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ABSTRAcr 

Polarization aberrations are the variations of amplitude. phase. 

polarization and retardance associated with ray paths through optical systems. 

This dissertation develops methods for calculating the polarization aberrations 

of radially symmetric systems of weak polarizers. systems like lenses. 

telescopes and microscopes. The instrumental polarization in these systems 

arises from weak polari~tion effects occurring near normal incidence at glass. 

metal and thin film coated interfaces. 

Polarized light and polarizers are treated using the Jones calculus. 

Weak polarizers. opticai elements with small polariZ2tion effects. are ireated by 

expanding the Fresnel equations and thin film equations into a Taylor series. 

Methods are given for calculating the Taylor series coefficients for an 

multilayer coated interface whose polarization performance is known. for 

example from a thin film design program. Equations are derived for the 

propagation of polarized light through optical systems. Weak polarizers are 

shown to be very weakly order dependent; this greatly facilitate:; the 

calculation of the effect of 3 sequence of weak polarizers. The dominant 

terms are order independent polarization terms which are readily calculated. 

The order dependent portion can be systematically evaluated as higher order 

terms. 

The instrumental polarization. being a function of angle of incidenc~. is 

different fer different rays through the system. Thus an optical system is a 

xii 
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spatially varying polarizer. The instrumental polarization associated with a 

single surface is often well approximated as a "parabolic" polarizer. The 

instrumental polarization function is calculated as a Taylor series Jones matrix 

about the optical axis as a function of object and pupil coordinates. The 

resulting spatial variations of the instrumental polarization function bear a 

strong resemblance to the wavefront aberrations. since both arise from 

funciamental geometrical considerations. In particular. there are terms in the 

weak linear polarization and in the weak retardance of radially symmetric 

systems which strongly resemble defocus. tilt and piston error. A polarization 

aberration expansion is defined to secvnrl order iii iDe object and pupii 

coordinaies. A method is derived for calculating the polarization aberration 

coefficients for a sequence of radially symmetric surfaces from the Taylor 

series representation of the polarization associated with the individual 

interfaces. 



CHAPTER 1 

INTRODUCTION 

This dissertation is a theoretical study of the propagation of polarized light 

through optical systems. Expressions for the instrumental polarization of radially 

symmetric optical systems of lenses. mirrors and coatings in the paraxial region have 

been derived. This instrumental polarization has been found to have a mathematical 

form similar to the wavefront aberrations of geometrical optics. A set of functions 

have been derived to characterize the instrumeniai poiarization of symmetric opticai 

systems. These functions have been named the "polarization aberrations". The 

polarization aberrations are a generalization of the wavefront aberrations and include 

the wavefront aberrations as a subset. What is new and unique about the present 

work is the emphasis on determining the variation of amplitude and polarization in 

the transmitted beam as functions of object and pupil coordinates. This is a 

relatively unexplored area of optical design with little prior research. 

Polarizers are often incorporated into optical systems to control the state of 

polarization of light through the system. But all optical interfaces. including 

reflecting and refracting interfaces. have intrinsic polarizing properties. Since the 

polarization properties of optical interfaces vary with the angle of incidence of the 

light. non planar optical surfaces become spatially varying polarizers which change 

the amplitude and polarization of transmitted light in a complex fashion. It is the 

characterization of optical systems as po!arizers. typicaIIy weak polarizers. and the 

calculation of the magnitude of these polarization variations in optical systems that 

this dissertation treats. 
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This dissertation derives the relationships needed to calculate the polarization 

aberrations for the class of radially symmetric optical systems of lenses. mirrors and 

coatings. 

Polarized Light 

Light is a transverse electromagnetic wave. The electric and magnetic fields 

associated with the optical disturbance are perpendicular to the local direction of 

propagation. the Poynting vector. Thus. light is a vector wave; the associated fields 

have two degrees of freedom associated with the two directions orthogonal to the 

Pcyntin6 vector. Polarization feiers io the properties oi iight associated with these 

two degrees of freedom. Electromagnetic waves share this property. polarization. 

with other vector fields such as elastic and spin waves in solids. 

The mathematics necessary to describe the polarization of light is contained in 

Chapters Two and Tnree. 

Polarization Elements 

Polarization elements are optical elements which change the polarization state 

of light. Polarization elements can be grouped into several broad and overlapping 

categories: polarizers. retarders. linear elements. elliptical elements. circular elements 

and depolarizers. Polarizers. such as dichroic "polaroid" sheets and polarizing 

prisms. preferentially transmit certain {IOlarization states. Retarders. such as 

birefringent plates. introduce a phase delay between different polarization states. 

Linear elements have linear "eigenpolarizations" while elliptical and circular elements 

have eiliptical or circular eigenpolarizations. Depolarizers randomly alter the phase 

information of light causing an irreversible mixing of polarization states. 
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At this point a word shortage is encountered. The word polarizer is used for 

elements which produce amplitude differences when acting upon different 

polarization states. Likewise, retarders produce a phase difference acting upon 

different polarization states. However elements which produce both amplitude and 

phase differences, such as most coatings, are also generally referred to as polarizers. 

The words polarization element are used here to make the distinction. Clearly 

another word for the amplitude polarization elements would be helpful but the 

literature does not make any clear distinctions. The word dichroism is close but it 

refers specifically to the material property of a polarization dependent absorption 

coefficient. Dichroism is not strictly appropriate for coatings which produce 

amplitude differences by interference. This shortage of words makes the words 

polarization and polarizer somewhat ambiguous and only serves to needlessly 

complicate this subject. 

The Eight Forms of Polarization Behavior 

There are only eight forms of polarization behavior associated with a nonscattering 

polarizer. These are listed in Table I. These eight forms correspond to the eight 

degrees of freedom in the Jones matrix's four complex elements. The instrumental 

polarization function contains the linear polarization, retardance, amplitude and other 

polarizing terms associated with ray paths as well as the wavefront aberration 

(which is all conventional ray tracing calculates). 

Instrumental and Residual Polarization 

Instrumental polarization is the polarization and retardance intrinsically 

associated with the optical elements in an optical system. Instrumental polarization 
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TABLE 1 

THE EIGHT FORMS OF POLARIZATION BEHAVIOR 

I. Amplitude. 

2. Phase (Wavefront Aberration). 

3. 4. LinearPolarization (Magnitude and Orientation). 

5. 6. Linear Retardance (Magnitude and Orientation). 

7. Circular Polarization. and. 

8. Circular Retardance. 
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arises from lenses. mirrors. coatings. diffractive optical elements and crystals as well 

as from polarizers and retarders. The instrumental polarization can be divided into 

contributions from optical elements used specifically for polarization control. 

polarizers and retarders. and the "residual polarization." which is associated with 

lenses. mirrors. coatings. gratings. holograms and other optical elements. Residual 

polarization will be defined as polarization contributions from optical components not 

specifically intended as polarizing elements. Residual polarization is undesirable 

since any polarization or retardance present can couple light between orthogonal 

polarization states. Residual polarization might be compared to wavefront aberration 

because both interfere with the measurement of optical fields and 1"'!~uce the image 

forming potential of the optical system. 

Sources of Instrurn~mtal Polarization 

All optical interfaces display some polarization effects at non normal 

incidence. The Es electric field component drives electrons tangential to the surface 

while the E component tries to force electrons iflto the metal and then draw them 
p 

out. The response of the interface to these two stimuli is different. For example. 

when reflecting from a metal. the s component is reflected more efficiently than the 

p component; the interface is a weak linear polarizer for non-normal incidence light. 

In addition. there is a phase difference upon reflection between the sand p 

components so the interface is also a weak retarder. 

Table 2 is a list of polarizing optical elements with the more strongly 

polarizing elements towards the top of the list and weaker polarizers towards the 

bottom. 



6 

TABLE 2 

POLARIZING OPTICAL ELEMENTS LISTED ROUGHLY BY 

"STRENGTH" 

Polarizers Holograms 

Retarders Fold Mirrors 

Electro-Optic Crystals Dichroic Filters 

Optical Fibers Bandpass Filters 

Dichroic Crystals Mirrors 

Beamsplitters Lenses 

Waveguides Antireflection Coatings 

Grazing Incidence Mirrors Gradient Index Media 

Strain Birefringent Media 
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Systems Sensitive to Instrumental Polarization 

Instrumental polarization is the polarization and retardance intrinsically 

associated with the optical elements in an optical system. Instrumental polarization 

arises from lenses. mirrors. coatings. diffractive optical elements and crystals as well 

as from polarizers and retarders. The instrumental polarization can be divided into 

contributions from optical elements used specifically for polarization control. 

polarizers and retarders. and the "residual polarization." which is associated with 

lenses. mirrors. coatings. gratings. holograms and other optical elements. Residual 

polarization will be defined as polarization contributions from optical components not 

specifically intended as polarizing elements. 

Many optical systems are intended to transmit all polarization states equally. 

The collection optics for a ndiometer used in remote sensing should have equal 

transmittance for any incident polarization state. Since natural scenes are usually 

partially polarized. the radiometer will not be biased toward a particular 

polarization. Similarly. the optics in a camera or copy machine do not benefit from 

having a different transmittance for different polarizations; this can only represent 

an additional loss of light with no advantages for the system. A large class of 

systems work better if they are free of linear polarization. retardance and 

depolarization. 

In instruments used for the measurement of the polarization state of light. 

such as polarimeters and ellipsometers. any residual polarization leads to inaccurate 

polarization measurements. To mitigate this degrading factor. the lenses and coatings 

used in polarimeters should be chosen very carefully to minimize the instrumental 

polarization. 
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In interferometers. &Dy light coupled into the orthogonal state does not 

produce interference fringes with the primary polarization component. The residual 

polarization leads to loss of fringe visibility. The polarization effects (linear or 

circular polarization) produce variations of exit pupil brightness which depend on the 

incident polarization state. These variations make it difficult to match the intensities 

of the sample and reference beams across the pupil. Further. the match is different 

for different input polarizations. The retardance effects (phase polarization) cause 

polarization dependent wavefronts. 

different interferograms. 

Different input polarization states produce 

Residual polarization effects are most troublesome in advanced interferometric 

instruments such as laser radars. optical phased arrays and optical signal processors. 

systems where as much information as possible is extracted from interference 

patterns. In these systems. signal to noise is reduced in proportion to the amount of 

residual polarization; it is a first order effect. Similar first order problems occur in 

optical communication systems utilizing local oscillators for heterodyne detection. 

Instrumental polarization is a substantial effect in systems with large angles of 

incidence. such as those containing holograms. fold mirrors. diffraction gratings or 

grazing incidence systems. 

Systems operating over a broad spectral band often encounter large 

polarization effects from coatings. particularly at the edges of the spectral bandpass. 

Systems with widely separated laser wavelengths typ!cally show enhanced 

instrumental polarization at one or both wavelengths. Strong polarization effects 

frequently occur at the transmission edges of band-pass filters. edge filters and 

dichroic filters. 
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High precision radiometers. such as those used for absolute measurements to 

tenths of a percent. are instrumental polarization sensitive and require very high 

quality coatings. One percent of instrumental polarization results in the radiometer 

recording 1 watt of incident optical power as anywhere between 0. 99 watt and 1.01 

watt depending upon the incident polarization state. In remote sensing systems. there 

is no control over the polarization state of the incident light. 

Polarization Aberrations 

The causes of instrumental polarization in optical systems are the polarization 

produced by non-normal incidence at the optical interfaces and the polarization 

produced propagating through polarizing media. Since each ray takes a different 

path through the system with its own angles of incidence and planes of incidence. 

each ray in general experiences a different change in its state of polarization. This 

residual polarization varies with wavelength. object coordinates and pupil 

coordinates. "Polarization aberrations" will be defined as variations of the 

amplitude, phase and polarization of an optical wavefront across the exit pupil of an 

optical system and the dependence of these variations on wavelength and object 

coordinate. The polarization aberrations are extensions of the wavefront aberrations. 

Since the polarization aberrations encompass amplitude and polarization variations 

they provide a more complete characterization of the electromagnetic fields 

transmitted by an optical system. 

The method of polarization aberrations combines elements of several different 

optical calculation methods into one procedure. Its objective is the calculation of the 

instrumental polarization function of an optical system. The method of polarization 

aberrations supplements the aberration equations of geometrical optics (Born and 
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Wolf 1975. Smith. Kingslake 1978) with thin film calculations (Born and Wolf 1975, 

Macleod ) and crystal optics calculations (Born and Wolf 1975. Yariv and Yeh 1974.) 

Using polarization aberrations a more complete picture of the wavefront transmitted 

by an optical system is obtained. In particular. since thin films and anisotropic 

crystals are polarizing. the transmitted amplitude and wavefront are usually a 

function of the incident polarization state. Specifically. the amplitude as well as the 

amounts of defocus. spherical aberration, astigmatism and other aberrations of a 

system vary with the incident polarization state. These are the effects that the 

polarization aberration method calculates. 

One example of this analysis is that optical interfaces behave as a spatially 

varying weak linear polarizers and spatially varying weak linear retarders. For 

example, an uncoated spherical lens surface interacting with an on axis spherical 

wave has an associated linear polarization due to the Fresnel equations whose 

polarization axes are oriented radially and whose linear polarization magnitude 

increases quadratically with pupil radius. Figure 1 a depicts this linear polarization 

aberration (spatial variation) across the lens aperture. Each line represents the weak 

linear polarization the beam experiences at that part of the surface. The lines are 

drawn parallel to the axis of the local weak linear polarization and the lengths of the 

lines are proportional to the polarizance, the degree of polarization produced when 

the incident light is unpolarized. This residual linear polarization is vertically 

oriented along the y axis and horizontally oriented along the x axis. This weak 

spatially varying polarizer is an example of a polarization aberration. 

Continuing this example. Figure 1 b shows the effect of the lens surface on a 

uniform intensity beam linear polarized along the y axis. The lines show the 
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Figure I Residu:ll Polariution of a Spheric:J.i Refrlcttng Interface 

a. The mlgnitude lnd orientltion of the instrumentll iine:lf poi:J.riz:ltion acro~s a 
spherical interflce is "~presented by the length and orient:ltion of lines. 
b. The tr:J.nsmittt:J poiariution st:J.te for verticl lill~.li' poi:J.rized incident light is 
represented by the length lnd angle of the arrows. 
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intensity and orientation of the polarization of the beam after being refracted by the 

uncoated interface. Along the y axis. where the beam is aligned with the 

instrumental linear polarization. the beam becoms brighter towards the top and 

bottom of the aperture. This increase in transmission occurs because the light is 

approaching Brewster's angle. Along the x axis the light is orthogonal to the residual 

linear polarization and becomes less intense towards the edge. At ±4S degrees. the 

light is polarized at an angle to the residual linear polarization and has its 

polarization axis rotated; thus light is coupled into the orthogonal polarization state 

upon refraction. 

Optical Design 

Electromagnetic waves are characterized by their amplitude. phase. 

polarization and cohcr:::n~e. The amplitude describes the intensity distribution in 

space. The phase describes the shape of the wavefronts. The polarization describes 

the direction of oscillation of the electromagnetic waves. The coherence collectively 

describes the statistical properties of the amplitude. phase and polarization. For 

example. the degree of polarization is a measure of the "angular coherence". 

Optical design. as an activity. is the process of selecting a set of optical 

surfaces on which to perform a desired transformation of the optical fields incident 

upon the system. The most important transformation is imaging. depicted in Figure 

2. Spherical waves emanating from a region called the object are to be transformed 

into converging spherical waves. At the centers of curvature of these spherical 

wav~. the image. a likeness of the object. is formed. often on a screen or a piece of 

film. Other important tr.ansformations include coupling light into an aperture. 

providing a uniform or specifiediJbmination. interfering two or more beams of 
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An ideal imaging system transforms diverging spherical waves from the object into 
spherical waves converging towards image. 
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light. maximizing reflectance or transmittance. modulating or scanning a beam. and 

providing a spectral decomposition of the incident light. The materials available 

include: lenses. mirrors. prisms. diffraction gratings. optical fibers. polarizers. 

diffusers. thin film coatings. waveguides and crystals. 

Optical design then consists of calculating or mathematically simulating the 

behavior of electromagnetic waves through an assembly of optical elements and 

choosing the elements in such a way as to optimize optical performance. 

Optical theories can be arranged in a hierarchy of increasing complexity and 

sophistication: geometrical optics. wave optics and diffraction theory. quantum optics 

and quantum electrodynamics. Most optical engineering problems. such as imaging. 

can be adequately simulated using geometrical optics with some wave optics 

calculations to evaluate the diffraction performance. The fundamental operation is 

ray tracing. calculating the path of the normal to a wavefront through the system by 

the repeated appli~ation of Snell's law. the law of reflection and the diffraction 

grating law. By tracing a collection of rays from a single object point. the location 

of an image. a relatively small region in space where the rays converge and nearly 

intersect. can be determined. One important measure of the image quality calculated 

by ray tracing is the variation of the optical path difference. usually calculated at 

the exit pupil of the system. for different rays from a given object point. Ray 

tracing will also determine the locations of ray intercepts at the image plane. the ray 

aberrations. and the optical path difference. or relative phase. along these ray paths. 

Ray tracing is the repeated application of several relatively simple physical laws to 

relatively complex arrangements of optical surfaces. Thus optical design has evolved 

into the use of elaborate computer programs to perform the enormous amounts of ray 
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tracing and associated data reduction necessary for the design of optical systems. 

Table 3 contains a list of commercially available ray tracing programs commonly 

used for optical design. 

Of the parameters necessary to describe the optical fields; amplitude. phase. 

polarization and coherence; ray tracing only calculates the phase. By calculating ray 

paths and optical path iengths through the system. ray tracing determines the precise 

shape of the wavefront. but does not determine the amplitude or polarization. 

Centuries of experience have shown that the phase (as determined from the optical 

path length) is the most critical of these parameters in the design process. Born and 

Wolf (1975. chap.9) give an extended discussion of the effect of phase errors on 

optical images. The variation of optical path length along the ray paths forming an 

image must be held to a small fraction of a wavelength or the structure of the 

diffractiou pattern will suffer major degradation. Thus the majority of effort in 

optical design has been spent controlling the shape of the transmitted wavefront. 

The optical designer's main task is to determine an optical system which satisfies 

specifications on the wavefront quality for a range of wavelengths and field 

positions. All of the computer programs listed in Table 3 perform calculations to 

accurately determine the optical path differences associated with images and will 

calculate the effect of these phase differences on the diffraction image. None of 

these programs wHl calculate the instrumental polarization and its variation for 

different rays or the effect of these polarization aberrations on the image. This is 

understandable since these effects are, for the most part, small and have not yet been 

systematically explored. 



NAME 

ACCOS V 

CODE V 

Cool/Genie 

Kidger Program 

OSLO 

Synopsis 

TABLE 3 

SOME COMMERCIALLY AVAILABLE 
OPTICAL DESIGN RAY TRACING PROGRAMS 

VENDOR ADDRESS 

Scientific Calculations Fishers. NY 

Optical Research Assoc. Pasadena, CA 

Genesee Computer Center Rochester. NY 

Kidger Optics Limited Crowborough, UK 

Sinclair Optics Fairport. NY 

Optical Systems Design Medford. MA 

16. 
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Thin Films 

Vacuum deposited thin films are used on most optical surfaces to control the 

amount of transmission and reflection. These thin films are usually le~ than the 

wavelength of light in thickness. Being so very thin. the effect of the films on ray 

paths are accurately modeled by treating the films as having parallel surfaces which 

contour the substrates on which they are deposited. Due to the closely spaced 

parallel surfaces. thin films have negligible influence on the ray paths through the 

system and are generally ignored when simulating a system by ray tracing. These 

coatings principally affect the amplitude and polarization of the ray and have much 

less effect on the optical path difference. This division. with the optical surfaces 

governing the ray paths and the thin film coatings governing the amplitude and 

transmission. allows the optical system design problem to neatly decouple into two 

separate problems. lens design and coating design. The wavefront performance and 

image quality of the system is calculated by a lens designer using a ray tracing 

optical design program. The amplitude and polarization calculations at individual 

surfaces are performed by a coating designer using a thin film design program. This 

division of labor usually produces a loosely coupled communication channel between 

the optical and coating designers. Typically. the coating designers are only given the 

wavelength range and angle of incidence range for a surface and asked to design 

coatings to maximize transmittance or reflectance under these broad conditions. One 

reason this loosely coupled design process has worked so well is because of a 

fortuitous circumstance. The coatings designed to optimize the transmittance or 

reflectance at an interface have usually greatly reduced the amplitude and 

polarization variations and thus reduced the polarization aberrations at the interface 
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as well. For example. a quarter wave magnesium fluoride antireflection coating on 

glass typically r.:duces reflection losses at the design wavelength by a faC'tor of fcur. 

and reduces the instrumental polarization by a still greater factor (see Chapter 4). 

This fortuitous circumstance has allowed lens and coating design to remain 

uncoupled. Thus instrumental polarization is usually ignored as a higher order 

effect. But it is not sufficient to design thin iilm coatings in isolation from the lens 

design when amplitude and polarization performance is demanding. Very low 

instrumental polarization is required for a new and more complex generation of 

optical systems such as laser radars. precision remote sensing spectropolarimeters. 

grazing incidence optics and phased array optical systems. Calculating the 

instrumental polarization requires performing thin film and crystal optics calculations 

during the ray tracing process. This idea is not new. but its implementation is 

complex enough to have delayed the integration of these two branches of optical 

design until specifications required it. 

Control of the wavefront aberrations has reached a state of refinement such 

that some systems are limited by instrumental polarization. Using computer 

controlled polishing and phase measuring interferometry. the best optical surfaces are 

now fabricated to sphericity of greater than 0.005 waves root mean square (rms). 

Several commercial systems. such i:IS the Perkin Elmer Micralign system. are 

routinely produced with a system wavefront quality of better than 0.025 waves rms. 

Relatively small amounts of polarization aberration are needed to produce a change 

in the Strehl ratio equal to the degradation caused by this very small residual 

wavefront aberration. For such carefully designed and fabricated systems. further 

improvements in image quality will come more easily from an understanding and 
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control of the instrumental polarization than from further reduction of the wavefront 

aberrations. Since interferometric and mUltiple beam systems are far more 

susceptible than imaging systems to amplitude and polarization errors. there is a need 

to perform the design of these systems and their ('.oatings in a more tightly coupled 

manner by using procedures such as polarization ray tracing and polarization 

aberrations to simulate the final instrumental polarization performance. 

The Wavefront Aberration Function 

There are two principal methods for determining the wav~front transmitted 

by an optical system. aberration theory and ray tracing. Both calculate the optical 

path lengths for ray paths through an optical system. One principal result of these 

methods is the determination of the wavefront aberration function (or optical path 

difference function) in the exit pupil for a specific object coordinate and wavelength. 

The wavefront aberration function is expressed as W(h.p) where hand p are the 

object and pupil coordinates. The wavefront aberration function is a dimensionless 

quantity (expressed in wavelengths) which describes the shape of the transmitted 

wavefront. It does not contain information about the transmiss!on of the optical 

system or the polarization state of the transmitted light. 

When optical design programs utilize ray tracing information as input to 

diffraction calculations. most make the "default assumption of geometrical optics." 

that the transmitted wavefront has uniform amplitude and constant polarization state 

across the exit pupil. The default assumption of geometrical optics is only valid as 

long the amplitude variations and wavefront differences betweell the two polarization 

components are small enough to be negligible for the problem at hand. In the 

absence of flJrther information about the transmitted wavefro~! the default 
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assumption is the safe and practical assumption. For the majority of optical systems 

it is an excellent assumption. Polarization aberrations is a method for designing and 

analyzing systems where this assumption is inadequate. 

The default assumption of geometrical optics combined with the results of ray 

tracing leads to an expression for the time independent electromagnetic field complex 

amplitude a<i~,p) on a reference sphere in the exit pupil of 

. .. .. 
.. .. " J21TW(h,p)/'A 

a(h,p) - p 110 e 

Here, p is the polarization state, 110 is the real amplitude of the field, A is the 

wavelength and w(i~,p) is the wavefront in the exit pupil (coordinates p) for object 

coordinate h. Due to the default assumption of goometrical optics, the polarization 

state p and the real amplitude 110 are constants, independent of hand p. 

The Instrumental Polarization Function 

A more general expression for the time independent electromagnetic field 

complex amplitude which encompasses amplitude variations and polarization 

variations is ..... . .... 
.... " .... J21TW (h,p )/A " .. .. J21TW (h,p)/'A 

a(h,p) - p ap(h,p) e p + q aq(h,p) e q 

Here p and q are any two orthogonal polarization states such as horizontal and 

vertical linearly polarized light or left and right circularly polarized light. The i'eal .... .. .. 
amplitudes of the two polarization components, ap(h,,,) and aq(h,p), are now 

....... ...-. 
functions of th~ pupil and object coordinates. Likewise W p(h,p) and W q(h,p) are 

the two wavefronts associated with the two polarization components. 

The functions a (h,p) , a (h,p), W (h,p) and W (h,p) cannot be determined p q p q 

by conventional ray tracing and aberration theory since they are functions of the 
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polarization and retardance effects associated with the optical elements. 

The importance of considering the two polarization components separately 

arises since orthogonal components do not produce a stationary interference pattern. 

The two polarization components form essentially two separate diffraction patterns 

which are added incoherently to form the point spread function. 
...... 

If a(h.p) and 

...... . . 
W(h.p) Me equal for the two polanzatlon components. then these separate 

pclarization diffraction patterns are equal and the polarization effects are trivial. In 

the presence of weakly polarizing or weakly retarding components in the optical 

system such as optical coatings. a small fraction of the light in one polarization state 

is transferred into the orthogonai state which now has a different amplitude and 

phase. This coupled light forms a second "ghost" diffraction pattern lurking 

alongside the primary diffraction pattern formed by the principal polarization sLate 

(Kubota and Inoue 1959. Fainman and Shamir 1984.) 

This transfer of a fraction of the light from one polarization state into another 

has frequently and incorrectly been labeled "depolarization." Properly stated. 

depolarization is the coupling of polarized light into unpolarized light. 

Depolarization is related to scattering. A loss of degree of polarization is associated 

with all depolarizing processes. Since no loss of degree of polarization is implied by 

the present process. only a change of polarization state. the correct term is 

"polarization coupling." 

