-18.636	-19.091	-19.429	-19.768	-19.939
U6697	-16.646	-19.923	-20.180	-20.498	-20.631	-20.687	-20.727	-20.812
U6876	-17.841	-18.249	-18.827	-19.156	-19.411	-19.501	-19.542	-19.581
U6891	-15.959	-17.642	-18.145	-18.431	-18.688	-19.164	-19.309	-19.477
Z97033	-17.353	-18.032	-18.540	-18.784	-18.911	-18.993	-19.040	-19.094
Z97057	-17.274	-17.761	-17.995	-18.129	-18.206	-18.303

Object (1)	B_{22} (2)	$\mathrm{B}_{22.5}$ (3)	B_{23} (4)	$\mathrm{B}_{23.5}$ (5)	B_{24} (6)	$\mathrm{B}_{24.5}$ (7)	B_{25} (8)	B_{26} (9)
Z97068	-18.573	-18.835	-19.052	-19.318	-19.532	-19.634	-19.713	-19.801
Z97079	-16.860	-17.701	-18.000	-18.249	-18.357	-18.461	-18.524	-18.579
Z97152	-17.247	-17.719	-18.094	-18.530	-18.865	-18.992	-19.106	-19.217
Z97185					...			
Z127056								
Z127082	-17.729	-18.917	-19.257	-19.415	-19.508	-19.549	-19.584	-19.637
Coma								
1842	-16.570	-17.745	-18.848	-19.460	-19.689	-19.800	-19.861	-19.924
14088			
N4848	-19.285	-20.071	-20.210	-20.304	-20.373	-20.436	-20.515	-20.587
N4921
N4934	\ldots		\ldots			
N4944	.			\ldots
N5081	-18.367	-18.693	-19.293	-19.662	-20.207	-20.490	-20.598	
U8013	
U8017	-18.720	-19.600	-19.792	-19.887	-19.955	-19.999	-20.030	-20.086
U8161	-18.080	-18.454	-18.764	-18.973	-19.195	-19.400	-19.470	-19.593
Z160058	...	-17.461	-18.437	-19.090	-19.262	-19.358	-19.398	-19.507
Z160086	-17.568	-18.013	-18.285	-18.445	-18.567	-18.663	-18.743	-18.802
Z160106	
Z74-23								
N5409	-18.538	-18.965	-19.125	-19.214	-19.318	-20.053	-20.128	-20.223
N5416	-19.077	-19.718	-19.963	-20.092	-20.178	-20.273	-20.308	-20.344
U8918	-16.701	-18.060	-18.749	-19.114	-19.370	-19.496	-19.599	-19.717
U8948	...	-16.157	-17.570	-18.135	-18.430	-18.742	-18.898	-19.092
U8951	-16.828	-17.783	-18.239	-18.430	-18.572
U8967	...	-17.490	-18.609	-19.111	-19.555	-19.744	-19.915	-20.012
Z74010	\ldots	-16.004	-17.119	-18.095	-18.335	-18.643
Z74045	-19.075	-19.313	-19.466	-19.550	-19.605	-19.638	-19.662	-19.676
Hercules								
11173	-17.425	-18.191	-18.869	-19.252	-19.495	-19.682	-19.792	-19.968
11179	-16.638	-17.574	-18.319	-19.121	-19.481	-19.675	-19.776	-19.946
11182	
N6045	-19.253	-19.829	-20.228	-20.467	-20.611	-20.693	-20.753	-20.869
N6050
N6054	-18.929	-19.137	-19.307	-19.453	-19.715	-19.876	-19.922	-19.978
U10085	-18.823	-19.375	-19.844	-20.063	-20.262	-20.380	-20.438	-20.476
U10121	-20.012	-20.304	-20.570	-20.717	-20.806	-20.868	-20.925	...
U10190
U10195	-18.022	-18.703	-19.102	-19.438	-19.635	-19.828	-20.040	-20.322
Z108098	-17.193	-17.796	-18.487	-18.882	-19.109	-19.234	-19.301	-19.365
Z108107	-17.865	-18.809	-19.191	-19.387	-19.509	-19.572	-19.648	...

Object (1)	B_{22} (2)	$\mathrm{B}_{22.5}$ (3)	B_{23} (4)	$\begin{gathered} B_{23.5} \\ (5) \end{gathered}$	B_{24} (6)	$\mathbf{B}_{24.5}$ (7)	B_{25} (8)	$\begin{aligned} & \mathbf{B}_{26} \\ & (9) \end{aligned}$
Z108108	-18.151	-18.908	-19.223	-19.408	-19.529	-19.603	-19.678	-19.815
Z108127	-17.612	-18.471	-18.958	-19.235	-19.383	-19.467	-19.514	-19.560
Z108139	-16.412	-17.333	-18.604	-19.312	-19.630	-19.798	-19.871	-19.926
Z108154	-18.434	-18.788	-19.058	-19.223	-19.328	-19.453	-19.520	-19.568
Pegasus								
I1474	-16.653	-17.867	-18.132	-18.290	-18.398	-18.469	-18.542	-18.580
15309	-16.552	-17.176	-17.550	-17.992	-18.262	-18.417	-18.555	-18.686
N7518	-17.327	-18.010	-18.399	-18.515	-18.600	-18.679	-18.758	-18.903
N7536	
N7591	-17.981	-18.262	-18.491	-18.745	-19.070	-19.162	-19.236	-19.392
N7593	-18.328	-18.589	-18.731	-18.822	-18.898	-18.937	-18.958	-18.986
N7608
N7610	-15.297	-16.421	-17.941	-18.656	-19.093	-19.255	...	
N7631	-17.835	-18.547	-18.895	-19.163	-19.334	-19.454	-19.488	-19.539
N7643	-17.773	-18.424	-18.600	-18.712	-18.850	-18.969	-19.012	-19.065
U12304	-17.551	-18.399	-18.564	-18.669	-18.730	-18.845
U12361	\cdots	-	-15.912	-16.911	-17.057	-17.285
U12370	-14.167	-15.606	-16.241	-17.491	-17.745	-17.943	-18.167	
U12423	...	-15.977	-16.666	-17.313	-17.738	-18.288	-18.555	-19.025
U12451	-15.294	-16.852	-17.597	-17.920
U12467	\cdots	-15.095	-16.095	-16.881	-17.391	-17.861
U12494	...	-15.021	-16.522	-17.173	-17.682	-18.015	-18.260	-18.391
U12497	...	-15.021	-15.857	-17.027	-17.637	-17.933	-18.141	-18.278
U12522	-14.021	-15.262	-16.017	-16.995	-17.508	
U12561	\ldots	...	-14.363	-15.878	-16.543	-17.221	-17.642	-17.860
Z406031	...	-15.578	-16.587	-17.085	-17.281	-17.407	-17.444	-17.530
Z406042	\ldots	-14.172	-15.137	-16.035	-16.922	-17.223	-17.342	-17.972
Z406079	...	-16.123	-16.795	-17.230	-17.753	-17.946	-18.074	...
Z406082	 \cdot
A2634/66								
U12721	-17.738	-18.310	-19.021	-19.320	-19.474	-19.657	-19.898	-19.983
Virgo								
N4246	...	-13.827	-15.959	-16.645	-16.990	-17.243	-17.382	-17.473
N4380	-15.601	-16.193	-16.921	-17.508	-18.065	-18.218	-18.337	...
N4651	-18.468	-18.613	-18.796	-19.011	-19.142	-19.207	-19.254	...

Object (1)	B_{22} (2)	$\mathrm{B}_{22.5}$ (3)	B_{23} (4)	$\mathrm{B}_{29.5}$ (5)	B_{24} (6)	$\mathrm{B}_{24.5}$ (7)	$\begin{aligned} & B_{25} \\ & (8) \end{aligned}$	B_{26} (9)
NGC 1209								
eso024234-1730.6		-12.779	-14.154	-14.992	-15.818	-16.299	-16.930	-17.089
eso024524-1902.9				-9.877	-14.030	-15.748	-16.144	-16.553
eso024921-1816.5				-13.511	-16.236	-16.340	-16.416	-16.541
eso025754-1928.1		-12.382	-13.721	-14.577	-15.123	-15.471	-15.741	-16.149
eso030617-1754.8	-14.341	-15.873	-16.414	-16.696	-16.924	-17.069	-17.091	-17.179
eso030719-1801.2				-11.149	-15.290	-15.951	-16.311	-16.891
eso031302-1805.9	-15.184	-15.610	-16.115	-16.405	-16.589	-16.702	-16.859	
eso031339-1816.2		-13.729	-15.366	-16.102	-16.466	-16.616	-16.716	-16.839
Antlia								
eso101025-3428.9		-15.077	-16.115	-17.468	-17.890	-18.264	-18.348	-18.463
eso101232-3348.7	-16.366	-17.258	-17.510	-17.815	-17.993	-18.086	-18.187	
esol01908-3932.9	-16.930	-17.203	-17.410	-17.630	-17.794	-17.920	-18.018	-18.062
esol02507-3337.3		...	-15.319	-17.240	-17.555	-17.720	-17.830	-17.930
eso102621-3239.9	\ldots	\ldots	-14.107	-14.733	-15.437
eso102750-3626.2		\ldots	
esol02936-3435.8					\ldots	...		
Hydra								
esol02210-2318.0	-18.309	-18.546	-18.720	-18.877	-18.987	-19.041	-19.083	-19.124
esol03021-2716.2		-12.571	-16.124	-17.017	-17.531	-17.719	-17.830	-18.024
eso103140-2954.7	-14.903	-16.223	-16.870	-17.673	-18.407	-18.600	-18.710	-18.832
esol03518-3211.1	-13.603	-15.293	-16.556	-16.855	-17.052	-17.207
eso103542-2754.7				-13.043	-15.217	-15.582	-15.854	-16.056
eso103655-3002.3	-17.346	-18.309	-19.027	-19.381	-19.706	-19.929	-20.060	-20.158
esol03656-2634.7	-16.184	-17.259	-18.114	-18.728	-18.990	-19.316	-19.397	-19.468
Centaurus 30								
esol23654-4027.9	-17.688	-18.073	-18.352	-18.636	-18.780	-18.878	-18.991	-19.055
esol24127-3614.2	-13.841	-16.739	-17.283	-17.648	-17.836	-17.977	-18.076	-18.183
esol24410-4113.4	-17.430	-17.906	-18.307	-18.502	-18.641	-18.711	-18.764	-18.808
esol25004-4010.8	-17.006	-18.638	-19.009	-19.144	-19.229	-19.316	-19.367	-19.441
Centaurus 45								
esol23759-3628.0	-15.348	-17.115	-17.544	-17.732	-17.929	-18.014	-18.110	-18.220
eso124841-4322.9	-19892	$\underset{-20.013}{ }$	-20.217					
esol24953-3845.4	-19.892	-20.013	-20.217	-20.293	-20.381	-20.423	-20.491	-20.521
eso125142-3927.5		-15.584	-16.567	-17.258	-17.499	-17.607	-17.748	-17.924
Telescopium 27								
esol95939-4142.7	\ldots		\ldots	-11.167	-14.931	-15.438	-15.874	-16.133
eso200202-4807.3	.	\ldots		-13.688	-14.502	-15.199	-15.821	-16.114
eso200211-4807.3	\ldots		-14.227	-15.736	-17.093	-17.453	-17.627	-17.733

