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ABSTRACT 

A two fluid hydrodynamical model describing the modification of 

a stellar wind flow due to its interaction with galactic cosmic-rays is 

investigated. The two fluids consist of the thermal stellar wind gas 

and the galactic cosmic-rays. A polytropic one fluid model is used to 

describe the stellar wind gas, and the cosmic-rays modify the wind via 

their pressure gradient. The cosmic-rays are considered to be a hot low 

density gas of negligible mass flux, but with a significant pressure and 

energy flux compared to the thermal gas. The equations used are 

essentially those employed in two fluid hydrodynamical models of 

cosmic-ray shock acceleration by the first order Fermi mechanism, but 

suitably modified to apply in a spherical geometry and including the 

effects of gravity on the flow. The stellar wind consists of a 

transonic flow with a termination shock, and subsonic flow outside the 

shock. The model shows the deceleration of the wind upstream of the 

shock by the positive galactic cosmic-ray pressure gradient. The 

dissertation first discusses one fluid polytropic stellar winds and how 

to insert shocks in the flow. The hydrodynamica1 equations governing 

cosmic-ray modified winds are then introduced followed by a discussion 

of the physics of the interaction between the thermal stellar wind and 

the cosmic-rays. A description of the singularities of the equations is 

also presented. The system of equations is first solved by a finite 

difference method in the test particle approximation in which the 

x 



xi 

cosmic-rays do not modify the flow, with appropriate boundary conditions 

applied at infinity, at the wind termination shock, and at the star. A 

perturbation scheme to determine the modification of the wind by the 

cosmic-rays is then developed. This scheme applies when the 

modification of the wind by the cosmic-rays is sufficiently small. 

Finally a numerical iteration algorithm which uses the test particle 

solution to start the iteration is employed to exactly solve the 

equations. This latter method has the advantage that it can be applied 

when there is a considerable modification of the wind by the 

cosmic-rays. 



CHAPTER 1 

INTRODUCTION 

Cosmic-rays are high energy charged particles permeating the 

Galaxy and continually bombarding the Earth at a rate of about one 

particle per square centimeter per second. A stellar wind is the 

continuous hydrodynamic expansion of the atmosphere of a star. The wind 

in most cases of astrophysical interest consists of an ionized gas 

usually of protons and electrons. In some more exotic cases the gas may 

have a different composition (e.g. for pulsar stellar winds the gas may 

be an electron positron plasma c.f. Curtis Michel 1982). For the case 

of a thermally driven wind, the gas pressure falls off sufficiently 

rapidly with distance from the star that the pressure gradient forces 

lift the gas out of the gravitational potential well of the star leading 

to a net outward acceleration of the gas. The present study contains a 

synthesis of these two strands of astrophysical research, namely the 

progagation of cosmic-rays in highly conducting moving plasmas, and the 

hydrodynamics of stellar winds. 

In this chapter we first give a brief history of cosmic-ray 

research (§1.l). This is followed in §1. 2 by a description of the 

development of equations governing the transport of cosmic-rays, 

culminating in a description of models currently used in cosmic-ray 

shock acceleration theory (§1.3). A brief review of Solar wind 

1 
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research, including a discussion of hydrodynamical models of stellar 

winds is provided in § 1.4. Then in §l. 5, we give an outline of the 

dissertation including a description of a self-consistent model of the 

modification of a stellar wind by its interaction with a hot, low 

density cosmic-ray gas. The model is a two fluid hydrodynamical model 

consisting of cosmic-rays and thermal gas where the two fluids are 

coupled to each other by hydromagnetic waves travelling in the 

background fluid which scatter the cosmic-rays. This model provides the 

basis for the present study on cosmic-ray modified stellar winds. 

Possible extensions of the dissertation are presented in §1.6. 

§l.l Historical Background of Cosmic-Ray Research 

Cosmic-ray research dates back to early this century. 

Experiments on natural radioactivity by C. T. R. Wilson in 1901, 

measured the conductivity of pure dust free air in a sealed vessel 

enclosing an electroscope. Since the vessel was free of radioactive 

substances it was suspected that the leakage of charge in the 

electroscope was caused by the presence of natural radioactivity in the 

air and soil. In 1911 to 1912, V. Hess in a series of balloon 

experiments measured the residual ionization current in ionization 

chambers at various heights in the atmosphere. Since the ionization, 

thought to be caused by high energy ~-rays, increased above heights of 

1.5 kilometers, Hess came to the conclusion that the source of the 

penetrating radiation was extraterrestrial. This radiation was later 

given the name Cosmic-Rays by R. A. Millikan in 1926. The prevailing 
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idea of cosmic-rays as high energy photons was challenged in 1929 by the 

coincidence counting experiments performed by W. Bothe and 

W. Koh1horster. Their results (and later results by B. Rossi and 

others) supported the idea that the cosmic-rays were corpuscular in 

nature. 

As early as 1904 C. Stormer, from an analysis of charged 

particle motion in the Earth's magnetic field had established that 

charged particles of extraterrestrial origin had much easier access to 

the Earth over the magnetic poles than at the equator. He established 

that, depending on particle rigidity ( = pc/Ze , where p is the particle 

momentum, c is the speed of light and Ze is the particle charge), the 

lower rigidity particles were excluded from the lower latitudes. In 

1927, J. Clay published the results of a latitude survey of the 

cosmic-ray intensity obtained on expeditions from Leiden to Java. He 

found the intensity to be consistently lower near the equator indicating 

that the cosmic-rays were high energy charged particles. These results 

were subsequently confirmed by a world wide cosmic-ray survey organized 

by A. H. Compton in the 1930's. Later in 1948 the latitude effect was 

studied in detail at high altitude in an aircraft by H. V. Neher. 

Early cosmic-ray research in the 1930's and 1940's, provided a 

testing ground for the development of nuclear and particle ptlysics, with 

the detection of subatomic parti.c1es such as positron, neutron, J.I. and 11' 

mesons in cosmic-rays (see e.g. the books by Ramakrishnan 1962; Hopper 

1964). 

In the early 1930's, serious attempts were also made to provide 

------------_._----_ .. _--
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a continuous registration of cosmic ray intensity. The diurnal (or 

daily) variations were observed as early as 1933 (Hess and Steinmaurer 

1933; Compton and Getting 1935). The 27 -day recurrence tendency was 

reported for the first time by Hess and Graziadei (1936). S. E. Forbush 

(1937) found that sudden decreases in the cosmic-ray intensity (Forbush 

decreases) were accompanied by magnetic storms. 

Forbush (1954) also showed that there was an ll-year cycle 

variation of cosmic-ray intensity which was in clear anti-correlation 

with the solar activity as measured by the sunspot number. This 

phenomenon is shown in figure 1.1, which has been reproduced from 

Forbush (1954). It shows the ionization currents (or integral 

cosmic-ray intensity) for four ground-based ionization chambers and 

their mean current for the years 1938 to 1952. The sunspot number is 

ti' 
tl' 
ror-+-~~~~~---r--4rr---~~~--~ 
-, 

'138 It40 
ANNUAL MEANS 

1002 
'so;! 

, ... , ' ... 4 '148 1148 llSO 11&2 i 
COSMIC-RAY INTENSITY AT rOUR 

STATIONS 

Figure 1.1 Eleven-Year ~cle Variation of Cos1mc-Ray Intensity 
The anti-correlation between cosmic-ray intensity at four ground· base stations and the 

eleven·year cycle of solar activity a8 measured by the sunspot numbers (Forbush 1954), 
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also plotted with scale reversed. 

These time dependent phenomena (or modulations) have been 

studied ever since, with the introduction of the neutron monitor 

(Simpson, Fonger and Trieman 1953) in the 1950's being the first major 

attempt to record cosmic-ray intensities at a network of stations on a 

continuclus basis. 

Since the advent of balloon and satellite technology the 

variations in the intensities of specific cosmic-ray nuclei and 

electrons could be monitored. Neutron monitor observations deep in the 

atmosphere consist of the registration of secondary atmospheric products 

of the whole cosmic-ray abundance spectrum. Satellite and balloon 

observations have the additional advantage that they are not subjected 

to atmospheric attenuation, and he~ce extend to much lower energies than 

observations in the atmosphere. Cosmic-ray proton and a-particle 

differential intensity spectra, obtained from balloon and satellite 

experiments have been compiled since 1965 (e.g. Gloeckler and Jokipii 

1967; Ormes and Webber 1968; Hsieh 1970; Freier et a1. 1971; Webber and 

Lezniak 1973, 1974). Intensity spectra of electrons and positrons have 

been measured extensively since 1961 (e. g. Earl 1961; Meyer and Vogt 

1961; Webber and Chotowski 1967; Beuerman et a1. 1969; Fanselow et a1. 

1969; Meyer, Schmidt and L'Heureux 1971; Burger and Swanenburg 1971; 

Fulks, Meyer and L'Heureux 1973; Caldwell et a1. 1975). 

The basis of the theoretical understanding of these phenomena 

can be traced back to the pioneering work of Fermi (1949), Cocconi 

(1951) and Terletskii and Logunov (1951) on the diffusion of cosmic-rays 
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in a stochastic magnetic field. The first observational evidence that 

diffusion was in fact a good approximation to cosmic-ray motion was 

given by Meyer, Parker and Simpson (1956), who showed that the intensity 

time profile, during a Solar flare even't of particles with rigidities of 

2-4 GeV could be accounted for quantitatively by the solution of a 

diffusion equation. These ad hoc applications to the propagation of 

cosmic-rays in interplanetary space have been put on a firm theoretical 

and observational basis since the confirmation of the existence of a 

continuous Solar wind by Biermann (1951) from his observations of comet 

tails and developed on a proper basis by Parker (1958a) with his 

hydrodynamical model of the expansion of the Solar corona into 

interplanetary space. 

Parker predicted, and it was subsequently confirmed on Mariner 

II (Neugebauer and Snyder 1962; Synder, Neugebauer and Rao 1963), that 

there would be a continuous radial flow of ionized gas (mostly protons 

and electrons) from the Sun into interplanetary space. The radial speed 

is about 400 km s-l and there are about 

-3 5 electrons cm at the orbit of the Earth. 

-3 5 protons cm and 

This expanding plasma 

carries with it magnetic fields from the Sun's surface (Parker 1958a). 

Due to the Sun's rotation the steady state interplc.. .. etary magnetic field 

has the form of an Archimedes spiral on the surface of a cone. In 

addition to the steady state field there are irregular magnetic fields; 

all are convected radially with the Solar wind. The irregularities or 

kinks in the average magnetic field com; ':'cted with the Solar wind 

(Parker 1958a) provide a magnetic configuration for the scattering and 

---------------------------
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consequent diffusion of the cosmic-rays. 

Since 1958, there has been an extensive research effort on the 

effect of the Solar wind on galactic cosmic-rays, and on the propagation 

of the Solar cosmic-rays. Extensive reviews of this work have been 

given bye. g. Axford (1970a, b), McKracken and Rao (1970), Jokipii 

(1971), Wibberenz (1971), Gleeson (1972), Birmingham and Jones (1975), 

Moraal (1976), Fisk (1979), Gleeson and Webb (1980) and Quenby (1984). 

More recently cosmic-ray propagation theory, originally used to describe 

cosmic-ray transport in the Solar wind has been applied and developed to 

describe diffusive shock acceleration of cosmic-rays (see reviews by 

e.g. Toptygin 1980; Axford 1981; Drury 1983; Forman and Webb 1985 and 

Blandford and Eichler 1986). For a general discussion on cosmic-rays 

the reader is referred to the books by Rossi (1964), Ginzburg and 

Syrovatskii (1964), Pomerantz (1971), Wil,son (1976) and Toptygin (1985). 

§1.2 Development of the Cosmic-Ray Transport Equations 

In order to explain the modulation of the galactic cosmic-rays, 

Parker (1958b) suggested that cosmic-rays were convected out from the 

inner Solar system by the magnetic fields carried by the Solar wind as 

they diffused through the wind due to scattering with the magnetic 

irregularities. He wrote down a transport equation, neglecting energy 

changes of particles due to scattering in the random magnetic fields as 

(c.f. Parker 1958b, 1963): 

au 
--E + v.(~ u - ~·VU ) at p - p 

o (1.1) 
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where U (t,;,p) is the differential number density of cosmic-rays with 
p 

-+ -+ respe,ct to momentum p at position r and time t; u is the wind velocity 

and !! is the diffusion tensor (originally assumed to be isotropic by 

Parker in 1958). Parker used the steady state spherically symmetric 

solutions of equation (1.1) to qualitatively account for the ll-year 

Solar cycle modulation of galactic cosmic-rays, initially discovered by 

Forbush (1954). This diffusion-convection theory was then widely used 

to interprete the observed cosmic-ray particle spectra and has had some 

success at high and intermediate energies (e. g. Fan, Gloeckler and 

Simpson 1965; Silberberg 1966; Gloeckler and Jokipii 1966, 1967; Badhwar 

et a1. 1967; O'Gallagher and Simpson 1967; Lockwood and Webber 1967; 

Ormes and Webber 1968; Ramaty and Lingfelter 1969; Wang 1970). 