The Jones Calculus Representation of the Instrumental Polarization Function 

The instrumental polarization function for an optical system is derived using 

the Jones calculus. The following analysis includes the effects of reflections. 

refractions. thin films and anisotropic media and neglects all scattering and 
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depolarization mechanisms. The time independent electromagnetic field complex 

amplitude expressed in Jones calculus notation is 

1 ...... (h.p) • 

... ... j21TW x(h.P)f},. 
ax(h.p) e 

. ... ... j21TW y(h.P)f}.. 
ay(h.p) e 

The Jones vector function for the complex amplitude 1 describes the transmitted 

complex amplitude for a specified input polarization state. A more corr.pif:h:: 

description of the instrumental polarization describes the transmitted amplitude for 

arbitrary input polarization states. The general expression for the "instrumental 

polarization function" along ray paths through the system as a Jones matrix J of the 

object and pupil coordinates is 

...... 
J(h.p) 

r 

-l 
....... 
Jl1(h.p) ] 

Given the instrumental polari:ration function in Jones matrix form. the transmitted 

amplitude in the exit pupil is then known for arbitrary ray paths and arbitrary input 

polarization states. 

The primary objective of this work the calculation of the instrumental 

...... ) 
polarization function J(h.p . 

Jones Matrix Form fer Interrace Polarization 

Reflection and refraction at a homogeneous and isotropic interface. such as a 

metallic reflecting surface. a dielectri.c lens surface. or a thin film optical coating on 

a surface. is characterized by amplitude transmission coefficients for the sand p 
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components. as and ap. The amplitude transmission coefficients relate the electric 

field components before and after the interface: 

E' - a E s s s 

E' - a E p p p 

'6 J s ;t 
- Ps e j6 r.s • 

- peP E p p 

A measure of the linear polarization associated with an interface at a particular 

wavelength and angle of incidence is the polarizance (Shurcliff 1 %1.) 

Likewise 

6 - 6 - 6 s P 

is the linear retardance for the interface in radians. The coefficients. as' as' Pst Pst 

6s' and 6s' can be obtained using thin film design progr".ms for a large variety of 

interfaces. 

From the amplitude transmission coefficients for a non scattering homogeneous 

and isotropic interface a Jones matrix can be written for a ray at an interface. The 

local ray information required is the angle of incidence of ,he ray. i. and the 

orientation of the 9Iane of incidence. 6. In s-p coordinates the Jones matrix is 

This is the Jones matrix for a linear polarizer aligned with a linear retarder. This 

matrix must be rotated into the system x-y-z coordi.nates before multiplying it with 

the Jones matrices for the other optical elements. Using the rotation operator R(6) 

for the Jones calculus. 
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.J(i,6) _ R(9) J(i) R(-9) _ [ C?S 9 -sin tJ ] J(i) [ C?S 9 sin 9 ] . 
sm 9 cos 9 -sm e cos e 

More complex forms for the Jones matrix describe interfaces which are not isotropic 

such as diffraction gratings. holograms. and anisotropic crystals 

The Jones Matrix for Propagation 

The Jones matrix for propagation through a length 1 of non polarizing material 

of refractive index n is 

j2rrnl/A riO ] 
J(1.n) - e l 0 I . 

Absorbing materials are treated though the use of a complex n. Related Jones 

matrix equations for propagation through anisotropic media and optical modulators 

are collected in a recent textbook by Yariv and Yeh (1984.) 

The Jones Matrix for Ray Paths Through Optical Systems 

Next the calculation of the Jones matrix associated with an arbitrary ray path 

... 
through an optical system is presented. The ray originates at object coordinate ho 

... 
and enters the system at entrance pupil coordinate Po. Let Q be the number of 

optical interfaces in the system. The Jones matrix associated with the ray at surface 

q is Jq while the Jones matrix for propagation from interface q to Q+I is Jq+l.q' 

The Jones matrix for the ray from object space (qlEl) to image space (q .. Q) is 

I 

TT J q J q•q_1 
q-Q.-l 

This Jones matrix is a single point in the instrumental polarization function. 
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There are two methods of progressing from this equation to the full 

instrumental polarization function. polarization aberrations and polarization ray 

tracing. 
.... 

Polarization aberrations provide approximate forms for J(h.p .).) in 

functional form by expanding J(h.p) about J [ho.Po] given a Taylor series 

description of the optical elements. Polarization ray tracing calculates exact values 

of J(h.p.).) numerically at a discrete set of h. P. and ). using this equation. Chapters 

S. 6. 7, 8 contain the polarization aberration method. Polarization ray tracing is 

briefly presented in Ciapter 9. The present work concentrates on the polarization 

aberrations since they provide more insight into the underlying physics. 

Interpretation of the Instrumental Polarization Function 

The instrumental polarization function provides an abundance of data about 

the opticai performance of an system. Where the wavefront aberration function is a 

single valued function of pupil coordinates. the instrumental polarization function is 

an eight valued function. a spatially varying Jones matrix. How can all this 

i:lformation be assimilated? What does it mean? 

The straightforward interpretation of the instrumeutal polarization function 

proceeds by decomposing it into the eight basic forms of polarization behavior. One 

part is the wavefront aberration function which is interpreted in the conventional 

fashion. Another part is the transmission of the system for unpolarized light. The 

linear polarization terms contain the difference in transmission for differ€ilt 

polarization states. The retardance terms contain the differences in the transmitted 

wavefront present between different polarization states. Details on this 

decomposition are contained in Chapters 6 and 7 and App~ndix C. 
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The phase of the wavefront contains the most important information about the 

image forming potential of the wavefront. Due to the retardance portion of the 

instrumental polarization function however, the system has a different wavefront for 

different input polarization states. These variations are easiest to interpret if label 

as the "phase," the value of the wavefront midway between the maximum and 

minimum phase values possible. Then the polarization dependent deviations from 

this "phase" are the retardances of the system. The maximum and mi;oimum 

deviations in phase are a...~umed by the eigenpolarizations of the poiarizer and are 

readily determined from the Jones matrix. 

Plots can be made of the variations of the polarizatiou performance 

parameters in a format like "rimray plots", plots of the parameter versus pupil 

coordinate along the x and y axes for several field positions. These figures help 

reveal the form of the polarization aberration of the system. .A.nother useful form of 

polarization data display is maps of parameter variation across the exit pupil in 

corJtour plot or hidden line format. Such plots of ~hc polarization aberrations are 

contained in Chapter 7. 



CHAPTER 2 

THE JONES MATRIX AND C VECTOR 

FOR THE CHARACTERIZATION OF POLARIZATION 

In this chapter. the mathematical description of polarized light and polarizers 

is developed. There are two principal methods of handling polarization problems. 

the Jones calculus and the Mueller calculus. both developed in Cambridge. 

Massachusetts in the 1940's. Jones (l94la). Parke (1949). The Jones calculus is more 

appropriate for the development of the polarization aberrations since it is an 

amplitude calculus while the Mueller calculus is an intensity calculus. Appendix B 

contains a comparison of the two calculi and a discussiou of depolarization. 

In this chapter. a variant !)f the Jones calculus. the C vector. is introduced 

and developed. The C vector. which decomposes the Jones matrix into a sum of 

Pauli spin matrices. is especially useful for problems involving weak polarizers. such 

as the instrumental polari7.ation of highly transmitting systems. 

The Jones Calculus 

The Jones calculus is a mathemaHcal formalism introduced by R. Clark Jones 

(! 941 a) of the Polaroid Corporation and Harvard University to treat problems 

involving polarized light and polarizcrs. The Jones calculus was fully developed in 

a series of papers by K. C. Jones entitled "A New Calculus for the Treatment of 

Optical Systems": Jones (I 941 a). Jones (1941 b). Jones (l94lc). Jones (1942). Joner. 

(l947a). Jones (l947b). Jones (1948) and Jones (1956). This series remains one of the 
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best treatments of the Jones calculus and contains information on the Jones calculus 

not found elsewhere. Jones' series of papers have been reprinted in Polarized Light. 

Swindell (1975). Other introductions to the Jones calculus are found in: Azzam and 

Bashara (1977. Section 1.6). Clarke and Grainger (1971. Section 1.3). Gerrard and 

Burch (1975. Section IV.5). Hecht and Zajac (1974). Shurcliff (1 %2. Chap. 8) and 

Theocaris and Gdoutos (1979. Section 4.3.2.) 

The Jones calculus description of polarized light and polarizers uses the Jones 

vector for the description of polarized light and the Jones matrix to characterize the 

polarizing properties of an optical element. 

Polarization Elements 

Polarization elements are optical elements which divide au optical beam into 

two parts and transmit those parts with a different transmission coefficient and a 

different phase. The two parts of the beam are referred to the eigenvectors or by 

the more descriptive term. "eigenpolarizations." Azzam and Bashara (1977. pg.97). 

The two eigenpolarizations are orthogonally polarized and are transmitted by the 

polarizer with no alteration of their p:>larization states; only the intensity and phase 

changes. 

The term polarization elements is used to refer to both polarizers. such as the 

dichroic or prism types. which have a different transmittance for the two 

eigenpolarizatiofls. and retarders which have equal transmittance but a different 

phase change for the eigenpol:lr~zations. Shurcliff's book. Polarized Light. (1962). is 

the standard reference on the types of polarization elements. their definitions. 

parameters and properties. 
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Notation 

Appendix A contains a list of most of the notation used in this dissertation. 

All vectors are be denoted with arrows ( .. ) except for normalized vectors which are 

denoted with carets ("). All matrices are printed in boldface. 

The Jones Vector 

The expression for a quasimonochromatic plane wave propagating parallel to 

the z axis is. 

where. 

and. 

Ey(t) - y Eo.y(t) cos [ (kz-wt) + Ey(t)] 

II:' these expressions. Ex(t) and Ex(t) are the instantaneous scalar components of E(t); 

x and yare the unit vectors aiong the coordinate axes. k is the unit wavevector. w 

is the mean frequency. EX(t) and Ey(t) are the adjustments to the x and y phase as a 

f'Jnction of time. For coherent light the variations of !x(t) and Ey(t) are much less 

than one radian during an optical period and the beam can interfere with itself with 

a v~sibility of near one in a Michelson interferometer for optical path differences of 

many wavelengths. 
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The time dependent Jones vector is defined in terms of the electric field 

amplitudes as 

1(t) - r Ex(t) 1 . 
L Ey<t) J 

The components of 1(t) are the instantaneous components of E<t). 

The normaHzed Jones vector 1 is a time independent nounalized vector where 

the components of 1(t) have been divided by the incident electric field amplitude. 

1 _ liL 
Eo(t) 

The normalized Jones vector is referred to as "the Jones vector" unless otherwise 

stated. Knowledge of 1 and Eo provides all the information necessary to reconstruct 

E<t) to within a constant phase factor. 1 is written as either a column or row vector 

depending on the context. 

, The Coherent Addition of Oi>tical Fields 

The coherent addition of two light fields propagating along the z axis is 

E<t) - E1(t) + ~(t) 

Written in Jones vector notation, this becomes 

The extension to the coherent addition of N light fields is trivial. 

n-l 
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This additive property makes the Jones vector quite suitable for the formulation of 

polarization problems in interferometry and diffraction theory. 

Relation to Elliptical Polarization Parameters 

When Ex(t) and Ey(t) are plotted on an x-y graph. a figure is traced out 

which describes the polarization state of the light. If the light is polarized. the same 

shape repeats indefinitely. The most general shape then possible for this figure is an 

ellipse. and the parameters of this ellipse are referred to as the elliptical polarization 

parameters. For quasimonochromatic completely polarized light. the shape of the 

ellipse remains fixed but the speed with which it is traced varies slightly as the 

wavelength drifts. For almost completely polarized light. the shape of the ellipse 

changes as the polarization state drifts. For unpolarized light. locally. the curve is an 

ellipse. but it has rapidly and randomly changing parameters. The rate of the 

variation of the parameters depends on the wavelength bandwidth of the light. The 

probability distribution governing the instantaneous elliptical polarization parameters 

of unpolarized light were worked out by Hurwitz (1944). He reached the conclusion 

that the median value for the ratio of the minor axis length to the major axis length 

is .268. Thus for unpolarized light. more than half the time. the major axis is more 

than 3.5 times as long as the minor axis. 

Jones (194la) gives the following relations between the Jones vector 

components and the elliptical polarization parameters. Let 6 be the difference 

between the x and y phases. 6 - Phase(Ey) - Phase(Ex) . Let tan 6 be the ratio of 

the axes of the ellipse. and let .p be the orientation of the major axis. measured 

counterclockwise from the x axis. Then. 

tan 2-P - tan 2a cos 6 • 

and. 
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cos 29 - sin 2a I sin ~i . 
where. 

tano! 

Basis Jones Vectors 

Table 4 lists the Jones vectors for the most common polarization states: 

horizontal linear. vertical linear. +4511 linear. -456 linear. right circuiar and ieit 

circular polarized light. These vectors can be multiplied by an arbitrary phase 

factor. ei5• without changing the polarization form of the light: it only changes the 

absolute phase. 

Generalizations of the Jones Vector 

Jones (! 942) has derived extensions to the algebra of Jones vectors which 

allow it to handle the incoherent addition of light fields. such as un polarized light. 

where fX(t) and fy(t) have variations on the order of a radian or grp.ater during an 

optical period. t - I/w. These problems are often handled with Stokes vectors and 

Mueller matrices. but since a relationship exists between the two formalisms. 

incoherent light can be treated with either calculus. 

Jones (1942) also treats the case of changing the basis of the Jones calculus so 

that the basis states are different. ie. 0.0) '" horizontal linear polarized light. and (0.1) 

'" vertical linearly polarized light. but instead represent any ort~ogonal pair of 

polarization states. such as left and right circularly polarized light. The conclusion 

of Jones' study of this change of basis is that it adds no new physics or insight but 

does mathematically simplify certain problems. 
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TABLE 4 

BASIS JONES VECfORS 

Linear Polarized Light 

Horizontal Vertical 

,. ., 

- [~J H - l ~ J V 

+45 Degrees -45 Degrees 

7 - ~ [:] \ -'2 [,] 
- 2 -I 

Circularly Polarized Light 

Right Left 

R '" ..J2 [ ~J 2 -J 

r 
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The Jones Matrix and the C Vector 

Definition of the Jones Matrix in terms of the Jones Vector 

In his original paper. Jones (I94la) shows that the relationship between the 

Jones vector incident on a polarizer. 1. and the Jones matrix transmitted or reflected 

by a polarizer. 1'. can always be related by a matrix. the Jones matrix. J. Only 

certain transformations of the field components are allowed. those describable by a 

matrix. Tne iundamentai reiaiionship between the vector components oi the 

electromaflletic fields before and after a polarizing element is. 

l' - J 1 . 
The Jones matrix. J. is a two by two matrix with complex elements. 

J 
[

ju j1:t]. ·b - . . • lk 1 - ak I + J k I . 
J21 J2:t • • '. 

Thus the Jones matrix has eight degrees of freedom. Thus there are eight different 

forms of polarization behavior. a concept that will be developed further. Every 

Jones matrix corresponds to a physically realizable polarizer. 

Cascaded Polarizers 

The Jones matrix associated with an optical ray path through a sequence of 

polarizers is just the matrix product of the Jones matrices for the individual 

polarizers. If an optical ray traverses a series of elements. I. 2. ... Q. and the Jones 

matrices appropriate to that ray for e.ach element are. J1• J2 •••• Jo- then the Jones 

matrix describing the polarization properties of the system along this ray path is 

given by the matrix ~roduc!. 
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J - JQ ... J1 J1 - Tr Jq 

q-Q.-I 
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Since the Jones matrix of an optical element is dependent upon the 

wavelength. angle of incidence. orientation. and path through the element. care must 

be exercised in using the correct Jones matrix for a given optical ray. Only for a 

collimated monochromatic beam at normai incidence throug.i. a series of planar 

optical interfaces can a single Jones matrix can be written for the entire cross section 

of th~ beJlm. For non planar surfaces or nonplanar wavefronts or mUltiple. 

wavelengths. different parts of the beams have different Jones matrices describing 

their interaction with the polarization elements. 

Coordinate System 

The coordinate system of the Jones matrix is defined in terms of the x-y 

coordinates for the Jones vector. 

It is often desirable to align the Jones calculus coordinates with the sand p 

planes of an optical interface. since most thin film polarization equations are defined 

with respect to the s and p planes. Only for plane surfaces does the orientation of 

the sand p planes remain fixed across the surface. For nonplanar surfaces. it is 

necessary to maintain two sets of coordinates. the global x and y coordinates with 

respect to which the Jones matrix is defined. and a local sand p coordinate aat each 

point on the interface. The local sand p coordinate system have the x' and y' axes 

aligned wlth the local s and p planes of the surface. The Jones matrix for an 

interface can be evaluated in the x'-y' coordinates then this s-p Jones matrices can 

be rotated to bring it into the global x-y coordinate system. 
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Basis States 

The basis states of the Jones matrix can be considered as the matrices: 

81 - [ ~ ~ ] ~-[g~J. 

83-[~~J 8. -[ g ~ ] . 

Bs-[~gJ 86-r~~1. 
L v v J 

~- [ ~ ~ ] Ba-[g~J. 
Then an arbitrary Jones matrix can be expressed as. 

The basis states correspond to the following combinations of polarizers: 

(1) A linear polarizer aligned to transmit along the x axis. 

(2) A half wave plate oriented at 45 degrees followed by a linear polarizer 

transmitting along the y axis. 

(3) A half wave plate oriented at 45 degrees followed by a linear polarizer 

transmitting along the x axis. 

(4) A linear polarizer aligned to transmit along the y axis. 

(5) to (8) The same as (I) to (4) ey.c~pt that all polarizers are followed by a quarter 

wave thickness of nonpolarizing material (nonbirefringent. nondichroic.) 

The 8's comprise a convenient basis for the Jones calculus but are not the 

most convenient basis for understanding polarizer problems. In particular. the 8's 

are all singular matrices with zero determinant and no matrix inverse. 
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Pauli Spin Matrix Basis and the C Vector 

The Pauli spin matrices form a much more useful basis for the Jones matrix 

"space." The Pauli spin matrix basis was originally introduced by Jones (1948) with 

his "N-matrices." The approach presented here continues in the spirit with which 

Jones first introduced this basis. The expansion of the Jon~ matrices with the P~!.lli 

spin matrix basis set is especially concise for the theoretical development of the 

polarization aberrations. 

The identity matrix. 0'0 and the Pauli spin matrices. 0'1' 0'2' and 0'3' are defined 

in Table 5. 

For the characterization of polarizers. it is appropriate to label the spin 

matrices differently than is customary in quantum mechanics. since the labels x. y 

and z. as used in quantum mechanics. are misleading here; for example: Cohen-

Tannoudji. Diu ano Laloe (1977. page 417). Gottfried (1966. page 275). Landau and 

Lifshitz (1977. page 202). The following expressions relate the present definitions to 

the quantum mechanics convention: 

Using the Pauli spin matrix basis. an arbitrary Jones matrix is expressed as 

The c's can be gathered into a four element vector with complex elements 

called the "C vector." The C vector expression 

represents the Jones matrix. 

r 
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TABLE 5 

THE IDENTITY MATRIX AND THE PAULI SPIN MATRICES 

ITo - [ I ~J 0 

ITI - [ I -~ ] 0 

IT2 - [ 0 b] I 

ITs - [ 0 -A ] j 

r 
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When needed. Pi and ~i will refer to the amplitude and ph:lse portions of the C 

vector elements. 

c .. [poej¢o. Plej~l. P2~~2. psej~S] . 

The elements oi C are related to the Jones matrix elements by the equations: 

jll + j22 jll - j22 
Co • 2 . Cl - 2 

jl2 + jn 
~ - 2 . Cs - jl2 - j21 

-2j 

The elements of the Jones matrix are related to the elements of C by the equations: 

The C vector. like the Jones matrix. has eight degrees of freedom. The C 

vector is used as a shorthand for the expansion of a Jones matrix into Pauli spin 

matrices. A vector equivalent to the C vector has been introduced in quantum 

mechanics for a similar purpose; see the section. itA convenient basis for the 2 x 2 

matrix space" in Quantum Mechanics. Cohen-Tannoudji. Diu and Laloe (1977. pg. 

419). 

The Jones Matrix and C Vectors for Specific Polarizers 

Every Jones matrix represents a physically realizable polarizer. Tables of 

Jones matrices for various polarizers are found in Azzamand Bashara (1977. Section 

2.2.3), Hecht and Zajac (1974, Table 8.6), Shurcliff (1962. Appendix 2). and 
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Theocaris and Gdoutos (1979. Table 4.1). Table 6 is a listing of the Jones matrices 

and C vectors for the most common polarizers and retarders. 

Normalized Form for the C Vectors 

A very useful normalized form for the C vectors factors Co outside the 

brackets and treated it as a constant. This constant is labeled T to avoid confusion 

with the normalized first eiemeni inside ihe brackets. Tne normaiization constant. T. 

is a complex number which is the amplitude and phase transmission of the optical 

element in the absence of polarization. If 

-:t.. [. , • '] 
l.,.- - Co • c. • ~ • cs 

is an unnormalized C vector. thell the equivalent normalized C vector is 

with 

C - T [ 1. c •• ~. cs ] • 

cs' 
and. Cs - -

T 

A C vector with co-o obviously cannot be normalized in this fashion. 

Pauli Spin Matrices 

The following identities and properties of the Palili spin matrices are collected 

here for reference. 

Let a..f3.'Y £ {l.2.3}. the indices for the three Pauii spin matrices. 

The Idelltity Matrix 

The basis matrix 0'0 is the identity element. Let M be an arbitrary matrix; 

then 
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TABLE 6 

JONES MATRICES AND C VECTORS FOR IDEAL POLARIZERS 

Linear Polarizers 
Angle of Transmission 
Axis 

Jones Matrix C Vector 

0° [ 1 0 ] 1 
0 0 2 [ 1. 1. O. 0 ] 

45° 1 [ ] 1 
2 2 [ 1. O. 1. 0 ] 

90° [ 0 0 ] 1 
0 1 2 [ 1. -1. 0, 0 ] 

1350 1 [ 1 -1 ] 1 
2 -1 1 2 [ I, 0, -1. 0 ] 

Circular Polarizers 

Jones Matrix C Vector 

Left 1 [ -j ] 1 
2 j 1 2 ( 1. 0, 0, 1 ] 

Right 1 [ j 1 1 
2 -j 1 

2 [ 1. 0, 0, -1 ] 
.J 
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TABLE 6-Continued 

JONES MATRICES AND C VECTORS FOR IDEAL POLARIZERS 

Retarders 

Quarter Wave Linear Retarders 

Fast .-'\xis 
Angle 

Jones Matrix C Vector 

.J2 [ I+j 0 ] .J2 
0° """2 0 I-j """2 [ I. j. O. 0] 

.J2 [ j ] .J2 
45° """2 j I """2 [ I. O. j. 0] 

.J2 [ I-j 0 ] .J2 
90° """2 0 I+j """2 [ l.-j. O. 0 ] 

.J2 [ -j ] ..fi 
135° """2 -j I """2 [ I. O.-j. 0 ] 

Quarter Wave Circular Retarders 

Jones Matrix C Vector 

.J2 [ I ] ../i 
Left """2 -1 """2 [ 1. O. O. j ] 

..J2 [ -1 ] .J2 
Right """2 1 """2 [ 1. O. O. -j ] 

r 
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TABLE 6-Continued 

JONES MATRICES AND C VECTORS FOR IDEAL POLARIZERS 

Fast Axis 
Angle 

0° or 90° 

±45° 

Left or 
Right 

Half Wave Linear Retarders 

Jones Matrix C Vector 

[ j 0 1 [ o. j. O. 0 ] 
0 -j J 

[ 0 j ] [ O. O. j. 0 ] 
j 0 

Half Wave Circular Retarders 

Jones Matrix C Vector 

[ -~ ~ ] i o. O. O. j ] 

43 



r 

Trace and Determinant 

Trace act • 0 • Uu + U22 

Det act • -I - UUU22 - Ul1U21 

Anticommutativ,ty 

Relation to the Identity Matrix 

aCJ.aCJ. - ao . 

From the last two relations. the following is derived. 

aCJ.afll'Y· juo . 

In addition. when (CJ..{l:y) is an f'!ven permutation of (1.2.3). then 

This produces the relations: 

a la2 - jus • a2u l - -jus • 

U 2U S - jUl • aSu2 - -jul • 

aSul • ja2 • aluS • -ju2 
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Cp..apter 4 explores these relations. which govern the order dependent properties of 

polarizers and retarders. in detail. 

Eigenvalues anti Eigenvectors 

Table 7 CClntains the eigenvalues and eigenvectors of the Pauli spin matrices 

in terms of the basis Jones vectors defined in Table 4. 

Any vector is an eigenvector of ao. the identity matrix. with an eigenvalue 

equal to one. 
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TABLE 7 

EIGENVALUES AND EIGENVECfORS OF TIlE PAULI SPIN MATRICES 

Polarizer Eigen- Eigen- Eigen- Eigen-
value vector valuo vector 

0"1 V -I H 

", .... 
0"2 I -I \ 

.... R 0"3 L -J 

r 
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Err ect of the Pauli Matrices on Basis Polarization States 

Table 8 tabuiates the effect of the Pauli spin matrices as polarizers operating 

on the basis polarization states. The spin matrix is listed along the left side of the 

table and the incident polarization state along the top. The entries in the table are 

the transmitted polarization states. 

This table illustrates the usefulness of the Pauli spin matrices as basis states 

for the Jones matrix space. When one of the basis polarization states is acted on by 

one of the Pauli basis polarizers. a mixing of states occurs only between orthogonal 

states. In the table the fir!:t two columns contain only H's and V's. the third and 

fourth columns. only \'s and /'s. and the last two columns. only 1:s and R's. When 

passing H through one of the basis polarizers. it never couples directly into R. f.. 7 
or \; it only couples into H or V. This is a substantial simplification. 