Table A. 2 Continued
200

Object (1)	B_{22} (2)	$\mathrm{B}_{22.5}$ (3)	$\begin{gathered} B_{23} \\ (4) \end{gathered}$	$\mathrm{B}_{23.5}$ (5)	$\begin{gathered} \mathrm{B}_{24} \\ (6) \end{gathered}$	$\mathrm{B}_{24.5}$ (7)	$\begin{gathered} \mathbf{B}_{25} \\ (8) \end{gathered}$	$\begin{gathered} \mathrm{B}_{26} \\ (9) \end{gathered}$
eso200541-4629.8	-13.759	-14.956	-15.502	-15.942	-16.339	-16.603	-16.718	-17.097
eso200735-4825.5			-10.344	-15.315	-16.721	-17.241	-17.473	-17.676
eso200823-4617.6		-14.661	-16.668	-17.969	-18.485	-18.741		
eso200826-4710.4		-13.744	-14.941	-15.709	-16.313	-16.584	-16.701	-16.827
eso201039-4858.8	-12.391	-13.519	-14.145	-14.935	-15.634	-16.385	-16.830	-17.044
eso201301-4333.6		-14.893	-16.088	-16.379	-16.601	-16.753	-16.882	-16.995
eso201352-4440.3		-13.839	-16.153	-16.711	-16.989	-17.239	-17.317	-17.415
eso201442-4821.8			-12.760	-15.639	-16.273	-16.561	-16.755	-16.970
eso201527-4514.2		-12.580	-15.208	-16.471	-16.925	-17.135	-17.243	-17.342
eso201730-4926.4			-13.899	-14.803	-15.562	-16.075	-16.393	-16.624
eso202031-4409.5	-19.199	-19.402	-19.621	-19.767	-19.855	-19.926	-19.981	
eso202423-4929.9				-2.271	-14.148	-15.243	-15.472	-15.755
Telescopium 56								
esol95443-4614.9	-16.880	-17.860	-18.953	-19.332	-19.525	-19.619	-19.765	-19.954
eso200559-4928.7	-18.461	-18.809	-19.039	-19.191	-19.454	-19.552	-19.617	-19.682
eso201006-4458.1	-16.058	-17.265	-18.969	-19.748	-20.025	-20.148	-20.227	-20.293
2so201024-4440.7	-18.437	-19.364	-20.014	-20.229	-20.360	-20.431	-20.492	
eso201302-4451.8	-15.895	-18.516	-18.983	-19.280	-19.473	-19.563	-19.596	-19.635
Pavo								
esol91452-7219.1	-12.887	-13.925	-14.518	-15.660	-16.353	-16.679	-16.803	-16.898
esol92513-7110.4	-16.568	-16.883	-17.247	-17.390	-17.472	-17.568	-17.639	-17.696
eso195254-7035.3	-13.915	-15.149	-16.098	-16.780	-17.400	-17.580	-17.662	-17.716
eso200710-6722.7	-14.686	-15.740	-16.261	-16.797	-17.131	-17.258	-17.380	-17.468
eso201001-7251.8	-16.315	-16.523	-16.654	-16.750	-16.789	-16.823	-16.885	-16.928
eso201125-7117.0		...	-11.009	-15.490	-16.013	-16.301	-16.468	-16.665
eso201137-7402.4	-15.119	-16.147	-16.827	-17.405	-17.691	-17.915	-18.024	-18.116
eso201810-7143.5		-12.552	-15.946	-17.550	-17.974	-18.272		
eso202552-6615.9	-15.315	-15.721	-16.340	-16.628	-16.787	-16.891	-16.948	-17.020
eso204014-7134.7	-16.997	-17.363	-17.571	-17.753	-17.874	-17.967	-18.059	-18.180
Indus								
eso205906-4341.3	-16.472	-17.117	-17.566	-18.015	-18.327	-18.456	-18.547	-18.628
eso210003-4308.6		-14.657	-15.636	-16.096	-16.579	-16.911	-17.082	-17.289
eso210053-4506.0				-15.318	-16.515	-17.393	-17.868	
eso210101-4826.3	-16.905	-17.483	-17.829	-18.164	-18.351	-18.461	-18.551	-18.657
eso210145-4759.3	-15.216	-16.882	-17.967	-18.382	-18.818	-19.194	-19.466	
eso210256-4822.2						
eso210500-4407.1	-14.527	-16.680	-17.416	-18.091	-18.548	-18.699	-18.776	-18.858
eso210616-4736.6		-13.664	-16.141	-17.107	-17.645	-17.789	-17.899	-17.992
eso210740-4354.9	-17.036	-17.485	-17.827	-18.265	-18.554	-18.729	-18.833	-18.960
eso210802-4243.7	-13.488	-15.963	-16.520	-16.930	-17.189	-17.312	-17.426	...
eso212713-4325.3	-14.244	-16.711	-17.481	-17.923	-18.059	-18.186	-18.231	-18.259

Table A. 2 Continued

Object (1)	B_{22} (2)	$\mathrm{B}_{22.5}$ (3)	B_{23} (4)	$\mathrm{B}_{23.5}$ (5)	B_{24} (6)	$\mathbf{B}_{24.5}$ (7)	\mathbf{B}_{25} (8)	B_{20} (9)
Miscellaneous								
1701	-17.622	-18.195	-18.502	-18.768	-18.974	-19.044	-19.110	
I900	-18.804	-19.712	-20.088	-20.331	-20.484	-20.531	-20.566	-20.615
I1401	-16.970	-17.768	-18.744	-19.094	-19.401	-19.520	-19.606	-19.678
N173	-17.593	-18.433	-18.904	-19.328	-19.610	-19.854		
N4449	-16.518	-16.717						
N4475	-17.512	-17.975	-18.721	-19.252	-19.719	-19.974	-20.144	-20.202
N4738	...	-17.444	-18.386	-18.955	-19.315	-19.437	-19.532	-19.619
N7537	-17.844	-18.146	-18.364	-18.673	-18.817	-18.908	-18.956	-19.004
N7541	-19.190	-19.689	-19.948	
N7570	...						\ldots	
N7750	-18.713	-19.084	-19.374	-19.609	-19.670	-19.706	-19.734	-19.765
N7757	-16.405	-17.612	-18.303	-18.828	-19.032	-19.186	-19.259	-19.328
U673		-15.359	-17.174	-17.983	-18.262	-18.473	-18.677	
U1045	-17.521	-18.267	-18.851	-19.106	-19.369	-19.444	-19.534	-19.635
U2509	-17.240	-18.341	-19.036	-19.247	-19.357	-19.417	-19.459	-19.500
U4375	-16.067	-17.104	-17.889	-18.258	-18.410	-18.557	-18.648	-18.719
U4404
U4414						...	\ldots	
U6586	-16.191	-17.167	-17.671					
U7754	-16.154	-17.800	-18.328	-18.554	-18.702	-18.809	-18.882	-18.953
U9558		-17.175	-18.915	-20.027	-20.381	-20.559	-20.608	-20.659
U12571	..	-15.129	-16.848	-17.344	-17.649	-17.791	-17.865	-18.119
Z160139	-15.653	-16.670	-17.256	-18.055	-18.316	-18.435	-18.490	
Z501035
eso025101-1748.3	-19.631	-19.864	-20.002	-20.111	-20.236	-20.363	-20.507	-20.871
eso102742-3458.0	-17.627	-17.794	-17.940	-18.122	-18.515	-18.608	-18.652	\ldots
eso191041-6629.7	\cdots
eso201327-4755.6	-17.643	-18.361	-19.026	-19.484	-19.580	-19.722	-19.795	-19.851
eso212837-4616.8	-19.128	-19.520	-19.811	-20.021	-20.132	-20.240	-20.354	-20.458

Table A. 3
202
Photometric Parameters Derived from R-band Surface Photometry
Object $\quad \log \mathrm{R} \quad \log \mathrm{D}_{23.5} \quad \log \mathrm{C} \quad \mu_{\mathrm{n}} \quad \mu_{-0.5} \quad \mu_{23.5} \quad \mathrm{R}_{T}$
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Pisces								
N296	0.5749	1.2070	-0.7407	21.683	21.953	22.726	-20.2	
N338	0.3412	1.4338	-0.5122	19.177	19.669	21.449	-21.9	
N444	0.6361	1.2991	-0.9126	21.438	21.684	22.597	-20.4	
N452	0.5864	1.4354	-0.4600	19.947	20.292	21.689	-21.9	
N523	\ldots							
N536	0.5048	1.5082	-0.5124	20.040	20.246	21.622	-22.2	
N582	0.6004	1.4256	-0.7258	20.179	20.461	21.855	-21.6	
U525	0.4733	1.2981	-0.7701	21.384	21.857	22.916	-20.3	
U540	0.2317	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	
U542	0.6649	1.3415	-0.4901	19.706	20.210	21.771	-21.2	
U556	0.3107	1.1637	-0.8034	19.756	20.252	21.699	-20.4	
U557	0.4195	1.1566	-1.0168	20.970	21.285	22.326	-19.9	
U633	0.6000	1.2445	-0.5713	20.305	20.659	21.943	-20.7	
U679	0.6737	0.9290	-0.9905	22.523	22.552	23.050	-18.7	
U987	0.5133	1.3261	-0.4511	19.493	19.880	21.558	-21.5	
U1033	0.7429	1.3039	-0.3315	20.382	20.697	21.818	-21.2	
A400								
U2367	0.5466	1.6295	-0.5208	20.181	20.687	21.986	-22.5	
U2375	0.5532	1.3856	-0.4129	19.724	20.313	21.700	-21.6	
U2399	0.0795	1.3561	-0.9387	20.089	20.491	21.904	-21.3	
U2405	0.4621	1.4629	-0.7061	20.553	20.863	22.024	-21.6	
U2415	0.5054	1.2542	-1.0338	20.490	19.925	21.591	-21.1	
U2444	0.1964	1.3669	-0.6612	19.420	19.808	21.524	-21.5	
U2454	0.6533	1.3693	-0.8193	20.983	21.259	22.335	-20.9	
A539								
D11								
U3236	0.2422	\ldots	$\ldots .9$	20.256	21.099	\ldots	-20.5	
U3248	0.3725	1.4650	-0.6893	19.941	20.436	21.784	-21.7	
U3269	0.4358	1.6461	-0.5349	19.708	20.554	21.920	-22.5	
U3282	0.1335	1.3636	-0.8847	19.519	19.886	21.325	-21.7	
U3291	0.1602	1.4890	-0.9732	19.783	20.119	21.826	-21.9	
Z421011	0.4381	1.3995	-1.1192	20.847	21.110	22.237	-21.1	
Z421030	0.3760	1.3841	-0.8169	19.698	20.130	21.534	-21.7	
	0.3594	1.3469	-0.7595	19.631	20.023	21.485	-21.6	