Later, Parker (1965a, 1966) showed that the particle energy 

changes of cosmic-rays due to scattering in the magnetic irregularities 

carried by the wind were not negligible. Parker showed that second 

order Fermi acceleration could be neglected, and he argued that the 

cosmic-rays lose energy because of adiabatic deceleration as they 

scatter between the expanding magnetic field irregularities. The rate 

of change of momentum of particles due to adiabatic deceleration (Parker 

1965a; Dorman 1965) is 

1 -+ 
P ' 'iJ·u "3 (1. 2) 

",here p' is the particle momentum in the Solar wind frame, and the 

transport equation is then (Parker 1965a; Jokipii and Parker 1970): 

aup ' -+ 1 -+ a 
+ 'iJ. (u U , - 1C·'iJU ) - - 'iJ·u -(p' Up,) at p = p' 3 ap' 

o (1. 3) 
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... 

where U ,(t,r,p') is the differential number density with respect to 
p 

. ... 
momentum p' in the Solar wind frame, and spatial co-ord1nates rare 

defined in a fixed frame. Since the wind speed u - I~I «v where v 

is the particle speed, the number density U ,(t,~,p') is related to the 
p ... 

particle number density U (t,r,p) 
p 

in a fixed frame (e. g. the Solar 

system frame) by 

where 

... 
U (t,r,p) 

p 

... 
U ,(t,r,p) [1 + 0(6)] 

P 

EI p u~ I~ [log(U )]1 
v p p 

« 1 

(1.4) 

(1. 5) 

Using the transformation (1.4) we obtain the transport equation in the 

fixed frame as: 

au 
~ + v. (~ U ) 1 ... a ( ) at p - ~.VUp - 3 V·u ap p up o (1. 6) 

Webb and Gleeson (1979) have shown that a momentum change rate 

algebraically identical to the adiabatic deceleration rate (1.2) can be 

derived by taking into account the fact that locally the wind frame is a 

non- inertial reference frame. The momentum change rate (1. 2) in this 

development arises from the transformation of momenta between the Solar 

wind frame and the fixed frame: 

... 
p' 

. 2 
... -+ (u) p - m u + 0 Pz 

v 
(1. 7) 

where m is the relativistic mass of the cosmic-ray particle. From this 

-+ 
equation we note that the momentum p' changes from point to point in the 

wind flow simply because of the spatial variation of the wind velocity 

... 
u. Presumably the difference between this interpretation and the 
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adiabatic deceleration interpretation of Parker (1965a), is that 

Parker's treatment considers the particle trajectory over an extended 

volume, taking into account the individual particle energy changes from 

both betatron deceleration and mUltiple scattering (c.f. Laster, 

Lencheck and Singer; 1962; Quenby 1965 and Webb and Gleeson 1979), 

whereas the interpretation of Webb and Gleeson (1979) is purely a 

co-ordinate frame effect. 

The transport equation (1.6) can also be derived from Boltzmann 

equation or Liouville's equation. Gleeson and Axford (1967) derived the 

spherically symmetric transport equation from the Boltzmann equation. 

In their model the cosmic-rays undergo isotropic, hard sphere scattering 

with scattering centres embedded in the Solar wind. Dolginov and 

Toptygin (1966, 1967, 1968) derived the transport equation from the 

Boltzmann equation (hard sphere model) and also from Liouville's 

equation for small angle scattering. Gleeson and Axford, and Do1ginov 

and Toptygin also derived an expression for the differential current 

-+ 
density or streaming S per unit momentum interval given by 

p 

where 

-+ 
S 

P 

C e 

-+ 
C u U - ,,·vu 

p - p 

1 _ 1 u- 1 8 ( U) 
'3 p 8p P P 

(1. 8) 

(1. 9) 

is the Compton-Getting factor (Compton and Getting 1935; Gleeson and 

Axford 1968; Forman 1970). A slightly more general version of the 

transport equation (1.6) incorporating second order Fermi acceleration 

and emphaEi~il1g the difference between the wave and fluid frames has 

been derived by Skilling (1975) and Luhmann (1976). Equations (1.6) and 
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(1.8) can also be written in terms of the mean phase space distribution 

function 
-+ 

(where 2 f(t,r,p) U - 411'p f ) as: p 
8f -+ 

- V· (~.Vf) 
1 -+ 8f 0 (1.10) - + u·Vf - 3 V'u P 8p 8t 

-+ 2 1 8f -+ S 4 11' p (3 p - u + ~'Vf) (1.11) p 8p 

The diffusion tensor ~ in the transport equation (1.6) or (1.10) 

is in general derived from the theory of the propagation of charged 

particles in stochastic magnetic fields by a quasilinear approach in 

which the particle orbit in the first approximation is a helix about the 

average magnetic field (assumed to be spatially uniform) (see e.g. 

Jokipii 1971, 1972; Forman, Jokipii and Owens 1974). The tensor 

basically includes the effects of diffusion both parallel and 

perpendicular to the average magnetic field, and the curvature and 

gradient drifts (described by the anti-symmetric components of the 

tensor) of the particles in the background field. Diffusion parallel to 

the field is determined by resonant scattering of the particles with 

small scale magnetic irregularities, whereas diffusion perpendicular to 

the field is determined by the combined effects of resonant scattering 

and random walk of the field lines (Jokipii and Parker 1969, 1970). 

Equation (1.10) has been used extensively in the theory of 

cosmic-rays modulation by the Solar wind. Advanced numerical codes to 

solve equation (1.10) have been developed for example by Jokipii and 

Kopriva (1979), Kota and Jokipii (1983), Potgieter and Moraa1 (1985), 

Jokipii (1986), and Jokipii and Mer~nyi (1986). These codes includes 

drift, convection and diffusion of the cosmic-rays in the interp1anetry 

space, and in some cases the diffusive shock acceleration of the 
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cosmic-rays by the Solar wind termination shock is also considered. 

§l.3 Diffusive Shock Acceleration Theoty 

The transpo:ct equation (1. 6) or (1.10) has also been used to 

describe the acceleration of energetic charged partic.les in shock waves 

following the publications of Krymskii (1977), Axford, Leer and Skadron 

(1977), Bell (1978a, b) and Blandford and Ostriker (1978). At a 

microscopic level, diffusive acceleration of energetic particles at a 

shock wave results from repeated scattering of the particles back and 

forth across the shock, with the p .. 'rticles gaining energy in head on 

collisions with waves or magnetic irregularities in the upstream medium, 

and losing energy in overtaking collisions with the scatterers in the 

downstream region. A net momentum change per scattering cycle: 

<c5p> (1.12) 

where V1 and V2 are the upstream and downstream wave frame velocity 

components normal to the shock respectively, and an escape probability 

into the downstream medium per scattering cycle of 4V2/v, results in 

the formation of a power law distribution function of shock accelerated 

particles from an initially monoenergetic distribution (Bell 1978a, b; 

Drury 1983). The downstream distribution of the shock accelerated 

particles in the case of plane, parallel shocks without losses in which 

the particles do not modify the flow is of the form f 
-0: 

0: P with 

0: = 3V1/(V1 -V2). If the phase speed of the waves relative to the fluid 

Iv I is much less than the fluid speed I~I, then w 
In 
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this case the spectral index 0 ~ 3u1/(ul -u2) - 3q/(q-l) depends only 

on the shock compression ratio These results can be 

derived by using the microscopic probabilistic arguments given by Bell 

(l978a, b), or by solving the transport equation (1.10) with a step 

function flow velocity profile characteristic of the flow in a plane 

shock and with appropriate boundary conditions. For oblique shocks, the 

particles also gain energy by drifting in the electric field at the 

shock (see e.g. Chen 1975; Decker 1979; Terasawa 1979; Pesses 1979, 

1981). In this case the particles are still accelerated to a power law, 

fop -0 with 0 - 3Vl /(Vl -V2) , except that now part of the particle 

energy changes result from drifting in the electric field at the shock, 

and part arises from scattering in the upstream and downstream media 

(c.f. Jokipii 1982). 

In some models of diffusive shock acceleration, proper account 

is taken of the waves generated by the streaming particles using the 

resonant scattering formulae of plasma kinetic theory (e.g. Bell 

1978a, b; Achterberg 1981; McKenzie and Volk 1982; Lee 1982, 1983). Lee 

(1982, 1983) has applied this theory to account for both the wave and 

energetic particle spectra observed at the Earth's bow shock and at 

travelling interplanetary shocks. 

In the above simple test particle theory, there is no apparent 

limit to the amount of energy the particles can extract from the flow. 

For strong shocks (u
l
/u2 = 4), one finds that the steady state 

cosmic-ray pressure in test particle theory diverges. Clearly the 

strong energization of particles must affect the flow in such a way as 

---~-~----.---------.----
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to limit the energy gain to some reasonable level. In the process the 

background flow at the shock is modified and the efficiency of the shock 

acceleration is limited, leading to modified forms of the energetic 

particle momentum spectra. The nonlinear or hydrodynamic theories of 

cosmic-ray shock acceleration address these effects. 

In the simplest hydrodynamical models (see e.g. Axford, Leer and 

Skadron 1977; Drury and Volk 1981; Axford, Leer and McKenzie 1982), the 

phase speed of the waves is assumed to be much smaller than the 

background fluid flow speed so that to a first approximation the waves 

can be considered to be magnetic scattering centres embedded in the 

background flow. The equations governing this simple system are the 

three hydrodynamical conservation equations (mass, momentum and energy) 

of the system: 

a 1 
at(z Pg 

where Pg ' 

~ -+ 
at + 'i/. (pg u) 0 

a -+ 2 P P ) a-(p u) + 'i/.(p u + + t g g g c 

u2 + E 
1 u2 + E + P ) +E)+'i/·[(Zp g c g g g 

-+ P , E, u are the density, pressure, g g 

(1.13) 

0 (1.14 ) 

-+ 
F] 0 (1.15 ) u + c 

internal energy density 

and velocity of the thermal gas respectively, and P , E ,F are the c c c 

pressure, energy density and energy flux of the cosmic-rays 

respectively. The cosmic-rays are considered to be a hot, low density 

gas with significant pressure P , but of negligible density and mass 
c 

flux. The energy densities E and E of the two components are related 
g c 

respectively to P and P through polytropic or adiabatic indices ~ and 
g c g 

~ as: c 



E lEI 

g 
and E lEI 

C 

15 

(1.16) 

For cosmic-rays the adiabatic index lies in the range 4/3 < 'Y < 5/3 , c 

with 'Y -4/3 c 

non-relativistic gas. 

for a relativistic gas and 

The cosmic-ray energy equation 

where 

aE c -~ - + V·F at c 
... 
u·VP 

c 

... ... 
F & (E + P ) u - ~·VE c c c ~ c 

'Y .. 5/3 for a c 

(1.17) 

(1. 18) 

describes the energy transfer between the cosmic-rays and the thermal 

gas via the scattering centres. From equation (1.17), the energy 

transfer rate per unit volume from the scatterers to the cosmic-rays is 

simply 
... 
u·VP 

c 
(c. f. Jokipii and Parker 1967). Derivations of the 

cosmic - ray energy equation (1.17) and the energy flux (1.18) showing 

their relation to the cosmic-ray transport equation (1.6) and streaming 

(1.8) are given in appendix B. 

Equations (1.13) - (1.18) can be combined to show that the 

entropy of the gas is conserved following the flow: 

o· (1.19) 

except possibly at gas shocks where the entropy jumps discontinuously. 

The overall momentum equation (1.14) may be cast in the form: 

a ... ... 
Pg (at + u·V)u .. - VP - VP 

g c 
(1. 20) 

showing that the gas flow may be modified by an adverse cosmic-ray 

pressure gradient, as occurs for instance upstream of a strongly 

modified cosmic-ray shock. It should be emphasized that the above 
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hydro dynamical equations (1.13) - (1.18) apply for general 

hydrodynarnica1 flows (not necessarily involving shocks), in which the 

cosmic-rays are coupled to the background flow via scattering with 

scatterers travelling in the background fluid. 

An example of the use of these equations in determining the 

structure of steady state plane parallel cosmic-ray shocks is shown in 

figure 1.2. The figure is taken from Drury and Vo1k (1981). The 

cosmic-rays are advected into the shock from far upstream ( x ~ -~). A 

sub-shock in the thermal gas occurs at x .,. 0 . Upstream of the 

subshock ( x < 0 ), the cosmic-ray pressure increases with increasing x 

due to first order Fermi acceleration of energetic particles at the 

shock. The accelerated particles are eventually convected through the 

sub-shock into the downstream region ( x > 0 ), leading to a unifo'rm 

1.0,...------------, 

VELOCI" U 

o~L----------~.~ __ ~ 

GAS PRESSURE p. 

t----_J 
o.o'-----------~.~_~ 

1,0 ...-------------, % 

PA~IICLE PRESSURE Pc 

~ 
0.0 E::======::::=:.....--:.:::_:::! 

;;: 
% 

" .. 
.; .. , 

Figure 1.2 Co •• lc-Bay Shock Structure 
The ahock structure for adiabatic exponents 5/3 for the gas and 4/3 for the cosmic rays, 

shock Mach number M - 2.0 , and fractional contribution of the coamic rays to the upstream 
pressure N _ 0.3. The flow variables have been normalized to unit total momentum and mass 
fluxes. As the fluid passes through the shock, its state follows the heavy line in 
(u,PC).diagram (Drury and Vb,k 1981) . 