The Exponential of a Matrix 

The exponential of the matrix M times a constant a is defined as 

where 0'0 is the identity matrix. 
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TABLE 8 

Polarization States Transmitted by the Basis Polarizer~ 

Incident Polarization State 

Horiz. Vert. Right Left 

/ 
Polarizer Transmitted Polarization State 

H V 
,.. ,.. 

R L 0'0 / \ 

H -V 
,.. ,.. ,.. 

R 0'1 \ -/ L 

V 
,.. ,.. ,.. ,.. 

-jR 0'2 H / -\ jL 

jV 
,., 

-j\ j/ -R L 0'3 -jR 

r 



48 

Exponentials of the Basis Matrices 

The complex exponentials of the Pauli spin matrices are especially useful. 

since the Pauli spin matrices squared equal the identity matrix: 

exp(exu) ex 
- e u0 • 

• u0 cos ex + ju0 sin ex • 

• u0 cosh ex + u 1 sinh ex • 

exp(jexu 1) 

- u0 cos ex + ju1 sin ex • 

- u0 cosh ex + u2 sinh ex • 

- u0 cos ex + ju2 sin ex • 

- u0 cosh ex + u3 sinh ex • 

• u0 cos ex + ju3 sin ex . 

Properties of the Jones Matrix and the C Vector 

Rotated Polarizers 

If a polarizer with Jones matrix J is rotated through an angle e (positive if 

counterclockwise). the Jones matrix becomes 

J'(B) - R(B) J R(-6) . 

The R(B)'s are the Jones rotation matrices: 

R(B) - [ cos e 
sine 

-sin e ] 
cos e • and. R(-8) - [ 

cos e 
-sine 

sin e 
cos e ] . 
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The Jones rotation matrices obey the relations, 

R(cx) R(.B) - R(.B) R(cx) - R(cx+~) and, R(cx) R(-cx) • CT0 • 

Rotation of the Basis Matrices 

The identity matrix is invariant under rotation; 

R(8) CT0 R(-8) • CT0 • 

Under rotation. u1 and u2 couple into each other; 

R(8) u1 R(-8) • u1 cos 28 + u2 sin 28 • 

R(8) u2 R(-8) • -u1 sin 28 + u2 cos 28 . 

u3 is invariant under rotation; 

R( 8) CT 3 R( -8) • CT3 • 

Rotation of a C Vector 

The C vector for a rotated polarizer can be found from the rotated Jones 

matrix 

R(8) J R(-8) • R(8) [ t ck ~~"k l R(-8) 

k-1 

Thus. the C vector for a rotated polarizer is 

C - [ c0 ', c1', c2 ', c3'] • [ c0• c1cos 28- c2sin 28, c1sin 28 + c2cos 28. c3] • 

The rotated C vector is given by the fallowing product. 



c' - [ ~ 0 
cos 28 
sin 28 

0 

0 
-sin 28 
cos 28 

0 ~ l 
The matrix Rc(8) is the rotation operator for C vectors. 

0 
cos 28 
sin 28 

0 

The c Vector rOT Cascaded Polarizers 

0 
-sin 28 
cos 28 

0 
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~ l . 
The C vector for the matrix product of two C vectors is obtained from the 

application of the Pauli spin matrix identities. Let 

C -= [ c0• c1• ~. c3 ] and. C' - [ c'0• c' 1• c'2• c' 3 ] • 

The C vector C" which corresponds to light operated on by C '. then C has the 

Jones matrix. 

J" ., J J' • [ t Cj ITj l [ t ci ITj l 
1-=1 1-=1 

4 

L " - c· u· 1 1 

By equating terms in the previous equation. C' can be found from the following 

matrix vector product. 

c"o c'o 
c"l c' 

c·- K(Q 
1 

c"2 - c'2 
c"s c' s 

Co c1 c2 Cs c'o 

c1 Co -jcs jc2 c' 1 
c2 jc3 Co -jc1 c'2 
Cs -jc2 jc1 Co c' s 
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The matrix. K(Q. the "polarization coupling matrix". contains the couplings between 

the basis polarization states. These couplings arise from the Pauli spin matrix 

identities. 

The Meaning of the Coefficients of the C Vector 

The C vector is introduced to simplify the representation of polarizers. Each 

of the elements of the C vector represents a specific type of polarizer behavior. 

Table 9 is a list of the polarization property associated with each C vector elements. 

The real parts of the C vector correspond to amplitude effects. absorption and 

polarization. The phase portion of the C vector represent phase effects. propagation 

and birefringence. The first element. c0-p0e +j(,6°, is the coefficient of the identity 

matrix. Thus it must represent effects that are polarization state independent; these 

are amplitude and phase. The last element, c3-p3e+j(,6s. multiplies the spin matrix u3 

which is rotation invariant. Thus the Cs term represents the circular polarization 

effects; Ps describes circular polarization or circular dichroism and (,63 describes 

circular retardance or circular birefringence. The remaining two elements. c1 and c2• 

represent linear polarization. Linear terms require two degrees of freedom: 

magnitude and orientation. Thus. p1 and p2 characterize linear polarization or linear 

dichroism. p1 in the 0° and 90° directions. p2 in the ±45° directions. Likewise. (,61 and 

(,62 characterize linear retardance or linear birefringence. Appendix C contains a 

detailed discussion of the properties of the elements of the C vector. 
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TABLE 9 

Interpretation of the C Vector Elements 

Matrix Coefficient Meaning 

ao Po Amplitude Absorption 
ao ¢o Phase Phase 

a l PI Amplitude Linear Polarization along Axes 
fr. ¢. Phase Linear Retardance along Axes -, 

az Pz Amplitude Linear Polarization. 450 

az ¢z Phase Linear Retardance. 450 

as Ps Amplitude Circular Polarization 
a3 ¢s Phase Circular Retardance 



CHAPTER 3 

WEAK POLARIZERS 

The remainder of this dissertation is a study of the polarization characteristics 

of optical systems comprised of coated and uncoated lens and mirror elements. The 

next five chapters develop a method for approximating tha polarization behavior of 

these systems with a set of functions. the polarization aberr:ltions. which complement 

the wavefront aberrations of geometrical optics. The final chapter treats the exact 

caicuiation of ihe poiarization performance of opiicai sysieiIl£ as predicted by 

polarization theory by the method of polarization ray tracing. Both methods have as 

their specific goal the determination of the instrumental polarization function. 

polarizaiion matrices associated with arbitrary ray paths through the system. 

Instrumental Polarization Versus 

Transmitted Light Poiarization Calculations 

Two types of polarization calcul~tions can be performed: instrumental 

polarization and transmitted light polarization. The first is the calculation of the 

instrumental polarization associated with ray paths through an optical system. the 

Jones matrix for a given ray. The other type of calculation determines the state of 

poladzation. such as a Jones vector. transmitted by the system along a given ray path 

for a specified input polarization state. This work deals with the instrumental 

polarization calculation since it is more fundamental. Once the instrumental 

polarization function for the system is known. the transmitted Jones vectors are 

readily determined for all input polarization states. The instrumentai polarization 

function is the "potential function" for the transmitted polarization function. 

53 
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Transparent Systems 

The emphasis of this research is on systems which are weakly polarizing and 

highly transparent. This includes most lenses. cameras. telescopes, microscopes and 

other optical systems which do not dispiay large amounts of absorption or 

polarization. These "transparent systems" do 110t contain linear polarizers. retarders. 

diffraction gratings. optically active crystals or similar elements. The ideal Jones 

matrix for a ray through a transparent nonpolarizing system is 

·0 [I 0 ] J ideal - eJ 0 1 • 

where 6 is the optical path length for the ray in radians. This ray Jones matrix is 

the identity matrix. which signifies that the system has no absorption or polarization. 

Since this is the desired form of the Jones matrix for a large class of systems. the 

appro~ch developed here obtains the instrumental polarization function as a Taylor 

series in the ray coordinates about Jideal. This approach is easily be modified for 

systems which are not highly transparent or which contain strong polarizers by 

performing the Taylor series about the Jones matrix for the ray down the optical 

axis. 

S-P Coordinates 

It is necessary to maintain two separate coordinate systems to effectively 

analyze problems involving light at nonnormal incidence at curved optical interfaces: 

x-y coordinates and s-p coordinates. The x-y coordinates are the global x. y and z 

coordinate system used to describe the optical system. with the z axis coinciding with 

the optical axis of radially symmetric systems. 

Polarization calculations with angle of incidence depend~nt polarizers are 

usually performed in s-p coordinates. The s-~ coordinates are based on the concept 
,., 

of the sand p planes. Consider light with unit wavevector k (normalized to one) 
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incident at a surface with normal n. The plane of incidence. or "p plane" is the 

plane which contains k and n. The angle of incidence i. the angle between k and n. 
is 

i - arccos[ k . n j. 
,. 

The plane perpendicular to the plane of incidence which contains k is the Its plane." 
",.. ,.. 

The unit vectors k. s. and p form an orthonormal basis for the s-p coordinate 

system. The s basis vector is given by the cross product 

" l''' S - Kxn. 

The s plane is then spanned by s and~. The p vector is found from the Gram-

Schmidt orthonormalization equation 

A 

P -
Ii -~[~'n] 
In - ~ [ ~ . n ]1 

The p plane is spanned by p and t For light at nonnormal incidence at an 

interface. the polarization behavior of the intertace is analyzed by resolving thp. E(t) 

into its sand p components: 

Es(t) - s [ s . E(t)] • 

Ep(t) - p [ p . E(t) ] 

The normalized Jones vector in s-p coordinates is defined as 

1 __ 1_ Es(t) [ 
-

E(t) ilp(t) J . 

Since s· n - 0 • s is tangential to (lies on) the surface. Thus Es(t) drives 

any electric currents parallel to the surface. Since 

p. n '" 0 • 

the p component is not tangential to the surface but has a component along n. This 

normal electric field component tends to push electrons into the surface and then pull 
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them out of the surface. This difference between the sand p components is the 

basic reason for the polarization differences between the sand p components of light 

at interfaces. As a mnemonic. the p component is sometimes called the plunge 

component since it "plunges" into the surface. while the s component is the skip 

component since it generally has the higher reflectance and thus "skips" off the 

surface. 

As the angle of incidence approaches zero (normal incidence.) p becomes 

tangent to the surface. At normal incidence. both sand p are tangent to the surface 

and the difference between the s plane and p plane become:: in determinant. At 

normal incidence. all expressions for sand p polarization become equal for isotropic 

interfaces. 

Most frequently. the functional form of the interface polarization is given in 

s-p coordinates. Typically. the Jones matrix for a ray at an optical interface is 

calculated in the s-p coordinates. then rotated into x-y coordinate!;. Once the Jones 

matrices for the ray at all su.faces are rotated into x-y coordinates. they can be 

multiplied to yield the instrumental polarization along that ray path in the system x-y 

coordinates. 

Normalized C Vector 

Wherever possible a normalized form of the C vector in s-p coordinates is 

used where the normal incidence amplitude and phase. coCO) is factored out. The 

elEiments of the normalized C vector are written as d's to distinguish them from 

unnormalized C vectors. The C vector for an angle of incidence dependent polarizer 

in s-p coordinates is Qi) - [co(i). c1(i). ~(i). c,(i) ] 

The amplitude and phase transmittance at normal incidence is T - coCO). The 

normalized C vector is defined as 
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Instrumental Polarization 

The Jones matrix for all optical elements varies as the angle of incidence 

changes. Further. this change always involves more than just a variation in the 

intensity aild phase of the light; it also involves polarization and retardance. A fine 

optical element used in a transparent system does not display polarization effects at 

normal incidence; it may show some absorption. reflection loss or phase shift. but not 

polarization or retardance. Its normalized C vector at normal incidence is 

Oi-O) - [co. O. O. 0] - T [ 1. O. O. 0] . 

! .... s the angle of incidence varies. the Jones matrix must also vary to satisfy the 

condjtio~s of electromagnetic theory that the tangential components of E(t) and i\t) 

are !!I-2tched accQ<'"s the inteiface. At an arbitrary angle of incidence i. the C vector 

is of the form 

Oi) - [co(i). cl(i). ~(i). c3(i)] - [ Po(i)ej¢o(i). PI(i)ej<PI(i). P2(i)ej<P2(i). P3(i)ejcP3(i) ] 

The functional dependtmces of the C vector coefficients are calculated from the 

Fresnel equations or thin film equations for the interface. 

Weat Polarizers 

A weak polarizer is defined as a polarization element having a C vector such 

that 

Co » J Icl+lcl+lcl 

The retardances of a weak polarizar are all small. 

<Pl' <P2' <P3 « 1 radian. 
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Similarly. the polarizance of a weak polarizer is close to zero. Such a weak 

polarization element transmits light in a polarization state similar to the incident state 

with only weak coupling into other polarization states. The polarization behavior is 

dominated by transmission with only traces of polarization or retardance. Any 

polarization present is at the few percent level or less. such that any iineariy 

polarized incident beam has a transmission coefficient which varies a few percent or 

less with orientation. Similarly. the retardation is a few degrees or less. far less than 

a quarter wave retarder with 90 degrees of retardation. Near normal incidence. 

metals in reflection and dielectric refracting interfaces ",re weak polarizers. Near 

normal incidence. antireflection coated lenses used in transmi:;sion and metals with 

reflection enhancing coatings are typically weak polarizers for wavelengths near the 

thin film design wavelength. 

Amplitude Transmission Relations 

Throughout this section. the plane of incidence is aligned with the y axis. 

The amplitude transmission equations for an interfat;:e are the equations 

which relate the amplitude and phase of the electric fields of the incident. reflected 

and refracted beams at an interface. The most general amplitude transmission 

equations for a nonscattering linear interface are: 

E~ - ass Es + aps Ep • 

E~ - Bsp Es + app Ep 

This equation is equivalent to the Jones matrix equation 
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For interfaces whose eigenpolarizations arc linear polarized light oriented 

parallel and perpendicular to the plane of incidence. the transfer of energy accoss the 

interface is separable into two uncoupled components of the form: 
, ·6 

Es - as Es - pse.1 s Es . 
, ·0 

Ep - ap Ep - ppe1 p Ep . 

The amplitude transmission coefficients as and apt or in polar coordinates. PSt rps. Pp 

and <Pp. are determined by the Fresnel equations or thin film equations for the 

interface. These equations. where the sand p equations are separable. are 

"separable amplitude transmission relations." Only polarizers with linearly polarized 

light as the eigenpolarizations have the energy transfer equations in the separable 

form. For example. uncoated lenses. metal mirrors and thin film coatings on metals 

or dielectrics where the coatings are homogeneous. isotropic and locally planar. have 

eigenpolarizations of linear polarized light in the sand p planes. Thus the 

transmission of light by these interfaces is described by separable amplitude 

transmission relations. 

Separable amplitude transmission relations correspond to a diagonal Jones 

matrices in s-p coordinates. The Jones matrix and C vector for an separable 

amplitude transmission interface in s-p coordinates are: 

J(i) [ 
as(i) 0 ] 

- 0 ap(i) • 
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Taylor Series Representation of Weak Polarizers 

In geometrical aberration theory. expressions for the optical path length of ray 

segments through the the optical system are obtained by performing a Taylor series 

expansion on Snells law. the law of reflection and the grating equation. to obtain 

expressions for the optical path length as a power series expansion in the ray 

coordinates. Thus Snells 1<>.'.'.'. 

n sin i - n' sin i' • 

is rewritten for i' as 

i' - arcsin [ nn' sin i ] - ...!L i + [L -...!LJ f + OtiS} . n' n'3 n' 6 

The polarization aberrations are generated in an analogous fashion. To obtain 

the variation of the Jones matrix in the exit pupil of a system. the appropriate 

Fresnel equations or other polarization equations are required in Taylor series form. 

For radially symmetric optical systems. expansions in the angle of incidence about 

normal incidence are used. 

The Taylor series of a function about zero is defined &s 

f(i) ~ f[~l (t 
a(Y : 0 'YI 

'Y-o ..", .. 

'[~J j2[~J - f(O) + 1 ai i-o + '2 ai2 i-O + ... 

00 

- fo + fli + f2i2 + ... - L f'Yi'Y 

'Y-O 

where the f'Y are the Taylor series coefficients. The order of the Taylor series terms 

is given by the subscript 'Y. 
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An isotropic interface appears unchanged as it is rotated about the surface 

normal. Diffraction gratings, holograms and scratched surfaces are not isotropic. 

Some crystal surfaces and thin film coatings are not isotropic. For isotropic 

interfaces, the Fresnel equations are even functions since the surface, does not 

distinguish between angles of incidence of +i and -i. Thus, f(i) - f(-i). which is the 

definition of an even function. 

An even function contains only even termS in its Taylor series expansion 

about the origin. Thus, the Taylor series representations of the Fresnel equations has 

the form, 

f(il a. f [ a ::~il ] i..O ~~ 
-y-0.2 

f(o) + .L22 [ a2f(i) J i4 [ a4f(i) J 
8i2 • + 4! 8i4 • + ... 

t-0 t-0 

00 

• f0 + f2i2 + f4i4 + ... • L f-yi'Y . 

-y-.20 

For weakly polarizing interfaces described by amplitude transmittance 

relations. the Taylor series forms of the Jones matrix and C vector are calculated as 

follows. First, the Taylor series is determined for the amplitude transmission 

relations: 

( .) "2 "4 (") ::ll: "2 "4 as t e! as.o + as.21 + as.41 + . . . • ap t - ap.O + ap,21 + ap.41 + . . . . 

Then, the Taylor series expansion about i-0 in s-p coordinates for the Jones matrix 

is 

J(i) _ [as.o o J + i2[as.2 o J + ... . 
0 ap,O 0 ap,2 

The corresponding C vector expansion in s-p coordinates is 
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where: 

CO.'Y - cl.'Y -
I '2 (as.'Y - as.'Y) • 

For an interface characterized by separable amplitude transmission relations. the 

diagonal and circular polarization components. ~(i) and cs(i). are always zero. 

where 

The normalized C vector for the separable amplitude transmission relations is 

C - T [ l+doziz + ...• dlO+dlZiz + ...• O. 0] • 

T - Coo • and. dk.n _ ~'Y 

The Jones matrix and C vector for coordinates other than the s-p coordinates 

are obtained from the polarization rotation operation. For example. the s-p 

coordinates are rotated with respect to the x-y coordinates by 6. the orientation of 

the plane of incidence. The x-y Jones matrix and s-p Jones matrix are related by 

Jxy - R(-6) Jsp R(O) • 

Obtaining the Taylor Coefficients from Sampled Data 

The direct method for calculating the coefficients of a Taylor saries given in 

the last section is impractical for many interfaces due to the complexity of 

calculating the partial derivatives for the appropriate amplitude transmission 

equations such as muitilayer thin film coatings. 

The Taylor series coefficients can be obtained numerically from the sand p 

amplitude transmissions evaluated at a series of angles of incidence. The following 

algorithm is given to sixth order but can be extended to higher order. 

Let the calculated values of a function F(x) be given at: O. x. 2x. and 3x. 

Assume that F(x) is accurately reprec;ented by a sixth order even Taylor series. 
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whose coefficients are to be determined. The sampled values of F(x) and the Taylor 

coefficients are related by the matrix equation 

( 
o 1 r fo 1 (F(I\\ 1 x~ f2 I _ F(~) . 

64x
l> J l f, J F(2x; J 

'l29x6 f 6 F(3x) 

Solving for the Taylor coefficients yields the equation. 

o 
540x' 
-19Sx2 

IS 

o 
-S4x' 
60x2 

-6 ]- ] o F(O) 
4x' F(x) 

-SX2 l F(2x) . 
I F(3x) 

The powers of x adjust for the sampling increment. x. To calculate the Taylor 

coefficients to fourth order only. use the following three point equation. 

[ ::] - I~X' [ -l~~: 
These equations could be incoporated into a thin film design program to 

calculate a Taylor series representation of thE:: coating performance suitable for use 

with the polarization aberration equations. 

The Fresnei Equations 

The equations governing the reflection and refraction of light from interfaces 

take many forms depending on the natur~ of the interface. The discovery that light 

becomes polarized upon both refraction through and reflection from a transparent 

non birefringent material was made by E. Louis Malus (Malus. 1809). The relations 

governing this polari:!ation phenomenon were first derived by A. Fresnel in 1821 in 

his theory of partial refraction (Fresnel. I 866a&b). Fresnel postulated that light was 
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a transverse wave. and that polarized light was a manifestation uf the two degrees of 

freedom associated with a transverse wave. Fresnel's hypothesis originally met with 

ridicule since the ether. which was assumed to be a fluid. would be incapable of 

sustaining transverse waves. None the less. the Fresnel equations provided a 

quantitative model for partial reflection. The Fresnel equations were rederived from 

electromagnetic theory first by P.Drude (Swindell. 1975. pg.8). 

The Fresnel equations relate the relative amplitudes and phases of the 

components of an electromagnetic wave at planar interface. Figure 3 shows this 

configuration with the incident beam. the reflected beam and the transmitted beam. 

The wave vectors for the three beams are unit vectors aligned with the Poynting 
~ ~ 

vectors of the three waves: leo for the incident beam. kr for the reflected beam. and 

k' for the transmitted beam. The unit surface normal vector is o. The caret above 

a vector indicates a unit vector. All angles are measured from the surface normal. 

The incident piane wave bas an angle of incidence. i. The angle of reflection equals 

the angle of incidence. while the wave vector lies in the plane of incidence on the 

opposite side of the surface normal from the incident wave vector. The reflected 
,. 

wavevector k' is determined from the vector law of reflection. 

~, - fo - 2 (fo·o) 0 . 

The transmitted component propagates into the second medium at the angle of 

refraction. i'. given by Snell's law. 

n sin i - n' sin i' 

One form of the vector law of refraction follows. Define a unit vector. m in the 

plane of incidence and perpend~cular to the normal 

~. 

m-
fo - (fo·o) 0 

I fo - (fo·o) 01 
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n n' 

FigurE: 3 Incident. Reflected and Refracted Waves at an Interface 

At a dielectric interface with refractive iIJ,.dic;,.es n S\nd n'. the wavevectors !or the 
incident. reflected and refracted beams are: ko krand k'. The surface normal is n. The 
angles of incidence and refraction are i and i'. 
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where I xl is the norm of the vector x. From Snell's law: 

n J c " i sin i' - n' I - I E.o·nl 

cos i' - .j 1 - sin2i' 

The refracted wave vector k' is 
,. 
k' - - cos i' n + sin i' m . 

The refractive index of the two media are nand n'. where n is associated 

with the incident medium. It is assumed that the media are isotropic and 

homogeneous; nand n' are independent of orientation and location in the medium. 

Similarly. the interface is assumed to be isotropic and without any surface roughness. 

scratches. grating structure or any other features to break the symmetry. 

The Fresnel amplitude transmission relations are well known and are not 

derived here. The derivation consists of matching the tangential E and ii fields 

across the interface. Derivations are found in many references including Born and 

Wolf (1975. section 1.5.2). Marion (1965. section 6.3) and Stratton (1948. Chapt. 9). 

The derivation in Stratton is noteworthy for the inclusion of the magnetic 

permittivity of the media. p. and an extended discussion of the results. The 

magnetic permittivity of optical glasses. reflective metals and coating materhls is 

usually so close to the magnetic permittivity of free space Po that it can be safely 

neglected. 

The notation as and ap refer to either the reflected or transmitted amplitude 

transmission coefficient. while is. tp. rs and rp refer unambiguously to the 

transmitted and reflected components. The Fresnel amplitude equations are: 

ls(i) -
2 cos i sin i' 

sin(i+i') 
20 C<'S i 

n cos i -{o n' cos i' • 



2 cos i sin i' 
tp(i) - sin(i+i') cos(i-i') 

2n coo i 
n' cos i + n cos i' , 

-sinCi-i') 
sin(i+i') -

rp(i) _ tan(i-i') 
tan(i+i') 

n cos i - n' cos i' 
n cos i + n' C<iS i' , 

0' cos i - n cos i' 
0' cos i + n cos i' 
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The Fresnel equations depend on the ratio of the indices. n and n', but not on the 

values of the refractive indices individually, This relative refractive index ratio is 

defined as 

N -
n 
Ii' 

The Fresnel equations are equally valid for real n. corresponding to transparent 

media. or complex n. corresponding to air...orbing media and metals. 

The Fre .. nel equations are difficult to manipulate analytically because of their 

complicated form, The presence of the sum of two trigonometric functions in the 

denominator leads to very teciious integrals and derivatives, This complexity may 

have deterred ether attempts to include amplitude and polarization effects in an 

optical aberration theory, To put the Fresnel equations in a usable form for the 

polarization aberrations. the following Taylor series expansions have been calculated 

using the computer algebra program Macsyma Oicensed by Symbolics Corp. 

Cambridge. MA). 

The second order Taylor series expansions for the Fresnel amplitude 

coefficients about i-O are: 

(') 2N '2~ 
is 1 - N+ I + 1 N+ I ' 

tp(i) _ 2 N -} i2 W(N-l) 
N+l N+l' 

N-I '2 N-I 
rs(i) - N+l - 1 N(N+I) • 
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r (i) _ N-l + i2 N-l 
p N+l N(N+l) 

The following fourth order Taylor series terms have been obtained for the 

transmitted beam: 

N (3N'+3N2-7N+1) 
12 (N+i) 

i4 N2 (N-IX91'~I2-6N+5) 
12 (N+l) 

Inten~ity and Power Transmission Relations 

The power in the reflected and transmitted beams for the sand p components 

of the light at an interface are determined as follows. Because the transmitted beam 

changes direction. the cross section of the transmitted beam in the plane of incidence 

(pplane) changes by a multiplicative factor 

cos i' 
K - --. cos I 

In the s plane. the transmitted beam cross section remains constant. Thus. a circular 

light beam ret racts at a planar interface into an elliptical beam. The r~flected beam 

at a pianar interface does not change its cross section. so that for reflection 

K - 1.0 . 

The power reflection and transmission coefficients are (Stratton 1948) : 

n'eos i' 
neosi 

where k - s.p. In the absence of absorption 

The cwfficients Rk and Tk are the fractional rE:flectance and transmittance of the 

energy in the beam. a ratio of incident to reflected or transmitted power. The power 
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transmission coefficient can be measured as a ratio using a radiometer where the test 

beams underfill the entrance pupil of the radiometer and all the energy is measured. 