Object $\quad \log R \quad \log D_{23.5} \quad \log C \quad \mu_{n} \quad \mu_{-0.5} \quad \mu_{23.5} \quad R_{T}$
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Cancer							
12308	0.2642	1.0039	-0.6653	19.857	20.013	21.597	-19.7
I2348	0.2718	1.0210	-0.5028	19.508	20.152	21.679	-19.8
N2554	0.1867	1.6141	-0.4075	19.002	19.703	21.450	-22.9
N2558	0.1859	1.3947	-0.5144	18.950	19.832	21.592	-21.7
N2562	0.1588	1.2277	-0.5358	18.414	18.880	21.117	-21.4
N2565	0.3589	1.4613	-0.4028	18.514	19.250	21.214	-22.4
N2575	0.1434	1.4625	-0.8906	20.365	20.680	21.911	-21.7
N2595	0.1131	1.6539	...	19.558	20.295
N2596	0.4251	1.3593	-0.7920	20.055	20.486	21.710	-21.4
N2599	0.0585	1.4722	-0.3916	18.837	19.386	21.355	-22.4
U4299	0.7339	1.4213	-0.5938	20.468	20.953	22.025	-21.3
U4329	0.0713	1.3290	-1.0649	20.251	20.628	22.019	-21.0
U4332	0.2535	1.3073	-0.7978	19.713	20.233	21.898	-21.0
U4361	0.4344	1.1428	-0.8949	21.411	21.635	22.590	-19.7
U4386	0.5126	1.5029	-0.5837	19.674	20.177	21.680	-22.0
U4399	0.4770	1.1802	-0.8352	20.748	21.068	22.218	-20.1
U4400	0.7871	0.9813	-0.7999	21.636	21.800	22.586	-19.1
U4416	0.3052	1.4929	-0.7079	20.026	20.336	22.068	-21.7
Z119051	0.1894	1.0863	-0.8593	20.782	21.168	22.330	-19.5
Z119053	0.1322	0.9563	-0.7224	19.478	19.950	21.503	-19.6
Z119066	0.1846	1.1552	-0.8568	19.805	20.126	21.511	-20.6
Z119095	0.6204	1.0592	-0.7193	20.619	20.945	22.067	-19.7
Z119107	0.6547	1.0516	-0.8747	20.904	21.153	22.096	-19.7
A1367							
I2951	0.3358	1.4495	-0.5301	19.835	20.394	21.974	-21.7
MK181	0.2080	
N3697	0.5073	1.6001	-0.5752	20.243	20.706	22.040	-22.3
N3816	0.2257	18.621	19.896	...	-22.5
N3832	0.1106	1.5248	-1.1434	20.665	20.707	22.233	-21.8
N3840	0.1207
N3859	0.5063 \cdot.	
N3860	0.2357	1.3933	-0.6535	19.470	20.071	21.614	-21.7
N3861	0.2558
N3883	0.0692	1.6737	-0.6391	20.301	20.931	22.333	-22.5
N3947	0.1076
N3951	0.2972	1.3391	-0.8080	19.635	19.968	21.382	-21.6
U6614	0.0409	1.4294	-0.3962	19.361	20.063	21.970	-21.5
U6686	0.8409	1.3829	-0.5927	21.338	21.407	22.321	-21.4
U6697	0.7394	1.4581	-1.0923	21.048	21.058	22.172	-21.4
U6876	0.1382	1.3222	-0.7150	19.560	19.985	21.656	-21.2
U6891	0.6333	1.3371	-0.4892	20.901	21.241	22.356	-20.9
Z97033	0.3308	1.1798	-0.7124	19.891	20.298	21.582	-20.6
Z97057	0.4493	1.1961	-0.7822	20.156	20.323	21.500	-20.7

Object (1)	$\log R$ (2)	$\log D_{23.5}$ (3)	$\log C$ (4)	μ_{n} (5)	$\mu_{-0.5}$ (6)	$\mu_{23.5}$ (7)	R_{T} (8)
Z97068	0.2323		
Z97079	0.2676	1.0400	-1.2875	20.506	20.703	22.032	-19.5
Z97152	0.4352	1.2743	-0.5411	20.060	. 20.576	21.848	-20.9
Z97185	0.4235	1.2271	-0.9093	20.783	21.015	22.149	-20.4
Z127056	0.5480	1.2250	-0.7903	20.193	20.448	21.639	-20.8
Z127082	0.0985	1.2468	-0.7744	19.686	20.192	21.581	-21.0
Coma							
1842	0.3054	
14088	0.5512	1.4833	-0.6305	20.396	20.909	22.077	-21.7
N4848	0.5104	1.3911	-0.7144	20.059	20.286	21.529	-21.8
N4921	0.0435	1.6967	-0.7113	19.675	20.384	21.951	-22.8
N4934	0.7044	1.2930	-0.6717	19.890	20.108	21.510	-21.3
N4944
N5081	0.4534	1.6479	-0.6458	20.237	20.749	22.295	
U8013	0.4725	1.3211	-0.6157	21.001	21.315	22.444	-20.7
U8017	0.3471	1.3460	-0.7960	19.650	19.933	21.264	-21.6
U8161	0.3823	1.3346	-0.5354	19.825	20.407	21.812	-21.2
Z160058	0.4762	1.2983	-0.9396	20.594	20.908	22.054	-20.8
Z160086	0.1507	
Z160106	0.1425	1.1401	-0.6350	19.020	19.453	21.489	-20.6
Z74-23							
N5409	0.2382		
N5416	0.2017	1.3971	-0.7469	19.629	20.129	21.548	-21.7
U8918	0.5184
U8948	0.3524	...	\ldots	\ldots	...
U8951	0.6123	...	\cdots	.	.	\ldots	\ldots
U8967	0.6965	1.3725	-0.6538	20.826	21.118	22.241	-21.1
Z74010	0.3897	1.1723	-0.8860	21.959	22.148	22.878	-19.7
Z74045	0.0008
Hercules							
11173	0.3605	1.4139	-0.6269	20.436	20.809	22.050	-21.3
11179	0.2393	1.4194	-0.7139	20.443	21.021	22.191	-21.2
I1182	0.1754	1.4216	-0.4634	18.845	19.790	21.566	-21.7
N6045	0.5295
N6050	...	\cdots	\ldots	\cdots	\cdots	...	\ldots
N6054	0.1876
U10085	0.1689	1.4723	-0.7766	19.927	20.388	21.807	-21.8
U10121	0.1961	1.4728	-0.7997	19.367	19.676	21.413	-22.2
U10190	0.6008	1.1928	...	21.675	21.793	22.571	-19.9
U10195	0.5331	1.5048	-0.4939	20.233	20.747	22.095	-21.6
Z108098	0.2228	\ldots
Z108107	0.4059	1.2880	-0.7394	20.386	20.549	21.834	-20.8

Object (1)	$\log R$ (2)	$\log D_{23.5}$ (3)	$\log C$ (4)	μ_{n} (5)	$\mu_{-0.5}$ (6)	$\mu_{23.5}$ (7)	R_{T} (8)
Z108108	0.2795	1.2795	-0.6248	19.638	20.119	21.677	-20.9
Z108127	0.1554	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
Z108139	0.3433	1.4750	-0.8510	20.786	21.023	22.194	-21.4
Z108154	0.0979	1.2726	-0.7619	19.797	20.259	21.772	-20.8
Pegasus							
I1474	0.3154	1.0544	-0.8245	20.012	20.289	21.513	-20.1
I5309	0.3244	1.1494	-0.8124	20.136	20.553	21.989	-20.2
N7518	0.1404	1.1338	-0.5840	19.212	19.704	21.516	-20.5
N7536	0.3476	1.1853	-0.9082	20.294	20.464	21.763	-20.6
N7591	0.2998	1.2507	-0.5396	19.296	19.952	21.585	-21.1
N7593	0.1916	1.0514	-0.8490	19.749	19.954	21.405	-20.2
N7608	0.5262	1.1695	-0.8445	20.789	20.962	22.052	-20.2
N7610	0.2600	1.3397	-0.8642	21.014	21.367	22.427	-20.5
N7631	0.4213	1.2652	-0.7158	19.691	20.288	21.702	-21.0
N7643	0.2456	1.1977	-0.6809	19.405	19.839	21.595	-20.7
U12304	0.6763	1.2145	-1.3722	21.200	21.326	22.136	-20.3
U12361	0.5618	0.9042	\ldots	\ldots	22.409	22.965	-18.4
U12370	0.5583	0.9872	-0.7639	21.202	21.507	22.365	-19.2
U12423	0.8353	1.2619	-0.6267	21.083	21.168	22.333	-20.5
U12451	0.7163	1.0134	-0.9908	22.608	22.686	23.136	-19.1
U12467	0.6047	0.9743	-0.9231	21.981	22.081	22.877	-19.0
U12494	0.5023	1.0546	-1.1484	21.375	21.535	22.636	-19.5
U12497	0.5346	1.0399	-1.0877	21.545	21.708	22.615	-19.3
U12522	0.0792	0.9873	-1.1731	21.420	21.606	22.692	-19.0
U12561	0.5268	0.8860	-0.9932	22.052	22.080	22.795	-18.2
Z406031	0.4252	0.8567	-0.9477	21.117	21.346	22.239	-18.5
Z406042	0.1856	0.9853	-0.8988	20.900	21.313	22.414	-19.0
Z406079	0.3689	1.0329	-0.9879	21.129	21.380	22.469	-19.2
Z406082	\ldots						
A2634/66							
U12721	0.3350	1.4620	-0.5499	19.994	20.362	21.966	-21.5
Virgo							
N4246	0.2829	0.9154	-0.9648	20.999	21.160	22.277	-18.8
N4380	0.2782	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
N4651	0.1842	\ldots	\ldots	\ldots	\cdots	\cdots	\ldots

Object
(1)
$\log R$
(2)
(3)
(4)
(5)
$\mu_{-0.5}$
(6)
$\mu_{23.5} \quad \mathrm{R}_{T}$

Object (1)	$\log R$ (2)	$\log D_{23.5}$ (3)	$\log C$ (4)	μ_{n} (5)	$\mu_{-0.5}$ (6)	$\mu_{23.5}$ (7)	R_{T} (8)
NGC 1209							
eso024234-1730.6	0.1997	0.8257	-0.8859	21.478	21.976	22.831	-18.1
eso024524-1902.9	0.6812	0.5195	-1.1912	22.767	22.689	23.140	-17.4
eso024921-1816.5	0.7462	0.7772	-1.0493	22.248	22.305	22.833	-17.6
eso025754-1928.1	0.5927	0.6154	-0.6545	21.175	21.363	22.409	-17.6
eso030617-1754.8	0.3362	0.7619	-0.8409	20.284	20.502	21.825	-18.5
eso030719-1801.2	0.7061	0.5157	-1.1069	22.802	22.756	23.125	...
eso031302-1805.9	0.2512	0.8322	-0.5834	19.874	20.421	21.740	-18.7
eso031339-1816.2	0.2806	0.7783	-0.8027	20.919	21.041	22.128	-18.2
Antlia							
eso101025-3428.9	0.2944	1.1845	-0.8459	21.482	21.799	22.663	-19.6
eso101232-3348.7	0.3634	1.0031	-0.8441	20.233	20.394	21.774	-19.6
eso101908-3932.9	0.1114	1.1197	-0.5174	19.197	20.038	21.780	-19.9
eso102507-3337.3	0.6813	1.0796	-1.0415	21.033	21.263	22.263	-19.4
eso102621-3239.9	0.6038	0.2129	...	23.117	...	23.186	-16.8
eso102750-3626.2	
esol02936-3435.8		\ldots	\cdots	
Hydra							
esol02210-2318.0	0.2350	1.1505	-0.6916	18.921	19.272	21.297	-20.8
esol03021-2716.2	0.4937	1.0566	-1.3478	21.252	21.649	22.503	-19.4
eso103140-2954.7	0.6849	1.2619	-0.7472	20.538	20.885	22.114	-20.5
eso103518-3211.1	0.8758	0.9929	-0.9077	21.460	21.685	22.494	-18.6
eso103542-2754.7	0.8534	0.5506	-0.8156	22.346	22.318	22.848	-17.3
eso103655-3002.3	0.7090	1.4259	-0.6388	20.472	20.772	22.088	-21.5
eso103656-2634.7	0.5035	1.3280	-0.6424	20.926	21.283	22.278	-20.7
Centaurus 30							
esol23654-4027.9	0.4471	1.1578	-0.6079	19.616	20.228	21.817	-20.3
esol24127-3614.2	0.6690	0.9512	-1.0700	21.164	21.307	22.295	-19.0
esol24410-4113.4	0.4428	1.1163	-0.7185	19.733	20.101	21.548	-20.4
esol25004-4010.8	0.2981	1.2180	-0.8829	20.206	20.530	21.722	-20.8
Centaurus 45							
esol23759-3628.0	0.6438	0.9025	-0.9066	21.173	21.353	22.273	-19.2
esol24841-4322.9
eso124953-3845.4	0.2886	1.3550	-0.9306	19.721	19.930	21.395	-21.7
eso125142-3927.5	0.5162	1.0052	-0.9822	20.867	21.084	22.208	-19.3
Telescopium 27							
eso195939-4142.7	0.7423	0.6202	-1.2698	22.133	22.173	22.767	-17.4
eso200202-4807.3	0.7146	0.7127	-0.6910	21.698	21.947	22.666	-17.7
eso200211-4807.3	0.3161	0.9790	-1.2002	21.923	22.133	22.854	-18.8