... _---_ .. _--------------------
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cosmic-ray pressure in the downstream region in the steady state limit. 

The cosmic-ray pressure gradient points into the upstream medium 

ap 
( ax c ~ 0 ) resulting in a deceleration of the fluid just upstream of 

the sub-shock, in accordance with the Euler equation (1.20). Low and 

high Mach number shocks in this model can be totally smoothed out by the 

diffusing cosmic-rays, whereas intermediate Mach number shocks tend to 

have a gas sub-shock (like that in figure 1.2) embedded in the flow. 

The original work on hydrodynamical models of cosmic-ray shocks 

was carried by Axford, Leer and Skadron (1977), Drury and Valk (1981), 

and Axford, Leer and McKenzie (1982). Extensions of this work, 

including the effects of Alfven waves on the flow (McKenzie and Volk 

1982; Valk, Drury and McKenzie 1984), a variable ~ throughout the flow 
c 

(Achterberg, Blandford and Periwal 1984), an investigation of how the 

spectrum may be modified for momentum dependent K. (Eichler 1979, 1981; 

Heavens 1983), and the effects of oblique magnetic fields (Webb 1983; 

Kennel, Edmiston and Hada 1985; Webb, Drury and Volk 1986) may be found 

in the reviews of Drury (1983), Forman and Webb (1985) and Blandford and 

Eichler (1986). 

These equations, modified to apply in a spherical geometry, and 

including the effects of gravity (§1.5) are the basic equations 

governing cosmic-ray modified stellar winds. 

§1.4 A Brief Review of Solar Yind Research 

It was suggested early this century by Birkeland (1908, 1913), 

----------------------------
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from his 1902 - 1903 Norwegian Aurora Polaris Expedition, that aurora 

and geomagnetic storms were the results of ionized corpuscular flow from 

the Sun. More than four decades later, Biermann (1951, 1953) from his 

observations of comet tails concluded that there was a continuous 

outflow of particles from the Sun. 

It was suggested later by Parker (1958a), that these phenomena 

could be explained in terms of the continuous hydrodynamical expansion 

of the Solar corona into interplanetary space. This continuous outflow 

of ionized gas came to be known as the Solar wind, a name originally 

coined by Parker. Parker argued that the solar wind consisted of a 

transonic flow with the wind speed being subsonic near the Sun and 

supersonic beyond a few Solar radii. Parker'S theory predicted that the 

flow speed was supersonic at the orbit of the Earth, and of the order of 

a few hundred kilometers per second. At about the same time Chamberlain 

(1961) suggested that the expansion of the corona should be subsonic, 

which he called the Solar breeze. This controversy between Parker's and 

Chamberlain's theories was later settled by Mariner II data (Neugebauer 

and Snyder 1962; Snyder, Neugebauer and Rao 1963) which indicated the 

flow near the Earth was supersonic. 

At the Earth the mean flow speed in the quiet Solar wind is 

-1 
typically 400 - 500 krn s , and the wind has a mean number density of 

-3 -3 5 - 10 protons cm and 5 - 10 electrons cm The expanding plasma 

carries with it the frozen in magnetic fields from the surface of the 

Sun. Due to the Sun's rotation, the mean interplanetary magnetic field 

has the form of an Archimedes spiral on the surface of a cone (c. f. 
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Parker 1958a). 

Subsequent research on the Solar wind has concentrated largely 

on the driving mechanisms and the energy budget of the wind (see e.g. 

the reviews by Hollweg 1978; Pneuman 1985; Axford 1985), and on the 

interaction of the Solar wind with interstellar medium (see e.g. Axford 

1972; Wallis 1973). On general disscusions, history and developments of 

Solar wind research, the reader is referred to Parker (1963), Dess1er 

(1967), Holzer and Axford (1970), Hundhausen (1972), Hollweg (1978), 

Leer, Holzer and F1£ (1982) and Axford (1985). This extensive research 

literature considers the modification of the wind by such effects as 

heat conduction, viscosity, A1fven wave pressure and magnetic forces, 

momentum and energy addition in the subsonic and supersonic regions of 

the flow, and charge exchange between the interstellar neutrals and the 

Solar wind. 

In the present work we use the simple one fluid spherically 

symmetric stellar wind model originally introduced by Parker (1958a), 

appropriately modified to take into account the modification of the wind 

by the galactic cosmic-rays. Many of the features of Parker's model can 

be understood in terms of an analogy between the Solar wind equations 

and the gas flow through a deLava1 nozzle (see e.g. Clauser 1960; 

Dessler 1967). 

A deLava1 nozzle is essentially a pipe of varying cross-section, 

consisting of a converging section and a diverging section joined by a 

narrow neck as illustrated in figure 1.3. This device is used for 

example in jet engines to produce a supersonic flow from an initially 
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line 

5 

x 

Figure 1.3 The deLavsl Nozzle 

subsonic flow. The mass and momentum equations for steady state 

inviscid flow through the nozzle are: 

puS 

du 
p u dx = 

j 

dP 
dx 

(1. 21) 

(1. 22) 

where S is the cross-section along the nozzle, and p, P, u and j are the 

density, pressure, flow speed (along the nozzle) and mass flux (which is 

a constant) of the gas respectively. Differentiating equation (1.21) 

logarithmically, and combining the result with equation (1.22) we 

obtain: 

where 

dS 
S 

C Ei 
S 

(1.23) 

(1. 24) 

is the sound speed of the gas. Equation (1.23) shows that if the flow 
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in the converging section of the nozzle is initially subsonic ( u < c ) 
s 

then S decreases and u increases with increasing x. Thus subsonic flow 

in the converging section of the nozzle is accelerated. The maximum 

possible flow speed that can be obtained in the converging section in 

this case is the sound speed, which is achieved in the neck of the 

nozzle where the cross-section is constant and dS = 0 
dx By the same 

token, supersonic flow is accelerated in the diverging section. This 

argument shows that initially subsonic flow in the converging section 

can be accelerated up to the sound speed at the neck and may then be 

subsequently accelerated to supersonic speeds in the diverging section 

(possibly by heating this section). On the other hand if the flow speed 

is subsonic at the neck, the flow in the diverging section will consist 

of a decelerated subsonic flow (it is then called a Venturi tube). It 

should perhaps be noted, from the point of view of equation (1.23), that 

if the flow is sonic in the neck of the nozzle, then the flow downstream 

in the diverging section can be either supersonic or subsonic. 

We now show that the flow in Parker's Solar wind model resembles 

the gas flow through a deLaval nozzle in which the gravitational force 

on the gas acts in such a way as to constrict the flow as does the 

converging section of a deLaval nozzle so as to permit the development 

of sonic flow (e.g. Clauser 1960; Parker 1963; Dess1er 1967). For 

Parker's steady-state, inviscid, stellar wind model, the mass and 

momentum equations are: 

puS 
w j (1.25) 

------------------------------



du 
p u dr 

dP GMo 
dr - P 2 

r 
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(1.26) 

where S is the flow tube cross - section of the wind, and p, P, u and j 
w 

are the density, pressure, radial flow speed and mass flux (which is a 

constant) of the gas respectively, and r is the radial distance from the 

star. For spherical expansion the flow tube cross-section S 
w 

2 
Q r 

and for non-spherical expansion we take S w " Q r ( " po! 2 ). The last 

term in the momentum equation (1.26) is the gravitational force acting 

on the gas, with G the universal gravitational constant and M is the 
o 

mass of the star. Logarithmically differentating the mass continuity 

equation (1.25) and using equation (1.26) we obtain: 

[1 _ ~ ::~] d:: [:: _ 1] d~ 
s s 

(1. 27) 

where we have taken the flow tube cross-section " S Q r ,and c is the w s 

gas sound speed given by equation (1.24). A comparison of equations 

(1. 23) and (1. 27) shows the close analogy between the wind equation 

(1.27) and the deLaval nozzle equation (1.23), with the effective change 

in the nozzle area in the Solar wind case being: 

dS dS 
w 

With S 
w " Q r , equation (1. 27) ca.n be written as: 

[v _ ::~] d~ _ [:: _ 1] d~ 
s s 

which has a critical point or sonic point at 

where 

r ... rand u 
c 

(1. 28) 

(1.29) 

c 
s 

---------------_. __ .. __ .... _. 
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Equation (1.29) shows that an initially subsonic flow in 
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(1.30) 

r < r 
c 

accelerates as r increases (c.f. converging section of a deLaval 

mozz1e), and can achieve a maximum possible velocity equal to the sound 

speed at the critical point ( r - r ). It also shows that supersonic 
c 

flow in r > r c 
is accelerated with increasing r similar to the 

acceleration of supersonic flow in the diverging section of the deLava1 

nozzle. 

Dess1er (1967) has pointed out that if the sonic point r lies 
c 

below the stellar surface (as can occur for example in very hot stars 

where c is sufficiently large; in the case of the Sun this occurs for 
s 

coronal temperatures T > 4*106 K), then the only possible solution of 

the wind equation (1.29) is the stellar breeze solution of Chamberlain 

(1961). On the other hand, if the coronal gas is too cold, there is not 

a large enough pressure gradient to lift the gas out of the 

gravitational potential well of the star, and the only possible solution 

is then a static atmosphere. 

At large distances from the star, (say r > 1 A.U. for the case 

of the Solar wind) the thermal energy of the wind has been converted 

principally to the bulk flow kinetic energy, and the wind achieves its 

maximal flow speed. At still larger distances, the wind may undergo a 

shock transition as the flow begins to feel the external pressure of 

thermal gas, magnetic fields and cosmic-rays of interstellar origin 

(c.f. Axford, Dess1er and Gottlieb 1963). 

------------------------ --------- -------
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A typical example of the flow velocity profile of a one fluid 

polytropic stellar wind (the type originally considered by Parker 1958a) 

is displayed in figure 1.4. This wind profile consists of a smooth 

subsonic-supersonic transition at the sonic point, a shock transition at 

the termination shock of the wind, and a region of decelerated subsonic 

flow outside the shock in which the velocity tends to zero at large 

radii. The flow velocity profile in figure 1.4 assumes the gas has a 

polytropic equation of state 
1'1 

Pap inside and outside the 

shock, and 1'1 "" 1. 3 and 1'2 "" 5/3 . Inside the shock the transonic 

solution has been chosen as the appropriate solution of the wind 

equations, and outside the shock the density and pressure of the gas 

tend to their constant interstellar values and 

P 1 eV cm- 3 respectively, and the mass loss rate M = 6*1011 g s-l 
co 

2.0 

1.0 

.0 
.0 

-

1.0 2.0 

Figure 1.4 One Fluid Polytropic Stellar Wind with 71 - 1.3 and 72 - 5/3 

The plotting quantities are E. r/R and u. u/uo • where R. rsh - 65.2 A.U. and 

·1 
Uo • u1sh - 364 km s 
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throughout the flow. The location of the shock is determined by the 

Rankine-Hugoniot relations at the shock. The detailed determination of 

the flow velocity profile of one fluid polytropic stellar wind with 

termination shock forms the subject matter of chapter 2. 

§1.5 Outline of the Dissertation 

In this section we present the equations governing cosmic-ray 

modified stellar winds I and provide an outline of the dissertation. 

Possible extensions of this work are discussed in §1.6. 

By modifying the hydrodynamica1 equations (1.13) - (1.20) (which 

were used extensively in hydrodynamical models of cosmic-ray shock 

acceleration theory) to account for the effects of gravity and spherical 

symmetry, we obtain the equations governing cosmic-ray modified stellar 

winds. The steady state, spherically symmetric version of these 

equations are: 

1 d 2 0 (1. 31) - -(r P u) 2 dr g r 

du dP dP GM 
---..8 c 0 (1. 32) Pg u- - P -2 dr dr dr g r , 

.-1 .~.+2 (~ u
2 

+ 
'Yg P _ G:

oJ 
2 Fe] Pg u Ji + r 0 (1.33) 2 dr ('Y -1) Pg r g 

.J: ~(r2 F ) 
dP c (1. 34) u --2 dr c dr r 

'Yc 1 dP 
F P c (1.35) E! 

('Y -1) 
u - K. dr c c (-y -1) 

c c 

The equations represent respectively: the mClSS continuity equation 

(1.31) (the cosmic-ray mass flux is assumed negligible); the Euler form 



26 

of the total momentum equation (1.32); the total energy equation (1.33) 

and the cosmic-ray energy equation (1. 34) where the cosmic-ray energy 

flux is given by equation (1. 35) . As in hydrodynamica1 models of 

cosmic-ray shock-acceleration, equations (1.31) - (1.35) may be combined 

to deduce: 

~r(p g!p:g) o 

so that the gas entropy is constant (except at gas shocks) and 

P 
g 

where A is a constant dependent only on the gas entropy. 
g 

(1.36) 

(1. 37) 

In the limit ( 1. e., the cosmic - ray mean free path 

A -. ex) ), these equations reduce to the equations governing one fluid 

polytropic stellar winds discussed briefly in §1. 4, and treated in 

greater detail in chapter 2. In this limit there is no interaction 

between the cosmic-rays and the thermal gas, so that the stellar wind is 

not affected by the cosmic-rays. On the other hand for K identically 

zero, the equations (1.31) - (1.37) can be shown to reduce to the 

equations governing two fluid polytropic stellar winds, in which the 

cosmic-rays have a polytropic (or adiabatic) equation of state: 

'Yc 
Pc a Pg (see chapter 3 for greater detail). For intermediate, finite 

K the diffusive effects of the cosmic-rays come into play. 