The intensity transmittances for the sand p components. Is and Ip. are 

defined as: 

Is - As2 • and. Ip - Ap2 

The intensity transmittance is the ratio between the transmitted (or reflected) 

intensity and the incident intensity. It is what would be measured by a radiometer 

oriented normal to the beams whose entrance pupil is overfilled by the light. 

measuring the energy per area. The intensity transmittance. I. can exceed one when 

K > 1. For example. when refracting from glass into air at Brewster's angle. the 

transmitted beam has a smaller cross section than the incident beam. Since aU of the 

p light is transmitted. the power transmission coefficient is one while intensity of the 

refracted p light is higher than the intensity of the incident light; 

T p - 1.0 • Ip > 1.0 . 

Refraction. The Transmitted Beam 

Consider light refracting at the interface between two dielectric. nonabsorbing 

media with refractive indices nand n'. When light is incident at this interface. it 

di vides into two components. the transmitted and the reflected components. If 

neither medium has appreciable absorption then nand n' are real. The second order 

amplitude transmission relations for the transmitted beam are: 

L(i) _ 2 N _ i2 N(N-l) 
os N+l N+l' 

tp(i) _ 2 N _ i2 N2(N-l) 
N+I N+I 

At normal incidence. 

ls(i) .. tp(i) • 
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so there is no polarization on-axis. Since n and n' are real. the amplitude 

transmission coefficients are real. not complex. Thus. there is no phase change on 

transmission for either the s or p component. Since both components are transmitted 

with zero phase change. there is no retardance induced at any angle of incidence. 

There is a second order difference· in the magnitude of the transmission 

coefficients. indicating linear polarization. As the angie of incidence increases. a 

refracting interface becomes a weak linear polarizer. Linearly polarized light is 

always refracted as linearly polarized light. Although the plane of polarization of 

linearly polarized light may rotate upon refraction due to the linear polarization. the 

ellipticity remains zero because of the absence of retardance. 

The Taylor series expansion for the Jones matrix to second order in the angle 

of incidence and expressed in Sand P coordinates is 

J(i) - ~ [ I 0 ] + i2 n (n-n') [n 0 ] 
n+n' 0 I n'2 (n+n') 0 n' . 

The non-zero Taylor series coefficients to second order for the normalized C vector· 

C - 1 [ I +do2i2. d 12i2. O. 0 ] 

expressed in Sand P coordinates are: 

The power transmittance. or fraction of the optical power transmitted across 

the refracting interface is given by the intensity transmittance relations: 

T s - K As" • and. T p - K Ap2 . 

Figure 4 is a plot of the power transmission for an air to glass (N-1.6. upper pair of 

curves) and an air to germanium (N-4.0. lower pair) interface as a function of the 

angle of incidence. The p amplitude transmission curves rise to a value of I at 
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Brewster's angle. The difference between the sand p curves is the polarization 

associated with the interface. 

Single Layer Dielectric Thin F!lms 

Very few uncoated refracting interfaces are used in quality optical systems. 

Ccatings are commonly used to enhance the transmission through optical systems. as 

with antireflection and reflection enhancing coatings. Coatings are also applied to 

change the spectral distribution of light. to polarize the light and for many other 

purposes. 

In this section. the polarization produced by single layer antireflection 

coatings will be examined. These coatings display the same polarization properties 

as multilayer coatings. The polarization properties of interest are the angle ~f 

incidence dependence of: the transmitted amplitude. phase. the linear polarization 

and the linear retardance. Isotropic thin films do not display circular polarization or 

circular retardance. 

Figure 5 shows the model for the single layer thin film. an isotropic stratified 

planar layer of uniform thickness on a plane substrate. This problem is treated in 

Azzam and Bashara (1971. section 4.3). Born and Wolf (1975). Macleod (1974). The 

refractive indices of the incident medium. the thin film and the final medium al"e: 

no. n1 and n2• The two interfaces are assumed parallel. The angle of propagation in 

each medium is found from Snell's law. 

Also needed are. 

The effective thickness of the thin film varies with the angle of incidence. The film 
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The s and p power transmission as a function of angle of incidence is shown for two 
dielectric refracting interfaces. N - n' - 1.6 (upper pair). and N = 4.0. n 
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Figure 5 A Single Layer Thin Film in Transmission 

A single layer thin film of refractive index n1 and thickness d is located between two 

media with refractive indices n0 and n2 • i 0• i 1 and i2 are the propagation angles. 
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phase thickness. fl. in radians is 

The Fresnel amplitude equatioiis for trausmissioii aud reflectioii at the u-i alld i-2 

interfaces are: 

rOlp -
nl cos io - no cos il 
nl cos io + no cos il 

rOls -
no cos io - n1 cos il 
no cos io + nl cos il 

r l2p -
n2 cos il - nl cos i2 
n2 cos il + n1 cos i2 

r l2s -
nl cos i l - n2 cos i2 
nl cos i. + n2 cos i2 

tOlp -
2no cos io 

nl cos io + no cos i l 

tOls -
2no cos io 

no cos io + nl cos il 

t l2p -
2nl cos i. 

n2 cos i l + nl cos iz 

t l2s -
2nl cos il 

nl cos il + n2 cos i2 

The amplitude transmission coefficients for the single layer thin film system are: 



,... 

The reflection coefficients for the single layer thin film system are: 

-j ~ • 
I + rOlp r 12p e 
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The single layer thin film system displays both amplitude and phase 

variations with angle and wavelength. Sil'Jce the solution ilS a set of separable 

equations for the s and p component£, the eigenpolarizations are linearly polarized 

light aligned with the sand p planes. The eigenvalues are. in general. complex. 

Thus. there are amplitude and phase changes on reflection and refraction. These 

amplitude and phase changes are usually different for the s and p components. so 

that the coating displays polarization and retardance. 

Antireflection Coating Example 

A particular antireflection coating. a magnesium fluoride (MgF:J antireflection 

coating on glass. will be analyzed to gain insight into coating polarization behavior. 

The incident medium is air and the substrate is BK7 glass with a refractive index of 

1.52. The refractive index of MgFz will be assumed to be 1.38. although large index 

variations can occur depending on the deposition conditions. Dispersion. the 

variation of refra::tive index with wavelength. is ignored. 

At normal incidence. the optimum phase thickness of a MgFz antireflection 

coating is (3-.,,/2. or a thickness. d. equivalent to a quarter of a wavelength of light in 

the film. d - "A./4n1• 

The following figures show the variation of polarization parameters (along the 

y axis) as a function of the angle of incidence (along the x axis) for the (luarterwave 
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Figure 6 Power Transmission of a Quarter Wave Thin Film 

The s and p power transmission of a quarter wave antireflection coating are plotted as 
a function of the angle of incidence. 
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MgF2 antireflection coating. Figure 6 shows the sand p power transmission 

coefficients as a function of the angle of incidence (in degrees.) Adding the coating 

has increased the transmission by reducing the normal incidence reflectance to 

0.0125 as compared to 0.04 for the uncoated interface. As the angle of incidence 

increases, the p transmission increases to 1.0 at the Brewster angle for this coating, 

before decreasing. The s transmittance monotonically decreases. Figure 7 shows the 

phase change on transmission for the s and p components. The phase change is 

defined as the phase difference between the light kncident at the first interface and 

the light at the substrate boundary. The absolute phase change at normal incidence 

is -90 degrees since the phase thickness of the medium is rr/2 radians. The 

differences between the s phase change and the p phase change, is very small for the 

quarter wave coating being not second order in the angle of incidence but fourth 

order. 

A single layer coating can have a quarter wave of optical thickness at only a 

single wavelength. At other wavelengths, the polarization differences are larger. 

Figure 8 shows the sand p power transmission coefficients for three different 

wavelengths or, equivalently, three different phase thicknesses of MgF2: f3 - i. ~ 

and ~ (quarter wave). The further the coating thickness is from quarter wave, the 

lower the s transmission is and the larger the polarization is. Figures 9a and 9b 

f 1r 2rr rr rr show the behavior of the phase or f3 - 2' S' 3 and 4 coatings. Figure 9a 

displays the mean phase change, 

The mean phase change is the wavefront aberration attributable to the coating. As i 
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Figure 7 The Phase Change of an Antireflection Coating 

The s and p phase change upon transmission through a quarter wave antireflection coating are plotted as a function of the angle of incidence. 
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Figure 8 The S and P Transmission of an Antireflecting Coating 

The S and P power transmission coefficient for transmission through a quarter 
wave (at 'A0) antireflection coating is plotted in degrees as a function of angle of 
incidence for A - 'A0 • 1.25'A0, l.5'A0 and 2'A0 • The difference between s and p 
curves is the linear polarization as a function of angle of incidence. the 
quadratic portion of which is characterized by the real part of the C vector 
coefficient d 12• 
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a) The mean phase change upon transmission through a quarter wave (at 'A0) 

antireflection coating is plotted in degrees as a function of angle of incidence for 
'A - \ 0 • 1.25'A0• 1.5\o and 2\o. Curvature at the origin represents defocus in the 
wavefront introduced by the coating and is characterized by the imaginary part 
of the C vector coefficient ~-
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b) The difference between s and p phase change. the linear retardance. upon 
transmission is plotted for the same coating and wavelengths. The quadratic 
portion of these curves is described by the imaginary part of the C vector 
element d 12 • 

Figure 9 Phase Changes of an Antireflection Coating 
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approaches zero. the value of A(i) approaches zero as expected for the limit of no 

coating. Likewise the quadratic variation of A(i) is reduced as it approaches a 

constant value of zero for f3-o. The quadratic variation of A(i) near i-o is defocus. 

For a spherical wave refracting at a spherical coated interface. this quadratic phase 

variation is the paraxial weak lensing due to the coating. 

Figure 9b shows the linear retardance. the difference in the sand p phase 

change upon transmission for these coatings 

6<i) - 8s(i) - 8p(i) 

This angle of incidence dependent retardance occurs even though none of th~ 

materials are birefringent. It arises because the transmitted light is the coherent 

superposition of beams whkch take multiple paths through the thin film. The small 

difference between the sand p amplitude coefficients means that d~fferent amounts 

of sand p light are present after 1. 2. 3 ... bounces inside the coating. Since the 

transmitted light after different numbers of bounces has different relative phases. the 

sums of these beams have small retardances. 

Without a coating. f3-0. the retardance is zero for all angles of incidence. As 

{3 increases. the retardance increases until it reaches a maximum near {3-~ for small 

angles of incidence. Then the retardance decreases until f3-~. For this quarter 

wave coating. there is no quadratic variation of retardance. only fourth and higher 

order dependence. It is a fortunate occurence that the quarter wave coating 

minimizes retardance for small angles of incidence. The most common antireflection 

coating in use has small retardance polarization aberration. 

The objective is to calculate the polarization effects of coatings such as this 

quarter wave antireflection coating on light propagating through optical systems. To 
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do this with the polarization aberrations, the exact coating performance functions, 

such as are plotted in Figures 6, 7, 8, and 9, are replaced with approximate 

polynomial functions of the form (shown here for the complex amplitude transmission 

relations): 

asCi) E!! as,o + 8s,2i2 + 8s,4i4 + ... - T ( I + (dQ2+d12)i2 + ... ) , 

ap(i) E!! ap,O + ap,2i2 + apAi4 + ... - T ( I + (dQ2-d1Ji2 + ... ) . 

Polarization aberration theory then relates these coefficients which characterize the 

coating (r, dQ2' d12, ... ) to specific functions which characterize the variation of 

polarization and retardance associated with the optical system, the polarization 

aberration terms. Thus, the Taylor series coefficients form the bridge between thin 

film coatings and aberration theory. 



CHAPTER 4 

CASCADED WEAK POLARIZERS 

Introduction 

In this chapter the properties of sequences of weak polarizers are developed 

and the following questions addressed. Can a series of linear polarizers be replaced 

with a single equivalent linear polarizer. a single polarizer who's Jones matrix equals 

the Jones matrix of th'2 sequence? Likewise can a series of linear retarders be 

replaced with a single equivalent linear retarder? 

Consider another question. Reflection. refraction and "fine" coatings behave 

as weak linear polarizers parallel to weak linear retarders. The eigenpolarizations of 

these interfaces are linear polarized light. Will the net polarization along a skew ray 

path through a sequence of such interfaces still be equivalent to a weak linear 

polarizer parallel to a weak linear retarder? That is. will the eigenpolarizations for 

the sequence be linearly polarized light? 

The answer to all these questions is no. Cascaded polarizers are neither 

simple nor obvious. The C vectors are a method to simplify the problem and make 

tractable the understanding of series of weak polarizers. 

The principle which summarizes this chapt.:!r is that "weak polarizers ~re 

very weakly order dependent." The behavior of a series of polarizers is order 

dependent. For weak polarizers. this order dependence is contained in the higher 

order terms. 
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The Order Dependence of Pairs of Polarizers and Retarders 

The order dependent polarization of several configurations of polarizers and 

retarders will be treated. 

Pairs of Linear Retarders 

Consider two linear retarders normal to collimated light propagating along the 

z axis. Let the fast axis of retarder R be parallel with the x axis. Rp.tarder R' has 

its fast axis arbitrarily oriented in the x-y plane. The normalized C vectors for R 

and R' are: 

R - 1 [ 1. jbl• O. 0 ] • and. R - 1'[ 1. jbl '. jbz'. 0] . 

The C vectors have been normalized by factoring out Co as 1. Let D be the C vector 

for the combination of retarders in which the light passes first through R then R'. 

Similarly. E is the C vector for the reverse combination. R' then R. The C vectors 

for these combinations arc calculated using the "basis coupling matrix" IC yielding: 

is - IC(R) R ,', [ j~" jbl ' jb2' ~ 0,) ][ I ] - I 0 -bz Jbl 
jbz' 0 I bl' 0 
0 b2' -bl' I 0 

- 1'1 [ I-blbl'. j(bl+bl '). jb2'. jb1b2' ] 

and. 

[ 
I jbl 0 0 

1 [j~"] E - IC(R) R - 11' jbl I 0 0 j j~' 0 0 I bl 

0 0 -bl I 

- 11' [ I-blbl'. j(bl+bl'). jb2'. -jb1b2'] • 

Since the C3 elements of is and E. Ds and Es. are nonzero. the combinations is and E 
are not pure linear retarders. Since the element Cs is imaginary. it represents the 



85 

presence of a circular retardance in these combinations. All the C vector elements 

of is and E are equal except for D3 and Es for which 

D3 - -~ • 

Thus. the order dependence only affects the sign of the circular retardance 

introduced; the linear retardance is order independent. 

For a sequence of linear retarders oriented at either zero or 90 degrees with 

respect to the first retarder. there is no order dependence; the Jones matrices all 

commute. 

Rand R' are weak linear retarders if 

b ,• b ,'. ~' « I 

Consider this weak linear retardance as a first order perturbation to an identity 

matrix. The circular retardance term. CSt and the change to the zero'th component. 

toco• are second order perturbations since: 

Cs - b,~' « b,• b:t' • and. toco - b,b,' « b,• b,' . 

For pairs of weak linear retarders. the circular retardance introduced is very weak 

and is the oniy order dependent term present. When second order terms are 

neglected. the resulting first order C vectors p,qual the vector sum of Rand R'. Let 

the order operator O{f(x).n} return the terms in f(x) of order less than or equal to n. 

Then. 

and. 

Example 

Consider two half wave plates with their fast axes oriented at 450 to each 

other. The C vectors are: 

R • [0. I. O. 0] • and. R' - [0. O. I. 0] . 



The C vectors for the combinations are: 

is - KdbR - [0. O. 0, -j ] , 

E - K(R)R- - [0, O. O. j] . 
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These are the C vectors for half wave circular retarders. This is the maximum 

possible (total) polarization coupling. It is a convenient way to assemble a circular 

retarder. 

Example 

Consider a weak linear retarder oriented along the x axis 

R - [ 1. j6, O. 0] • 

and another at 45°, 

Then: 

R- - [1. jE, jf, 0] . 

is - K(R-)R - [1-&, j(6+f). jf. j&] • 

E - K(R)R- - [1-&, j(6+f), jf, -j6f ] 

The corresponding Jones matrix is 

The upper sign of the ~ and :t terms refers to is and the lcwer to E. The j6fl13 term 

is the induceJ circular ret.'lrdance. 

Pairs of Linear Polarizers 

Consider two weak linear polarizers, Land L', in series. Their normalized C 

vectors are: 

L - T[ 1, a l • 0, 0]. and, L' - T'l 1, a l '. Doz', 0 ] 

The C vectors for the two sequences are: 

o - K(L') L - 1'T [ I-alaI', al+al', a2', -jala2'] , 
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E - K(L) L' - TT' [ I-alai'. 3,1+al'. ~'. jal~'] 

The presence of a nonzero Cs component, .. he ±jal~' term. signifies that these 

combinations of linear polarizers do not act as pure linear polarizers. This C3 term 

describes a circular retardance component. Since circular retarders rotate linear 

polarized light. it is natural for circular retarders to appear in expressions involving 

sequences of linear polarizers when these sequences produce an overall rotation of 

polarization upon the incident light. In general. the eigenpolarizations of 

combinations of linear polarizers will be elliptically polarized light. The circular 

retardance associated with sequences of weak linear polarizers is a second order 

term which reaches a maximum when the linear polarizers are oriented at 45° with 

respect to el\ch other. 

Pairs of Linear Polarizers and Linear Retarders 

The property that pairs of linear polarizers or pairs of linear retarders couple 

into circular retardance is a consequence of the Pauli spin matrix identity 

rlllI'J. - -fI'J.lI l - jlls . 

This relation governs the coupling between linear "polarizers". either polarizers or 

retarders. in series at arbitrary angles with respect to each other. If either two 

linear polarizers are in series or two linear retarders are in series at angles other 

than e '= 0°. 90° with respect to each other. a circular retardance term is produced. 

The closely related cases of 

(1) a linear polarizer followed by a linear retarder at 9 '" 0°, 90°. or. 

(2) a linear retarder followed by a linear polarizer at 9 '" 0°. ~OO. 

both cou;>le into circular polarization (not retardance) through the same Pauli spin 

matrix identities. These cases involve the terms: 

(1) (lIo+jbll'J.)(lIo+au1)· (uo+au l +jbu'J,+ab0'3)' 
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where the real CI, term is the induced circular polarization. 

Pairs Involving Circular Polarizers and Circular Retarders 

Two other Pauli spin matrix identities involving circular polarizers and 

circular retarders also derive from the Pauli algebra: 

These relations govern the coupling between linear and circular polarization 

elements. A linear polarization element oriented at O! and a circular polarization 

element couple into a linear <Y.>mponent at 0!+45°. 

Pairs involving only circular polarizers and/or circular retarders do not 

couple into linear polarization or linear retardance since 

Summary of Polarization Couplings 

All the polarization couplings are summarized in the basis coupling matrix. 

K(Q. introduced in Chapter Two. This matrix. used ther~ for calculating cascaded 

polarizers in the C vector notation. is. 

C"l Co CI ~ C, c'o 
... 

K(QC' 
C"2 c i Co -jc3 jC2 c' l Ct. . c", ~ jC3 Co -jc I c'2 
c", C, -j~ jCI Co c's 

Instrumental Polarization For Ray Paths Through Optical Systems 

In this section the Jones matrix representing the instrumental polarization for 

light propagating along a ray path through an optical systew is derived. Results are 

also given for the instrumental polarization associated with paraxial rays as functions 
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of the Taylor series of the C vectors representing the optical interfaces. The 

notation used in this section is compiled in Table 10. 

General Case 

Consider an optical system with Q optical interfaces numbered in the order 

encountered from q-I to Q. No symmetry regarding the optical configuration is 

assumed. Light propagates along a specified ray path such as would be calculated 

by an optical ray trace calculation. At each interface some pohirization effects are 

introduced due to differences in the optical constants across the interface. In 

addition. polarization and retardance are associated with the ray path between 

interfaces due to optically active crystals. dichroism. birefringence. gradient index 

materials or other polarizing mechanisms. 

For this ray. the Jones matrix reprczenting the ray intercept at surface q is 

denoted by Jq. The Jones matrix associated with the optical path between surfaces 

q and q+ I is denoted by Lq. The instmmental polarization. J. associated with this 

ray path is 

I 

J - TT Lq Jq 

'l-Q.-I 

This is the most general case for the instrumental polarization associated with an 

optical ray path. 

Light refracting into anisotropic media usually divides into two beams (an 

ordinary and extraordinary ray) in the second mp.dium. The last equation is then 

applied separately to each beam. 

Homogeneous Optical Systems 

A homogeneous interface has optical properties independent of spatial 

coorcH!lates on the interface. The Jones matrix and C vectors are functions out' I)f 
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TABLE 10 

Notation for Chapter 4 

C C vector 

ck dk coefficients rotated into arbitrary plane of incidence 

dk Normalized C vector components in s-p coordinates 

Angle of incidence 

j ..I-I 

J Jones matrix 

k Pauli spin matrix index: 0.1.2.3 

Ie Basis coupling matrix 

1 Length of a ray segment 

L Jon~ matrix associated with a ray segment 

q Surface index 

Q Total number of surfaces 

a,f3 Direction cosines 

6 Orientation of the plane of incidence 

Pk Absorption or polarization coefficient 

f1 Pauli spin matrix 

l' Normal transmittance 

¢k Phase or retardance coefficient 

Subscript Ordering: k. 1. q . 

For example. dm • is the coefficient for: 
the u 1 polarization basis state. 
that is second order in the angle of incidence Taylor series. i2• 

for the third interface. 
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the angle of incidence. plane of incidence. and optical properties of the interface 

media. 

J(i.e.q.q') Mld Qi.e.q.q') . 

A optical surface or thin film coating with spatial variations or localized defects is 

not homogeneous. A fine diffraction grating is not homogeneous at the microscopic 

scale. but might be considered as homogeneous at a larger scale. 

Likewise. a homogeneous medium has optical properties independent of spatial 

coordinates. An anisotropic crystalline medium is homogeneous if it consists of a 

single crystal. The refractive index varies with direction but not with position. The 

instrumental polarization associated with a ray path in a homogeneous medium 

depends only on the optical constants and the direction and path length of the ray. 

If O! and f3 are two of thE: direction cosines. then the Jones matrix and C vector 

associated with a ray path of length 1 through a homogeneous medium are 

L(0!.~.1) • and. QO!~.l) . 

A homogeneous optical system is composed entirely (If homogeneous interfaces 

between homogeneous media. The Jones matrix associated with a ray path through a 

homogeneous system is. 

I 

J - TT Lq(Q! .. .B.1) Jq(i.e) . 

q-Q.-I 

Radially Symmetric Systems of Lenses. Mirrors and Coatings 

This section develops the the polarization properties of optical systems 

comprised of lenses. mirrors and "fine" coatings for ray paths near the optical axis 

(the paraxial regime.) A radially symmetric optical system has an axis of symmetry. 

the optical axis. It is assumed that the optical elements and materials used in 

transmission are highly transparent and nonpolarizing. as is usual in lenses. The 
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polarization contribution. the L's. from the path lengths through highly transparent 

elements is often assumed small relative to the polarization arising at the interfaces 

and can be neglected when 

For this paraxial development to be ac.curate. it is necessary that the angles of 

incidence are small enough that the polarization associated with the interfaces is 

adequately approximated by a second order expansion of the C vector as a function 

of the angle of incidence. For an uncoated lens or mirror. this approximation is 

gcuerully valid for i < 300 • Caicuiation of the fourth and higher order coefficients 

allows estimation of the accuracy of these second order equations. The paraxial 

region for this polarization analysis is typically orders of magnitude lurger than the 

paraxial region of geometrical optics (where the fourth and higher order wavefront 

aberrations are negligible.) 

Homogeneous and isotropic interfaces do not display polarization at normal 

incidence. There is only an amplitude and phase change which is represented by 

the complex number. 7. the normal amplitude transmittance. An isotropic interface 

such as a lens. mirror or coating has a C vector Taylor series in s-p coordinates (9=0) 

of the form 

Qi.9-0) - T [1.0.0.0] + i2T [d02.d12.O.O] + i4T [d04.d14.O.O] + .... 

For an arbitrary orientation 9 of the plane of incidence. the C vector is 

Qi.6) - T [1.0.0.0] + i2T [c02(6).c12(6).c12(6).0] + ieT [c04(6).C14(6)'~4(6).0] +... • 

where the c's are determined from the d's by a rotational change of basis. Since 

homogeneous and isotr(lpic interfaces do not display circular retardance or circular 
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polarization. fTs is not included to simplify the mathematics. The inclusion of 

circular polarization and circular retardance effects is straightforward. 

The C Vector for a Paraxial Ray 

Consider a paraxial ray path through an optical system from surfaces q=,l to 

Q with angles of incidence. iq• and orientations of the plane of incidence. 6q. The 

Jones vector associated with the axial ray (down the optical axis.) iq-<> for all q, is 

where 

Q 
T - n 1q 

q-l 

The complex amplitude transmittance down the axis. T. is the product of the normal 

incidence complex amplitude transmittances at each surface. 

The Jones matrix associated with a ray at interface q can be expressed in 

terms of the expansion of the interface Jones matrix as 

Jq(i.6) - 1 q(fT o+i~(CO.2.qfTo +c 1.2,qfT1+c2,2.qfT2) +i~(cO.4.qfT o+Cl.4.qfTl+C2.4.qfT~) + ... ) . 

The Jones matrix associated with the entire paraxial ray path resulting from 

keeping terms to second order at each interface is (x indicates multiplication carried 

onto the next line) 
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Associated with each interface are four terms. Performing the multiplication:> leads 

to 4Q terms. all in even powers in i. Collecting terms of equal power in i. there is 

one term at zero'th order and 3Q terms at second order. If i is assumed small. the 

large number of higher order terms are of diminishing importance. The expression 

for J through second order is 

iO) + i 2) - TO'o + TO'o f i~ cO.2.q 

q-l 

Since no polarization or retardance was assumed on axis. the contributions to the 

second order polarization for this ray are just sums of contributions from each 

surface. The multiplication taking piace at second order is of the form (dropping the 

c's and using the 0'1 terms as an example) 

When the elements display no polarization or retardance at normal incidence. 

there is no order dependence in the second order terms. Only one non-identity 

ffiatrix term occurs in each second order matrix product. The second order 

polarization associated with the paraxial ray path is obtained by a simple summation 

of second order polarization contributions at each intercept. 