Object (1)	$\log \mathrm{R}$ (2)	$\log D_{23.5}$ (3)	$\log C$ (4)	$\begin{aligned} & \mu_{n} \\ & (5) \end{aligned}$	$\mu_{-0.5}$ (6)	$\mu_{23.5}$ (7)	R_{T} (8)
eso200541-4629.8	0.5555	0.8118	-0.6428	20.453	20.733	22.040	-18.7
eso200735-4825.5	0.6949	0.9863	-1.1492	22.456	22.634	23.059	-18.5
eso200823-4617.6	0.6991	1.2796	-0.8571	21.104	21.461	22.406	-20.0
eso200826-4710.4	0.7164	0.8512	-0.7435	20.898	21.178	22.219	-18.4
eso201039-4858.8	0.1894	0.8047	-0.9731	21.463	21.516	22.684	-18.3
eso201301-4333.6	0.4608	0.7471	-0.9737	21.104	21.253	22.315	-18.1
eso201352-4440.3	0.3923	0.9124	-1.2593	21.117	21.255	22.393	-18.4
eso201442-4821.8	0.5688	0.8330	-1.0428	21.889	22.007	22.698	-18.2
eso201527-4514.2	0.6496	0.8968	-0.8646	21.495	21.678	22.550	-18.5
eso201730-4926.4	0.7073	0.8948	-0.6443	21.097	21.349	22.327	-18.6
eso202031-4409.5	0.3932	1.3208	-0.5384	18.853	19.520	21.423	-21.5
eso202423-4929.9	0.8570	0.6867	-0.9209	22.299	22.405	22.948	-17.0
Telescopium 56							
esol95443-4614.9	0.3464	1.3349	-0.7883	20.390	20.562	21.879	-19.8
eso200559-4928.7	0.6217	1.3126	-0.4472	19.731	20.364	21.656	-19.8
eso201006-4458.1	0.3743	1.4732	-0.8205	20.901	21.170	22.185	-20.1
eso201024-4440.7	0.0915	1.4461	-0.8599	19.997	20.359	21.660	-20.5
eso201302-4451.8	0.3737	1.3026	-0.9930	20.507	20.902	22.092	-19.3
Pavo							
eso191452-7219.1	0.0677	0.8899	-0.8943	20.108	20.721	22.113	-18.7
eso192513-7110.4	0.4511	0.7889	-0.9764	20.617	20.822	21.928	-18.5
esol95254-7035.3	0.5208	0.9711	-0.7277	20.671	21.174	22.290	-18.9
eso200710-6722.7	0.3160	0.8777	- 0.8615	20.804	21.270	22.356	-18.4
eso201001-7251.8	0.1420	0.6295	-1.1175	19.958	20.234	21.485	-18.0
eso201125-7117.0	0.6350	0.7144	-0.9634	22.179	22.252	22.815	-17.5
eso201137-7402.4	0.3178	1.0361	-0.8302	20.945	21.312	22.334	-19.3
eso201810-7143.5	0.9429	1.2404	-0.7571	21.551	21.853	22.577	-19.3
eso202552-6615.9	0.3119	0.7889	-0.5171	19.748	20.454	21.657	-18.6
eso204014-7134.7	0.3833	0.9818	-0.5051	19.487	19.981	21.601	-19.7
Indus							
eso205906-4341.3	0.5824	1.1421	-0.6357	20.172	20.670	21.993	-20.1
eso210003-4308.6	0.5625	0.9348	-0.6585	20.742	21.148	22.177	-18.9
eso210053-4506.0	0.8470	1.2686	-0.6559	21.654	21.937	22.612	-19.6
eso210101-4826.3	0.1924	1.1407	-0.6617	19.465	19.983	21.701	-20.4
eso210145-4759.3	0.6034	1.3894	-0.8491	20.666	20.973	22.069	-21.3
eso210256-4822.2	\ldots	...	
eso210500-4407.1	0.1969	1.1863	-0.8905	20.711	21.052	22.236	-20.2
eso210616-4736.6	0.2600	1.0603	-1.0887	21.050	21.247	22.262	-19.4
eso210740-4354.9	0.6179	1.2493	-0.4651	19.830	20.346	21.700	-20.8
eso210802-4243.7	0.1157	0.9189	-0.9188	20.509	20.730	22.097	-19.0
eso212713-4325.3	0.0743	1.0385	-0.9904	20.711	20.967	22.112	-19.4

Object
$\log R \quad \log D_{23.5} \quad \log C$
μ_{n}
$\begin{array}{lll}\mu_{-0.5} & \mu_{23.5} \quad R_{T}\end{array}$
(1)
(2) (3)
(4)
(5)
(6)
(7)
(8)

Miscellaneous							
I701	0.1465	\ldots					
I900	0.1741	1.4615	-1.0153	19.965	20.293	21.648	\ldots
I1401	0.4246	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
N173	0.1254	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
N4449	0.1873	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
N4475	0.2454	1.5047	-0.7047	20.618	21.002	22.298	\ldots
N4738	0.8020	1.3751	-0.6916	20.597	20.753	21.931	\ldots
N7537	0.5569	1.0875	-0.6080	19.808	20.274	21.689	\ldots
N7541	0.4661	1.3720	\ldots	19.717	20.141	\ldots	\ldots
N7570	0.2467	1.2806	-0.4131	19.455	20.007	21.702	\ldots
N7750	0.2922	1.2449	-0.8719	20.132	20.371	21.569	\ldots
N7757	0.1509	1.2413	-0.9245	20.717	21.082	22.179	\ldots
U673	0.4324	1.1656	-0.9701	21.182	21.388	22.361	\ldots
U1045	0.5268	1.2985	-0.6771	20.503	20.904	22.148	\ldots
U2509	0.5220	1.2246	-0.8852	20.082	20.461	21.657	\ldots
U4375	0.1740	1.1430	-0.8836	20.098	20.582	21.891	\ldots
U4404	0.5739	1.3596	-0.9099	20.887	21.087	22.071	\ldots
U4414	0.0502	1.4689	-0.4581	18.642	19.395	21.690	\ldots
U6586	0.1328	1.1170	-0.9210	20.443	20.672	21.898	\ldots
U7754	0.4167	1.1251	-0.7908	20.726	20.919	22.017	\ldots
U9558	0.2250	1.6042	-0.9173	20.816	21.179	22.151	\ldots
U12571	0.2905	1.0191	-0.8956	20.670	20.765	22.011	\ldots
Z160139	0.2394	1.1082	-1.2725	20.880	21.123	22.441	\ldots
Z501035	0.4240	1.1970	-0.9888	20.900	21.125	22.135	\ldots
eso025101-1748.3	0.2115	1.4141	-0.4765	19.819	19.946	21.604	\ldots
eso102742-3458.0	0.3857	1.0833	-0.3868	19.340	20.114	21.618	\ldots
eso191041-6629.7	0.7575	\ldots	-1.1408	22.932	23.008	23.158	\ldots
eso201327-4755.6	0.1208	1.3403	-0.8152	20.230	20.616	21.953	\ldots
eso212837-4616.8	0.2273	1.5013	-0.5189	19.501	20.091	21.661	\ldots

Table A. 4
R-band Isophotal Magnitudes

Object (1)	$\mathrm{R}_{20.5}$ (2)	R_{21} (3)	$\mathrm{R}_{21.5}$ (4)	R_{22} (5)	$\mathrm{R}_{22.5}$ (6)	R_{23} (7)	$\mathbf{R}_{23.5}$ (8)	$\mathbf{R}_{24.5}$ (9)
Pisces								
N296	...		-17.263	-18.043	-18.564	-19.028	-19.516	-19.925
N338	-21.099	-21.341	-21.514	-21.653	-21.750	-21.822	-21.879	-21.980
N444			-17.523	-18.501	-19.423	-19.835	-20.119	-20.298
N452	-20.634	-21.015	-21.304	-21.446	-21.531	-21.600	-21.702	-21.864
N523								
N536	-20.979	-21.337	-21.701	-21.913	-22.007	-22.076	-22.150	-22.331
N582	-19.644	-20.550	-20.858	-21.053	-21.307	-21.420	-21.490	-21.564
U525	-15.847	-16.855	-17.386	-17.746	-18.121	-18.899	-19.722	-20.137
U540	...							
U542	-20.060	-20.323	-20.516	-20.691	-20.834	-20.951	-21.049	-21.154
U556	-19.126	-19.589	-19.845	-19.999	-20.124	-20.231	-20.300	-20.405
U557	...	-16.783	-18.114	-18.907	-19.312	-19.626	-19.744	-19.847
U633	-18.947	-19.425	-19.771	-20.106	-20.298	-20.424	-20.525	-20.616
U679	-15.244	-16.713	-17.720	-18.447
U987	-20.583	-20.823	-20.980	-21.106	-21.211	-21.300	-21.374	-21.460
U1033	-19.078	-20.063	-20.260	-20.501	-20.730	-20.853	-20.939	-21.060
A400								
U2367	-20.850	-21.251	-21.592	-21.833	-22.086	-22.231	-22.342	-22.444
U2375	-20.442	-20.629	-20.811	-21.079	-21.268	-21.368	-21.431	-21.510
U2399	-18.935	-19.856	-20.437	-20.772	-20.995	-21.107	-21.184	-21.298
U2405	-19.115	-19.891	-20.607	-20.998	-21.248	-21.416	-21.498	-21.586
U2415	-17.807	-20.236	-20.473	-20.624	-20.728	-20.832	-20.887	-20.984
U2444	-20.511	-20.846	-21.043	-21.169	-21.256	-21.325	-21.394	-21.461
U2454	...	-17.993	-19.315	-19.890	-20.222	-20.519	-20.685	-20.799
A539								
D11	-18.104	-19.131	-19.783	-20.072	-20.316	-20.464		
U3236	-20.111	-20.761	-21.107	-21.341	-21.531	-21.624	-21.698	
U3248	-21.042	-21.285	-21.589	-21.934	-22.103	-22.334	-22.419	-22.512
U3269	-20.638	-21.150	-21.372	-21.513	-21.596	-21.642	-21.672	-21.704
U3282	-19.769	-20.354	-21.056	-21.472	-21.604	-21.684	-21.778	-21.854
U3291	...	-18.131	-19.481	-20.253	-20.674	-20.905	-21.008	-21.093
Z421011	-20.421	-20.908	-21.202	-21.379	-21.467	-21.540	-21.590	-21.659
Z421030	-20.187	-20.621	-21.078	-21.267	-21.345	-21.396	-21.445	-21.542