Solutions of the full system of equations (1.31) (1.35) (see 

chapter 6), show that inside the termination shock the cosmic-ray 

pressure Pc is a monotonic increasing function of radius r. Since 
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dP c 
dr > 0 , the momentum equation (1.32) shows that the incoming galactic 

cosmic-rays serve to brake the out flowing wind by their pressure 

gradient. This effect is illustrated in figure 1.5, where we show the 

flow velocity u, the cosmic-ray pressure P and square of radius times 
c 

2 energy flux r F as functions of radius r. 
c 

The stellar model used in 

figure 1. 5 has a mass loss rate if ... 6*1011 g s-l interstellar gas 

pressure P goo 
1 eV cm- 3 interstellar gas density 

Pgoo ... 6*10- 27 g cm- 3 , polytropic index of the gas inside and outside 

the termination shock and 'Yg2 ... 5/3 respectively. Also in 

figure 1. 5 the adiabatic index of the cosmic-rays the 

cosmic-ray diffusion coefficients inside and outside the shock 

2.0 

1.0 

.0 
.0 

2 cm -1 
s and the ratio of the galactic 

1.0 2.0 

22 2 -1 Figure 1.5 Cosmic-Ray Modified Stellar Vind with ~l - ~2 - 4*10 cm s 

cosmic-ray 

The plotting quantities are e. r/R. ii. u/u • p • P IP and e2F' • {2F IF • o c c co c c co 
-1 -3 where R· rsh - &;l.0 A.V. • Uo • u lsh - 364 Ian s Pco • P

g
«> - 1 eV cm and 

F • u P - 5.82*10 - 5 erg cm - 2 s -1 The normalized cosmic - ray diffusion coefficients are co 0 co 



28 

energy flux to the interstellar gas energy flux The 

results in figure 1.5 are taken from chapter 6, where we obtain fairly 

accurate numerical solutions of the set of the coupled nonlinear 

equations (1.31) - (1.35). The wind upstream of the shock is seen to be 

noticeably decelerated by the positive galactic cosmic-ray pressure 

gradient. This fluid velocity profile should be compared with the 

velocity profile of the one fluid polytropic stellar wind solution 

displayed in figure 1.4, where the wind velocity upstream of the shock 

is essentially constant. The radius of the termination shock is in 

general modified by the presence of the galactic cosmic-rays. 

The detailed nature of the system of equations (1.31) - (1.37) 

forms the subject matter of the dissertation. In chapter 2, we discuss 

the nature .of one fluid polytropic winds, and how to insert gas shocks 

in the flow. 

In chapter 3, we discuss the properties of the equations 

governing cosmic-ray modified stellar winds, and provide an analysis of 

the singular or critical points of the equations. The equations possess 

a line or surface (depending on the variables used) of critical points 

on which the acceleration of the fluid is zero and the fluid speed 

matches the local gas sound speed. The critical points may have saddle 

or focus behaviour depending on the values of the parameters. 

In chapter 4, we obtain numerical solutions of the cosmic - ray 

energy equation (1.34) in the test particle limit in which the 

cosmic-rays are assumed not to affect the background flow. Thus we 

provide a numerical scheme to solve equation (1.34) with the background 
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flow velocity profile being that of a one fluid polytropic stellar wind 

with termination shock (like that in figure 1.4), and with appropriate 

boundary conditions imposed on the cosmic-rays at the origin and at 

infinity. At the shock, the cosmic-ray pressure and energy flux are 

continuous, which are the usual boundary conditions applied in 

cosmic-ray shock acceleration problems. 

In chapter 5, a perturbation approach is used to study the 

influence of the cosmic-rays on the stellar wind and termination shock 

for the cases where the cosmic-ray effects on the wind are small. The 

perturbation parameter used in this study is 

P ceo « 1 (l. 38) E E! 

P geo 

where P and P ceo geo are the galactic cosmic-ray and gas pressures 

respectively. The perturbation approach exploits the numerical 

techniques (to solve for the test particle cosmic-ray pressure) 

developed in chapter 4, and takes into account the cosmic-ray 

modifications of: the critical point of the wind; the thermal gas 

entropy constants both upstream and downstream of the shock; the 

location of the shock and the fluid velocity profile. 

In chapter 6, a numerical algorithm is devised to solve the 

equations (1.31) - (1.35) governing cosmic-ray modified winds. The 

method is an iterative one in which the cosmic-ray energy equation 

(1.34) is first solved (using the numerical scheme developed in chapter 

4) for a given background flow velocity profile (the initial flow 

profile is chosen to be that of a one fluid polytropic stellar wind with 

---------------~------------ .--.-
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termination shock). The critical point requirements for a transonic 

flow inside the shock, and the tot~l energy flux integral of equation 

(1. 33) are then used to obtain a first approximation to the modified 

wind velocity profile. This completes the first iteration loop, and the 

new modified wind profile is then used to start the next iteration. 

Finally it is worth noting that the system of equations 

(1.31) - (1.37) include at a hydrodynamical level the physical effects 

of the modulation of galactic cosmic-rays and their exclusion from the 

inner Solar cavity; the re-acceleration of the cosmic-rays at the 

stellar wind termination shock by the first order Fermi mechanism; and 

the energy changes of the cosmic-rays both upstream and downstream of 

the shock. 

§1.6 Possible Extensions of the Dissertation 

In this section we indicate briefly possible extensions of the 

cosmic-ray modified wind model developed in the present work. One 

fairly obvious extension of the model would be to determine how the 

modification of the wind by the cosmic-rays affects the momentum 

spectrum of the cosmic-rays. Given the modified wind velocity profile, 

it is fairly straightforward to solve the cosmic-ray transport equation 

(1.6) to determine by numerical means the differential energy spectrum 

-+ 
U (t,r,p) of the cosmic-rays. 

p 
However, this spectrum is then not 

necessarily self-consistent with the hydrodynamic solution, since the 

spectrum in the hydrodynamical equations is governed by ~c (if 

-+ -et f(t,r,p) et p then ~ - et/3 c 
provided 4 < et < 5 ), which we have 
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taken as a constant in our calculations. Since.., may vary with 
c 

position in the flow, the self-consistent solution for the spectrum and 

the hydrodynamical equations is clearly a very complex numerical 

problem, which is presumably quite difficult to solve. 

A simple hydrodynamical problem is clearly to include further 

effects known to be important in the determination of the stellar wind 

flow. One such example is to incorporate into the model the effects of 

charge exchange of the interstellar neutrals with the stellar wind. The 

net effect of charge exchange is to slow down the wind upstream of the 

shock since there is a momentum transfer between the neutrals and the 

stellar wind plasma. Along the same lines more complex stellar wind 

models could be used for the background flow than those used here. 

Another direction for further studies is to relax the assumption 

of spherical symmetry, and to include the effects of anisotropic 

diffusion of the cosmic-rays in the Parker spiral magnetic field. 

It is known (e.g. Cowsik and Lee 1982), that cosmic-rays undergo 

strong acceleration in accretion flows, both due to adiabatic 

compressive acceleration in the flow and also by first order Fermi 

acceleration at the accretion shock. These flows are expected to be 

strongly modified by the cosmic-rays since very energetic particle 

spectra are produced. Cowsik and Lee were mainly interested in 

accretion flows around black holes and neutron stars. Clearly 

cosmic-ray acceleration in other galactic accretion flows are also of 

interest. For example Volk (1984) advocated the use of coupled 

hydrodynamical equations for the thermal gas and cosmic-rays, including 

---_._---_. 
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the effects of radiative losses, heat conduction, and effects associated 

with the A1fv~n waves scattering the cosmic-rays, to describe subsonic 

accretion onto giant molecular clouds. The cosmic-rays accelerated in 

the flow are expected ultimately to determine the ~-ray flux associated 

with the clouds. V61k also conj ectured that the larger clouds would 

accrete matter, whereas the smaller clouds may be heated sufficiently to 

evaporate, thus affecting the overall mass balance of the interstellar 

medium. 

Ipavich (1975) used versions of the hydrodynamical cosmic-ray 

equations including A1fv~nic effects, in the strong scattering limit 

with K. co 0 , to study the role of cosmic-rays in driving galactic 

winds. Va1k, Breitschwerdt and McKenzie (1986) are also using versions 

of these equations (with K. po! 0) to investigate the importance of 

cosmic-rays in the formation of galactic winds. 

Finally we note that time dependent versions of the 

hydrodynamica1 equations have been used by Dorfi and Drury (1985) to 

study the modification of supernova remnant dynamics by the cosmic-rays. 



CHAPTER 2 

ONE FLUID POLYTROPIC STELLAR WINDS 

In this chapter we briefly review one fluid polytropic stellar 

winds as developed originally by Parker (1958a). One of our main 

concerns is to establish a basic wind flow (or accretion flow) with 

shocks if necessary. In later chapters we shall discuss the 

modifications of this basic profile by the galactic cosmic rays. 

We consider a simple one fluid polytropic wind. In order to 

mimic heat conduction in the flow the polytropic index, 7, is chosen to 

lie between 1 and 5/3. The value of 7 = 1 corresponds to an 

isothermal wind in which heat conduction is maximized. In a more 

realistic model, one should include, in a physically consistent way, the 

effects of heat conduction, viscosity, A1fv~n wave pressure forces and 

charge exchange between the wind and interstellar neutrals (see e.g. the 

reviews by Holzer and Axford 1970; Axford 1972; Ho1lweg 1978). 

§2.1 Basic Equations and Properties of Solutions 

For spherically symmetric steady state models, the basic 

equations governing the flow are the mass, momentum and energy 

equations: 

~ ~(r2 p u) 
2 dr 

r 

33 

-------------------- ---------------

o (2.1) 
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du dP GM 
0 

p u- - - p -2 dr dr (2.2) 
r 

-1 !!..[r2 p (1 2 P GM)] u -u +~--~ 0 2 dr 2 (1-1) p r r 
(2.3) 

where P, p, u denote respectively the gas (thermal plasma) pressure, 

density and radial velocity; 1 is the polytropic index of the gas, G is 

-8 2-2 the universal 'gravitational constant (- 6.67*10 dyn cm g ), M is 
o 

the stellar mass and r is radial distance from the star. 

From equations (2.1) - (2.3), we can deduce a polytropic 

equation of state for the gas: 

(2.4) 

where A is a constant which depends on the entropy of the gas only. 

Note that only three of the equations (2.1) - (2.4) are independent. 

Thus, for example the energy equation (2.3) can alternatively be deduced 

from equations (2.1), (2.2) and (2.4). There are two integrals for the 

system of equations (2.1) - (2.3), namely, the mass flux, j, and the 

energy constant, E: 

j 
2 

& P u r (2.5) 

1 2 +_1_~ 
GM 

E 
0 

"" '2 u - --
(1- 1 ) p r 

(2.6) 

It is useful at this point to introduce the dimensionless 

variables (Chamberlain 1961; Summers 1982): 

"" 
GMo (~) 

r kT 
o 

and (2.7) 

where k is the Boltzmann constant, m is the mean mass per gas particle 
g 

and T is some reference temperature. 
o 

Note that the quantity JkT 1m o g 

is essentially the root mean square (or thermal) speed of the gas 

-------------------_ .. _---_. -----_._----_ .. -_ .. _---
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particles at temperature T. Using the dimensionless variables ~ and ~, 
o 

equations (2.1) - (2.4) become: 

E ... 

where 

P - Po ~-1/2 A2 

! (~)-1 f3(~+1)/2 .~-~/2 ,2~ 
p - ~ Po kT 'Y '" 

o 
! (1 _ f3(~+1)/2 ~-(~+1)/2 ~2(~-1») d~ 
2 d~ 

1 _ 2 f3(~+1)/2 ~-(~-1)/2 A(2~-3) 

! ~ _ ~ + ____ 1 __ f3(~+1)/2 ~-(~-1)/2 A2(~-1) 
2 (~-1) 

f3 E! 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.l3) 

(2.14) 

The general solution of the stellar wind equation in ~ and ~ is 

given by the energy integral (2.11). Given ~ and f3, we obtain a one 

parameter family of solution curves by varying the normalised energy 

flux E. Equation (2 .11) imp~icit1y yields ~ as a function of A for 

fixed ~, f3 and E. However, the solutions are more conveniently analyzed 

from equation (2.10) which is a first order nonlinear ordinary 

differential equation (C.D.E.) in ~ and ~. 

where 

Equation (2.9) can be written as: 

d~ p 
d~ = Q 

------------------------- ------------- - --

(2.15) 

(2.16) 
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(2.17) 

Cri tical points in the flow occur where either (a) P - Q - 0 or, (b) P 

and Q both become infinite. 

occurs when 

The critical point C, where p ... Q "" 0, 

E! ! >. 
2 c 

(2.18) 

(2.19) 

which is known as the sonic point. Another critical point in the flow 

occurs at the origin 0, where 'ifJ - >. - 0 , and P and Q both tend to 

infinity. The flow speed matches the gas sound speed along a curve 

(called sonic line) in the (>.,'ifJ) plane obtained by setting Q = 0 in 

equation (2.17): 

'ifJsonic 

On the sonic line 2 
u 

(2.20) 

The nature of the critical points can be determined by 

linearizing equation (2.15) about these points (see appendix A). When 

the polytropic index, ~, lies in the range of physical interest (i.e., 

1 < ~ < 5/3), 0 is a node and C is a saddle point. Figure 2.1 shows 

some of the possible solution topologies for (a) 1 < ~ < 3/2 and (b) 

3/2 < ~ < 5/3. 