The lowest order polarization where interface order dependence occurs in 

homogeneous and isotropic systems is at fourth order. The fourth order expres!'ion 

:nvolves all combinations of two second order polarization terms as well as single 

fourth order polarization terms occurring in isolation. The fourth order Jones matrix 

terms are 



·2·2 ( 
l q l q' CO.2.qCO.2.q' + Cl.2.qCI.2.q' 

q-l q'-l 

+ T 0'1 f ~ i~i~' (CO.2.qCI.2.q' + CI,2.qCO.2.q' ) 

q-I q'-I 

~~ + T 0'2 L L i~i~' (CO.2.qC2.2.q' + C2.2.qCO.2.q' ) 
q-t q' .. l 
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The circular polarization and circular retardance terms (0'3) are the only orde, 

dependent elements at fourth order. These terms. arising from the multiplication of 

0'1 and 0'2' always occur in the form of the quantum mechanical commutator. 



CHAPTER 5 

RESULTS FROM GEOMETRICAL OPTICS 

Introduction 

This chapter contains the material from geometrical optics required for the 

development of the polarization aberrations. It presents several results regarding the 

angles of incidence of paraxial skew rays which are derived in Ap~endix D. Then. 

the wavefront aberrations are defi!led and formulated in terms of Jones matrices. In 

this formulation the wavefront aberrations are recognized as one of eight subsets of 

the polarization aberrations. The other seven subsets are introduced in Chapter 6. 

Paraxial Optics Summary 

The polarization aberrations arc a description of the polarization behavior of 

an optical system expressed as an expansion in ray coordinates about the centers of 

the object and pupil. It is appropriate and convenient to obtain the derivations from 

a paraxial ray trace; appropriate. because understanding the instrumental polarization 

near the center of the pupil and image is key to understanding instrumental 

polarization in general; convenient because the paraxial ray trace is linear and easy 

to manipulate. 

The paraxial ray trace is discussed in many optics books. The results 

required here are expressions for the angles and plane of incidence of paraxial rays. 

Chapter lbree of Lens Design Fundamentals by R. Kingslake provides a explanation 

of paraxial ray trace methods. Other treatments include: Gerrard and Burch (1975. 

Chapter 2). Stavroudis (1982. Section 1.2). and Welford (1974. Chapter 2.) 
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Appendix D. "Paraxial Skew Rays". contains an extended treatment of the 

material in this review. particularly derivations of the expressions for the angle of 

incidence and its orientation. Also included are relations for calculating the paraxial 

angles of incidence from a paraxial ray trace. 

Coordinate System 

The coordinate system used here is a normalized right handed coordinate 

system. The z axis is the optical axis of a rotationally symmetric optical system. 

Light initially travels in the direction of increasing z. Figure 10 shows the notation. 

For a rotationally symmetric system. the object can be located on the y axis 

without loss of generality. The object coordinate H is normalized such that 

H - 0 

in the center of the field (on the optical axis) and 

H - 1 

at the nominal edge of the field of view. 

The location where a ray strikes the entrance pupil is specified by the polar 

pupil coordinates p and q,. p is normalized such that at the edge of a circular pupil 

p - I . 

q, is defined here as it is in much of geometric optics. and in defiance to most 

analytical geometry. as being zero on the y axis and increasing counterclockwise. 

Normalized Cartesian pupil coordinate:. x and yare occasionally used. They are 

defined as: 

x - -p sin q, • and. y - p cos q, . 

Subscripts 

Subscripts c and m refer to quantities associated with the chief and marginal 

rays in the y-z plane. Subscript q refers to the quantity at the qth interface in the 
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H 

Object 
Pupil 

Figure 10 Coordinate System for Paraxial Rays 

Rays through an optical syst~m are characterized by ray coordinates at the object and 
entrance pupil. H is the normalized object coordinate; p is the normalized pupil radius. 
rp is the polar angle in pupil measured counterclockwise from y axis. Alternatively x 
and yare normalized Cartesian pupil coordinates. The chief and marginal rays are also 
shown. 
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system. Where a set of expressions refers to a single surface, the surface subscript 

will be omitted. Subscript e is tlle quantity evaluated at the system stop (mnemonic 

- entrance pupil.) 

The Paraxial Angle of Incidence 

Expressions for the angle of incidence i and the orientation of the plane of 

incidence e of a ray at a given surface q are expressed in terms of the marginal 

(im,q) and chief ray (ic,q) angles of incidence at that surface. Details of the 

deiivation ~re in Appendix D. 

Assume that a paraxial ray trace has been performed for an optical system 

and that im,q and ic,q have been calculated. A ray from normalized object 

coordinate H which passes through pupil coordinates p and t/J has an angle of 

inciuance iq and orientation of the plane of incidence 9q at surface q equal to: 

arcsin 
[ 

p sin t/J im ] 
liql 

Figure 11 shows the paraxial angle and plane of incidence for three field 

angles. The position of the center of a line represents position in the circular 

aperture. The magnitude of the angle of incidence is represented by the length of 

the lines. The orientation of the lines corresponds to the orientation of the plane of 

incidence. Off axis the pattern is a simple translated version of the on axis pattern. 

The Wavefront Aberrations 

In this section the monochromatic wavefront aberrations of a radially 

symmetric optical system are stated. The wavefront aberrations are a set of basis 

functions which describe the shape of an optical wavefront, usually in the exit pupil 
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The angle and plane of incidence for paraxial rays at a spherical surface are 
represented by tht: length and orientation of lines for an on-axis and two off-axis 
objects. 
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of an optical system. The wavefront aberrations are usually defined with respect to 

a reference sphere centered on the Gaussian image point (the paraxial image). For 

radially symmetric optical systems, the transmitted wavefront from object points 

(G,H) at an equal radius from the center of the object, 

I HI - Q2+W • constant. 

have identical form and differ only in orientation. The object can be located on the 

y axis without loss of generality. Following Shack (1982). the wavefront is a 

function of only H'H • H·p and p.p and can be expressed as 

W(H.p.c{» • W( H·H , p.p . H·p } 

00 00 00 

'" .... Q R" S • L- L-L- WQ,R.S (HIi) <p.p) (Hp) 

Q-OR-os-o 

It is standard to simplify the exponents by making the index transformation 

u • 2Q+S, v - 2R+S, w • S. 

Then the wavefront aberration expansion takes the form 

00 00 00 

W(H.p.c{» - LLL Wu.v,w H
U 

pV coswc{> 

u v w 

Care must be exercised with this form because the sums no longer run from 0 to 

infinity. 

The order of a wavefront aberration term is defined as 

Order • 2(Q+R+S) • u+v . 

The higher the order of the wavefront aberration, the higher spatial frequencies of 

the wavefront deformation it describes. 
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Radially symmetric systems contain only even order aberration terms. Table 

II lists the wavefront aberration terms through fourth order. A major objective of 

aberration theory is to calculate the coefficients. Wu•v•w• from the prescription for 

an optical system. 

The Lowest Order Terms 

The zeroth and second order wavefront aberrations do not so much 

characterize image quality as describe where and with what relative phase the 

images occur. The terms more descriptive of image quality are the iourth order 

terms. known as the Seidel aberrations. and the higher order terms. They are not 

described here since the polarization aberrations will only be carried out to second 

order. 

Constant Piston Error 

The coefficient W 000 represents zero order piston error. The value of W 000 is the net 

change in optical phase between the object and image for the ray path along the 

optical axis. If 

is the sum of optical path lengths down the optical axis. then 

W 000 - m.xl(L.)') 

is the remainder aiter dividing L by the wavelength. Since the term. W 000' is 

independent of object and pupil coordinates. it represents a constant phase term. 

This term is usually ignored in optical design because: 

a) it is rarely important in non interferometric applications. 
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TABLE II 

The Wavefront Aberrations 

Zero Order 

WOOf) 

Second Order 

Fourth Order. Seidel Aberrations 

W400 

Wm 
W220 

W222 

Wm 
Wo.o 

H' 
IPp cos ¢l 
Wp2 
Wp2COS2ct> 

H p'cos ct> 

p' 

Piston Error 

Piston Error 
Tilt 
Defocus 

Piston Error 
Distortion 
Field Curvature 
Astigmatism 
Coma 
Spherical Aberraticn 
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b) its exact value in optical hardware is easily several wavelengths away from the 

design value due to tolerances. 

c) it can be readily adjusted with little perturbations to the other aberrations. 

Defocus 

The WrrJ.OIil term is defocus. The functional form. ,1-. is the paraxial equation 

for a spherical wave. Defocus describes the difference between the radius of 

curvature of the transmitted wavefront and the reference wavefront. Thus it 

represents a shift of focus out of the Gaussian image plane. Since the defocus term 

is independent of field coordinate. it describes a uniform focus shift to a plane 

parallel to the paraxial image plane. Higher order terms of the form HQp2, such as 

W 220Wp2 and W 42OH4,1-. characterize nonuniform focal shifts or field curvature. 

Tilt 

The term W lllHp cos q, is tilt. Tilt is a linear change to the wavefront. 

equivalent to a pivot of the wavefront about the x axis. The tilt of the wavefront is 

zero for H-o and increases linearly as the object point moves off axis. This tilt 

moves the image without changing its form. exactly as a linear shift displaces a 

Fourier transform. Tilt produces a magnification change. since the image is 

uniformly enlarged. 

Quadratic PisteD Error 

The term W 200 W is quadratic piston error. It is the quadratic portion of the 

variation of the optical path length of the chief ray as a function of object 

coordinate. Since it is an "absolute phase" term which doesn't affect image quality. 

it is usually S<'.fely ignored. 
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Jones Matrix Form for tbe Wavefront Aberrations 

In aberration theory no mention is usually made of the polarization of the 

incident and transmitted wavefronts. This is the default assumption of geometrical 

optics. the optical system is assumed to transnlit a beam of uniform intensity and 

uniform polarization state equal to the incident amplitude and polarization state. In 

the absence of further information. ihis is the most logical and safest assumption. 

Assume that the system is nonpolarizing; then the transmitted wavefront has 

the same shape for all incident polarization states. Additionally assume that the 

transmitted wavefront has a uniform amplitude for all incident polarizations and for 

all ray paths. Then the Jones matrix and C vector as a function of system 

coordinates can immediateiy ~ written. The Jones matrix and C vector for a 

non polarizing uniform phase shift of W waves at constant amplitude are: 

J - e
j2rrWP. [ ~ ~ ] . and. C _ e

j2rrWP. [1.0.0.0] . 

Thus the Jones matrix and C vector expansions for a uniformly transmitting 

nonpolarizing system described by the wave aberration expansion are: 

J(H.p.cP) [ ~ ~ ] exp [ i¥ LLL Wu•v•w HUpVcoswcP] • 
u v w 

[ 1.0, O. 0] exp [ i¥ LLL Wu•v•w HUpVcosWcP] . 

u v w 

Here the wavefront polynomial expansion has been used to describe ihe variation of 

the phase of the complex coefficient Co of the ao "identity" polarization matrix. 

These equations embody the default polarization assumption in geometrical optics. 



CHAPTER 6 

POLARIZATION ABERRATIONS 

Introduction 

This chapter pr6Sents a Taylor series description of the instrumental 

polarization associated with paraxial rays through radially symmetric systems of 

homogeneous and isotropic optical elements. The results are obtained in a forID very 

similar to the wavefront aberrations. In particular. terms closely related to defocus. 

tilt. and piston error as well as the Seidel and higher order aberration~ can be 

associated with all eight of the basis Jones matrices. Since polarization and 

retardance effects are typically orders of magnitude smaller than wavefront effects. 

fewer terms are needed for a sufficient description. A m~thod of calculating 

aberration coefficients for specific systems is developed in Chapter 7. 

Prior Work 

Many authors have pointed out the effects of. and the instrumental limitations 

due to. instrumental polarization in optical systems but few systematic analyses have 

been puulished. Papers which discuss instrumental polarization effects in 

spectrometers include baur. Lewis and Hull (1980). Breckenridge (1971). Clout and 

Heddle (1%9). Stewart and Gallaway (1962). and Woolsey and McConkey (1968). 

Howell (1979) performs a Mueller matrix analysis of the instrumental polarization of 

a radiometer. Stenno (1978) discusses the limitations imposed on solar magnetic field 

measurements due to instrumental polarization. Instrumental polarization effects in 

phased array optical systems are discussed by Hege. Beckers. Strittmatter and 
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McCarthy (1985). McCarthy. Strittmatter. Hege and Low (1982). SheHan (1985). and 

West ( 1985). 

One of the few systematic analyses of polarization aberration effects is due to 

Kubota and Inoue (1959) who analyzed image formation in polarizing microscopes. 

In their interference microscope. light traverses a linear polarizer. a microscope 

objective. reflects or scatters from a sample. travels back through the microscope 

objective and then passes through a polarization analyzer. The microscope is 

measuring polarization changes due to the sample. The rotation of the plane of 

linear polarization for light rays at nonnormal incidence at the lens surfaces reduces 

the sensitivity of the microscope. The authors present a detailed analysis of this 

polarization rotation arising at the lens surfaces. They also analyze the distribution 

of polarized light in the exit pupil and calculate the point spread function due to 

linear polarization defocus. a polarization aberration term introduced later in this 

chapter. They show that the point spread function for the light remaining in the 

incident polarization state loses its radial symmetry becoming bilaterially symmetric. 

The point spread function for the light coupled into the orthogonal polarization state 

has a four-fold symmetry and resembles the diffraction pattern in the presence of 

astigmatism. 

Inoue and Hyde (1957) designed a polarization compensator for interference 

microscopes to compensate for the linear polarization defocus introduced by fast 

microscope objectives which works as follows. After the light has double passed the 

microscope objective. it passes through the polarization compensator. a half wave 

linear retarder followed by a short radius meniscus lens. The retarder is aligned 

with the initial polarizer. Linearly polarized light which is aligned with the retarder 

axes is unaffected by the retarder. Light whose linear polarization is at an angle o 
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with respect to the retarder axis is transmitted at an angle ~; the major axis is 

flipped about the retarder axis. The meniscus lens is chosen to introduce 

polarization rotation equal to that introduced by double-passing the microscope 

objective. The half wave retarder and meniscus lens effectively cancel the on-axis 

polarization aberration of the microscope objective. This polarization compensator 

greatly improves the quality of images from interference microscope by reducing the 

instrumental polarization and has been used with success in many microscopes. 

Knowlden (1981) analyzed the instrumental polarization due to coating effects 

on two optical systems: an f/l parabola ueed in collimated light, and a reflecting 

conical optical element with a 45° half angle. He wrote a computer program to 

evaluate angle of incidence effects due to the coatings. &!veral plots of the vari2~ion 

of amplitude and phase across the exit pupil for the different polarization 

components clearly show the effects of linear polarization defocus and linear 

retardance defocus. No analysis was done off axis. 

Fainman and Shamir (1984) analyzed the diffraction of polarized light across 

an interface. Using a fundamentally different awroach than is taken here 

(diffraction as opposed to ray-ba.<:ed), they derive the on-axis instrumental 

polarization effects at a spherical interf.ace due to linear polarization defocus. 

Photographs of this effect are Included. 

Chipman (1985), using the Mueller calculus, performed an analysis of the 

second order polarization aberrations of uncoated lenses, treating the instrumental 

polarization arising from the Fresnel equations. Equations were provided to calculate 

aberration coefficients for sequences of uncoated lenses. 
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The Polarization Aberration Expansion 

The wavefront polynomial expansion describes the variation of the optical 

path difference through an optical system as a function of ray coordinates. A 

closely related expansion is presented for all four basis polarization matrices. This 

polarization aberration expansion for radially symmetric systems uses a very similar 

polynomial expansion to describe all eight basis polarization vectors. The principal 

difference is a modified form for the linear polarization and linear retardance terms 

since these involve both a magnitude and an orientation. 

The Fresnel equations and other common weak polarizer expressions are 

relatively "weak" functions of the angle of incidence when compared with Snell's 

law. Thus it is possible to describe polarization variations using a lower order 

expansion than is necessary in expanding Snell's law for the wavefront aberrations. 

Amplitude, Phase and Complex Terms 

It has been shown how the eight forms of polarization behavior can be 

characterized by four complex numbers, for example, the four elements of either the 

Jones matrix or the C vector. Here, complex polarization aberration coefficients 

Pk,u,v,w are used. It should be emphasized that the amplitude and phase of the 

coefficients are generally unrelated ref erring to different aspects of the instrumental 

polarization. The amplitude part of the coefficient A describes amplitude and 

polarization effects while the phase part 4> describes phase and retardance. The 

amplitude and phase of the polarization aberration coefficient P and the subscripts k, 

u, v, and w are defined as follows: 
.4> 

pk = A J k,u,v,w 
.u,v,w k,u,v.w e • 

where: k is the type of polarization behavior, 
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u is the order of the H dependence. 

v is the order of the p dependence. and. 

w is the order of the I/J dependence. 

The indices u.v and w are used exactly as they were for the wavefront aberrations. 

Polarization Aberration Expansion 

The polarization aberration expansion of the Jones matrix for a rotationally 

symmetric system is 

3 

J(H.p.I/J) - ) ck(H.P.I/J) O'k 

k-O 

The C vector coefficients in this polarization aberration expansion are: 

Description of Terms 

This polarization aberration expansion for a radially symmetric system has 

thirty two terms to second order. which arise from four terms in each of the eight 

degrees of freedom of the Jones matrix. The terms are grouped as follows: 



AO.u•v•w 
AI.u.v.w 
A2.u.v.w 
A3.u.v.w 
~O.u.v.w 
~I.u.v.w 
cJI2.u.v.w 
~3.u.v.w 

Pk.O.O.O 
Pk.2.0.0 
Pk.l.l.1 
Pk.O.2.0 
Pk.O.2.2 

Amplitude terms 
Linear polar;zation terms 
Diagonal polarization terms 
Circular polarization terms 
Wavefront or phase terms 
Linear retardance terms 
Diagonal retardance term:; 
Circular retardance terms 

"Constant Piston" terms 
"Quadratic Piston" terms 
"Tilt" terms 
"Scalar Defocus" terms 
"Vector Defocus" terms 

III 

The names of the wavefront aberrations: piston. quadratic piston. defocus and 

tilt. are used in an extended sense to describe variations of components of the Jone') 

vector which share the same functional dependence as the wavefront aberrations. 

Defocus refers to a f variation. Tilt refers to a Hp cos rp variation. Constant piston 

refers to a constant function. Quadratic piston refers to an lP variation. So 

"circular retardance tilt" is the H p cos rp variation of circular retardance. 

This polarization aberration expansion is an equation which spans all possible 

second order variations of the Jones matrix. just as the second order wavefront 

aberration expansion spans the set of all second order wavefront variations. This 

polarization aberration expansion characteriLes quadratic variations of all forms of 

wavefront. amplitude, polarization and retardance. 

This polarization aberration expansion is a summation of terms in the 

different Pauli spin matrix components. not a product. Thus the four C vector 

elements should be pictured a5 acting in parallel. almost side by side in the aperture. 

but not in series. Each term describes an amount of a particular form of 

polarization. independent ,of the other contributions. 
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An "aberration term" is to be considered as containing all the algebraic terms 

in the expansion with the same coefficient. Most of the coefficients occur only once 

and the aberration term contains oniy one algebraic term. The exceptions are the 

components both along the axes and at 45 degrees. 

Single Surface Aberrations 

in this section the zero and second order polarization aberration coefficients 

for a paraxial spherical wave incident at a single homogeneous interface are derived. 

Consider a single weakly polarizing spherical surface illuminated by a 

spherical optical beam. Using the notation of Chapter 3 for weak polarizers. the 

second order C vector in s-p coordinates for a surface as a function of angle of 

incidence i is 

The d's are complex numbers which incorporate both polarization and retardance 

effects. Terms dzo• d22• d30 and d32 describe diagonal and circular polarization. 

These terms are zero for isotropic interfaces but are included here for completenes!:, 

For an arbitrary plane of incidence. B. the C vector is 

Let the angles of incidence for the marginal and chief rays be im and ic. 

The angle of incidence for a given ray in terms of its object and entrance pupil 

coordinates is 

'2 U2'Z 2H ,I. • , ..2'2 
I - n-IC + p cos 'I' Iclm + II 1m • 

Expressions for the C vector elements co(H.P.q,) and cs(H.P.q,) are det'1rmined by 

substitution of i2 into Qi.B) as: 
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-' 
cs(H.P.CP) - dso + dsz[ H2i~ + 2Hp cos cp icim ~ f\fu ] . 

The C vector elements cl(H.P.CP) and Cz(H.P.CP) ,we ~htai!1ed by substituting the 

paraxial expressions fo.' iZ. sin 26 and cos 26. These elements are: 

c1(H.P.CP) - dlo + dlz[ H2i~ + 2Hp cos cp icim + p2cos 2cp ifu] 

+ dzz[ 2Hp sin cp icim + fsin 14 ifu] • 

Cz(H.P.CP) - d2!! + dd Wi~ + 2Hp cos tjJ ic!m + fees 2¢ ifu] 

Equating the ck(H.P.CP)'s with the polarization aberration expansion yields the 

following single surface polarization aberration contributions: 

Pk.O.O.O - clk.O • 

P d·2 
k.2.0.0 - k.2 IC • 

P d·2 
k.O.2.0 - k.2 1m • 

Pk.I.l.1 - 2 dk.2 ic im 

The second order single surface polarization aberration coefficients simply contain 

the angular dependence of the polarization times the appropriate functions of angle 

of incidence. 

Discussion of the Terms 

In this section the form of the particular polarization aberrations terms is 

described. A distinction is made between scalar and vector aberrations. The 
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wavefront aberrations are scalar aberrations. single valued functions of object and 

pupil coordinates. The linear polarization and linear retardance aberrations are 

vector aberrations since a magnitude and orientation is associated with these at each 

point. Amplitude. circular polarization and circular retardance aberrations are scalar 

since they are single valued and range positive and negative. 

The Geometric Origin of Tilt and Piston 

Figure 12 (bottom) shows the chief and limiting rays at an interface for 

objects on axis and at the edge of the field of view. Figure 12 (top) is a plot of the 

value of the angle of incidence along the y axis as a function of p. Tilt terms 

naturally occur because as the object point moves off axis. the angle of incidence 

increases at one edge of the beam and decreases at the other edge. Tilt contains the 

first order portion of this correction. Figure 13 shows the off -axis angle of 

incidence squared and the decomposition of this into defocus. tilt and piston terms. 

These terms are required to describe a quadratic variation whose vertex is located at 

an arbitrary position on the y axis because 

x2 + (y-a)2 = x2+y2 
- 2ya + a2 • 

Since a is a linear function of H. a - k H • the quadratic polarization variation 

takes the functional form 

c(x2 + (y-kH)2
) = c(x2+y2) - 2cykH + ck2W 

- P020p2 + P 1112Hp cos ¢ + P200H
2 

• 

P020• P 111• and P200 are the defocus. tilt and quadratic piston aberration coefficients. 

Tilt and piston terms arise naturally from decentered defocus. Similarly. the fourth 

order wavefront aberrations coma. astigmatism. field curvature and distortion arise 



Angle of 
Incidence 

Figure 12 On and Off -Axis Angle of Incidence 
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Marginal Ray 

Chief Ray 

The angle of incidence in the meridional plane is shown as a function of pupil 
coordinate both on and off axis. 
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Off-axis 
Angle of Defocus Tilt Piston 
Incidence 
Squared 

Figure 13 The Angle of Incidenc.e Squared 

The angle of incidence squared in the meridional plane is depicted for an off-axis 
object and its decomposition into defocus. tilt and piston. 
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naturally from decentered spherical aberration. 

C(P-Ho)· W 04oP· + W mHpscos q, + W 220fPp2 + W mWp2eos2q, 

+ W suHsp cos q, + W 400W • 

Scalar Polarization Aberrations 

The four sets of scalar polarization aberrations are: amplitude. phase (or 

wavefront). circular polarization and circular retardance. All are strict functional 

analogues of the wavefront aberrations except that they describe other aspects of the 

Jones matrix than the phase of the identity matrix. 

Figure 14 shows contour plots of the scalar aberrations. tilt. defocus and 

piston. Position in the graph represents position in the pupil. 

Figure 15 shows representations of the circular aberrations. defocus. tilt and 

piston. The representation is the same for either circular polarization aberrations or 

circular retardance aberrations. the difference being whether a circle represents 

circular polarization or circular retardance. The size of the circle is the magnitude 

of the polarization or retardance. The arrow distinguishes between left and right 

circular polarization. Both positive and negative values of the aberrations are 

shown. 

Scalar Constant Piston Terms 

The sc~!ar constant piston terms are: 

Amplitude Constant Piston. 

Phase Constant Piston. 

Circular Polarization Constant Piston. 

Circular Retardance Constant Piston. 

Aoooo lio • 

Cl> oooo.i ITo. 

Asooo ITs • 

Cl> sooo.i ITs 



,,--- 0.0 

0.5 

1.0 

Defocus 
1.0 

0.33 

-0.33 

~""'iI---- -1. 0 

Tilt 

1.0 

Piston 

Figure 14 The Scalar Aberrations. Defocus. Tilt and Piston 
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Positive Negative 

~ ~ 
CI • CI C 0 " t> • . • (!; ~ . . . ~ 
CI • CI " . " (!; ~ 

Circular Polarization Defocus 

Circular Polarization Tilt 

Circular Polarization Piston 

Figure 15 Circular Polarization Defocus. Tilt and Piston 

The variation of circular J)Olarization with pupii fer positive and negative 
amounts of circular polarization defocus. tilt and piston. 
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Scalar constant piston characterizes the normal incidence polarization of a 

surface or the "down-the-axis" instrumental polarization of a system. This 

polarization is a uniform polarization "bias" present at all pupil positions for all 

object coordin~tes. As Figure 14 and 15 show. scalar constant piston is constant 

inside the pupil. Aoooo is tht> net amplitude transmittance down the optical axis 

while <1>0000 is the net phase. 

Scalar Defocus Terms 

The scalar defocus terms are: 

Amplitude Defocus. 