Object $R_{20.5}$
$\mathrm{R}_{21} \quad \mathrm{R}_{21.5}$
$\mathrm{R}_{22} \quad \mathrm{R}_{22.5}$
$\mathrm{R}_{23} \quad \mathrm{R}_{23.5}$
$\mathbf{R}_{24.5}$
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Cancer								
12308	-18.674	-18.999	-19.268	-19.398	-19.483	-19.561	-19.621	-19.695
12348	-18.693	-18.891	-19.041	-19.202	-19.554	-19.641	-19.682	-19.740
N2554	-22.043	-22.226	-22.395	-22.506	-22.613	-22.689	-22.752	-22.839
N2558	-20.583	-20.757	-21.061	-21.367	-21.517	-21.577	-21.635	-21.721
N2562	-20.846	-20.957	-21.046	-21.129	-21.193	-21.245	-21.291	-21.353
N2565	-21.715	-21.812	-21.910	-22.078	-22.267	-22.309	-22.335	-22.365
N2575	-19.059	-20.057	-20.929	-21.245	-21.413	-21.532	-21.613	-21.699
N2595	-20.348	-20.583	-21.273	-21.813	-22.143	-22.300		
N2596	-19.406	-19.997	-20.620	-20.991	-21.195	-21.263	-21.301	-21.348
N2599	-21.646	-21.792	-21.903	-21.989	-22.159	-22.229	-22.271	-22.359
U4299	-19.059	-19.563	-20.029	-20.529	-20.808	-20.960	-21.045	-21.162
U4329	-18.585	-19.376	-19.984	-20.327	-20.531	-20.730	-20.853	-20.970
U4332	-19.396	-19.774	-20.089	-20.398	-20.605	-20.744	-20.832	-20.949
U4361	-16.869	-17.860	-18.504	-19.061	-19.305	-19.544
U4386	-20.570	-20.923	-21.358	-21.588	-21.725	-21.817	-21.875	-21.949
U4399	-15.959	-17.919	-18.821	-19.263	-19.535	-19.812	-19.926	-20.017
U4400	-15.830	-17.290	-17.948	-18.328	-18.654	-18.921
U4416	-19.760	-20.316	-20.704	-20.993	-21.294	-21.533	-21.628	-21.698
Z119051		-17.045	-17.801	-18.362	-18.873	-19.187	-19.317	-19.396
Z119053	-18.500	-18.892	-19.120	-19.281	-19.410	-19.482	-19.525	-19.575
Z119066	-19.555	-19.917	-20.088	-20.225	-20.327	-20.391	-20.449	-20.517
Z119095	-16.829	-18.057	-18.543	-18.911	-19.195	-19.343	-19.446	-19.579
Z119107		-16.932	-18.389	-19.016	-19.325	-19.473	-19.561	
A1367								
12951	-20.201	-20.419	-20.663	-21.065	-21.305	-21.427	-21.538	-21.641
MK181								
N3697	-20.461	-20.802	-21.103	-21.516	-21.898	-22.062	-22.154	-22.256
N3816	-21.694	-21.891	-22.066	-22.209	-22.349	-22.448		
N3832	-17.841	-18.608	-20.190	-20.960	-21.296	-21.488	-21.616	-21.747
N3840
N3859					..			
N3860	-20.451	-20.866	-21.111	-21.289	-21.394	-21.483	-21.549	-21.620
N3861								
N3883	-20.367	-20.647	-20.955	-21.283	-21.740	-22.074	-22.269	-22.428
N3947		
N3951	-20.630	-21.020	-21.226	-21.338	-21.418	-21.478	-21.518	-21.566
U6614	-20.548	-20.676	-20.782	-20.867	-20.950	-21.271	-21.381	-21.484
U6686	-16.952	-19.039	-19.762	-20.190	-20.535	-20.787	-20.969	-21.253
U6697	...	-17.141	-20.100	-20.593	-20.848	-21.057	-21.166	-21.304
U6876	-19.818	-20.231	-20.578	-20.835	-21.056	-21.140	-21.181	-21.231
U6891	-18.002	-19.162	-19.626	-19.908	-20.096	-20.242	-20.569	-20.756
Z97033	-19.279	-19.754	-20.111	-20.310	-20.428	-20.498	-20.547	-20.596
Z97057	-19.323	-20.100	-20.326	-20.468	-20.551	-20.613	-20.660	-20.706

Object (1)	$\mathbf{R}_{20.5}$ (2)	\mathbf{R}_{21} (3)	$\mathrm{R}_{21.5}$ (4)	R_{22} (5)	$\mathbf{R}_{22.5}$ (6)	R_{23} (7)	$\mathbf{R}_{23.5}$ (8)	$\mathrm{R}_{24.5}$ (9)
Z97068
Z97079		-17.661	-18.505	-18.831	-19.069	-19.195	-19.305	-19.429
Z97152	-19.384	-19.696	-20.012	-20.328	-20.532	-20.650	-20.731	-20.811
Z97185		-17.907	-19.047	-19.625	-19.876	-20.077	-20.183	-20.300
Z127056	-18.900	-19.754	-20.171	-20.434	-20.552	-20.617	-20.665	-20.721
Z127082	-19.150	-19.957	-20.418	-20.642	-20.755	-20.825	-20.868	-20.920
Coma								
1842	...	\ldots
I4088	-19.621	-20.144	-20.544	-20.944	-21.235	-21.456	-21.550	-21.630
N4848	-20.396	-21.091	-21.304	-21.427	-21.508	-21.577	-21.632	-21.733
N4921	-20.979	-21.257	-21.654	-22.225	-22.512	-22.648	-22.713	-22.784
N4934	-20.235	-20.637	-20.868	-21.009	-21.096	-21.160	-21.210	-21.272
N4944
N5081	-20.102	-20.427	-21.036	-21.324	-21.782	-21.991	-22.151	\ldots
U8013		-18.390	-18.821	-19.271	-19.707	-20.055	-20.297	-20.545
U8017	-20.642	-21.109	-21.292	-21.390	-21.458	-21.504	-21.534	-21.586
U8161	-19.938	-20.229	-20.448	-20.635	-20.785	-20.941	-21.026	-21.105
Z160058		-18.814	-19.525	-20.023	-20.407	-20.537	-20.615	-20.704
Z160086
Z160106	-19.689	-19.874	-20.028	-20.188	-20.323	-20.403	-20.454	-20.522
Z74-23								
N5409								
N5416	-20.404	-20.975	-21.228	-21.403	-21.498	-21.581	-21.629	-21.674
U8918
U8948	\ldots
U8951		
U8967	-18.472	-19.136	-19.701	-20.209	-20.508	-20.776	-20.920	-21.072
Z74010	-16.722	-17.714	-18.367	-19.001	-19.532
274045	
Hercules								
11173	-19.166	-19.736	-20.261	-20.632	-20.853	-21.004	-21.122	-21.245
11179	-18.229	-19.057	-19.552	-20.107	-20.595	-20.879	-21.024	-21.182
I1182	-20.938	-21.117	-21.280	-21.439	-21.544	-21.654	-21.719	...
N6045
N6050	..	\ldots	\ldots
N6054	\cdots	\cdots	...
U10085	-20.259	-20.699	-21.059	-21.320	-21.469	-21.594	-21.673	-21.738
U10121	-21.226	-21.535	-21.770	-21.917	-22.011	-22.072	-22.112	-22.165
U10190	-18.201	-18.947	-19.376	-19.600	-19.816
U10195	-20.147	-20.548	-20.863	-21.115	-21.268	-21.388	-21.587	-21.761
Z108098	\cdots	\cdots	...	\cdots	\cdots	20.800
Z108107	...	-19.578	-20.083	-20.348	-20.508	-20.610	-20.684	-20.800

Object	$\mathrm{R}_{20.5}$	R_{21}	$\mathrm{R}_{21.5}$	R_{22}	$\mathrm{R}_{22.5}$	R_{23}	$\mathrm{R}_{23.5}$	$\mathrm{R}_{24.5}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

Z108108	-20.030	-20.035	-20.350	-20.533	-20.660	-20.769	-20.835	-20.936
Z108127	...							
Z108139	-18.396	-19.029	-20.059	-20.650	-20.983	-21.195	-21.307	-21.428
Z108154	-19.493	-19.887	-20.167	-20.356	-20.507	-20.622	-20.702	-20.764
Pegasus								
I1474	-18.471	-19.397	-19.686	-19.826	-19.912	-19.982	-20.024	-20.077
15309	-18.372	-18.835	-19.180	-19.549	-19.786	-19.931	-20.035	-20.168
N7518	-19.357	-19.801	-20.086	-20.194	-20.269	-20.337	-20.411	-20.527
N7536	-17.993	-19.162	-19.793	-20.125	-20.254	-20.335	-20.387	-20.454
N7591	-20.038	-20.243	-20.402	-20.615	-20.820	-20.892	-20.944	-21.050
N7593	-18.993	-19.609	-19.819	-19.935	-20.012	-20.082	-20.117	-20.157
N7608	-15.743	-17.980	-19.027	-19.509	-19.747	-19.904	-19.996	-20.100
N7610	-16.664	-17.531	-18.467	-19.303	-19.803	-20.013	-20.309	-20.497
N7631	-19.539	-20.032	-20.330	-20.562	-20.705	-20.821	-20.875	-20.936
N7643	-19.611	-20.071	-20.246	-20.378	-20.515	-20.605	-20.662	-20.708
U12304	-18.723	-19.554	-19.813	-19.952	-20.053	-20.173
U12361	\ldots	-17.229	-17.820	-18.200
U12370	...	-16.414	-17.296	-17.809	-18.527	-18.778	-18.923	-19.108
U12423	-17.518	-18.207	-18.804	-19.237	-19.618	-19.903	-20.089	-20.397
U12451				-16.581	-17.878	-18.730
U12467	\ldots	\ldots	...	-16.035	-17.058	-17.787	-18.320	-18.909
U12494	-16.275	-17.492	-18.161	-18.584	-18.910	-19.268
U12497	\cdots	...	-16.275	-17.132	-18.121	-18.550	-18.827	-19.111
U12522	...	-12.655	-15.844	-16.743	-17.522	-18.217	-18.546	-18.966
U12561	\ldots	-15.420	-16.863	-17.547	-17.926	-18.597
Z406031	...	-14.708	-16.826	-17.518	-18.029	-18.210	-18.322	-18.429
Z406042	...	-16.220	-16.924	-17.575	-18.147	-18.593	-18.756	-18.911
Z406079		-14.255	-17.281	-17.830	-18.202	-18.756	-18.936	-19.115
Z406082		
A2634/66								
U12721	-19.901	-20.424	-20.684	-20.904	-21.051	-21.204	-21.334	-21.440
Virgo								
N4246	-14.452	-15.603	-17.037	-17.868	-18.202	-18.442	-18.581	-18.735
N4380
N4651	...	\cdots	\ldots				...	