Physical solutions are obtained by selecting solution curves in 

figure 2.1 satisfying some appropriate initial or boundary conditions 

and inserting a shock if necessary. As an example, the Solar wind is 

represented by the transonic solution ACD in figure 2.l(a) (c.f. Parker 

1958a, 1965b). The flow is initially subsonic near ,\ ~ w (r ~ 0 ) at 

-------_.-



(a) (b) 

Figure 2.1 Solution Curves of One Fluid Polytropic Stellar Vind Equation 
Only two cases with saddle points are shown: (a) 1 < 7 < 3/2 and (b) 3/2 < 7 < 5/3 . 

o is the origin and C is the sonic point. 
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A, passes through the sonic point C, and consists of a supersonic flow 

at >. < >. (Le. 
c 

r > r ) on the segment CD. 
c 

In order to match the 

confining pressure and density of the interstellar medium, it is 

necessary to insert a gas shock somewhere in the supersonic flow region 

CD ( >. < >. ) (c.f. Holzer and Axford 1970). 
c 

Observations of the Solar wind at Earth (e.g. Axford 1985) are: 

mass loss rate, N, 1012 g s-l 

energy flux, FE' 

wind speed, uE' 

temperature, TE, 

-2 -1 0.16 erg cm s 

400 krn 

105 K 

s 
-1 

and those at the coronal base (e.g. Pneuman 1985) are: 

wind speed, 10 krn 
-1 

s 

temperature, T
b

, 

(2.21) 

(2.22) 

Since the sound speed of a polytropic gas is J1kT/m ,the sound speed 
g 

at Earth and at the coronal base are of order 30 krn s-l and 120 krn s-l 
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respectively. The observational results (2.21) and (2.22) thus imply 

that the Solar wind has a subsonic-supersonic transition between the 

coronal base and Earth. This transition is smooth and cannot involve a 

gas shock, because a subsonic-supersonic shock is in general unstable 

(see Landau and Lifshitz 1959). As a result the sonic point lies 

between Earth and the coronal base. The assertion that ACD in 

figure 2.l(a) represents the Solar wind is thus justified. 

On the transonic solution, 

E E 
c 

(5-3)') ). 
4(),-1) c 

so that the sonic point occurs at the radius 

r r 
c 

(5-3)') 
4(),-1) 

GM . 
-..£ L 

2 FE r E 

and the flow speed at the sonic point is 

[~ G::t
2 

u ... U 1!51 

C 

(~) 
o 

(2.23) 

(2.24) 

(2.25) 

Investigation of the solution topologies for one fluid polytropic winds 

indicates that )' must be chosen to lie in the range 1 < )' < 3/2 , in 

order to correspond to the Solar wind. Solutions with 3/2 < )' < 5/3 

(c.f. figure 2.l(b» violate the observed velocity at the coronal base. 

It is also noted (equation (2.24» that solutions with )' - 1 «1 have 

sonic points beyond Earth (i. e. , rc > r E ) A suggested range of )' 

consistent with observation is 1.1<),< 1.4 For instance if 

)' = 1.3 we have - 0.018 A.U. ... 3.9r and ... 157 krn s -1 , r u c sun c 

Subsonic solutions starting at ).:::: co (i.e. , r :::: 0 ) in the 

subsonic flow region III in figure 2.1(a) correspond to stellar breezes 



39 

(Chamberlain 1961). Subsonic flows in region III with negative radial 

velocities correspond to subsonic accretion flows (Bondi 1952; Mestel 

1954). It is also possible to obtain accretion flows with shocks. For 

example, the transonic solution BCE in figure 2.1 (a), starting near 

A ~ 0 (i.e., r ~ ~ ) represents an initially subsonic accretion flow, 

which becomes supersonic at A > A 
c 

(Le. , r < r ). 
c 

In order to 

match boundary conditions near the stellar surface, it is necessary in 

many cases to insert a shock in the flow in the region CE ( A > A ). 
c 

The regions II and IV in figure 2.1(a) are significant in shock 

transitions. The downstream flows are usually represented by solution 

curves in these regions. 

§2.2 Stellar Wind Solutions with Shocks 

There are two classes of asymptotic behaviour of the stellar 

wind solutions as A ~ 0 (i.e., r ~ ~). They can be deduced from the 

energy integral (2.11) with positive finite E. In one class of 

solutions: 

2 E as >. ~ 0 (2.26) 

and in the other class of solutions: 

as A ~ 0 (2.27) 

where 

( 
_ _ <-Y+1)/2) -2/<-Y-1) 

('Y- 1) E f3 (2.28) 

The solution family (2.26) gives a finite fluid velocity at infinity, 

but the density p - j/(ur2) and pressure P - Ap'Y both tend to zero 
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as r tends to infinity. On the other hand the solution family (2.27) 

gives -2 u Q r but p and P tend to finite constant values p and P 
00 00 

respectively as r tends to infinity. Thus for constant finite 

interstellar gas density and pressure the solution family (2.27) is 

appropriate at large radius (Le., small A). To match the transonic 

solution ACD in figure 2. I (a), it is necessary to insert a gas shock 

(the termination shock) in the flow somewhere in the supersonic region 

( A < A ). This is illustrated in figure 2.2. However, it should be 
c 

noted that the solution segment inside the shock ( A > Ash' i. e. , 

r < r sh ) and the one outs ide the shock ( A < Ash ' 1. e. , r > rsh ) 

have different sonic points, C, and normalised entropy constants, p. 

Figure 2.2 Sketch of a one Fluid Polytropic Stellar Vind Velocity Profile 

A rough estimate of the location of the termination shock in the 

case of the Solar wind is obtained by equating the ram pressure of the 

wind upstream to the net external interstellar pressure (Axford 1985). 

------------
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The wind velocity between Earth and the upstream side of the shock 

( rsh > r
E 

) does not vary substantially because in this region the gas 

is cold and gravitational potential is small (e.g. at Earth, the 

enthalpy and gravitational potential of the wind are one to two orders 

of magnitude smaller than the bulk kinetic energy). The wind velocity 

just upstream of the shock, u
lsh

' is essentially the same as that at 

Earth. The thermal pressure downstream is large compared with the ram 

pressure, so the thermal pressure just downstream of the shock is 

essentially the same as that of the interstellar medium. Momentum 

balance at the shock gives 

p ~ 
<Xl 

and mass flux conservation yields 

jU
1sh 

-p-
<Xl 

(2.29) 

(2.30) 

Using canonical values (e.g. Axford 1985) of the mass loss rate 

-1 
s wind velocity at Earth u ... 

E 
400 km s-l and the 

interstellar confining pressure (the sum of magnetic, cosmic ray and 

interstellar gas pressure) . p ... 1 eV cm- 3 
<Xl 

equation (2.30) gives 

rsh -= 94 A.U. 

A more exact determination of the location of the termination 

shock of a stellar wind must take into account the wind profile both 

upstream and downstream of the shock, and the full Rankine-Hugoniot 

condi tions (conservation of mass, momentum and energy flux across the 

shock). We now show how this may be carried out for the case of a one 

fluid polytropic wind model. The polytropic index 1'1 and normalized 
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entropy constant /31 upstream of the shock are in general different from 

those (12 and /32) downstream of the shock. 

On either side of the shock, specification of P, p, u at a fixed 

point in the flow uniquely determines the solution of the system of 

first order coupled O.D.E.s (2.1) - (2.3) for P, p, u. This involves 6 

constants (which can be considered as initial conditions). In addition 

to determine the full pressure, density and velocity profiles, the 

radius of the shock needs to be determined, so that overall there are 7 

constants involved. The specification of M (or j), P and p , and mass, 
<Xl <Xl 

momentum and energy flux conservation across the shock provide 6 

conditions on the flow. The seventh condition to close the system of 

equations is obtained by choosing the transonic solution inside the 

shock which is equivalent to specifying u ... u 
c 

at r == r 
c 

We now proceed to determine the radius of the shock. Let 

subscript 1 and 2 correspond to upstream and downstream quantities 

respectively from now on. The conservation equations at the shock are: 

2 2 
j1 j2 j P1sh u1sh rsh P2sh u2sh rsh EI 

2 2 P2sh P1sh u1sh + P1sh P2sh u2sh + 

1 2 11 P1sh GM 
j1 

0 '2 u1sh + (11 - 1) P1sh rsh 

1 2 12 P2sh GM 
j2 

0 

2 u2sh + 
(12- 1) P2sh rsh 

After changing to dimensionless form these equations become: 

tjJ1/2 
1 (11+1)/2 -11/2 2<11-1) 

+-/3 tjJ1sh >'sh 1sh 11 1 

tjJ1/2 
1 <12+1)/2 -12/2 2(12-1) 

+-/3 tjJ2sh >'sh 2sh 12 2 

--_._------------- ----------

(2.31) 

(2.32) 

(2.33) 

(2.34) 
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1 
E1 - 2 ~lsh - Ash 

1 ("(1+1)/2 
+ -:-("(-1....;;-~1-:-) P1 

-("(1-1)/2 2("(1-1) 
~lsh Ash (2.35) 

1 
E2 - 2 ~2sh 

(2.36) 

(2.37) 

Since the flow is adiabatic (except at the shock) and Pw ' Pw and 

j are given, it follows that P2 can be written in terms of Pw and Pw (by 

equations (2.4 and (2.13» as: 

(2.38) 

Since ~ -+ 0 as A -+ 0 (i.e., u -+ 0 as r -+ w ), the normalized 

energy flux E2 is just the normalised enthalpy at infinity: 

E _ "(2 Pw (~) 
2 ("(2-1) P- kT w 0 

(2.39) 

As we choose the transonic solution inside the shock, equations (2.23) 

and (2.37) give: 

(2.40) 

The upstream and downstream Mach numbers at the shock are given by: 

M2 
-("(1+1)/2 ("(1+1)/2 -2("( -1) 

51 P1 ~1sh 
A 1 

1 sh (2.41) 

M2 
-("(2+1)/2 ("(2+1)/2 -2("( -1) 

Ei P2 ~2sh 
A 2 

2 sh (2.42) 

and the shock compression ratio, q, is: 

q Ei 
(~1Sh) 1/2 

~2sh 
(2.43) 

Equations (2.34) - (2.43) contain the essential physics needed to 

----------- -------------------- ---------
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determine the location of the shock and the nature of the flow on both 

sides of the shock. However, in order to solve these equations for Ash 

(i.e., r sh) , it is useful to consider the cases and 

separately. We consider two cases: (a) 1 < ~l - ~2 - ~ < 3/2 and 

(b) 1 < ~l < 3/2 and ~l < ~2 < 5/3 

§2.2.1 Case 1 < ~1~2 - 7 < 3/2 

To determine -\h' we first use equations (2.34) - (2.37) and 

(2.41) - (2.43) to obtain a relation between Mi, M; and q (c.f. Landau 

and Lifshitz 1959): 

b+l) 
b-l) - q 
(~+l) 1 

q (~-l)q -

Equations (2.41) - (2.44) yield an algebraic 

~ b+1) 
r~21)(~+1)/2 = q ~-
lP (~+1) 

(~-1)q -

Substituting equations (2.43) and (2.45) into 

( 
2 ) 2/(~+1) 

~2sh - P2 (~+1)q - (~-1) 
and the energy equation (2.36) then gives 

equation for q: 

q 

1 

equation (2.34) 

A 4 ( ~ -1) / b+ 1) 
sh 

(~+1) a ( 2 )2/(~+1) A4(~-1)/(~+1) 
Ash - 2(~-1) q P2 (~+1)q - (~-1) sh + E2 

"" 0 

(2.44) 

(2.45) 

gives 

(2.46) 

(2.47) 

After determining the compression ratio from equation (2.45), the 

location of the shock can then be obtained by solving equation (2.47) 

The normalized entropy constants P
1 

and P
2 

and the normalized 

------------------------
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energy fluxes E1 and E2 involve the arbitrary reference temperature To. 