Phase Defocus. 

Circular Polarization Defocus. 

Circular Retardance Defocus. 

AOO2oP2 aD • 

<l>002oP2jao • 

A'J02oP2 a3 • 

<I>'J02oP2 ja 3 

The aberration terms A0020• <1>0020' A3Q20. and <I>'J020 describe the defocus-like (P2) 

variation of instrumental polarization in the exit pupil piesent for on-axis object 

points. This term is present with the same magnitude for off-axis objects as for on

axis objects. 

The wavefront defocus term <1>0020 is the "usual" wavefront defocus (W020) 

described in the wavefront aberration section. l'f <1>0020 is greater than zero. the 

defocused wavefront leads the Gaussian reference surface. If it is less than zero it 

follows the Gaussian reference surface. 

The term A0020 is amplitude defocus. It describes the amplitude of the 

transmitted wavefront. not its shape. When amplitude defocus is present there is a 

quadratic apodization of the pupil for ail object points. This apodization is due to 

the optical system. not to intensity variations in the incident light as in the case of 
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the Gaussian profile of a laser beam. For negative Aocno. the center of the pupil is 

brighter and the pupil becomes dimmer quadratically with pupil radius. For positive 

AOO2o the edge of the pupil is brighter. Figure 16 shows one way that amplitude 

defocus occurs. This figure shows light propagating through a typical convex lens 

with spherical surfaces. To the side is a plot of the path length through the center 

region of the lens as a function of pupil radius for an on-axis object. The path 

length through the lens is a constant minus a quadratic term. If the lens is 

fabricated from weakly absorbing neutral density filter giass. the transmitted light 

has a radial amplitude distribution of the form 

A(P) • Aoooo + AOO2oP2 • 

as is shown in Figure 17. Amplitude defocus also arises from angle of incidence 

dependent reflection or transmission variations. 

The term cJI3020 is circular retardance defocus. the quadratic variation of 

circular retardance with pupil radius. Referring again to Figure 16. now let this 

lens formed from two thin glass shells filled with sugar water or any other suitable 

circularly birefringent material. The net circular !-oLaidance. for a ray is 

proportional to the length of the ray path through the circularly birefringent medium. 

which is proportional to p2 for the on-axis object point. This lens produces a 

radially symmetric quadratic variation of circular retardance. For left and right 

circularly polarized incident light. ihe amount of defocus due to the circular 

birefringence is equal and opposite. The focal length of the lens is different for left 

and right circular polarized light. For linearly polarized ligh~. the polarization 

rotation angle is maximum for the center ray. and decreases quadratically toward the 

edge of the pupil. 
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FigUi"e 16 Optical Path Length through a Lens on axis as a function of pupil 
coord!nate. 
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Transmitted Amplitude 

Pupil Coordinate 

Figure 17 Amplitude Transmittance of Weakly Absorbing Lens as a Function of Pupil 
Coordinate 
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Circular polarizatioa defocus. Ascno. is similar to tscno except that it is an 

amplitude rather than phase effect. the pupil possessing different quadratic 

apodizations which are circular polarization dependent. 

Scalar Tilt Terms 

The scalar tilt terms are: 

Amplitude Tilt. 

Phase Tilt. 

Circular Polarization Tilt. 

Circular Retardance Tilt. 

AomHp cos ¢ uo • 

«PomHp cos ¢ juo • 

ASlllHp cos ¢ U3 • 

tSlllHp cos ¢ jus 

The four scalar tilt aberrations. Aom. tom (same as wavefront tilt. W11l). 

A3llI• and t m !. are strictly analogous to tilt. The functional form of scalar tilt is 

Hp cos ¢ - Hy . 

The p cos (] represents a linear variation of a parameter which is greater in the top 

(or bottom) of the pupil and less in the bottom (or top). This term is linear in the 

object coordinate. H. and is not present for on axis objects. 

Wavefront tilt. t Olll ' describes the tipping of the wavefront with respect to 

the Gaussian reference sphere. This displaces the image from the paraxial image 

location. Since the displacement is linear in H. tilt produces a magnification change 

in the system. 

The presence of amplitude tilt. Aom. means that the top of the pupil is 

brighter than the bottom. or vice versa. for off-axis objects. This amplitude 

variation changes (he structure of the diffraction pattern and also causes variations 

of fringe visibility in an interferometer. 
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The presenc~ of circular retardance tilt. t Slll ' indicates more circular 

retardance in the top of the pupil and less in the bottom. or vice versa. for off-axis 

image points. If linear polarized light is incident on a system with only t 3111• the 

plane of polarization of the light is rotated one way in the top of the pupil. 

undeviated across the middle of the pupil. and rotated the opposite direction across 

the bottom. If on the other hand right and left circular polarized light is incident on 

a system with pure circular retardance tilt. the transmitted wavefront has opposite 

tilts for the left and right circular polarizization states. 

Scalar Quadratic Piston Terms 

The scalai quadratic piston terms are: 

Amplitude Quadratic Piston. 

Phase Quadratic Piston. 

Circular Polarization Quadratic Piston. 

Circular Retardance Quadratic Piston. 

A0200IP 110 • 

~02OQIPjl1o • 

AS2001f' 113 • 

~3200IPjt":; 

Quadratic piston terms describe a uniform change of a parameter across the 

pupil which occurs quadratically with the object coordinate. In a system with pure 

amplitude quadratic piston. A02OQ. the pupil is uniformly bright on-axis. As the 

object point moves off axis. the pupil brightness changes but the pupil remains 

uniformly illuminated. Amplitude quadratic piston describes a field dependent 

variation of the average amplitude transmittance of the system. Likewise. A3200 and 

~3200 describe object coordinate dependent variations of circular polarization and 

circular retardance which are uniform across the pupil. 
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Vector Polarization Aberrations 

The linear polarization and linear r~tardance aberrations are classed as vector 

aberrations since there is a magnitUde and orientation associated with each aberration 

at each point. The vector aberrations have been further grouped into "linear" 

aberrations and "diagonal aberr~tions". Linear vector defocus is a purely radial or 

purely tangential function. d~pending upon the sign. Diagonal vector defocus is 

always at :t45° to radial. The other linear aberrations derive from an expansion of 

translated linear defccus. The diagonal aberrations derive from translated diagonal 

defocus. 

Diagonal aberrations do not occur at homogeneous and isotropic radially 

symmetric interfaces. but do occur at anisotropic interfaces. They are included here 

to complete the full second order basis set of possible Jones matrix polarization 

aberrations. 

Figure 18 shows the three second order linear aberrations as a function of 

pupil coordinates for both positive and negative aberration coefficients. The figures 

are the same for polarization or retardance aberrations. the difference being whether 

(\ line represent'> linear polarization or lin~ar retardance. The location of a line 

represents a position in the pupil. The length of the line is the amount of linear 

polarization or retardance. The orientation of the line is the orientation of the 

associated linear polarization or linear retardance. Figure 19 is the corresoonding 

plot for the three diagonal aberrations. Note that when the sign of a vector 

aberration changes. the associated polarizations rotate 90°. 

Vector Constant Piston Terms 

The vector constant piston terms are: 

Linear Polarization Constant Piston. 
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Figure 18 The Second Order Linear Polarization Aberrations 
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Figure 19 The Second Order Diagonal Polarization Aberrations 
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The constant piston terms are independent of object &nd pupil coordinate. The 

vector constant piston terms describe the linear polarization and linear retardance 

down the axis of the optical system. The "1000" terms describe linear polarization 

components along the system x-y axes while the "2000" terms describe components at 

±4So. For systems with pure "1000" and "2000". the polarization in the exit pupil is 

a constant. independent of pupil coordinates p and ¢ or object position H. This 

corresponds to the polarization aberration of an ideal linear polarizer or retarder 

whose polarization or retardance varies quadratically with field height. 

Vector Defocus Terms 

The vector defocus terms are: 

Linear Polarization Defocus. 

Linear R~tardance Defocus. 

Diagonal Polarization Defocus. 

Diagonal Retardance Defocus. 

A I02oP2 ( IT ICOS 2f/J - 0'2sin 2f/J) • 

~I02oP2j( 0' ICOS 2f/J - 0'2sin 2f/J) • 

A202oP2 ( 0'2COS 2f/J + O'lsin 2r/J) • 

~202oP2j( 0'2COS 2¢ + O'lsin 2f/J ) 

Vector defocus describes the defocus-like variation of linear polarization and linear 

retardance which is quadratic in the pupil radius but constant in the obje<.;t 

coordinate. 

To understand the origin of the linear polarization defocus and linear 

retardance defocus refer to the plots of the paraxial angle of incidence in Figure 11. 

Since the Fresnel equations and ether related amplitude transmission relations are 
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even functions of the angle of incidence, the lowest order of polarization variation 

present is proportional to the angle of incidence squared. Figure 20 is a plot 

showing, for an on-axis object point, the magnitude of the angle of incidence squared 

with the plane of incidence unchanged. This is the expected form of polarization 

variation at spherical interfaces with on-axis objects. If the interface is linearly 

polarizing, the lines represent weak linear polarization; if the weak polarizer is 

birefringent, the lines represent retardance. Figure 21 is a plot of linear polarization 

defocus showing the form for both positive and negative values of AI02O" The 

positive form of linear polarization defocus occurs when tile as>ap• as occurs with 

reflection from metals. Thus this aberration describes the on-axis linear polarization 

behavior of spherical metal mirrors. Conversely. the negative form of linear 

polarization defocus occurs when ap>as. as occurs with refraction at an uncoated 

interface. 

A detailed discussion of linear polarization defocus. although not by this 

name. is contained in Kubota and Inoue (1959). 

Vector Tilt Terms 

The vector tilt terms are: 

Linear Po!arization Tilt. 

Linear Retardance Tilt. 

Diagonal Polarization Tilt. 

Diagonal Retardance Tilt, 

AllllHp (alcos if> - a2sin if» • 

4>llllHp j( alcos if> - a2sin if» • 

A2111Hp (a2cos if> + alsin if» • 

4>lll1Hp j( alcos if> + alsin if> ) 

Linear polarization tilt occurs for the same reason as scalar tilt. As the 

object moves off axis. the angle of incidence is reduced on one side of the aperture. 

and increased on the other side. So the angle of incidence dependent polarization 
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Figure 20 The Angle of Incidence Squared as a Function of Pupil Coordinate for an 
On-Axis Object 
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and retardance are reduced on one side and increased on the other. The vector tilt 

terms have orthogonal polarization at diametrically oPIX'site points in the pupil. 

Thus. the vector tilt aberrations add linear polarization or linear retardance to one 

side and subtract it from the other. 

Vector Quadratic Piston Terms 

The vector quadratic piston terms are: 

Linear Polarization Quadratic Piston. AI200IP 111 • 

Linear Retardance Quadratic Piston. 4> l2ooJ-l2jcrl • 

Diagonal Polarization Quadratic Piston. A2200fP 112 • 

Diagonal Retardance Quadratic Piston. 4>2200tPjcr2 

The vector quadratic piston aberrations describe the average linear 

polarization and linear retardance across the pupil which occurs as the object moves 

off axis. This term does not average out when integrating over the pupil; it 

represents an overall polarization and retardance bias present for off-axis objects. 



CHAPTER 7 

CALCULATION OF ABERRATION COEFFICIENTS 

Introduction 

A method is presented for calculating the second order polarization aberration 

coefficients of a radially symmetric optical system given the C vector power series 

for each interface. This method is limited to systems of homogeneous and isotropic 

interfaces such as lenses. mirrors and fine thin film coatings. The polarization 

associated with propagation through dichroic. birefringent or otherwise polarizing 

media is not treated here. 

Single Surface Aberrations for Amplitude Transmittance Relations 

For homogeneous and isotropic interfaces characterized by amr>!itude 

transmittance relations. such as lenses. mirrors and ideal thin film coatings. the 

polarization aberrations at a interface simplify considerahly. At these interfaces the 

Fresnel equations and related thin film equations are separable into sand p 

components. so the Jones matrices representing t~e interface in s-p coordinates are 

diagonal. The off-diagonal terms. diagonal polarization 0'2 and circular polarization 

0'3' are not present. Further. with isotropic media. the sand p ~-nplitude 

transmission coefficients at nonnal incidence must be equal. Thus the amplitude 

transmission functions for a coated or uncoated interface are expanded as: 
j(8o+~ si2+ ... ) 

as(i) - (1lo+lls.2i2+ ... ) e • • 
j(8o+(~2+8~i2+ ... ) 

• llo(l +(A2+~i2+ ... ; e 
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where: 

~z -

The normalized c vector coefficients are: 

and. 

The s-p coordinate Jones matrix expansion 10 second order is 

J(i) - [ ~i) .;i)] - T ( aJI+(A,+jA,ji' + a,(a,+ji,)i' ) 

The s-p coordinate C vector expansion to second order is 

Oi) - 1( 1. o. O. 0 ) + iZ1 ( doz. du• O. 0 ) 

The x-y coordinate C vector Taylor series for orientation of the plane of incidence e 

i~ 

C(i.9) .. 1( 1. o. O. 0 ) + i21 ( doz. d1zcos 29. d12sin 29. 0) . 

The normal-incidence polarization aberration terms (the constant piston terms) are 

zero: 

PUM)() - P2000 - P3OQO - 0 • 

There is no polarization or retardance on axis. only the amplitude and phase 

transmission factor 1. 
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All terms for the diagonal and circular polarization are zero: 

P2,u,v,w - P3,u,v,w - 0 . 

Thus, the single surface C vector in paraxial coordinates is obtained by 

substituting i(H,p,cp) and 6(H,p,cp) into Qi,9) yielding 

co(H,p,cp) - T + T d02[ lPi~ + 2H p cos cp icim + p2i~ ] , 

cl(H,p,cp) - T d12[ lPi~ + 2H p cos cp icim + p2cos 2cp ifu] , 

cs(H,p,cp) - 0 

Since there is no diagoll-al polarization, the only contributions to ~ arises from the 

rotation of linear polarization from the s-p coordinates into the x-y coordinates. 

Example - Spherical Metal Mirror 

As an example of the single surface polarization abcrra!ion expansion. the 

instrumental polarization function for ref1e~tioll fr<.Jm a spherical mirror will be 

calculated. Figure 22 shows the C{;ofiguration and notation. Light from object point 

P is incident on a spherical mirror and imaged at point P'. The distance Sal from P 

to the vertex of the mirror V is positive when P is located to the left of the mirror 

and negative when P is a virtual object. The radius of curvature R of the mirror is 

negative for a concave mirror and positive for a convex mirror. The ,entranr.e pupil 

is located at the mirror and has semidiameter r. The height of the object at the edge 

of the field of view is h. Let (OSo) and (X1Sl) be the x-y coordinates of a ray at the 

object and at the mirror. The paraxial normalized coordinates for this ray are: 

p - ,O<p<l, 

9 - arctan+ ;: 1 · 
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Object Center of 
Curvature 

Figure 22 Spherical Mirror 
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llllage 

R. Radius of curvature of mirror; h. Object height; r. Mirror semidiameter; Im, 
Marginal ray angle of incidence; ic• Chief ray angle of incidence. 
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Yo 
H - 11 . -I < H < I 

The chief and marginal ray angles of incidence are: 

. h d 
IC - -- • an • 

Sol 

As a numerical example. assume the mirror has an aluminum thin film 

overcoating with a complex index of refraction of 

n - 0.82 - j 5.99 

The C vector for reflection is 

Oi.6) - T [ I. O. O. 0 ] + i2 [ O. ducos 26. dusin 26. 0 ] 

Since d02 is zero. the average amplitude reflectance is a constant. T. to second order 

as a function of angle of incidence. Due to du • as and ap split symmetrically about 

T. The normal incidence amplitude reflectance T is 

T - doo -
n-I 
n+1 

The coefficient d 12 which characterizes the second order lint::ar polarization and 

linear retardance is 

For the aluminum example 

n-I 
du - - n(n+ 1) 

T - -0.907 + j 0.306 • and. d 12 .. 0.0705 + 0.142 j . 

The normal incidence intensity reflectance 10 is 

10 - 11* - 0.916 

The C vector for the mirror reflection. Cot. is 

Cot(H.p.r/» - T [ I. O. O. 0 ] + d12Wi~ [ O. 1. O. 0 ] - 2 duHpicim [ O. cos r/>. sin r/>. 0 ] 

+ d12p
2ifu[ O. cos 2r/>. sin 2r/>. 0 ] 
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Poooo[ 1. O. O. 0] + P1200W [ O. 1. O. 0 ] 

+ PIlIlHp [ O. cos t/J. sin t/J. 0 ] + P l cnoP2 
[ O. cos 2t/J. sin 2t/J. p ] 

In terms of the system dimensions. the polarization aberration coefficients are: 

Poooo - 1 • 

PUll -

Object at the Center oi Curvature 

Consider this mirror used for one-to-one imaging with the object at the center 

of curvature of the mirror and a magnification of minus one. Then 

SOl - R Pllll - 0 • and. FIOOo - 0 . 

For an on-axis object. H-o. the mirror displays no polarization or retardance. This 

occurs because all rays froll! the center of curvature intersect the mirror at normal 

incidence. The only polarization term acting is the normal incidence amplitude 

transmission T. There is a uniform amplitude loss and a uniform phase shift but no 

pupil dependent polarization. 

As the object pt)int moves off axis from the center of curvature iii the 

paraxial approximation. the angle of incidence and plane of incidence are still equal 

for all rays from a given object point. The mirror acts as a uniform weak polarizer 

and uniform weak retarder for a given object point. in terms of the field of view. 

which is the ehief ray angle of incidence ie• 

The linear tilt and linear defocus are zero. There is field dependent polarization 
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and retardance but no pupil dependent variation. 

For the aluminum coating example. 

P1200 - AI200 + j~l200 - (0.0705 + 0.142 j) ic - 0.159 e
j
l.08 ic

2 

Polarizat;on Aberrations for Cascaded Surfaces 

The second order polarization aberration coefficients for a series of isotropic. 

weakly polarizing radially symmetric interfaces is derived. 

Paraxial Approximation 

Since the polarization aberrations are being evaluated to second order in the 

angle of incidence. The difference between spheres. parabolas. conics or other 

radially symmetric aspherics does not occur at this order. The relevant shape 

parameter here is only the vertex radius of curvature. The angle and plane of 

incidence differences for these types of interfaces are the same at second order but 

differ at fourth order and higher. 

System Aberration Calculation 

For surfaces q-l to Q. each surface is characterized by three complex 

parameters from the normalized C vector expansion: doo - T q. dO.2.q' and. d 1.2.q' 

The single surface polarization aberration coefficients are: 

po.o.o.o.q - T q 

PO.2.0.0.q - 1 qdO.2.q i~ 

PO.l.l.l.q - 2TqdO.2.q icim 

PO.O.2.0.q - 1 qdO.2.q i:n 

p 1.2.0.0.q - 1 qd 1.2.q i~ 

Pl.l.I.!.q - 21qd l.2.q icim 

PI,0.2.0.q - Tqd i.2.q i:n 
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The polarization aberration coefficients for the system are calculated by chain 

multiplying the single surface polarization aberration expressions and retaining terms 

to second order in H and p where the order of a term is the sum of the powers of H 

and P. 

The zero and second order Jones matrices for the q'th interface are: 

J~)(H.p.¢) - PO,O.O,O.q ero - do.o.q ero - Tq ero • 

J~)(H.P.¢) - erg [ lPPO.2.0.0.q + 2Hp cos ¢ PO.l.l.l.q + p2PO.O.2.0.q ] 

+ !rj [ lPP1.2.0.0.q + :!Hp cos ¢ Pl.l.l.i.q + p2cos 2q, PI.O.2.0.q ] 

+ er2 [ 2Hp sin ¢ Pl.l.l.Lq + p2sin 2qJ Pl.O.2.0.q ] 

- er. T qd02 [ lPi~ + 2Hp cos ¢ icim + p2i~ ] 

+ er 1 T qd 12[ lPi~ + 2Hp cos ¢ icim + p2cos 2¢ ifu] 

+ er2 T qd12[ 2Hp sin ¢ icim + p2sin 2¢ ifu] 

Multiplication of the single surface JO:les matrices yields 

1 

J(H.p.¢) - IT Jq(H.P.¢) -

q-Q.-l 

Since J~) is a constant function. independent of H. p and ¢. the (H.P.¢) dependence 

can be dropped. This expression contains 2Q terms including one zero order term 

and Q second order terms. 

The zero order Jones matrix is 

1 Q 
IT J~)(H.p.¢) - TT T q - T • 

q-Q.-I q-l 

the system amplitude transmittance. 

The second orcler JOlles matrix is greatly simplified since. for isotropic 

surfaces. all zeroth order Jones matrices are a constant times the identity matrix ero. 
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The second order Jones matrix, which only includes products with a single second 

order term, is 

;<2)(H,p,<!» - T f J~)(H.p,<!» 
q-l 

At second order the weakly polarizing isotropic interfaces do not display order 

dependence. The product of any two second order terms is fourth order. The order 

depend.::nce enters at fourth and higher order. Second order is a simple sum of 

polarizadon contributions. Collecting the piston, tilt and defocus terms from the 

second order Jones matrix yields the coefficients for the system polarization 

aberration expansion to second order: 

PO,O.O.O - T , 

PO.2.0.0 - T f do,2.q i~ , 
q-l 

PO,I.I.I - 2T f dO,2,q icim ' 
q-l 

PO,O.2.0 - T f dO,2,q i:n ' 
q-I 

PI,2.0,O - T f dl,2,q i~ • 

q-I 

PI,I,I,I - 2T f dl,2.q icim ' 
q-J 

PI,O,2,2 - T f dl,2,q i:n . 
q-I 



143 

The other three zero order coefficients and the: other six se.::ond order coefficients 

(diagonal and circular) are all zero: 

PI.O.O.O - P2.0.0.0 - P3.0.0,O - 0 • 

P2.2.0.0 - P2.1.1.1 - P2.0.2.0 - 0 • 

P3.2.0.0 - P3.1.1.1 - P3.0.2.0 - 0 

The amplitude and polarization coefficients are the real parts of the P 

coefficients 

Ak.u.v.w - Re(Pk.u.v.w) . 

The phase and retardation coefficients are the imaginary parts 

~k.u.v.w - Im(Pk.u.v.w) . 

The analysis is simplified when the calculation is performed between the 

entrance pupil and exit pupil. The entrance pupil e is the spherical surface in 

object space centered on the object and conjugate with the system stop. Likewise. 

the exit pupil e' lies in "image space" and is the spherical surface centered on the 

image which is conjugate to the system stop. Each object and image point have their 

own entrance and exit pupil. Since e and e' are conjugate (object and image to each 

other), the optical path length between e and e' for all rays is constant to at least 

second order in the pupil coordinates so it can be assumed constant for this paraxial 

analysis. Performing the analysis between conjugate surfaces allows the quadratic 

wavefront aberration terms between surfaces to be discarded since they must all add 

to zero between the entrance and exit pupil. 



CHAPTER 8 

ALTERNATE POLARIZATION ABERRATION EXPANSIONS 

Introduction 

The purpose of a polarization aberration expansion is to characterize 

variations of the instrumental polarization as a function of ray coordinates and 

wavelength. Since the instrumental polarization fu~ction J(h.if.).) is very difficult to 

obtain in closed form. useful and accurate approximations are sought. Any function 

J'(h.p.X) whk:h accurately approximates J(h.if.X) over a range of h. if. and ). is a 

potentially useful polarization aberration fUDction. The utility depends on the 

connections which can be made between the optical system prescription and the 

coefficients (or free parameters) in J'(h.if,X). The expansion introduced in Chapter 6 

is the "C vector expansion." It expresses J'd~.if.X) as a quadratic function of hand 

if. It is us:eful because these terms are easily related to the Taylor series 

representation of polarizing interfaces. 

There are Inany other valid forms for second order polynomial aberration 

expansion of the instrulnlenta! polarization function. In this chapter. two closely 

related forms of the polarizatiun aoorration expansion are introduced. The first 

equation. "the exponential phase polarization expansion." places the phase and 

retardance compor:.ents in exponential form but leaves the amplitude and retardance 

in polynomial form. The second equation. "the exponential polarization aberration 

expansion" places all components. both amplitude and phase. in exponential form. 

Both expansions reduce to the C vector eApansion in the weak polarizer limit ~nd the 
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paraxial Hmit. These alternative forms offer advantages in handling strong 

polarizers and strong retarders. They have the disadvantage of additional 

mathematical complexity. These alternate expansions are only introduced here; a 

detailed analysis should appear in a later paper. 

The C Vector Aberration Expansion 

The C vector form of the polarization aberration expansion introduced in Chapter 6 

expresses the Jones vector for a rotationally symmetric optical system as 

3 

J(H.P.q;j - L ck(H.P.¢) Uk 

k"() 

The C vector coefficients ck in this expansion are runcti~ns of the spatial variables 

in the object and pupil. The second order C vector coefficients are: 

Aoooo + A0200W + AolllHp cos ¢ + Acmo ,r 

+ j( CPoooo + 4>02OOW + CPolllHp cos ¢ + 4>00-..0 ,r) . 

~(H.p.¢) 

A5000 + AswoW + ASlllHp cos ¢ + AS020 ,r 

+ j( CP5000 + 4>S200W + CPSlllHp cos ¢ + CPS020 p2 ) 

The A's and CP's are functions of the optical system configuration and the 

polarization properties of the optical elements. 

This expansion breaks down for strong retardel's and large phases. The exact 

equation for an element with retardation .5 (k-l.2.3) or phase .5 (k"() is (see Appendix 
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C) 

Expanding J 

aand keeping terms to first order yields 

J :!! (1'0 + jook • (6 « 1 radian.) 

This is the order of accuracy of the C vector aberration expansion. This expression 

is accurate only for small values of 6. either small phases or small retardances. This 

limitation is most acute in the phase. k-<>. which frequently needs to vary over many 

radians to describe an optical system. The two next higher order terms in the 6<1 

radian expression. describe: (second order) corrections to (1'0 to normaiize ior the iirst 

order (1'k term. and (third order) nonlinearities in (1'k as a function of 6. 