Object	$\mathrm{R}_{20.5}$	R_{21}	$\mathrm{R}_{21.5}$	R_{22}	$\mathrm{R}_{22.5}$	R_{23}	$\mathrm{R}_{23.5}$	$\mathrm{R}_{24.5}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

NGC 1209								
eso024234-1730.6		-13.349	-14.691	-15.491	-16.088	-16.661	-17.305	-17.856
eso024524-1902.9					-11.320	-14.920	-16.048	-16.972
eso024921-1816.5					-15.620	-16.685	-17.088	-17.413
eso025754-1928.1		-15.166	-15.756	-16.241	-16.560	-16.833	-17.092	-17.353
eso030617-1754.8	-16.223	-17.173	-17.631	-17.998	-18.160	-18.281	-18.343	-18.456
eso030719-1801.2						-14.346	-15.993	-16.888
eso031302-1805.9	-17.334	-17.726	-18.061	-18.274	-18.427	-18.546	-18.607	-18.689
eso031339-1816.2	-14.832	-15.882	-16.709	-17.408	-17.705	-17.890	-17.999	-18.120
Antlia								
esol01025-3428.9		-15.122	-16.680	-17.750	-18.690	-19.048	-19.408	-19.570
esol01232-3348.7	-17.860	-18.682	-18.945	-19.172	-19.330	-19.439	-19.508	-19.619
esol01908-3932.9	-18.916	-19.109	-19.311	-19.455	-19.598	-19.737	-19.847	-19.928
esol02507-3337.3		-15.652	-17.360	-18.355	-18.882	-19.064	-19.166	-19.297
esol02621-3239.9					-14.788	-16.202
eso102750-3626.2								
esol02936-3435.8								
Hydra								
esol02210-2318.0	-20.021	-20.197	-20.349	-20.512	-20.604	-20.665	-20.698	-20.737
esol03021-2716.2			-16.410	-17.491	-18.453	-18.801	-19.003	-19.183
esol03140-2954.7	-17.725	-18.491	-19.073	-19.580	-19.934	-20.101	-20.208	-20.333
esol03518-3211.1			-15.777	-16.970	-17.806	-18.147	-18.344	-18.535
eso103542-2754.7					-14.708	-15.727	-16.219	-16.862
esol03655-3002.3	-19.337	-19.949	-20.469	-20.803	-21.075	-21.235	-21.367	-21.491
eso103656-2634.7	-17.895	-18.698	-19.375	-19.918	-20.205	-20.443	-20.618	-20.735
Centaurus 30								
eso123654-4027.9	-19.090	-19.379	-19.618	-19.829	-19.988	-20.106	-20.201	-20.291
esol24127-3614.2		-13.697	-17.103	-17.990	-18.334	-18.585	-18.728	-18.899
eso124410-4113.4	-19.088	-19.542	-19.886	-20.079	-20.187	-20.257	-20.305	-20.359
esol25004-4010.8	-18.042	-19.713	-20.176	-20.395	-20.495	-20.578	-20.648	-20.745
Centaurus 45								
$\begin{aligned} & \text { eso123759-3628.0 } \\ & \text { esol24841-4322.9 } \end{aligned}$		-15.152	-17.062	-17.972	-18.298	-18.514	-18.656	-18.844
eso124953-3845.4	-20.664	-21.050	-21.283	-21.405	-21.472	-21.523	-21.576	-21.639
eso125142-3927.5		-16.788	-17.864	-18.413	-18.687	-18.869	-19.010	-19.140
Telescopium 27								
eso195939-4142.7	\ldots	\ldots		-13.487	-15.478	-16.345	-16.659	-17.117
eso200202-4807.3	\ldots	\ldots	-14.757	-15.865	-16.397	-16.792	-17.186	-17.477
eso200211-4807.3	-15.224	-16.625	-17.889	-18.301	-18.652

Object (1)	$\mathbf{R}_{20.5}$ (2)	R_{21} (3)	$\mathbf{R}_{21.5}$ (4)	\mathbf{R}_{22} (5)	$\mathbf{R}_{22.5}$ (6)	$\mathbf{R}_{2 \mathrm{~s}}$ (7)	$\mathbf{R}_{23.5}$ (8)	$\mathbf{R}_{24.5}$ (9)
eso200541-4629.8	-16.619	-17.210	-17.614	-17.859	-18.090	-18.269	-18.385	-18.594
eso200735-4825.5					-15.348	-16.819	-17.805	-18.278
eso200823-4617.6		-16.805	-18.290	-19.288	-19.835	-20.035	-20.244	
eso200826-4710.4	-13.665	-16.016	-16.890	-17.454	-17.826	-18.048	-18.166	-18.277
eso201039-4858.8	-12.959	-14.729	-15.497	-16.050	-16.636	-17.261	-17.735	-18.163
eso201301-4333.6		-14.611	-16.234	-17.000	-17.386	-17.589	-17.767	-17.951
eso201352-4440.3		-13.782	-16.405	-17.408	-17.958	-18.286	-18.434	-18.539
eso201442-4821.8				-15.127	-16.808	-17.335	-17.623	-17.918
eso201527-4514.2			-15.385	-16.811	-17.518	-17.854	-18.110	-18.316
eso201730-4926.4	-14.044	-15.991	-16.771	-17.495	-17.867	-18.097	-18.276	-18.445
eso202031-4409.5	-20.738	-20.924	-21.111	-21.256	-21.353	-21.426	-21.478	
eso202423-4929.9					-14.650	-15.631	-16.279	-16.716
Telescopium 56								
esol95443-4614.9	-18.872	-19.679	-20.375	-20.693	-20.888	-20.996	-21.070	-21.231
eso200559-4928.7	-20.175	-20.413	-20.611	-20.768	-20.958	-21.057	-21.116	-21.186
eso201006-4458.1	-17.803	-18.779	-19.757	-20.746	-21.105	-21.304	-21.400	-21.502
eso201024-4440.7	-19.831	-20.740	-21.333	-21.541	-21.678	-21.766	-21.807	-21.930
eso201302-4451.8	-17.445	-18.878	-19.690	-20.117	-20.363	-20.539	-20.648	-20.720
Pavo								
eso191452-7219.1	-16.247	-16.798	-17.420	-17.957	-18.298	-18.501	-18.594	-18.673
eso192513-7110.4	-13.447	-16.724	-17.482	-17.811	-18.034	-18.153	-18.233	-18.338
eso195254-7035.3	-15.857	-16.857	-17.588	-18.074	-18.386	-18.688	-18.841	
eso200710-6722.7	-14.403	-15.822	-16.815	-17.388	-17.874	-18.116	-18.303	
eso201001-7251.8	-16.773	-17.360	-17.588	-17.719	-17.810	-17.881	-17.922	-17.993
eso201125-7117.0					-15.695	-16.549	-16.925	-17.246
eso201137-7402.4	-15.793	-16.770	-17.684	-18.193	-18.600	-18.872	-19.050	-19.199
eso201810-7143.5		-13.282	-16.098	-17.801	-18.530	-18.901	-19.173	
eso202552-6615.9	-17.274	-17.543	-17.979	-18.203	-18.353	-18.440	-18.497	-18.578
eso204014-7134.7	-18.523	-18.863	-19.114	-19.260	-19.366	-19.460	-19.531	-19.615
Indus								
eso205906-4341.3	-18.307	-18.793	-19.158	-19.421	-19.629	-19.840	-19.930	-20.021
eso210003-4308.6	-15.932	-17.017	-17.510	-17.951	-18.245	-18.511	-18.632	-18.786
eso210053-4506.0	.	.	-15.490	-17.962	-18.681	-19.173	-19.427	...
eso210101-4826.3	-18.991	-19.405	-19.719	-19.963	-20.087	-20.200	-20.264	-20.345
eso210145-4759.3	-18.535	-19.137	-20.146	-20.548	-20.832	-20.994	-21.097	-21.232
eso210256-4822.2		
eso210500-4407.1	-16.589	-17.969	-18.668	-19.214	-19.541	-19.807	-19.935	-20.055
eso210616-4736.6		-15.630	-17.562	-18.417	-18.926	-19.144	-19.248	-19.348
eso210740-4354.9	-19.432	-19.765	-20.050	-20.323	-20.486	-20.584	-20.642	-20.709
eso210802-4243.7	-16.251	-17.448	-17.974	-18.268	-18.503	-18.678	-18.816	-18.954
eso212713-4325.3	-15.049	-17.117	-18.109	-18.676	-18.932	-19.202	-19.276	-19.353

Table A. 4 Continued
215

Object (1)	$\mathrm{R}_{20.5}$ (2)	R_{21} (3)	$\mathrm{R}_{21.5}$ (4)	R_{22} (5)	$\mathrm{R}_{22.5}$ (6)	R_{23} (7)	$\mathbf{R}_{23.5}$ (8)	$\mathrm{R}_{24.5}$ (9)
Miscellaneous								
1701								
1900	-20.215	-20.949	-21.357	-21.587	-21.746	-21.830	-21.868	-21.928
I1401								
N173								
N4449								
N4475	-19.156	-19.639	-20.185	-20.579	-21.011	-21.209	-21.403	-21.580
N4738	-18.574	-19.338	-20.157	-20.539	-20.797	-20.913	-20.981	-21.069
N7537	-18.954	-19.297	-19.504	-19.689	-19.853	-19.960	-20.021	-20.090
N7541	-20.237	-20.937	-21.242	-21.383	...			
N7570	-19.982	-20.089	-20.263	-20.622	-20.801	-20.931	-20.982	-21.034
N7750	-18.991	-20.103	-20.392	-20.662	-20.807	-20.865	-20.899	-20.935
N7757	-17.072	-18.112	-18.823	-19.391	-19.827	-20.038	-20.196	-20.289
U673		-15.877	-17.906	-18.643	-19.119	-19.414	-19.570	-19.801
U1045	-18.208	-18.914	-19.467	-19.886	-20.135	-20.327	-20.466	-20.579
U2509	-18.803	-19.731	-20.263	-20.484	-20.622	-20.695	-20.738	-20.789
U4375	-18.098	-18.853	-19.421	-19.735	-19.913	-20.026	-20.114	-20.206
U4404		-18.378	-19.695	-20.179	-20.539	-20.665	-20.755	-20.861
U4414	-20.971	-21.095	-21.209	-21.385	-21.754	-21.812	-21.869	-21.909
U6586	-17.653	-18.512	-18.965	-19.603	-19.770	-19.874	-19.978	-20.112
U7754	-16.656	-17.996	-18.978	-19.406	-19.614	-19.759	-19.847	-19.953
U9558		-19.330	-20.447	-21.309	-21.701	-21.874	-21.966	-22.040
U12571	-16.591	-17.368	-18.430	-18.872	-19.189	-19.315	-19.389	-19.567
Z160139	...	-16.361	-17.564	-18.173	-18.613	-19.164	-19.338	-19.482
Z501035	...	-17.532	-18.739	-19.503	-19.809	-19.951	-20.053	-20.159
eso025101-1748.3	-20.727	-20.937	-21.130	-21.257	-21.345	-21.440	-21.531	-21.845
eso102742-3458.0	-19.273	-19.419	-19.545	-19.694	-20.006	-20.091	-20.138	-20.211
eso191041-6629.7	...	\cdots	...	\cdots
eso201327-4755.6	-18.829	-19.412	-19.976	-20.460	-20.728	-20.843	-20.924	-21.018
eso212837-4616.8	-20.993	-21.280	-21.500	-21.671	-21.767	-21.869	-21.953	-22.046