The choice of T also determines the scaling for the dimensionless flow 
o 

variables ~ and A, but does not affect the resultant physical solution 

for P, P and u. A convenient scaling is obtained by choosing T such 
o 

that 

(~) 
o 

With this choice of T , we have o 

fJI 

fJ2 
[(5-~1l 

E1 E2 

(5-3-y) Pm 
4(-y-1) Pm 

I - 2 
( llf/(1+1l (;:J -y-

(5-3-y) 
4(-y-1) 

In analyzing equation (2.45), we notice that 

a mono-::onic increasing function of q for 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(fJ /fJ )(-Y+1)/2 
2 1 is 

-y > 1 and that 

(fJ /fJ ) (-y+1)/2 ... 1 when q = 1 
2 1 This implies that fJ 2/fJ1 > 1 for 

shocks with compression ratios greater than 1. In other words the 

entropy increases across a compressive shock (see e.g. Landau and 

Lifshitz 1959). To ensure that the entropy increases across the shock 

and that the shock is compressive it is necessary that fJ
2
/fJ

1 
> 1 . 

This restriction from equation (2.38) and (2.40) then implies: 

j ( GM )-2 p3/2 -5/2 
o m Pm 

> 2(9-7-y)/(-y-1)/2 -y-3/2 (5_3-y)-(5-3-y)/(-y-1)/2 (2.52) 

Equation (2.47) in general has two roots for Ash' say, Ash1 and 

Ash2 ' Further analysis shows that Ash1 < Ac1 < Ac2 < Ash2 ' i.e., the 

upstream and downstream sonic points lie between the two roots of 

equation (2.47). Also from energy considerations, the downstream 

--------------------------------------------- -
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solution lies in region II or IV (with respect to downstream sonic 

point) in figure 2.l(a). The flows corresponding to these two Ash'S are 

sketched in figure 2.3. Given E2 and fi2 , figure 2.3(a) illustrates a 

stellar wind while figure 2.3(b) illustrates an accretion flow . 

.. 
... 

\\"" 
"I' 

""" .... "".~ - ,,' 
~ ~ "", 

........ ,,' 
", .......... ... 

... ' C
2 

••••••• 
" 

...... ,,=:: .. < ....... . ................... 

(a) (b) 

Figure 2.3 Possible Locations of the Shock with One ., 
There are two possible values of Ash: (a) corresponds to a stellar wind flow and (b) 

corresponds to an accretion flow. 

100 

80 

60 
1.1 1.3 1.5 

Figure 2.4 Radius of the Stellar Wind Termination Shock with One ., 
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As an example of the application of equations (2.45) and (2.47) 

in determining the location of a stellar wind termination shock, 

where -1 
s consider the case (the Solar wind) 

P - 1 eV cm- 3 and p _ 2*10- 26 g cm- 3 The radius of the shock is 
~ ~ 

shown in figure 2.4 as a function of the polytropic index. 

§2.2.2 Case 1 < 71 < 3/2 and 71 ~2 < 5/3 

In this case equations (2.34) - (2.37) and (2.41) - (2.43) give 

('Y2+1) 

('Y2-1) - q 

('Y1+1) 
- 1 q ('Y

1
-1 )q 

where 

a El 

Equations (2.34) and 

'Y2(~1-1) 
q - 'Y1 ('Y2-1) -('Y2+1)/2 ('Y2+1)/2 

('Y1- 1) a P2 

('Y1+1) 

Substituting (2.54) and (2.56) into (2.36) we obtain 

'Y1 ('Y2+1) 

q q - 'Y2('Y1+1) 

and this can be written as an equation in q only: 

-----------------_ .. _----_ .. _. --- ----.-----

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 



where 

(P~~1+1)/2)(~2-1)/(~2-~1) 1 

Q
1 s (P~~2+1)/2)(~1-1)/(~2-~1) (~2-1) 

[

12(11+1»)(12-1)/(12-11) 

11 (11-1) 

( (11+1)/2)(12+1)/(12-11)/4 

lft1 ( 2) 1/4 

(P~~2+1)/2)(~1+1)/(~2-~1)/4 ~l+l 

(

12) (11+1)/(12-11)/4 [(1
1
+1») (12+1)/<12-11)/4 

11 (11-1) 
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(2.58) 

(2.59) 

(2.60) 

To determine the location of the shock, we first solve equation (2.58) 

for q, and then determine Ash from equation (2.56). 

in the 

wind 

The physically relevant 

(12+1) 
range 1 < q < (1 -1) 

2 

solutions of equation (2.58) for q lie 

for (and in the range 

for 12 < 11 ). Within the range of the Solar 

parameters (e.g. -3 P = 1 eV cm , 
co 
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and M - 2*10
33 

g ) equation (2.58) in general has o 

three roots for q, say, qu' CIw and qa' Substituting these roots in 

equations (2.41), (2.42) and (2.56) shows that q corresponds to an 
u 

unstable shock, CIw to a stellar wind shock and qa to an accretion shock. 

The flow configurations corresponding to these compression ratios are 

shown in figure 2.5. 

\ ¢ '. .. ,::." ....... . 

-::?C2 

"-C' "., •• /' 
• 1 .••• • ...... . 

" 

(a) (b) (c) 

Figure 2.5 Possible Locations of the Shock with Two 7'S 
There are three possible values of '>'sh: (a) corresponds to an unstable shock, (b) 

corresponds to a stellar wind flow and (c) corresponds to an accretion flow, 

70 r-----~------,-------------_, 75 ,.------~------,-------__ ----_, 
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1.3 1 .5 1.2 1.4 

"'11 "'12 

(a) (b) 

Figure 2.6 Radius of the Stellar Vind TenainatioD Shock with Two 7'S 
In (a) 72 - 5/3 and in (b) 71 - 1.1 . 

---------------_.---- --_.'-'-'- -'-

1.6 
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As an example of the application of equations (2.56) and (2.58) 

in determining the location of a stellar wind termination shock, 

consider the case where P ... 1 eV cm- 3 
co 

The radius of the shock is shown in figure 2.6 as 

a function of (a) ~1 with ~2 = 5/3 and (b) ~2 with ~1 = 1.1 . 

Once the radius of the shock is determined, the stellar wind 

velocity profile, both inside and outside the shock, is obtained from 

the energy integral (2.11). Typical flow velocity profiles are shown in 

figures 2.7 and 2.8, where -1 
s P - 1 eV cm 

-3 and co 

In figure 2.7 ~1 = ~2 1.2 , while in figure 2.8 

~1 1.2 and ~2 - 5/3 . 

2.0 

1.0 ~ ____ --------------, V ..... 

. 0 
.0 1.0 2.0 

Figure 2.7 One Fluid Polytropic Stellar Vind Velocity Profile with One ~ 

The plotting quantities are (. r/R and u. u/uo • where R· rah - 79.9 A.V. and 

U
o 

• u
lah 

- 302 km a,l. The polytropic indices of the gas inside and outside of ~he shock are 

~l - 72 - 1.2 . 
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Figure 2.8 One Fluid Polytropic Stellar Wind Velocity Profile vith Tvo ~'8 

The plotting quantities are ~. r/R and u. uluo • where 

·1 
U

o 
• u

lsh 
- 192 km 8 The po1ytr~pic indices of the gas are 

--------------------_._----

R - rsh - 60.9 A.U. and 

~l - 1.2 and 72 - 5/3 . 
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CHAPTER 3 

THE EOUATIONS GOVERNING COSMIC-RAY 
MODIFIED STELLAR YINDS 

In Chapter 2, we established the properties of one fluid 

polytropic stellar wind flows with shocks. In this chapter we address 

the problem of the modification of a stellar wind flow arising from the 

interaction between the cosmic-rays and the stellar wind. Various 

aspects of this problem were first investigated (by means of 

hydrodynarnica1 models) by Axford and Newman (1965), Jokipii and Parker 

(1967), and Sousk and Lenchek (1969). Further work on this problem has 

been carried out by Babayan and Dorman (1984) and Lee and Axford (1986). 

In addition Axford (1972) and Suess and Dess1er (1985) have suggested 

that the cosmic-rays, by their pressure, may modify the location of the 

Solar wind termination shock. 

We first discuss the .physics of the interaction between the 

cosmic-rays and thermal plasma or gas (§3 .1); we then analyze the 

mathematical properties and singularities of the equations (§3. 2) and 

show (§3.3) that the equations can be reduced to a single nonlinear 

ordinary differential equation for the normalized fluid velocity 

variable ~ (equation (2.7) or (3.14» as a function of the normalized 
< 

spatial variable A (equation (2.7) or (3.14». 

52 
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§3.l The Equations and Their Physical Significance 

The equations of transport for cosmic-rays propagating in a 

highly conducting moving plasma, such as the Solar wind, were first 

established by Par.ker (1965a), Do1ginov and Toptygin (1966, 1967, 1968) 

and Gleeson and Axford (1967) (see also Jokipii and Parker 1967, 1970; 

Skilling 1971, 1975; Webb and Gleeson 1979). The cosmic-rays are 

coupled to the background plasma flow via scattering with 

magnetohydrodynamic and plasma waves or turbulence 
, 

(such as Alfven 

waves) travelling through the plasma. The main physical mechanism by 

which the cosmic-rays are scattered is thought to be gyro-resonant 

interaction with waves of wavelength comparable to the particle 

gyro-radius (see e.g. Jokipii 1966, 1967). The net effect is that the 

cosmic-rays tend to be convected along with the background plasma 

(fluid) flow as they diffuse through the magnetic irregularities carried 

by the fluid. In the mean wave frame, the cosmic-rays can change their 

energy due to interaction with random electric fields. This process is 

known as second order Fermi acceleration (see e. g. Hall and Sturrock 

1967; Melrose 1980). Second order Fermi acceleration also results from 

particle scattering between Alfv~n waves travelling in opposite 

directions in the fluid frame (see Skilling 1975). In the Solar wind, 

the energy changes of particles from this mechanism can usually be 

neglected, and the scattering of the cosmic-rays in the wave frame to a 

first approximation is magnetostatic, so that the cosmic-rays conserve 

their energy, but change their momentum during scattering. Viewed from 

a stationary inertial reference frame, magnetostatic scattering can 
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result in a net cosmic-ray energy change, with the cosmic-rays gaining 

energy in head-on collisions with the scatterers and losing energy in 

overtaking collisions. 

At a hydrodynamical level, the cosmic-rays may modify the 

background flow (thermal plasma or gas) via their pressure gradient, 

VP , with the net energy transfer rate (per unit volume) from the fluid 
c 

(via the waves) to the cosmic-rays being given by 
.. .. 
V·Vp ,where V is 

c .. .... .. 
the velocity of the scattering wave field ( V = u + V ,where u is the 

w .. 
velocity of the fluid and V is the phase velocity of the waves relative 

w 

to the plasma). This hydrodynamica1 description of the interaction 

between the cosmic-rays, waves and thermal fluid has been used 

extensively in self-consistent hydrodynamical models of cosmic-ray shock 

acceleration (e.g. Axford, Leer and Skadron 1977; Drury and Vo1k 1981; 

Eichler 1981; Axford, Leer and McKenzie 1982; McKenzie and Volk 1982; 

Webb 1983; VB1k, Drury and McKenzie 1984; Achterburg, Blandford and 

Periwa1 1984; Webb, Drury and Vo1k 1986). 

The above hydrodynamical model is adapted in ,the present chapter 

to describe the self-consistent interaction of cosmic-rays with stellar 

wind flows. As in the simpler hydrodynamical models of cosmic-ray shock 

acceleration (e.g. Drury and Vo1k 1981; Axford, Leer and McKenzie 1982), 

we assume that the waves may essentially be regarded as magnetostatic 

scattering centres embedded in the flow ( IV I « 1t;1 ) w 
and that the 

only effect of the waves is to determine the hydrodynamica1 cosmic-ray 

diffusion coefficient, ~. Thus for example, the modification of the 

fluid flow due to the wave pressure force is neglected. 
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For steady state spherically symmetric winds, the interaction 

between the wind and cosmic-rays is governed by the total mass, momentum 

and energy equations for the system: 

1 d 2 
2' dr(r Pg u) 
r 

dP 
- ~dr 

dP 
c 

dr 

o 

GM o 
- P -2 

g r 

~ ~[r2 P u (.! u 2 + 'Yg ~ _ GMo) + r2 Fc] 
2 dr g 2 ('1 -1) P r 

r g g 

supplemented by the cosmic-ray energy equation 

~ ~(r2 F ) 
2 dr c 

r 

dP 
c 

u -dr 

(3.1) 

(3.2) 

o (3.3) 

(3.4) 

describing the energy transfer between the wind and cosmic-rays, where 

F E! 
C 

'Yc 1 dPc 
('1 -1) Pc u - ('1 -1) ~ dr 

c c 

is the cosmic-ray energy flux. In equations (3.1) - (3.5), 

(3.5) 

P , p , u 
g g 

and '1 denote the thermal gas (or plasma) pressure, density, radial flow 
g 

velocity and polytropic index; '1 is the cosmic-ray polytropic (or c 

adiabatic) index. The cosmic-ray energy density, E , and pressure, P , 
c c 

and '1 are related by the polytropic relation (see appendix B) 
c 

E 
c 

1 P 
('1 -1) c c 

(3.6) 

In the model the cosmic-rays are considered to be a hot, low 

density gas with a pressure comparable to that of the thermal gas (the 

background flow), but with negligible density and mass flux. Equation 

(3.2) shows that a wind flow will be decelerated by a positive 

dP 
cosmic-ray pressure gradient ( drc > 0 ), as occurs, for example, in the 

Solar wind. Note also in equation (3.4) that the net energy transfer 

--------------------------------- --------



56 

rate (per unit volume) from the wind to the cosmic-rays is 
dP 

c 
u dr (c. f. 