This limitation of the C vector aberration expansion to small phases can be 

sidestepped by factoring the phase out and handling it separately as a mUltiplicative 

factor. This works well since phase commutes with all the Pauli spin matrices. The 

next section applies this factoring approach to the phase and retardance. 

The Exponential Phase Polariza~ion Aberration Expansion 

When phase and retardance coefficients are placed in an exponent. the 

polarization aberration expansion will accurately add and subtract large values of 

phase or retardance. An example of this is the following equation. the 

unsymmetrized exponential phase polarization aberration expansion. 

r 



j(900' 0+9.0' • +920' 2+9sO'S> 
- (PoO'O+P.0'1+P20'2+PSO'S> c 
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For a second order polynomial expansion of the spatial variables. the aberration 

coefficients are of the same form as for the C vector polarization abberation 

expansion: 

Po(H.p.¢) - Aoooo + AowoW + AolllHp cos ¢ + Aoow p2 • 

9o(H.p.¢) 4'0000 + 4'~ + 4'olllHp cos ¢ + 4'0020,r • 

Pl(H.P.¢) Al000+Am!oW+Hp(Auucos ~A2111Sin ¢)+p2(A10ncos 2q,-A2022sin 2¢) 

91(H.p.¢) 4'1000+4'1200W+HP(4'ullCOS cf>-eII2111sin ¢)+p2(eII1022COS 2q,-eII2022sin 2¢) • 

P2(H.P.¢) A2000+A2200W+Hp(A2111COS ¢+Allllsin ¢)+p2(A2022COS 2¢+A1022sin 2¢) 

92(H.p.¢) e112000+eII22QOW+Hp(ellm .cor ¢+eIIllusin ¢)+p2(eII:urnCOS 2¢+eII.022sin 2¢) • 

Ps(H.P.¢) A3000 + AS200W + AslllHp cos ¢ + AS020 ,r • 

9s(H.p.¢) 4'3000 + eIIS200W + eIISlllHp cos ¢ + 4'S020,r • 

In the weak polarizar limit. these A's allu ell's have the same values as the A's and 

4"s in the C vector polarization aberration expansion. 

One aesthetic aspect of the exponential form for the retarders is its order 

independent representation for the retardance terms. In expanding the exponential 

(900'0+9.0' 1+920' 2+93U 3) 
e - 0'0 + (900'o+9.0'.+920'z+9sO's) 

all order dependent terms in the expansion cancel. lnhere are no nonzero 

contributions from products of the noncommuting terms. 0' •• 0'2 or us. For every 

interact in this exponential; they act only on themselves and on 0'0' which commutes 

with everything. The coefficients. 90, 9 •• 92, and 9s represent pure contributions of 

phase or the thr~e forms of :;etardance; no mixing present in this representation. 
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If the exponential terms are to equal the phase and retardance directly. (not 

be functions of the p ... ..ase and retardance.) they must be factored into the present 

form. such that all the amplitudes as a group multiply a single exponential which 

contains all the phase and retardance. An example of a function where the 9's do 

not directly equal the phases and retardances is 

920'2 9sO's 
+ P2e + pse 

Since there is a product oceuring between the amplitude terms and 

exponential phase terms in the exponential phase polarization aberration expansion. 

ther~ are order dependent terms present. The product of the Pifli and 920'2 terms 

yield 

The first three terms contain the appropriate normalization. linear polarization and 

diagonal retardance contributions. The last term. a circular polarization term (of 

higher order assuming PI and 92 small.) is a result of the multiplication of 0'10'2' and 

does not relate to the phenomena described by PI and 92, This is an order dependent 

term that results from multiplying Pauli spin matrices. 

The order dependent terms are eliminated by symmetrizing the product. The 

next equation. the symmetrized exponential phase polarization aberration expansion. 

removes the order dependent terms by multiplying amplitudes and phases in both 

permutations. 

(9cPo+9 10' 1?920' 2+9sO' s> 
J(H.p.¢) - 1/2[ (PcPO+PIO'I+P2rT2+PSO'S> e 

(9cP 0+910' 1+92rT 2+9sO' s> 
+ e (PcPO+PIO'I+P20'2+PSrTS> ] . 

No coupling oceUI'S between noncommuting basis states. Each ~fficient describes 
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only the amplitude or phase characteristics of a single basis state. For example. PI 

and 92 do not generate a as component. The expansion is clean. 

The E Vector 

Placing the phases and retardance in the exponential proved to be useful. An 

algebra will be explored which places all terms in the exponent. Define the "E 
.. .. 

vector" E corresponding to the C vector C as .. 
.. eoUO+elal+~a2+e3a, E 
C - cOaO+clal+~a2+cSaS - e - e 

The E vector is the "logarithm" of the C vector and the C vector is the "exponential" 

of the E vector. 

Order Independence 

Expanding the E vector. the following terms are obtained. 

All order dependent terms cancel as was found with the exponential phase 

expansion. For every order dependent term 

there is a second term 

which cancels it. 

Relation to the C Vector 

For small E vectors such that 

eo. el • ~. es «I • 

then. 

r 
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ISO 

This follows from the first order Taylor series expansion for the E vector given 

above. This relationship is the matrix equivalent to the relation 

In(1+2) 5!! 2 . 

The exact relationship between the C and E vectors is dedved as follows. 

Consider the matrix 

Find the similarity transform S which diagonalizes e and places its eigenvalues Al 

and Az on the diagonal. 

where 

So 

Expanding the e vector 

o 1 - S-I e S • 
A~ 
- J 

-I 
e - SA S 

-I 
e SAS 

e - e 

-I 
- 0'0 + S A S 

[S A s-Ir 
+ 21 + ... 

00 [ -I)n 
-L SAS 

01 
n-o 

- S [f An ] -I - S 
nl 

0-0 



A -1 
- S e S 

0 l -1 X2 S . 
e 
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Through this final expression. the e vector can be equated to conventional matrix 

expressions or C vectors. 

Likewise let fh and 112 be the eigenvalues of the matrix c. 

aind the similarity transform T which diagonalizes c. 

-I 
• Tc T 

The E vector corresponding to the C vector is given by the transformation 

c -

So 

Nondiagonalizability 

Two by two matrices which have two equal eigenvalues cannot be 

diagonalized by a similarity transform and are said to be nilpotent. Thus C vectors 

and E vectors for which 
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cf + ~ + c; - 0 ,or, ef + ~ + e; - 0 

are not diagonalizable and cannot be converted between the C vector and E vector 

forms by the similarity transform method of the last section. 

Multiplication of E vectors 

The following identity regarding the multiplication of E matrices has been derived 

where [a,b] is the commutaior 

[a.b] '"' ab - ba 

The first two terms 

.. .. 
ar~ the order independent product of EJ and~. The next term 

is the first order dependent correction followed by order dependent corrections at .. .. 
still higher order. This expression converges rapidly fCJr small EJ and ~ . 

Divergence 

Just as In(x) diverges for J{-.Q. the E vector diverges as J-.o. This is not a 

problem for transparent systems but presents mathematical complications for 

expansions about J:!!O. 

The Exponential Polar;zation Aberration Expansion 

The "exponential polarizatio[J aberration expansion" describes the instrumental 

polarization function in E vector format. This expansion takes the form 



eoao+e1a 1+~a2+e~aS 
... e 
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The exponential polarization aberration expansion is order independent 

without requiring symmetrization between the amplitude and phase terms. as the 

exponential phase polarization aberration expansion required. It is convienient to 

keep the real (amplitude) and imaginary (phase) parts together in the exponent. This 

equation does have two disadvantages. divergence and nondiagonalizability of 

nilpotent matrices. It also has complications at higher order regarding the placement 

of amplitude and phase in the exponential. 
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CHAPTER 9 

FINAL COMMENTS 

Summary 

This dissertation contains a method for treating the polarization effects of 

coatings or other weak polarizers in a manner analogous to the methods of aberration 

theory. This method calculates the instrumental polarization function J(H.P.(/» for 

radially symmetric optical systems with homogeneous and isotropic coatings on the 

interfaces. It is shown that the Taylor series expansion of the amplitude 

transmission functions of coatings is directly related to the amount of the second 

order polarization aberration of the system. 

The limitations of th~ present methods are that it is li3J.ited to weak 

polarizers. that it only handle::: radially symmetric optical systems. and that the theory 

only handles coating effects to second order. Further. instrumental polarization 

arises from both interfaces and from propagation. but only interface effects are 

treated in this work. This treatment is also strictly monochromatic. The 

instrumental polarization arising from coatings is strongly wavelength dependent so a 

polychromatic formulation is desirable extension. 

The highly transparent radially symmetric systems treated here are "best 

case" systems with small amounts of instrumental polarization. In these systems the 

instrumental polarization is small because the rays are near normal incidence and 

because the most common thin films. antireflection coatings or reflection enhancing 

coatings. ar~ fairly low polarization coatings near their design wavelength. 
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Examples of systems not treated here are those containing gratings. holograms. 

electro--optic crystals. fold mirrors and other elements with large ~g1es of incidence. 

These are optical elements which are difficult to incorporate into geometrical 

aberration theory. because they are off-axis or because the pvlarization elements 

require higher order terms for useful characterization. 

The method of polarization aberrations suggests a proceedure for selecting 

coatings to control and reduce the residual polarization of the optical system. First. 

coatings with small instrumental polarization should be selected; in particular d 12 

should be small. Then. carefully chosen coatings with opposite signs of d 12 placed 

on different surfaces can compensate for coating induced insirumentai poiarization 

among the interfaces. 

Strong Polarizers 

Strong polarizers are polarizers and retarders which substantially change the 

polarization state of light. Examples of strong polarizers are: 1) the "standard" linear 

polarizer with principal transmittances kl~1 and k2~O. and. 2) retarders with 

retardances greater than one radian. such as quarter wave and half wave retarders. 

The present polarization aberration theory is readily extensible to systems containing 

strong polarizers at normal incidence to the optical axis given a suitable Taylor series 

expansion of the Jones matrix of the strong polarizer or retarJer. For transparent 

systems. the Jones matrix down the axis is a com:tant times an identity matrix. and 

the aberration expansion is performed about that matrix. For strongly polarizing 

systems. the Jones matrix can be expanded about the Jones matrix down the axis for 

the system in the sarue fashion. only tile expansion is no longer about the identity 

matrix. For a polariscope with crossed polarizers. the expansion is about the zero 

matrix. 
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Strong poiarizers have large order dependent terms iiIid care must be taken to 

use only meaningful approximations. 

One potentially important application of polarization aberration theory is to 

the propagatio!! cf spherical waves through electro-optic media and modulators. 

Many modulators. such as the Kerr cell and Pockels cell. depend on polarization for 

their operation. These devices are usually operated with light beams which are 

nearly collimated. For a finite object size. there must be collimated beams over a 

spread of angles of incidence through the device. These beams experience a range 

of polarization response from the modulator and the polari7.ation state varies across 

the image. Beyond a critical angle of incidence. the modulator may no longer satisfy 

the polarization requirements for the application. 

Further. it is not always practical to use devices only in collimated light. 

This may require additional optical elements or extra space. With an expensiv;:! 

crystal in a production optical system. it would be desirable to squeeze as much light 

through a small crystal by focusing through it. A polarization aberration treatment 

of modulator performance would aid in design decisions assessing the effect i'<iving 

large ranges of angle of incidence and focusing through devices. 

Order Dependence 

The single most difficult and time consuming aspect of this work has been 

handling the order dependence of polariz",rs. Multiplying matrices is straightforward 

but understanding the associated noncommutative algebra is not. The order 

dependence becomes a sizeable complication in continuing the aberration expansion 

to higher order. 
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Names oUr Polarization Aberrations 

The present naming convention for the polarization aberration terms is not 

entirely satisfactol'Y. These names are used here to emphasize the connection 

between the polarization aberrations and the geometrical aberrations. This naming 

convention confuses matters because the "defocus terms" other than wavefront 

defocus (such as linear polarization defocus) do not relate to defocus~ no quadratic 

variation of phase is involved. All the defocus and the linear polarization defocus 

terms share is a p2 aperture dependence. 

If this form of polarization aberration analysis becomes widespread. improved 

nomenclature is required. I would like to suggest the following names: 

Quadpol Linear Polarization Defocus p'l(rrlcos 2¢ + rrlsin 2¢) 

Linpol Linear Polarization Tllt Hp(rr1cos ¢ + rr~in ¢) 

Conpol Linear Polarization Constant Piston Wrr1 

Quarticpol Linear Polarization Spherical Aberration p4(u1COS 2¢ + lJ'~sin 2¢) 

Quadtard Linear Retardance Defocus jpl(rr ICOS 2~ + rrlsin 2¢) 

Lintard Linear Retardance Tilt jHp(rr ICOS ¢ + rrlsin r/J) 

Contard Linear Retardance Constant PistrlD jWrrl 

Quartictard Linear Retardaiice Spherical Aberration jp4(rrlcos 2tfJ + rrlsin 2r,fl) 

Polarization Ray Tracing 

Polarization ray tracing is an alternative method to polarization aberration 

theory for calculating the instrumental polarization function J(h.p.).). Polarization 

ray tracing supplements the equations of ray tracing with polarization calculations. 

Polarization ray tracing is the direct attack on the calculation. no expansions. no 

approximations. Just select a ray path through the opticai system. calculate the 
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polarization matrix associates with each interface and each ray segment. and multiply 

the matrices together. 

Consider a ray with object coordinate ho and pupil coordinate Po. Let Q be 

the number of optical interfaces in the system, iq be the angles of incidence of t~e 

ray, and 6q be the orientatiom. of the plane of incidence fer the ray; iq and 6q are 

obtained from a conventional ray trace. The Jones matrix a5S")Ciated with the ray at 

interface q is J q(iq.6q). The Jones matrix for propagation from interface q to q+ I is 

Jq+l,q. The Jones matrix for the ray from object space (q.l) to image space (q=Q) 

is 

I 

Tf 11 11 

I "q "q.q-l 
q-Q.-I 

This polarization ray trace proceedure samples the value of the instrumental 

polarization function. J (ho,Po.Xc,] at one point. (ho'Po,Xc,]. This proceedure is 

.... 
repeated for as many h's. p's and X's as are needed. By this method. ray tracing 

calculations and instrumental polarization calculations can be performed 

simultaneously if routines are included in the optical design program to calculate the 

interface polarization matrices J ,and the propagation polarization matrices J I. 
q ~~ 

Comparison of Polarization Aberrations and Polari7.ation Ray Tracing 

This research started as an effort to write a polarization ray tracing program 

to evaluate the effects of thin film coatings on the propagation of polarized light. It 

soon became apparent what an ambitious undertaking it was to merge thin film and 

ray tracing calculations. and particularly how little understanding there was of the 

form of the spatial variations of polarization induced by interfaces. Rather than 

continue to program software which calculated something! didn't understand (the 
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spatial variation of instrumental polarization) I changed techniques. I developed the 

polarization aberration method to understand the basic forms of the spatial variation 

of instrumental polarization. 

The polarization ray tracing program was excellent at producing numbers. 

large files full of them. Grids of rays were traced through optical systems and 

Mueller polarization matrices were calculated along each ray. (Meuller matrices 

werE: being used because we wanted to be sure that we could handle incoherent as 

weB as coherent light. We (the contract sponsors, my research associates and 

myself) didn't realize at the time that the since none of our interface models 

displayed depolarization, that the much simpler Jones calculus was sufficient to 

handle the propagation of incoherent as well as coherent light through non-scattering 

polarizers. Thus, life and progrllmming were more difficult than necessary due to 

the use of the Mueller calculus. For a grid of N x N rays, 16 N2 numbers were 

necessary to charxterize the instrumental polarization function for one object and 

wavelength, and 16 F L N2 numbP.rs to characterize F objects and L wavelengths. 

The polarization ray tracing method required large amounts of additionai 

programming to make any sense of all these numbers, l'artk1l1arly since I wasn't 

sure at the time what to expect. 

The polarization aberrations occured as a means of understanding the 

unde.lying optics behind the spatial variation of instrumental polarization and its 

connection to the angle of ;ncidence function and the angle of incidence dependence 

of coatings. Although the polarization aberratio!l!: involve a large number of 

coefficients. it is orders of magnitude less numbers that are involved in a 

polarizatioll ray tracing evaluation. The polarization aberrations yield direct 

understanding of the interaction of the coating with spherical waves at an interface. 
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Polarization ray tracing provides a more accurate calculation, and with 

sufficient programming, could give just as complete a picture of the iru;~rumental 

polarization. Furthermore, a polarization ray tracing program can handle arbitrary 

systems for which it would be difficult to obtain reliable expansions, such as 

diffraction gratings on potato chip surfaces or aspheric lenses formed from 

birefringent crystals. 

I would summarize this comparison by paraphrasing a statement that has 

often been made about classical aberration theory and ray tracing. Polarization 

aberrations are more suited for those who need to understand instrumental 

polarization and to develop creative stratages to reduce their effect. Polarization ray 

tracing is more suited for accurate? analysis and for brute force attacks on 

instrumental polarization. Both methods have their place, but polarization ra.y tracing 

will probably overshadow polarization 2.berrations after enough insight has been 

gl.€f.lned from polarization aberrations about the naturp. of the real problem and after 

the big polarization ray tracing software programs have been written and mastered. 

Perhaps it will soon be possible, even easy, to readily assess the effect of a 

set of thin film coatings on the propagation of polarized light through optical 

systems. 



APPENDIX A 

NOTATION 

The following notation conventions are adhered to throughout this work. 

Symbols which occur briefly are not included. 

-a 

B 

c 

c 

d 

e 

G 

A 

H 

Amplitude polarization aberration coefficient. 

Complex amplitude transmittance. p component. 

Complex amplitude transmittance. s component. 

Modulus of the amplitude transmittance. p component. 

Modulus of the amplitude transmittance. s component. 

Average amplitude transmission modulus. 

Subscripted. basis Jones matrix. 

C vector. 

Subscripted. C vector elements. 

Curvature of interface. 

Normalized C vector elements in s and p coordinates. 

Thickness of a single layer thin film. 

Electric field. 

E vector. 

Subscripted. E vector element. 

Normalized x object height. 

Jones vector for horizontal linearly polarized light. 

Normalized y object height. 
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Object vector. 

Subscripted. intensity transmission coefficient. 

Angle of incidence. 

i' Angle of refraction. 

J Jones matrix. 

1 Jones vector. 

Instrumental polarization function. 

Jones matrix for q'th interface. 

j The imaginary number. v-I. 
j Double subscript. Jones matrix element. 

K Beam crossection ratio for refraction. 

Basis coupling matrix. 

k Absorption coefficient. imaginary part of refractive index. n-jk. 
A 

k Normalized wavevector of light. 

L Optical path length from object to image. 

Jones vector for left circularly polarized light. 

L Jones matrix associated with a ray segment between surfaces. 

C vector for a linear polarizer. 

Left circular polarized transmission coefficient. 

Length of ray path segment. 

M Mueller matrix, 

" m Unit vector in the plane of incidence perpendicular to ii, 

N Relative refractive index. :,. 

n Refractive index. 



n 

n' 

"" n 

O{f(i).n) 

"" p 

Q 

Q 

q 

"" R 

R 

R 

R 

R 

r 

r 

s 

s 

s 

s 

s 

"" s 

T 

t 
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Slope of surf ace normal. 

Refractive index following surface. 

Unit normal to surface. 

Terms of order in and higher. 

Function. returns terms of f(i) of order less than or eaual to n. 

Complex polarization aberration coefficient. 

Unit vector in p plane. 

Exponent. H·H power dependence. 

Subscript. Total number of interfaces 

Subscript. interface numbering index. 

Jones vector for right circularly polarized light. 

Subscripted. power reflection coefficient. 

Exponent. p·p power dependence. 

Rotation matrix for polarization matricies. 

Rotation matrix for C vectors. 

C vector for a retarder, 

Right circular polarized transmission coefficient. 

Subscripted. interface amplitude reflection coefficient. 

Exponent. H · p power dependence. 

Similarity transform matrix. 

Subscript. component perpendicular to the plane of incidence. 

Subscript. exponent. cos ¢J power dependence of an aberration term, 

Slope of lines in y y-bar diagram. 

Unit vector in the s direction. tangential to surf ace. 

Subscripted. power transmission coefficient. 

Subscripted. interface amplitude transmission coefficient. 



u 

u 

v 

........ 
W(h.p) 

W 

Wu.v.w 

w 

'" x 

x 

x 

'" y 

y 

y 

{3 

{3 

r 

'Y 

Time 

Paraxial ray angle. 

Exponent. subscript. H dependence of an aberration term, 

Jones vector for vertical linearly polarized light. 

Exponent. subscript. p dependence of an aben>ation term. 

Wavefront aberration function. 

Phase shift measured in waves. 

Wavefront aberration coefficieni. 

Exponent. subscript. q, dependence of an aberration term. 

x unit vector. 

Cartesian pupil coordinate, normalized. 

Subscripted. paraxial ray x height. 

y unit vector. 

Cartesian pupil coordinate. normalized. 

Subscripted. paraxial ray y height. 

Direction cosine. 

Direction cosine. 

Film phase thickness. 

Lagrange invariant. 

Taylor series order. 

Mean phase change. 

Phase. 

6s - 6p• birefringence. 

Circular bir~fringence. 
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1 
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Linear birefringence. 

S component phase change across interface. 

P component phase change across interface. 

Average phase delay. 

A phase. 

Time dependent phase. 

Orientation of plane of incidence. measured in radians. 
CCiunterclockwise from y-axis. 

Arctan of ratio of polarization ellipse axes. 

Subscripted. exponential phase coefficient. 

Eigenvalue matrix. diagonal. 

Wavelength. 

Subscripted. eigenvalues. 

Radial pupil coordinate. normalized. 

Pupil vector to ray coordinate in pupil. 

Amplitude part of a complex number. 

Identity matrix. 2 x 2. 

Pauli spin matrices. 

Net optical amplitude transmittance along the axis through the system. 

Amplitude transmittance at normal incidence. 
7 - as(O) - ap(O) - co. 

Linear dichroism. 

Amplitude transmittance for a ray path segment. 

Phase polarization aberration coefficient. 

Angular pupil coordinate. measured iii radians. counterciockwise from 
y-axis. 
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Phase part of a CClmplex number. 

Angular orientation of major axis of polarization ellipse. 

Mean optical frequency. 
"-

I Jones vector for +45 degree linearly polarized light. 

\ Jones vector for -45 degree linearly polarized light. 



r 

c 

e 

k 

m 

p 

q 

s 

u 

v 

w 

x 

Y 

'Y 

Chief Ray. 

StoP. 

Sut>~ripts 

Polarization type: O. I. 2. 3. 

Marginal ray. 

P plane. plane of incidence. 

Surface index. 

S plane. perpencidular to the plane of incidence. 

H dependence. 

p dependence. 

t/J dependence. 

x compo&ent. 

y component. 

Taylor series order. 

Conventions 

Boldface Matricies 

Primes. '. refer to quantities after an interface. 

[ ] 

II x II 

Square brackets. vector or matrix. 

Vectors. 

Unit vectors. 

"'orm of x . 
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Al>PENDIX B 

A COMPARISON OF THE JONES AND MUELLER CALCULUS 

This appendix contains a comparison of the jones and Mueller calculus and 

discusS'es the role of depolarization in optical design. 

There are two principal computational methods for treating polarization 

problems. the Jones calculus and the Mueller calculus. Both calculi were developed 

in Cambridge. Massachusetts in the 1940's. This dissertation relies exclusively on 

the Jones calculus for developing the polarization aberrations because I have found 

the problem much easier to iormulate with the Jones calculus. However. the Jones 

calculus will not readily treat problems involving the depolarization of light while 

the Mueller calculus will. so I have included this comparison of the calculi. Using 

the equations contained herein. all Jones matrix results can be converted to the 

Mueller formalism. 

The Mueller Calculus 

In the Mueller calculus the state of polarization oi light is: described by the 

Stokes vector. a four element real vector. Stokes (1852). Shurcliff (1961). Polarizers 

are characterized by a fO'.1r by four element real matrix. the Mueller matrix. Mueller 

(1946, unpublished), Mueller (1948), Parke (1949). The Mueller calculus will not be 

described in detail here. Introductions to the Mueller calculus are found in Shurcliff 

(1961, 8.2). Theocaris and Gdoutos (1979, 4.3.4), Azzam and Bashara (1977,2.12), and 

G.~rr:\rd and Burch (1975, IV.3). 
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Depolarization 

Depolarization can be operationally defined as any optical system effects 

which cause some fraction of a completely polarized incident beam to become 

partially polarized. Examples of depolarizing effects are: scattering from very rough 

surfaces, reflecting from surfaces covered with scratches and dirt, transmission 

through a turbid (scattering) medium. and transmission through a medium with a 

rapidly varying polarization or retardance. The depolarizing tendency of most high 

quality polarizers is so small as to be n~gligible in most applications. Shurcliff (1961 

pg.33). 

The frequent use of the term "depolarization" to describe any change in the 

state of polarized light is incorrect, unless it specifically involves the coupling of 

ct)mpletely polarized light into unpolarized light. For example. the change in 

polarization of a linearly polarized coherent light beam on reflection from a metallic 

surface at non-normal incidence is not depolarization. The reflected beam is 

elliptically polarized and. in the absence of scattering. it remains completely 

polarized. The correct terms for such changes of polarization state are "polarization 

coupling" and "polarization rotation". 

Optical fibers typically display large amounts of depolarization and 

polarization coupling. particularly at bends in the fiber. 

What the Jones and Mueller Calculus Describe 

A quasimonochromatic optical field can be described by five quantities when 

the higher order statistical properties of the light are ignored. A 

quasimonochromatic beam propagating in one direction can be decomposed into a 

completely polarized component and an unpolarized component. The completely 

polarized component has four parameters. which can be expressed by the amplitude 
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and phase of the x and y components of the electric field. These parameters 

comprise its Jones vector. The unpolarized component has one parameter. its 

intensity. The unpolarized component has no long term phase relationship or 

coherence with the completely polarized component. The Jones calculus treats only 

the four parameters of the polarized component. It does not keep track of the 

unpolarized component of the fields. The Mueller calculus treats the unpolarized 

component and three of the polarized components, the amplitudes in x and y and the 

difference in phase between the x and y components. It does not calculate the 

fourth polarized parameter. the absolute value of the phase. Thus the Mueller 

calculus will not, by itself, handle multiple coherent beams such as in interferometry. 