Table A. 5
Photometric Parameters Derived from I-band Surface Photometry

Object (1)	$\log R$ (2)	$\log D_{22.5}$ (3)	$\log C$ (4)	μ_{n} (5)	$\begin{gathered} \mu_{-0.5} \\ (6) \end{gathered}$	$\mu_{22.5}$ (7)	$\begin{aligned} & \mathrm{I}_{T} \\ & (8) \end{aligned}$
NGC 1209							
eso024234-1730.6	0.1997	0.3725	-1.3224	21.186	20.963	21.901	-18.2
eso024524-1902.9	0.6812	-0.4896	...	22.521	...	22.484	-17.4
eso024921-1816.5	0.7462	0.5499	-1.5628	21.929	21.960	22.193	-17.7
eso025754-1928.1	0.5927	0.3530	-0.9044	20.510	20.552	21.547	-17.7
eso030617-1754.8	0.3362	0.6782	-0.8559	19.832	20.035	21.232	-18.7
eso030719-1801.2	0.7061	-0.5926	...	22.606		22.476	-16.6
eso031302-1805.9	0.2512	0.7253	-0.6664	19.427	19.817	20.989	-19.0
eso031339-1816.2	0.2806	0.5927	-0.9682	20.365	20.558	21.419	-18.5
Antlia							
esol01025-3428.9	0.2944	0.8988	-1.1230	21.179	21.204	21.896	-19.8
esol01232-3348.7	0.3634	0.9314	-0.8282	19.792	19.959	21.152	-19.9
esol01908-3932.9	0.1114	0.9133	-0.6111	18.198	18.953	20.860	-20.1
esol02507-3337.3	0.6813	1.0353	-0.9885	20.577	20.810	21.639	-19.7
esol02621-3239.9	0.6038	-16.1
esol02750-3626.2
esol02936-3435.8						...	
Hydra							
esol02210-2318.0	0.2350	1.0782	-0.6805	18.461	18.721	20.667	-21.1
esol03021-2716.2	0.4937	0.9278	-1.3626	21.041	21.312	21.884	-19.6
esol03140-2954.7	0.6849	1.1873	-0.7016	19.967	20.292	21.388	-20.8
esol03518-3211.1	0.8758	0.8471	-0.9397	21.049	21.169	21.801	-18.9
esol03542-2754.7	0.8534	0.1231	...	22.021	21.978	22.136	-16.8
esol03655-3002.3	0.7090	1.2755	-0.6585	19.895	20.157	21.284	-21.8
esol03656-2634.7	0.5035	1.0953	-0.7703	20.371	20.626	21.461	-21.0
Centaurus 30							
esol23654-4027.9	0.4471	1.0139	-0.6737	19.107	19.518	21.033	-20.6
esol24127-3614.2	0.6690	0.7739	-1.1879	20.918	20.992	21.705	-19.1
esol24410-4113.4	0.4428	1.0499	-0.7633	19.282	19.609	20.892	-20.7
esol25004-4010.8	0.2981	1.1275	-0.9322	19.842	20.015	21.105	-21.1
Centaurus 45							
esol23759-3628.0	0.6438	0.7265	-0.9468	20.977	21.080	21.718	-19.3
esol24841-4322.9
esol24953-3845.4	0.2886	1.2117	-1.0375	19.328	19.465	20.772	-21.9
esol25142-3927.5	0.5162	0.8909	-1.3272	20.459	20.628	21.523	...
Telescopium 27							
eso195939-4142.7	0.7423	\cdots	\cdots
eso200202-4807.3	0.7146 \cdot
eso200211-4807.3	0.3161	\ldots	

Object (1)	$\log R$ (2)	$\log D_{22.5}$ (3)	$\log C$ (4)	(5)	$\mu_{-0.5}$ (6)	$\mu_{22.5}$ (7)	I_{T} (8)
eso200541-4629.8	0.5555	0.6565	-0.7513	19.808	20.001	21.184	-19.0
eso200735-4825.5	0.6949						
eso200823-4617.6	0.6991	1.1164	-1.0886	20.571	20.899	21.734	-20.6
eso200826-4710.4	0.7164
eso201039-4858.8	0.1894	\ldots	\ldots	\ldots	\ldots
eso201301-4333.6	0.4608	\ldots
eso201352-4440.3	0.3923	\ldots	\ldots	\ldots
eso201442-4821.8	0.5688	\ldots	\ldots	...	
eso201527-4514.2	0.6496	\ldots	\ldots	...	\ldots
eso201730-4926.4	0.7073	\ldots	\ldots
eso202031-4409.5	0.3932	1.2588	-0.5734	18.352	18.967	20.780	-21.9
eso202423-4929.9	0.8570	
Telescopium 56							
eso195443-4614.9	0.3464	1.2674	-0.7877	19.913	20.153	21.198	-20.0
eso200559-4928.7	0.6217
eso201006-4458.1	0.3743	
eso201024-4440.7	0.0915	1.4344	-0.8518	19.438	20.002	21.283	-20.8
eso201302-4451.8	0.3737
Pavo							.
eso191452-7219.1	0.0677	\ldots
eso192513-7110.4	0.4511	\ldots	...	\ldots	\ldots	\ldots	\ldots
eso195254-7035.3	0.5208	\ldots	\cdots	\cdots	...
eso200710-6722.7	0.3160	\ldots
eso201001-7251.8	0.1420	\ldots	\ldots	...
eso201125-7117.0	0.6350	\ldots	...	\ldots	...	\ldots	...
eso201137-7402.4	0.3178
eso201810-7143.5	0.9429	0.9757	-0.9413	21.259	21.343	21.866	-19.5
eso202552-6615.9	0.3119
eso204014-7134.7	0.3833		...	\cdots	...	\cdots	...
Indus							
eso205906-4341.3	0.5824	\ldots	\ldots
eso210003-4308.6	0.5625	\ldots	
eso210053-4506.0	0.8470	1.0948	-0.7418	21.275	21.383	21.896	-19.9
eso210101-4826.3	0.1924
eso210145-4759.3	0.6034
eso210256-4822.2	...	\ldots	\ldots
eso210500-4407.1	0.1969
eso210616-4736.6	0.2600
eso210740-4354.9	0.6179 \cdot
eso210802-4243.7	0.1157	
eso212713-4325.3	0.0743 \cdot	. \cdot	. \cdot

Table A. 5 Continued

Object	$\log R$	$\log \mathrm{D}_{22.5}$	$\log \mathrm{C}$	μ_{n}	$\mu_{-0.5}$	$\mu_{22.5}$	$\mathrm{I}_{\boldsymbol{T}}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Miscellaneous							
eso025101-1748.3	0.2115	1.1781	-0.7013	18.789	19.171	20.683	\ldots
eso102742-3458.0	0.3857	1.0287	-0.3782	18.788	19.552	20.980	\ldots
eso191041-6629.7	0.7575	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
eso201327-4755.6	0.1208	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
eso212837-4616.8	0.2273	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Table A. 6
I-band Isophotal Magnitudes

Object (1)	$\mathrm{I}_{19.5}$ (2)	I_{20} (3)	$\mathrm{I}_{20.5}$ (4)	I_{21} (5)	$\mathrm{I}_{21.5}$ (6)	I_{22} (7)	$\mathrm{I}_{22.5}$ (8)	$\mathrm{I}_{23.5}$ (9)
NGC 1209								
eso024234-1730.6			...	-14.056	-15.236	-15.892	-16.588	-17.673
eso024524-1902.9							-11.902	-15.994
eso024921-1816.5			-14.974	-16.656	-17.369
eso025754-1928.1			-15.188	-15.923	-16.469	-16.725	-17.057	-17.418
eso030617-1754.8	-14.902	-16.263	-17.215	-17.743	-18.129	-18.345	-18.464	-18.635
eso030719-1801.2				...			-11.997	-15.639
eso031302-1805.9	-17.110	-17.583	-18.052	-18.375	-18.617	-18.772	-18.866	-19.019
eso031339-1816.2		-14.897	-15.927	-16.617	-17.458	-17.928	-18.044	-18.322
Antlia								
eso101025-3428.9	\cdots	\cdots	-13.807	-16.297	-17.318	-18.427	-18.967	-19.603
esol01232-3348.7	-16.161	-17.608	-18.858	-19.216	-19.426	-19.611	-19.753	-19.890
esol01908-3932.9	-18.976	-19.270	-19.477	-19.662	-19.805	-19.904	-20.046	
esol02507-3337.3	-16.014	-17.619	-18.477	-19.024	-19.339	-19.570
esol02621-3239.9	-15.373
eso102750-3626.2		
eso102936-3435.8				\ldots				
Hydra								
esol02210-2318.0	-19.970	-20.283	-20.484	-20.638	-20.776	-20.911	-20.975	-21.045
esol03021-2716.2		...		-14.291	-17.615	-18.262	-18.839	-19.239
eso103140-2954.7	-17.024	-18.335	-19.057	-19.546	-19.975	-20.247	-20.441	-20.615
eso103518-3211.1	-15.566	-17.139	-17.788	-18.263	-18.658
eso103542-2754.7	\cdots	…	\ldots	-14.335	-15.363	-16.428
esol03655-3002.3	-18.949	-19.594	-20.213	-20.698	-21.064	-21.321	-21.499	-21.714
esol03656-2634.7	-17.213	-18.024	-18.826	-19.559	-20.007	-20.386	-20.574	-20.914
Centaurus 30								
esol23654-4027.9	-18.855	-19.288	-19.604	-19.836	-20.049	-20.206	-20.341	-20.500
esol24127-3614.2	-16.017	-17.678	-18.262	-18.559	-18.846
eso124410-4113.4	-18.648	-19.294	-19.813	-20.170	-20.391	-20.527	-20.593	-20.700
eso125004-4010.8	-17.680	-18.179	-19.605	-20.316	-20.644	-20.768	-20.865	-21.015
Centaurus 45								
esol23759-3628.0	...	\ldots	...	-16.058	-17.385	-17.919	-18.364	-18.727
esol24841-4322.9					
esol24953-3845.4	-19.402	-20.595	-21.066	-21.428	-21.594	-21.671	-21.732	-21.839
esol25142-3927.5	...		-16.585	-18.009	-18.566	-18.858	-19.133	-19.350
Telescopium 27								
esol95939-4142.7	\cdots	\cdots	\cdots
eso200202-4807.3	...	\cdots	\cdots
eso200211-4807.3		