Jokipii and Parker 1967). A derivation of the cosmic-ray energy 

equation (3.4) is given in appendix B. 

By combining the cosmic-r.ay energy equation (3.4) with the total 

energy equation (3.3), we obtain the energy equation for the thermal gas 

in the form: 

-.! !!.+2 (1 2 "Yg 
Pg u '2 u + 2 dr ("Y -1) r g 

showing explicitly that the rate 

cosmic-rays (per unit volume) is 

P _ G:O)] 
dP 

~ c (3.7) - u--
Pg dr 

at which gas loses energy to the 

dP 
c 

u -dr Eliminating the cosmic-ray 

pressure gradient term in equation (3.7), by means of the momentum 

equation (3.2) and using the mass continuity equation (3.1) we find 

o (3.8) 

which shows that the gas entropy is conserved following the flow and 

(except at gas shocks where 

P A 
g g 

'Y 
P /p g 

g g 

(3.9) 

jumps discontinuously), where A is 
g 

a constant dependent only on the gas entropy. Equation (3.8) is the 

energy equation for the gas in the frame moving with the fluid (the 

co-moving frame). This equation shows that there is no energy transfer 

between the cosmic-rays and thermal plasma in the fluid frame. This 

result is to be expected since the cosmic-rays are assumed to scatter 

off magnetostatic irregularities embedded in the flow. However, there 

is a momentum transfer between the cosmic-rays and thermal plasma in 

this frame, and this momentum transfer results in the energy exchange 

-~~---~-----~-----------.~------
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term 
dP c 

u ---dr in the fixed frame cosmic-ray energy equation (3.4). 

The cosmic-ray energy equation (3.4) can be re-written as: 

--.! ~(r2 Ie dP c) dP c 1 d (2 ) P 0 
2 dr dr - u dr - 'Yc 2 dr r u c 

r r 
(3.10) 

or alternatively, using the mass continuity equation (3.1), we obtain 

the cosmic-ray energy equation in the thermodynamical form: 

u P:c 
:r(PcIP:

c
) _ ~ :r(r2 Ie ::c) 

r 
o (3.11) 

Note that P is the density of the thermal gas, and not the cosmic-ray 
g 

mass density (which is assumed to be negligible). 

The nature of the cosmic-ray interaction with the thermal plasma 

becomes relatively transparent in the limits Ie'" Q) and Ie'" O. In 

--.! ~ (r2 Ie dP c) 
2 dr dr 

r 
the limit Ie ... Q) , the diffusive term in equation 

(3.10) can remain finite only if 
dP 

c --- ... 0 , and the diffusive term is dr 

then essentially balanced by the term In this 

limit there is no interaction between the cosmic-rays and thermal plasma 

(the scattering mean free path for the cosmic-rays A'" Q) ), and since 

dP 
dr c ... 0 , equations (3.1) (3.3) reduce to the one fluid polytropic 

stellar wind equations (2.1) - (2.3). 

For Ie identically equal to zero, equation (3.11) implies that 

the cosmic-rays are compressed adiabatically following the flow. With 

Ie a 0 , equations (3.1) - (3.11) reduce to the equations governing two 

fluid polytropic stellar winds, which have been investigated by Summers 

(1982). The work of Summers concerned the nature of electron-proton, 

------------------------------
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two fluid stellar winds in which the electrons and protons are 

polytropic gases. However, the cosmic-ray stellar wind equations with 

may exhibit a radically different behaviour than the same 

equations with ~ small, (but not zero), especially in the regions of the 

dP 
flow where c 

dr becomes large (e.g. as in a boundary layer). Thus for 

example if 
dP 

and c 
dr 

-+ <Xl in equation (3.11), in such a way that 

_1 _d (r2 '" dPc) 2 dr ~ dr is finite, then clearly the cosmic-rays cease to behave 
r 

adiabatically. This phenomenon is related to the occurrence of boundary 

layers in singular perturbation theory for differential equations, in 

which the behaviour of the equations may be markedly different in 

regions where the higher order derivatives are large (see e. g. Bender 

and Orszag 1978; Kevorkian and Cole 1981). Overall then, in the limit 

~ -+ 0, the cosmic-rays are essentially compressed adiabatically in 

-.! ~(r2 ~ dP c) 
2 dr dr 

r 
regions of the flow where is sufficiently small. 

The limit ~ -+ 0 (A -+ 0 ), corresponds to a strong interaction 

between the cosmic-rays and thermal plasma, whereas the limit 

( A -+ <Xl ) corresponds to a weak interaction between the two components. 

From equations (3.1) and (3.3) we obtain the conserved mass 

flux, j, and total energy constant, E: 

j 
2 (3.12) lEI Pg 

u r 

1 2 "1g P GM 
E + Ji 0 

lEI "2 u 
("1 -1) Pg 

r 
g 

"1c P 1 2 dP c r ~ c (3.13) + ----
(-y -1) Pg 

("1 -1) j dr c c 
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Since the total energy of the system is conserved (c.f. equation 

(3.13», a change in the energy of one component- of the system results 

in compensating energy changes of the other components. 

§3.2 Properties and Singularities of the Equations 

To analyze the mathematical properties of the equations we 

introduce the dimensionless variables: 

IE - --.S GMo (m ) 
r kT 

o 
P 

c :: (it;:) (3.14) 

The dimensionless variables ). and tP, and constants m , k and Tare 
g 0 

defined in. equation (2.7) et seq, and Po is defined by equation (2.12) 

or (3.15). In terms of these variables, the mass flux (3.12) and the 

adiabatic gas law (3.9) yield the gas density P and pressure P in the 
g g 

form: 

where 

.1. -1/2 ).2 
Pg - Po If' 

1 ( m ) -1 (-y +1)/2 --y /2 
P - -- P --.S P g tP g 

g "I 0 kT g 0 

E! • (GM ) -2 (J) -3/2 
Po J 0 kT 

o 

[ 

(-y -1) m ]2/(-Yg+1) 
p IE -Yg Ag Po g (kT

g
) 

o 

2"1 
). g 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Similarly the momentum equation (3.2), the energy integral (3.13) and 

the cosmic-ray energy equation (3.4) become: 

1 ( (-y +1)/2 -(-y +1)/2 2(-y -1») d.l• 

2 1 - P g tP g ). g d~ 

(-y +1)/2 -(-y -1)/2 (2-y -3) -2 dPc 1 - 2 P g tP g ). g - tP1/ 2 ). d)' (3.19) 
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E 

(3.20) 

dP dP 
d (- C) + .1.1/2 >. -2 --E. .,,1/2 >. - 2 (21M!.) P 
d>' IC d>' II' d>' - "( c II' 'I - 2,p d>' c o (3.21) 

where 

E m E (k;g) 
o 

(3.22) 

(3.23) 

Only two of the equations (3.19) - (3.21) are independent. In 

order to analyze the singularities (and mathematical properties) of 

equations (3.19) (3.21) it is useful to re-write the equations in an 

autonomous form. Equations (3.19) and (3.20) can be written as an 

autonomous system, in which >., ,p and P depend on a dummy time variable, 
c 

s (we call this the Third Order Autonomous System). Alternatively, 

equation (3.19) and (3.21) can be written as a Fourth Order Autonomous 

System in which >., ,p, P and D (D c c c 

functions of a dummy time variable, s. 

I dPc 
-:-( "(--=-=-=-1-:-) IC d>' ) are regarded as 

c 
th One of the advantages of the 4 

order autonomous system is that the energy integral (3.20) may be used 

to check the accuracy of the numerical scheme to integrate the system of 

equations. 

rd We now show that the 3 order autonomous system has a line of 

- th singularities in (>',,p,P ) space, whereas the 4 order autonomous system 
c 

has a two dimensional hypersurface of singularities in (>.,,p,P ,0 ) 
c c 
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space. This behaviour is in contrast to the one fluid polytropic 

stellar wind model of chapter 2, where the equations have two singular 

points only, namely, the sonic point at (equations 

(2.18) and (2.19», and the origin (A,~) - (0,0) 

§3.2.1 The Third Order Autonomous System 

By introducing a dwnmy time variable, s, equations (3.19) and 

(3.20) 

where 

can be written in the autonomous form: 

P EO 1 - 2 

R Ei 

d 

[; 1 [:J == 
ds 

c 

(-y +1)/2 
f3 g 

-(-y -1)/2 
~ g 

(2-y -3) 
A g _ ~1/2 A- 2 R 

(-y +1)/2 -(-y +1)/2 2(-y -1») 
f3 g ~ gAg 

, 

1 (- 1 (-y -1) - E - - ~ + A 
1 (-y +1)/2 

..,-( -y~_ 1:-:-) f3 g c - 2 
Ie 

-(-y -1)/2 2(-y -1) 
~ gAg 

g 

-Yc ~1/2 
(-y -1) 

c 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

Critical points of the system (3.24) occur when (P,Q,QR)T is a 

zero vector, i.e., when P == Q == 0. The third component of the vector 

(P ,Q,QR) T is then automatically zero, and in general R p6 ° at a 

critical point. Using expressions (3.25) - (3.27) for P, Q and R we 

find that the critical points lie on a line (we called it the Critical 

Line) in (A,~,P ) space, which can be expressed in a parametric form in 
c 

terms of a parameter, T, as: 

A Ei T 
C 

(3.28) 
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4(7 -1)/(7 +1) 
7/J .. 7/Jc 

E fJ T g g (3.29) 

(7 -1) 

(7 :1) 
3 1 - -1 8/(7 +1) 

P P c T g E 
" T ('"( -1) " fJ. c cc 7c c c 

+ E fJ- 1/ 2 
4/('"( +1) 1 (7g+1) 1/2 47 /('"( +1) 

T g 
- 2" (7 -1) fJ 

T g g 

g 
-1/2 (7 +5)/(7 +1») + fJ T g g (3.30) 

In physical terms, the critical line is the locus of points in (A,7/J,P ) 
c 

space along which the fluid speed matches the thermal gas sound speed 

(Le. , 
2 

u "" 7gPg/Pg) and the acceleration of the fluid is zero (i.e., 

A typical critical line is shown in figure 3.1 for the case 

7 ... 1.2 , 7 "" 4/3 , fJ ... 1/2 , ~ 0= 10 and E "" 1 The projection g c 

of the critical line on the (A,7/J) plane (figure 3.1(a» is simply the 

sonic line where 
'2 

... 7gPg/Pg gas u 

The qualitative behaviour of the solution curves of the system 

(3.24) near the critical line (3.28) - (3.30) can be studied by 

linearizing the system of equations around this line. The linearized 

system of equations can be represented in matrix form: 

[ 

A-A ] 
:s _7/J-~: 

P -P c cc 

where 

E! 

... ~3 [ ~~~: ] 

P -P c cc 

Q,p 

P7/J 

(QR)7/J 

Qp 
c 

Pp 
c 

(QR)p 
c c 

(3.31) 

(3.32) 

the subscript c denotes the entries of the matrix are evaluated on the 

------------------------- ------- -----------
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1/J .0 ................................................... .. 

-1.5 
.0 2.0 

.\ 
(a) (b) 

1.5 1.5 

~ .0 ~ .0 

-1.5'----'-----U---'---I -1.5'----........... ----'------l 
.0 2.0 .0 1.5 

(c) (d) 

Figure 3.1 Critical Line of the 3rd Order AutOlKM01la SY8tell 

The critical Une is plotted <a) in the 3-D (~.~.Pc) apace and (b) - (d) on the 2·D 

projections on the (~.~). (~.Pc) and (~.Pc) planes respectively. 

------------------------------------------ ---------.--------------------------------



64 

critical line, and the notation QA E ~~ , etc., has been adopted. For 

simplicity, we assume that the cosmic-ray diffusion coefficient, ~ (or 

~) is constant. The partial derivatives in the matrix ~3 are then given 

by: 

I -1 
QA c - -(~g-l) T 

1 -4(~ -l)/(~ +1) 
(~ +1) p-1 T g g 

4 g 

Qp I - 0 
c c 

PAle ... -2 (2~g+1) 
-2(3-~ )/(~ +1) 

P T g g + 4 
-1 

T 

_ 2 (~ -1) E p1/2 
c -

- (~ +5)/b +1) 
T g g 

~ 

(3~g-1) 1 3/2 -3(3-~ )/(~ +1) 
+ ( 1) (~ -1) - P T g g 

~ - c -g ~ 

-4/(~ +1) 
- 3 (~ -1) 1 pl/2 T g 

c -

P I = 1/J c 

+1 
2 

1 
- 2;: 

+ 1 
2 

~ 

-1 -1 
(~ +1) T - P 

g 

-4(~ -1)/(~ +1) 
T g g 

b -1) E p-1/2 
c -

-4~ /b +1) 
T g g 

~ 

(~g+1) 1 1/2 -4/b +1) 

(~ -1) (1c -1 ) = P 
T g 

g ~ 

(~ -1) 1 p-1/2 
-(3~ -1)/(~ +1) 

T g g 
c -

~ 

Pp I 
1 -8/(~ +1) ... ~'C=PT g 

c c ~ 

(QR)AIC ... (QAR)Ie 

(QR)1/Jl c "" (~R)lc 

(QR)p I - (Qp R)l c c c c 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

where the symbol I denotes evaluation of the derivatives on the 
c 
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cri tical line. 