Likewise. the Jones calculus cannot. by itself. handle scattering and depolarization 

effects in optical systems. 

Measuring the Jones and Mueller Parameters 

The Mueller matrix and Stokes vector for an optical element are measured 

using a radiometer and sets of polarizers and retarders. Gerrald and Burch. (197 5, 

pg.202) and Theocaris and Gdoutos (1979, section 5.6) give procedures for measuring 

the elements of a Stokes vector and Mueller matrix. Likewise, the Jones matrix and 

Jones vector are determined by a similar set of polarization measurements. Gerrald 

and Burch give a procedure to determine the Jones matrix and Jones vector with a 

sequence of intensity measurements. However. from intensity measurements. the 

Jones matrix and Jones vector are only determined to within a factor of exp(j¢) 

where ¢ is the unknown absolute value of the phase of all the elements. This 

measurement is sufficient except for instruments such as the white light Michelson 

interferometer or a phased array optical system -where the absolute phase, relative to 

a reference beam, is important. This absolute phase, ¢. is just the optical path length 
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through the system modulo the wavelength. which needs to be known to a small 

fraction of a wavelength to be useful. One technique which could measure this 

absolute phase is a Mach Zehndei interferometer with white light. The piece under 

test is placed in the test arm. The reference arm must then be precisely calibrated 

for iength so that ils optical path length is accurately known. 

Mathematical Complexity 

The Jones calculus is formulated in terms of the electric field amplitudes 

which cannot be measured directly. The Mueller calculus is a strictly empirical 

caicuius. depending ~nly on observab'e quantities. i.e. intensity measurements. Thus. 

it is accurate to say that the Jones calculus is an "amplitude calculus" and the 

Mueller calculus is an "intensity calculus". 

Mathematically. the Jones calculus is far simpler than the Mueller calculus. 

The Jones matrix has four complex elements. or eight degrees of freedom. Every 

Jones matrix corresponds to a unique and physic~lly realizable polarization device. 

Since the Jones calculus can analyze the absolute phase. it will distinguish between 

polarizers of differing thickness which are otherwise identical. The Jones calculus 

will not characterize depolarizers. 

The Mueller matrix with its sixteen real elements will describe depolarizers 

but will not distinguish between otherwise identical polarizers of differing optical 

path length. Furthermore. not every possible Mueller matrix corresponds to a 

physically realizable polarizer. Neither calculus is complete in describing pularizers 

and light at this level of statistical complexity of the optical fields. The Jones 

calculus is complete in describing the polarization properties of all possible non

depolarizing optical elements. 
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The Mueller calculus is an intensity calculus. Since the intensity IS the 

amplitude squared. most mathematical expressIons are far more complex expressed in 

the Mueller calculus than in the Jones calculus. In particular. trigonometric 

express!ons become quite cumbersome when squared. The Jones calculus is far 

easier to manipulate. and thus provides insight more readily. For example. the Jones 

and Mueller matrices for a half wave retarder with the fast axis oriented at an angle 

6 are: 

J - [ -cos 26 -sin 26 
] • and. -sin 26 cos 26 

M - [ 

I 0 0 0 ] . 0 cos 4e ;:;in 46 0 
0 sin 46 -cos 46 0 
0 0 0 -1 

Characterizing Depolarization 

The Jones matrix is applicable only to polarizers which do not scatter or 

depolarize light. Thus it represents the idealization of polarizer behavior. as opposed 

to describing the typically und~irable feature of depolarization. It is sometimes said 

that the Jones calculus is for coherent light problems while the Mueller calculus is 

for incoherent problems. This is not quite correct but close. The Jones calculus is 

quite capable of handling problems involving incoherent or partially coherent )ight. 

see Jones (1947). What the Jones calculus cannot handle is polarizers which scatter 

or depolarize the light. If the light incident on a polarizer is completely polarized 

and the light transmitted by that polarizer is completely polarized. then that polarizer 

can be completely described by a Jones matrix (or a Mueller matrix). If some of the 

transmitted light is depolarized. then the Jones matrix can only characterize that 

portion of the light which remains completely polarized. 
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For simple ideal interfaces. including reflection. refraction and homogeneous 

thin film coatings. no depolarization is predicted by theory. No depolarization term 

is contained in the Fresnel equations. for example. A small depolarization occurs at 

these interfaces in practice because of surface roughness and possibly scratches and 

dirt. This depolarization component is kept small through careful optical fabrication 

and maintenance practices. and is not yet predicted in detail by theory. Indeed. 

depolarization generally gets worse with time as surfaces accumulate dirt or are 

abused. Thus the depolarization of an optical system can be considered as more of 

an empirical phenomenon than one accessible to a theoretical treatment in the optical 

design process. The depolarization component should be minimized by careful 

fabrication practices. and it is unusual that an analytical form would be known. 

For a system where the presence of depolarization is important. the proper 

treatment would be to analyze the depolarization by measuring the Mueller matrices 

of the system and its component elements. It is not of great concern here that the 

Jones calculus does not treat depolarization. There is a second method. the Mueller 

calculus. which is principally empirical but also analytical. to handle this problem. 

The mathematical advantages of the Jones calculus. its mathematical simplicity in 

comparison with the Mueller calculus. and what is more important. its ability to 

handle the coherent addition of optical beams. far outweigh this particular 

shortcoming. Further. to formulate a theory of polarization aberrations in terms of 

the Mueller calculus involves unjustified and unnecessary mathematical complexity. 

Relationship Between the Jones Matrix and the Mueller Matrix 

The mapping from the Jones matrix space to the Mueller matrix space is one 

to one or functional. The mapping from the Mueller matrix space to the Jones 

matrix space is such that only a subset of the Mueller matrices have exact 
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correspondence with a Jones matrix. and for this subset the mapping is many to one 

or relational. 

These properties lead to a simple and direct set of equations to rewrite a 

Jones matrix as a completely equivalent Mueller matrix. As a practical matter. 

Mueller matrices can be converted to "nearest" Jones matrices if we first strip the 

depolarization component off the Mueller matrix. Then. these "reduced" or non

depolarizing Mueller matrices can be converted into Jones matrices whose absolute 

phase is undetermined. but are otherwise unique. 

Table 12 contains the equations to transform a Jones matrix into the 

equivalent Mueller matrix. This discussions of this transformation can be found in 

Gerrald and Burch (1975. equation F.5) or Theocaris and Gdoutos (1979. equation 

4.4). 

Summar~ 

In general, the Mueller calculus is to be preferred for experimental work and 

the Jones calculus for theoretical work. In experimental work the depolarization 

should be routineiy measured along with ail the other polarization parameters. 

In the optical design of most instruments. the depolarization can be ignored. 

nrt because it is unimportant. but because it is a separate issue from the wavefront 

aberrations and instrumental polarization. Depolarization. as a phenomenon. is much 

closer in spirit to stray light and scattering and is probably more deserving of an 

empirical approach. at least at this time. than a theoretical or optical design 

approach. This is not to say that depolarization effects should not be included in 

optical design along with the other instrumental polarization effects; I can make some 

suggestions for treating this problem. But depolarization is far afield from the 

mathematical treatment of instrumental polari:zation developed here. Through~ut this 
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TABLE 12 

TRANSFORMATION OF JONES MATRICES INTO MUELLER MATRICES 

This set of equations transform the elements of a Jones matrix into the 
elements of the equivalent Mueller matrix. 

2 Mll - JrlJu + J~IJlI + j~lJIl + J~Jzz 

2 M12 - J~IJll + J:IJlI - J~lJIl - J~Jzz 

2 MI3 - J~IJ12 + J~lJZZ + J~lJll + J~ll 

2 M14 - j(J~IJI2 + J;IJZZ - J~Jll - J~Jll) • 

• • ,. *J 2 Mzz J llJ II + JzzJzz - JlIJ21 - J 12 12 

~ M23 - J~2J II + J~IJ 12 - J~21 - J:IJZZ 

• • • • • 2 M41 .. J(J2IJ II + JZZJ 12 - J llJ:U - J 12J22) • 

2 M42 .. j(J:IJ l1 + J~2J22 - J~IJ21 - J~Jd • 
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dissertation. all polarizers considered are non-ciepolarizing. or what might be termed. 

"coherent polarizers". Included here are all dichroic polarizers. retarders. reflections .. 

refractions and thin film coatings for which scattering and depolarization cae be 

safely neglected. With coherent. completely polarized light. the light remains 

coherent and completely polarized throughout the optical system. These optical 

system polarization effects can be completely characterized with the Jones matrix. 

and all results can be converted to Mueller matrices as needed. 



r 

APPENDiX C 

THE MEANING OF THE ELEMENTS OF THE C VECTOR 

This appendix discusses the representation of specific classes polarizers with 

C vectors to elaborate on the meaning of the different elements of the C vector. 

Table 9 lists the association between the forms of polarization behavior and the 

~mplitude and phase of the elements of the C vector. 

Absorption 

In simple absorption. both the x and y components of the amplitude are 

absorbed equally: 

The Jones matrix is a constant times the identity matrix. 

This Jones matrix is expressed in exponential form as 
aluo 

J - e • 

where ex is the absorption coefficient per unit length and 1 is the path length. The C 

vector for absorption is 

:t:. cxluo 
l.,; - [Po.O.O.O] - e [1.0.0.0] 
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Propagation. Phase Delay 

For a simple propagation over length I. through fr~ space or a medium with 

refractive index n. the optical path length L is 

L - nI 

The phase delay produced during propagation measured relative to the incident 

phase of the beam is 

For propagation. the amplitude transmission relations ar~: 

·6 
ap .. as .. el . 

The Jones matrix is 

The C vector is 

·6 C - eJ [1.0.0.0] . 

Polarization 

Polarization is the property of materials which decompose the incident light 

into two orthogonal polarization states and reflect. transmit. diffract or scatter these 

components with a different transmission coefficient. A technical distinction is made 

here between polarization and retanlance. such that polarization is strictly the 

difference in transmission and retardance is the difference in phase. The word 

[JQlarizaticll is commonly used in less precise discussions to refer to both 

"polarization" and retardance effects. 

Dichroism is the material property of being polarizing on transmission due to 

differential polarization state· dependent absorption. Tourmaline. herapathite and 

178 
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common sheet polarizer are examples of dichroic materials at normal incidence. 

Refraction and reflection at nonnormal incidence display polarization due to· 

the polarization differences in partial reflection. Since these polarization effects do 

not arise from differential polarization dependent absorption, they are not dichroic 

polarizers. 

Polarization is classified as linear, circular or elliptical depending on the 

eigenpolarizations of the polarizer. 

Linear polarization is mathematically represented as follows. Let the x and y 

axes be parallel to the eigenpolarizations. Let the amplitude transmittances be 

where r I and r l are real. Then. the Jones matrix and C vectors are, 

J-[ri~]. 
C." [Po' PI' O. 0 ] 

The element Po - (r,+rJ/2 is the average amplitude transmittance; it is the square 

root of the transmittance of unpolarized light. The element PI - (r1-rJ/2 is the 

amount of linear polarization. 

If the dichroic polarizer is rotated by 45°, the Jones matrix and C vector 

become. 

and 

Again. Po • (r,+rJ/2 is the average transmittance without polarization. The amount 

of linear polarization is the same. P2 - (r l-r2)/2. but it has bet:n shifted to the C2 

r 
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element. The general form for the C vector of a linear partial polarizer with 

averagtl transmittance Po. and linear polarization X. oriented at an angle (J is 

c - [Po. X cos 26. X sin 26. 0] . 

Circular polarization is the property of certain materials which decompose the 

incident light into left and right circular polarized components and transmit them 

with different transmission coefficients. If the amplitude transmission for right 

circularly polarized light is. r. and for left circularly polarized light is. I. the Jones 

matrix and C vectors are. 

J-!.[~ 2 -J i ] + ! [ j -~ ] - ~ [ 

and. 

c - [Po. J. o. Ps] . 

r+l 
j(r-I) 

-j(r-l) 
r+l ] . 

Again. Po. the Co element. is the average amplitude transmission. and Ps - (r-I)/2. the 

c3 element. is the amount of circular polarization. Due to the rotational invariance of 

0'0 and Us. this matrix has the same form in rotated coordinates. This is because the 

decomposition of the incident light into circular polarized components in a polarizer 

is indepeadent of the orientation of the polarizer. 

Elliptical polarization is expressed as a combination of iinear and circular 

polarization. 

Retardance 

Retardance is the property of certain polarizing elements where the 

eigenpolarizations are transmitted with a relative phase shift. In birefringent 

materials. the two eigenpolarizatiollS have different refractive indices and thus 

different optical path lengths through the material. Thus the slower 

eigenpolarization exits the element with a phase delay or retardation with respect to 
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the faster component. The birefringence of an element is usually specified as this 

phase delay expressed in fractions of a wavelength. Thus a quarter wave retarder 

has optical path lengths for the two eigenpolarizations which differ by one quarter 

of a wavelength of light. Interfaces between nonbirefringent materials can also 

cause retardance at nonnormal incidence. Transmission through thin film coatings 

and reflection from metals are examples of such retardance or "induced 

birefringence" . 

Birefringent polarizing elements are usually called retarders. Retarders can 

be linear. circular or elliptical depending on the form of the eigenpolarizations. 

Quartz crystals will form all three types of retarder. A section of quartz cut parallel 

to the optic axis forms a linear retarder; a section cut perpendicular to the optic axis 

forms a circulaf retarder; oblique sections display elliptical retardance. Many 

liquids. such as turpentine or dextrose in water solution. as well as liquid crystals 

display circular birefringence. To correctly model and use a retarder. it is necessary 

to know which eigenpolarization leads and which is transmitted more slowly. For a 

linear retarder. the axis of the fast eigenpolarization is referred t..:; as the "fast axis". 

The amplitude transmittance relations for a linear retarder with fast and slow 

axes aligned with the x and y axes are: 
-j6x -j6v 

ax • e • and. ay • e . 

Minus signs are used because all optical materials delay the phase of the transmitted 

llght relative to a signal propagated in vacuum. The Jones matrix and C vectors for 

linear retardance parallel to the x and y axes are 

[ 

-j6x 
J. e 

o 

-j6o -joo, 
• e e 
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and. 
:;t. -j6o 
l,; - e [ cos 6. -j sin 6. O. 0] . 

Here th~ average phase is 

and the linear retardance is 

The C vector for linear retardance at 45° to the axes is 

:to -j6o 
l,; - e [ cos 6. O. -j sin 6. 0 ] 

A circularly birefringent optical element with phase delays. 6r and ~l' has the 

Jones matrix. 

Since the average phase delay is 

and the circular retardance Oc is 

the Jones matrix and C vector for a circular retarder are. 
-jo -jo -j~C0'3 

J • e ( cos ~c 0'0 + sin Oc 0'3) • e e 

and. 
-jo C - e [ cos 6c• O. O. -j sin 6c ] 

Elliptical retardance is expressed as a combination of linear and circular 

retardance. 

In summary. for all cases. the amplitude of the C vector element refers to 

amplitude effects: absorption. transmission or polarization. The phase of the C 

r 
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vector elements refer to phase and retardance. Describing a weak polaiizer with the 

four complex coefficients of the C vector often proves far easier than manipulating 

Jones matrices. 



APPENDIX D 

PARAXIAL SKEW RAYS 

Introduction 

This appendix contains results from paraxial optics useful for the 

development of the polarization aberrations. First there is an explanation of the 

notation for the coordinate system and for paraxial rays. This is followed by the 

derivation of expressions for the angle of incidence and orientation of the plane of 

incidence for paraxial skew rays. Finally. equations are given for the marginal and 

chief ray angles of incidence as functions of paraxial ray trace and y y-bar diagram 

parameters. 

Coordinate System 

The coordinate system adopted here is a normalized right handed coordinate 

system. The z axis is the optical axis of a rotationally symmetr!c optical system. 

Light initially travels with a positive z component of the wave vector. i.e. it travels 

in the direction of increasing z. The y-axis is depicted as pointing upwards. 

Looking down the z-axis. clockwise rotation brings a line from the x-axis to the y

axis. 

Figure 10 shows the notation. G and H are the normalized object coordinates. 

G along the x-axis and H along the y-axis. Normalization is performed such that 

around the edge of a circular field of view. 

~-l. 
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... 
The object vector. Ii is defined as .. 

H - (G.H) • 

The pupil coordinates are p and t/J in polar form or x and y in Cartesian 

form. p. x and yare also normalized such that at the edge of a circular pupil 

t/J is defined here as it is in much of geometric optics. and in defiance of most 

analytical geometry. as being zero on the y-axis and increasing counterclockwise. 

Then. 

x - p sin ¢ and y - p cos t/J • 

The pupil vector is defined as 

it - (x,y) . 

Objects are typically loc~ted on the y-axis such that 0-0. Then the orientation of 

the plane of incidence. 6. for the y-z meridional plane is always vertical. 6·0. 

Subscripts 

The following subscript notation s used for the various ray components. 

Subscripts c and m refer to quantities associated with the chief and marginal rays in 

the y-z plane. Subscript q refers to the quantity at the qth interface in the system. 

Where a set of expressions refers to a single surface. the surface subscript is 

omitted. Subscript e is the quantity evaluated at the system stop (mnemonic -

entrance pupil). For skE:W rays it is necessary to distinguish between quantities 

measured relative to the x-axis. subscript x. and y-axis. subscript y. 

Meridional Rays. y-z Plane 

The slope of a ray. u. is positive if a cour,terclockwise rotation brings the axis 

to the ray. The slope of the surface normal. n. is likewise positive if clockwise 



rotation brings the axis to the ray. Thus, for a paraxial spherical surface with 

curvature c, 

n - -yc . 

The definitions of u and n are consistent with the conventi{\!u!l definition of slope as 

m _ d~~). 

The angle of incidence, i, is defined as 

i - u-n. 

i is positive if a counterclockwise rotation brings the surface normal to the ray. 

The chief ray in the y-z meridional plane is the paraxiai ray from the object 

point, (G,H) - (0,1) through the center of the pupil, (P,¢) - (0,0). The height of the 

ray at the qth interface is denoted, Yc,q. Its angle of incidence measured from the 

normal is ic,q. The orientation of the plane of incidence measured clockwise frow. 

the y axis is always 9c•q - 0 • since the ray is in the y-z meridional plane. 

The marginal ray in the y-z meridional plane is the paraxial ray from the 

center of the object. (G.H) - (0.0), through the top ef the pupil. (P.¢) - 0,0) or {x.v) 

(0.1). 

Meridional rays in the x-z plane follow the same conventions with x 

substituted for y. 

Paraxial Skew Rays 

The paraxial ray trace follows from a linearization of Snell's Law. Because 

of the linearity of paraxial optics, any meridional paraxial ray can be expressed as 

the linear combination of two linearly independent paraxial rays in the same 

meridional plane. This linearity extends to paraxial skew rays but x and y 

components must be added separately. An arbitrary skew paraxial ray can be 
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expressed as the linear combination of any four linearly independent paraxial rays. 

Thp. chief and marginal paraxial rays in the x-z plane and the chief and marginal 

rays io. the y-z plane are used as the basis ray set. For a radially symmetric system, 

both the x-z and y-z chief and marginal ray parameters are determined from a 

paraxial ray trace calculation for a single plane because the x and y components of 

the ray intercept, ray slope and angle of incidence are equal: 

Xc,q - Yc,q , Xm,q - Ym,q' 

Uc,q - Uc,x,q - UcS,q , Um,q .. Um,x,q - Ums,q , 

ic,q - ic,x,q - ic,y,q , and im,q - im,x,q - ims ,q . 

The advant2lge of this choice of basis rays is that the ;:'Iroportions of the basis rays 

present in a skew ray are equal to the two object coordinates. G and H, for the x 

and y chief rays, and the two Cartesian stop coordinates, xe and Ye for the x and y 

marginal rays. Thus for the ray from object point (G,H) through stop location 

(xeSe). the ray intercept at the qth surface is, 

(XqSq) - (GYc,q+xeYm,q' HYc,q+YeYm,q ) . 

Likewise, the ray slope after the qth interface is. 

(ux,q'Uy•q) - (Guc,q+xeum•q • HUc,q+Yeum,q ) . 

Angle and Plane of Incidence for Radially Symmetric Systems 

The angle of incidence, iq, for a skew ray must be calculated using the 

Pythagorean theorem because iq has both x and y components: 

ix,q - Gic,x,q + xeim.x,q 

iy,q - Hic,y,q + Yeims.q 

iq - J i~,q + i~,q 

Gic,q + xeim,q , 

Hic•q + Yeim.q , 
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For systems radially symmetric about the optical axis. ths object can be 

restricted to the y-axis without loss of generality. Then G...o and the angle of 

incidence simplifies to. 

or in polar pupil coordinates. 

To express the polarization matrix for a ray at an interface. the orientation of the s 

and p planes with respect to the global system coordinates are required. The p 

plane is the plane of incidence. that plane which contains the ray and the surface 

normal at the intersection point. The orientation of the plane of incidence. e. 

measured counterclockwise from the y axis. is. 

ix 
tane - ~

ly 

If ix .. O. then the ray is directly aoove or below the· normal; the plane of inciden~e 

then intersects the x-y plane in a vertical line. The orientation of the plane of 

incidence is: 

sin e -

cos e -
iy H ic + P cos t/J im 

Iii 
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Figure II shows the paraxial angle and plane of incidence for three field 

angles. The magnitude of the angle of incidence is represented by the length of the 

lines. The orientation of the plane of incidence corresponds to the orientation of the 

lines. Note that off axis. the pattern is just a shifted version of the on axis pattern. 

Expressions for sin 26 and cos 26 will be required; these relations are: 

2 . e 1I -2p sin '" im (H ic + p cos '" im) 
sin 28 - SID cos 11 - '2 

1 

-2H p sin (3 icim - p2sin 2", 
j2 

tFi~ + 2H p cos '" icim + {fcas 2", ifu 
i2 

Paraxial Relations for the Angle of Incidence 

This section derives the paraxial relations for the meridional and chief ray 

angles of incidence from a paraxial ray trace or y y-bar diagram. 

CODside,' an optical system with Lagrange invariant r. 

r - n [y u - Y u ] - nyu - - n Ylul c m e e.c .m 

Herp., n is the refractive index. y and yare the paraxial marginal and chief ray 

heights and um and Uc are the paraxial marginal and chief ray angles. all in an 

arbitrary meridional plane. The two final equalities are the Lagrange invariant 

eva!uated at a pupil (with pupil semidiameter Ye) or at an image 

[With image semidiameter Y I]. Semidiameter is used since the term radius is 

ambiguous. referring both to the half the diameter of the beam of light and to the 
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radius of curvature. The word radius will be reserved for radius of curvature. 

Consider light reflecting (or refracting) at an interface. Figure 23 shows the 

general case in the y y-bar diagram format. Let the previous interface have 

marginal and chief ray heights of y d and Yd. On the y y-bar diagram the previous 

interface is located along line d. The following interface has ray heights of Yf and 

Yf and is located on line f. On the y y-bar diagram tha slopes s and s' of lines d 

and fare: 

s - , and, s'-

sand s' are the ratios of the marginal ray angle to chief ray angle for these portions 

of "optical space," 

s -

The semidiameters of the entrance pupil and image in the optical spaces before and 

after the ir.terface are Ye' y~, YI and Y".. Lines d and f have the equations: 

Y - Ye + s y .. s (YI - f) 

The chief and marginal ray angles before and after the interface are: 

u -f -s f - -- -m U YI 
n[y-sf) 

Uc - _f __ f 
n Ye 

o [Y-Sf ) 
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y 

V 
J 

Figure 23 Y -Y Bar Parameters for an Interface 

The point (YoYJ represents a particular interface. [Y doY d) and [Y f'Y f] are the 

preceding· and following interfaces. on lines d and f. YI and YE are the image and 
pupil located in the optic<J. space preceeding the interface. r I and YE are the image 
and pupil following the interface. 
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Refraction 

-r u' m - n'y' -I 

u' -c 
r -- -o'y' 

e 
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-s'f 

0' (y-S'Y) 
r 

n' (y-S'Y) 

For a refracting interface with refractive indices nand n' before and after 

the interface. the paraxial law of refraction (the first order approximation to Snell's 

law) is 

- ,-, -, n - N-n 1 - n 1 • or. 1 - • 1 - I_ n 

If s is the angle of the surface normal at a ray intercept. then the relation between 
n 

ray angles and angles of incidence 

sn - u - i - u' - i' 

leads to the equation for angle of incidence 

- u'-u 
1 - --N-I 

The chief and meridional angles of incidence as functions of the y y-bar diagram 

parameters are: 

-r [ s' 

N-I n' (y-S'Y) 
s ] -r [I I] -[---) -"2 n'yj - n YI • 

n y-sy 

r [ I 
N-I n' (y-S'Y ) n [y~y) ] - q .. ~~ -n ~ e] . 
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Reflection 

Consider a reflecting interface immersed in a transmissive medium of 

refractive index n. Reflection can be treated by considering the medium as having a 

refractive index following the interface, n', cf 

n' - -n 

With this substitution, the paraxial law of refraction correctly reproduces the law of 

reflection, 

n i - n'i' ,yields. i' - -i 

The relationship between the angle of incidence and the incident and reflected ray 

angles is 

u' - u - 2 i . 

Thus the angle of incidence is 

i -
u - u' --2-

The marginal and chief ray angles of incidence, im and ie' expressed in terms of y 

y-bar diagram parameters are: 

-f [ s' - ---+ 
2n 

y-s'Y Y-SSy ] 
-f [I I] 2il yj + YJ 

iC_L[_1 +_1 ]_L[_I +_1]. 
2 n 2 n y' y 

y-s'Y y-s Y e e 
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Title. A. M .• and W. J. Rosenberg. "Achromatic Retardatic,n Plates". in Polarizers 
and Applications. ed. G. B. Trapani. Proc. SPIE 301. 120 (1981). 

Trapani. G. B .• and K. J. Abcunas. "Color Contrast in Polarizer/Retarder Optical 
Systems". in Polarizers and Applications. ed. G. B. Trapani. Proc. SPIE 
307. 112 (1981). 
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