Object (1)	$\mathrm{I}_{19.5}$ (2)	I_{20} (3)	$\mathrm{I}_{20.5}$ (4)	I_{21} (5)	$\mathbf{I}_{21.5}$ (6)	I_{22} (7)	$\mathrm{I}_{22.5}$ (8)	$\mathrm{I}_{23.5}$ (9)
eso200541-4629.8	-15.856	-17.014	-17.581	-18.007	-18.276	-18.480	-18.620	-18.796
eso200735-4825.5						
eso200823-4617.6			-16.307	-18.476	-19.433	-20.068	-20.387	\ldots
eso200826-4710.4		\ldots	\ldots
eso201039-4858.8	\ldots							
eso201301-4333.6	\ldots							
eso201352-4440.3	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
eso201442-4821.8	\ldots	\ldots	\cdots	\cdots	\cdots	...	\ldots	\ldots
eso201527-4514.2	...	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots
eso201730-4926.4								
eso202031-4409.5	-20.682	-21.017	-21.240	-21.436	-21.622	-21.731	-21.819	\ldots
eso202423-4929.9								
Telescopium 56								
esol95443-4614.9	-17.968	-19.003	-19.757	-20.456	-20.885	-21.106	-21.221	-21.421
eso200559-4928.7
eso201006-4458.1								...
eso201024-4440.7	-19.270	-19.942	-20.736	-21.574	-21.812	-22.000	-22.128	\ldots
eso201302-4451.8		
Pavo								
esol91452-7219.1	\ldots							
eso192513-7110.4	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	\ldots
eso195254-7035.3	\ldots	\ldots	\ldots	...	\ldots	...
eso200710-6722.7	\ldots	\ldots	\ldots	\ldots	\ldots	...
eso201001-7251.8	\ldots	\ldots	...	\ldots	\ldots	...
eso201125-7117.0	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
eso201137-7402.4	\ldots	\ldots	\ldots	\cdots				
eso201810-7143.5	\ldots	\ldots	\ldots	-16.051	-17.327	-18.514	-18.944	-19.410
eso202552-6615.9	\ldots
eso204014-7134.7	...	\ldots	...	\ldots	\ldots	\ldots	\ldots	...
Indus								
eso205906-4341.3	\ldots							
eso210003-4308.6	\ldots					
eso210053-4506.0	\ldots	\ldots	...	-14.882	-18.203	-18.959	-19.491	-19.846
eso210101-4826.3	\ldots	\ldots	\ldots
eso210145-4759.3	...	\ldots	\ldots	\ldots	\ldots	...	\ldots	\cdots
eso210256-4822.2	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots
eso210500-4407.1	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots	\cdots	\ldots
eso210616-4736.6	\ldots	\ldots	...	\ldots	\ldots	..	\ldots	\cdots
eso210740-4354.9	...	\ldots						
eso210802-4243.7	\ldots	\cdots	...	\ldots	\ldots	...	\ldots	...
eso212713-4325.3

Table A. 6 Continued

Object	$\mathrm{I}_{19.5}$	I_{20}	$\mathrm{I}_{20.5}$	I_{21}	$\mathrm{I}_{21.5}$	I_{22}	$\mathrm{I}_{22.5}$	$\mathrm{I}_{23.5}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

Miscellaneous								
eso025101-1748.3	-20.475	-20.776	-20.995	-21.181	-21.308	-21.462	-21.516	-21.616
eso102742-3458.0	-19.387	-19.591	-19.749	-19.871	-19.997	-20.277	-20.399	-20.488
eso191041-6629.7	\ldots							
eso201327-4755.6	\ldots							
eso212837-4616.8	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	\ldots	\cdots

Pigure A.1. CCD Surface Brightness Profiles.

Pigure A.1. Continued.

Figure A.1. Continued.

Figure A. $1 . \quad$ Continued.

Figure A.1. Continued.

Figure A.1. Continued.

Figure A.1. Continued.

Figure A.1. Continued.

Pigure A.1. Continued.

Figure A.1. Continued.

Pigure A.1. Continued.

Pigure A.1. Continued.

Figure A.1. Continued.

Pigure A.1. Continued.

Figure A.1. Continued.

Pigure A.1. Continued.

Figure A.1. Continued.

Figure A.1. Continued.

Pigure A. 1. Continued.

Figure A.1. Continued.

Figure A.1. Continued.

Pigure A.1. Continued.

Figure A.1. Continued.

Pigure A.1. Continued.

Figure A. 1. Continued.

REPERENCES

Aaronson, M., Bothun, G., Mould, J., Huchra, J., Schommer, R. A., and Cornell, M. E. 1986, Ap. J., 302, 536.

Aaronson, M., et al. 1989, Ap. J., 338, 654.
Aaronson, M., Kuchra, J., and Mould, J. 1979, Ap. J., 229, 1.
Aaronson, M., Huchra, J., Mould, J., Schechter, P. L., Tully, R. B. 1982a, Ap. J., 258, 64.

Aaronson, M., Huchra, J., Mould, J. R., Tully, R. B., Fisher, J. R., van Woerden, H., Goss, W. M., Chamaraux, P., Mebold, U., Siegman, B., Berriman, G., and Persson, S. E. 1982b, Ap. J. Suppl., 50, 241.

Aaronson, M., and Mould, J. 1983, Ap. J., 265, 1.
Aaronson, M., and Mould, J. 1986, Ap. J., 303, 1.
Bessel, M. S. 1979, Pub. A. S. P., 91, 589.
Bevington, P. R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), p. 200.

Bothun, G. D. 1981, Ph.D. thesis, University of Washington.
Bothun, G. D. 1984, Ap. J., 277, 532.
Bothun, G. D., Aaronson, M., Schommer, R., Mould, J., Huchra, J., and Sullivan, W. T. 1985a, Ap. J. Suppl., 57, 473.

Bothun, G. D., Geller, M. J., Beers, T. C., and Huchra, J. P. 1983, Ap. J., 268, 47.

Bothun, G. D., and Mould, J. R. 1987, Ap. J., 313, 629.
Bothun, G. D., Mould, J., Schommer, R. A., and Aaronson, M. 1985b, Ap. J. 291, 586.

Bothun, G. D., Romanishin, W., Strom, S. E., and Strom, K. M. 1984, A. J. 89, 1300.

Cawson, M. G. M. 1983, Ph.D. thesis, University of Cambridge.
Cleary, M. N., Heiles, C., and Haslam, C. G. T. 1979, Astr. Ap. Suppl., 36, 95.

Cornell, M. E., Aaronson, M., Bothun, G., and Mould, J. 1987, Ap. J. Suppl., 64, 507.

Cousins, A. W. J. 1976, Mem. R. A. S., 81, 25.

Davis, L. E., Cawson, M., Davies, R. L., and Illingworth, G. 1985, A. J., 90, 169.
de Vaucouleurs, G., de Vaucouleurs, A., and Corwin, H. G. 1976, Second Reference Catalogue of Brlght Galaxies (Austin: University of Texas Press) (RC2).

Feast, M. W. 1987, Observatory, 107, 185.
Pernie, J. D. 1983, Pub. A. S. P., 95, 782.
Freeman, K. C. 1970, Ap. J., 160, 811.
Geisler, D. 1988, NOAO Newsletter, 10, 23.
Giovanelli, R., and Haynes, M. P. 1985, A. J., 90, 2445.
Graham, J. A. 1982, Pub. A. S. P., 94, 244.
Hardie, R. H. 1962, in Astronomical Techniques, ed. W. A. Hiltner (Chicago: University of Chicago Press), p. 178.

Heiles, C. 1975, Astr. Ap. Suppl., 20, 37.
Huchra, J. 1988, private communication.
Johnson, H. L. 1968, in Nebulae and Interstellar Matter, eds. B. M. Middlehurst and L. H. Aller (Chicago: University of Chicago Press), p. 167.

Johnson, H. L., Mitchell, R. I., Iriarte, B., and Wisniewski, W. Z. 1966, Comm. L. Planet. Lab. 4, 99.

Kent, S. M. 1984, Ap. J. Suppl., 56, 105.
Kraan-Korteweg, R. C., Cameron, L. M., and Tammann, G. A. 1988, Ap. J., 331, 620.

Landolt, A. 1983, A. J., 88, 439.
Lauberts, A. 1982, The ESO / Uppsala Survey of the ESO (B) Atlas, (Garching: European Southern Observatory).

Longo, G., and de Vaucouleurs, A. 1983, A General Catalogue of Photoelectric Magnitudes and Colors In the U,B,V System of 3,578 Galaxies Brighter than the 16-th V-Magnitude (1936-1982), (The University of Texas Monographs in Astronomy No. 3).

Lucey, J. R., Currie, M. J., and Dickens, R. J. 1986a, M. N. R. A. S., 221, 453.

Lucey, J. R., Currie, M. J., and Dickens, R. J. 1986b, M. N. R. A. S., 222, 427.

Mateo, M. 1987, private communication.
Mould, J. R. 1988, private communication.
Nilson, P. 1973, Uppsala General Catalogue of Galaxies, Uppsala Astr. Obs. Ann., 6 (UGC).

Oepik, E. 1922, Ap. J., 55, 406.
Ostriker, E. C., Huchra, J. P., Geller, M. J., and Kurtz, M. J. 1988 , A. J., 96, 1775.

Pence, W. 1976, Ap. J., 203, 39.
Persson, S. E., Frogel, J. A., and Aaronson, M. 1979, Ap. J. Suppl., 39, 61.

Pierce, M. J., and Tully, R. B. 1988, Ap. J., 330, 579.
Rubin, V. C., Ford, W. K., Thonnard, N., and Burstein, D. 1982, Ap. J., 261, 439.

Rufener, F. 1986, Astr. Ap., 165, 275.
Sandage, A. 1975, Ap. J., 202, 563.
Sandage, A., Binggeli, B., and Tammann, G. A. 1985, in ESO Workshop on the Virgo Cluster of Galaxies, eds. O.-G. Richter and B. Binggeli (Garching: European Southern Observatory), p. 239.

Sandage, A., and Tamann, G. A. 1976, Ap. J., 210, 7.
Stetson, P. B. 1987, Pub. A. S. P., 89, 191.
Tully, R. B., and Fisher, J. R. 1977, Astr. Ap., 54, 661.
Tully, R. B., and Fisher, J. R. 1987, Nearby Galaxies Atlas (Cambridge: Cambridge University Press).

Tully, R. B., and Fouqué, P. 1985, Ap. J. Suppl., 58, 67.
Tully, R. B., Mould, J. R., and Aaronson, M. 1982, Ap. J., 257, 527.
Watanabe, M. 1983, Ann. Tokyo Astr. Obs., 19, 121.
Watanabe, M., Kodaira, K., and Okamura, S. 1982, Ap. J. Suppl., 50, 1.
Watanabe, M., Kodaira, K., and Okamura, S. 1985, Ap. J., $202,72$.
Whitmore, B. C. 1984, Ap. J., 278, 61.
Young, P. J., Westphal, J. A., Kristian, J., Wilson, C. P., and Landauer, F. P. 1978, Ap. J., 221, 721.

[^0]: For some of our galaxies, the extent of overlapping stars or companion galaxies was not completely obvious. For such cases, GASP provides an automatic image-detection program called MULTIM which looks In the data at various intensity thresinolds for images whose parameters are similar at consecutive thresholds. The program then either finds the parameters for each image at a user-specified margin above the sky level,

[^1]: To give the reader an idea of the repeatability of the transformation coefficients determined as described above, we give in Table 2.5 a summary of the coefficients computed by CCDSTD for the January 1987 CTIO run. The error estimates are based on input data error