The character of the solution curves in the neighbourhood of a 

given point on the critical line depends on the eigenvalues of the 

matrix ~ (3.32) evaluated at that point. The eigenvectors 

corresponding to these eigenvalues define a set of preferred 

(asymptotic) directions for the solution curves as they approach the 

-+ 
critical point. The eigenvector X and the corresponding eigenvalue ~ 

~ 

satisfy 

-+ -+ 
A3 X == ~ 

-~X 
~ 

(3.42) 

-+ 
solution for X we require 

I-' 
For a non-trivial that I-' satisfy the 

eigenvalue (or characteristic) equation, 

o (3.43) 

where 1 is the identity matrix. Using the matrix ~3 in equation (3.32), 

the characteristic equation (3.43) can be reduced to 

~ [~2 - (QA + P~ + Qp R)l c I-' 
c 

+ (QA P~ - ~ PA + Qp P~ R - Pp ~ R)l c ] 
c c 

o (3.44) 

Using the partial derivatives (3.33) - (3.41) in equation (3.44), we 

obtain 

I-' Ell 0 
o 

~± e ~ [b ± (b2 - 4 c)1/2] 

for the eigenvalues, where 

------------_. __ ._-_ .. _-- . __ .. _._- - .... --.------ --_._-- ---_. --_ ... 

(3.45) 

(3.46) 
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(3.47) 

( ) 

-4-y /(-y +1) 
+ ~ (-Yg+5) (-y -1) - -y (-y +1) ! fi-

1
/

2 
r g g 

c c g ~ 
(3.48) 

and the parameter r specifies the location along the critical line. 

It is instructive to consider the nature of the critical line 

(3.28) - (3.30) in the limit as ~ ~ ~ (i.e., ~ ~ ~ ) in which there 

is a weak interaction between the cosmic-rays and the background plasma. 

In this limit, it is necessary that r be restricted to the neighbourhood 

of 

r (3.49) 

in order that the cosmic-ray pressure on the critical line (see equation 

(3.30» remain finite. substituting the value (3.49) for r into 

equations (3.28) and (3.29), we find that the physically relevant part 

of the critical line, shrinks to the critical point (A ,~ ) where 
c c 

A 
c 

(-y +1)/(5-3-y ) 
(2fi) g g 

1 
- - A 2 c 

(3.50) 

(3.51) 

This is the critical point of the one fluid polytropic stellar wind 

discussed in chapter 2 (equations (2.18) and (2.19». This is expected, 

since as ~ ~ ~ , there is no interaction between the thermal plasma and 

---------- ----------- ------ ---- ---- -----------------_._------
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the cosmic-rays, so that the cosmic-rays cease to influence the 

background flow. In this limit, the eigenvalues (3.46) approach the 

eigenvalues (A.8) characteristic of one fluid polytropic stellar winds, 

and the critical point is a saddle point for 1 < 'Y < 5/3 . g 

In general, different parts of the critical line (3.28) - (3.30) 

correspond to different kinds of critical points. As mentioned 

previously, the behaviour of the solution curves near the critical line 

depends on the eigenvalues and the directions of the eigenvectors of the 

matrix ~ in (3.32). Since the eigenvalues J.L and J.L+ are in general o _ 

distinct (see equations (3.45) - (3.48)), the matrix ~3 can be 

diagonalized almost everywhere (except perhaps at some points where 

2 0 ) along the critical line. b = 4 c or c = So in general ~3 has 

-+ -+ -+ 
three independent eigenvectors X and X The eigenvector X 

J.Lo J.L± J.L o 

corresponding to the eigenvalue J.L = J.L
o 

critical line (see appendix C). 

o is in fact tangent to the 

The values of J.L and J.L , at a particular critical point, depend 
+ -

on the values of band c in equations (3.47) and (3.48) at the point. 

The critical point is: 

(a) a node if c > 0 and b
2 

- 4 c > 0 , so that J.L and J.L 
+ 

are real and of the same sign; 

(b) a focus if b
2 

- 4 c < 0 , so that J.L+ and J.L are complex 

conjugates; or 

(c) a saddle point if c < 0 and 
2 

L - 4 c > 0 , so that J.L+ 

and J.L are real and of the opposite sign. 

Figure 3. 2 shows b, c and 
2 

b - 4 c as functions of the 
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.0 

2 
b -4c 

-4.0 L-~~ __ ~ __ ~ __ ~ __ ~ ____ ~ __ ~~ 

.0 4.0 8.0 

r 

Figure 3.2 The Graphs of b, c and b2 - 4c as Functions of 'r 

parameter 'T, which determines the location of a particular critical 

point on the critical line, for the case -y - 1.3 , g 
-y -= 4/3 , 

c 

f3 == 1/2 , ~ "" 1 and E -= 1 The functions band c are seen to be 

positive at small T, changing to negative at larger 'T, and tend to zero 

as 'T tends to positive infinity. The function ( b2 - 4 c ) changes from 

positive to negative then to positive with increasing 'T ( T > 0 ), and 

tends to zero as 'T tends to positive infinity. If the normalized 

diffusion coefficient, ~, is sufficiently small, b2 - 4 c is positive 

for all 'T. The critical point is then either a node or a saddle point. 

The curves in figure 3.2 show that as we move along the critical line 

the critical points are nodes at small 'T ( 'T > 0 ), changing to foci at 

larger 'T, and then to saddle points at still larger 'T. 

The autonomous system (3.24) can be integrated numerically as an 

initial value problem by using a Runge-Kutta integration routine. 

Typical solution curves are shown in figure 3.3 for the case -y == 1.2 , 
g 



l/J .0 

-1.5 
.0 2.0 

A 
(a) (b) 

1.5 1.5 

-
~ .0 .................................................... . ~ .0 r.:". ................................................ .. 

-1.5 I--_--'-__ -'--_~ __ ...J -1.5 L--__ ......... __ -'-__ .-l 

.0 2.0 .0 1.5 

(c) (d) 

Figure 3.3 Solution Curves of the 3rd Order AutonolllO\w System 

Some of the solution curves are plotted (a) in the 3·D (~.~.Pc) space and (b) - (d) on 

the 2·D projections on the (~.~). (~.Pc) and (~.Pc) planes respectively. The dotted line in (a) 

is the critical line of the system. 
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'Y c - 4/3, /3... 1/2, It - 10 and E - 1 The solution curves were 

generated by varying the initial values of (A,~,PC) at s - 0 , where s 

is the dummy time variable in equation (3.24). For large enough ~ (e.g. 

~ > 10 ), the solution curves in the (A,~) plane at large enough A are 

similar to the one fluid polytropic stellar wind solution curves 

displayed in figure 2.1 (a) (compare figures 2.1(a) and 3.3(a». 

However, at smaller A, the supersonic solution curves in figure 3.3(a) 

spiral about the critical line (the critical points in this region are 

foci), and it is impossible for these curves to extend to A - 0 (i.e., 

r=co). This behaviour is in contrast to the one fluid polytropic 

stellar wind solutions in figure 2.1 (a) where the supersonic solution 

curves in region I, tend to a finite value of ~ as A -+ 0 . The 

solution curves in both figure 2.1(a) and 3.3(a) both exhibit saddle 

point behaviour near the sonic point of the one fluid polytropic stellar 

wind. rd Further discussion of the 3 order autonomous system (3.24) is 

given in appendix C. 

§3.2.2 The Fourth Order Autonomous System 

rd th Instead of a 3 order autonomous system we can use a 4 order 

one to analyze the system of equations (3.19) and (3.21). The procedure 

rd and conclusions are basically the same as in the 3 order system, so we 

simply state the results. Setting 

D E! 

C 
(3.52) 

th equations (3.19) and (3.21) can be written as a 4 order autonomous 



system: 

where 

,x Q 

d ,p P 

ds P 
1 -("I -1) - D Q c c - C 
Ie 

D R c 

("I +1)/2 -("I -1)/2 (2"1 -3) 
P E! 1 - 2 fJ g ,p g ,x g 

- ("I -1) ! ,p1/2 ,x-2 D 
c - C 

Ie 

1 ( ("I +1)/2 -("I +1)/2 2("1 -1») 
Q E! - 1 - fJ g ,p g ,x g 

2 

R e ,p1/2 ,x-2 (2 "Ic ,x-1 P Q _ ! D Q 
("I -1) c - c 

C Ie 

1 "Ic -1 - ) 
- 2 ("I -1),p Pc P 

c 
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(3.53) 

(3.54) 

(3.55) 

(3.56) 

Critical points occur when P = Q ~ 0 (note R is zero if P = Q = 0 ), 

and they lie on a surface (we called it the critical surface). The 

critical surface, written in terms of two independent parameters rand 

0, is given by: 

,x "" ,x E! r (3.57) c 
4("1 -1)/("1 +1) 

,p ... ,pc E! fJ r g g (3.58) 

P - P e 0 (3.59) c cc 

D D 
1 _ (-1/2 4/("Ig+1) - &a 

b -1) Ie fJ r c cc c 
1/2 (3"1 -1)/("1 +1») 

- 2 fJ r g g (3.60) 

Figure 3.4 shows the (,x,,p) , (,x,D), (,p,D) and (,x,,p,D ) projections of c c c 

the critical surface for the case '"'I = 1.2, '"'I = 4/3, fJ = 1/2 and 
g c 

Ie -= 10 . 
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l/J .0 .................................................... . 

-1.5 
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.\ 
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Dc .0 .............................................. , ... . 
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(c) (d) 

Figure 3.4 Crit1cal Surface of the 4th Order AutODOlIOua System 

The critical line is plotted (a) on the 3-D projection on the (>.,.p,Dc ) space and 

(b) - (d) on the 2-D projections on the (>.,.p), (>.,Dc ) and (.p,Dc ) planes respectively. 
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Linearizing the system (3.53) about the critical surface, we 

obtain: 

where 

~4 E5 

Q~ 

p~ 

c D Q 
- c 

~-~ c 
d tP-tPc 
dt P-P c cc 

o -0 c cc 

~ 
PtP 

~-~ c 
tP-tPc 

P -P c cc 

o -0 c cc 

Qp 
c 

Pp 
c 

c D Q c D Q 
- c - c 

[(~ -1)_ ] 

IC ~ 

[(~ -1)_ ] ['~ -1)_] 

IC tP IC P 
R~ R Rp c 

l/J c 

(3.61) 

Qo 
c 

1)) 
c 

['~ -1)_ ] (3.62) 
c D Q 

- C 
IC -D 

Rn 
c 

c c 

and the subscript c denotes the entries of the matrix are evaluated on 

the critical surface. The various partial. derivatives in the matrix 

(3.62) (for constant ~) are: 

Qp I -= 0 
c c 

Qo I = 0 
c c 

P I = 
~ c 

-2(3-')' )/(')' +1) 
-2 (2')' -1) P r g g 

g 
+ 2 

P I = tP c 

-1 1 -1 -4(')' -1)/(')' +1) 
')' r - - p r g g 

g 2 

Pp I - 0 
c c 

-1 
r 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

(3.71) 



(-Yc- 1 ) ~ Dc Q) I -
K. .,p C 

1 - 1 (-y -1) - (D 0.) 
c - c'lp C 

K. 

( -y -1) ! D Ql I ... 
c K: c Jp c 

1 - 1 (-y -1) - (D Qnp ) 
c - c C 

K. C c 

(-y -1) ! D Q) I - (-y -1) ! (D Qo )1 
c K: cDc C K: C c C 

c 

( 
-2(3--y )/(-y +1) -1) 

-2 P r g g + r 

-1/2 -(5-y +1)/(-y +1») - p r g g u 

( 
-1 -1 -4(-y -1)/(-y +1») 

2r -fJ r g g 1 (-y +1) 
1 

g 
R.,p c ... 4 (-y -1) 

c 

+ ! c 2 p-1/2 r g g 
-y ( -(5-y +1)/(-y +1) 

4 (-yc -1) 

-3/2 -4(2-y -1)/(-y +1») 
+ p r g g u 

Rp I -= 0 
c C 

I 1 1-4 
R::- - --y -r u 
-1) 2 c-

C C K. 

The eigenvalues of the matrix ~ (~.62) are given by: 

2 2 
~ (~ - b' ~ + c') = 0 

where 

b' e 
-1 

r 
-1 -4(-y -1)/(-y +1) 

! p r g g 
2 

1 1-4 +--y -r u 2 c-
K. 

1 2 1 -(5-y -3)/(-y +1) 
c' - - (3-y -1) r- p- r g g 

2 g 
1 1 1/2 -(-y +5)/(-y +1) 

+ - (-y +1) - fJ r g g 
2 g K: 

1 1 -1/2 -4-y /(-y +1) 1-5 
- - (-y +1) = P r g g + -y - r u 4 g c -

K. K. 
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(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

We can integrate the autonomous system (3.53) numerically and 
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Figure 3.5 Solution CurveD of the 4th Order AutonDllOUB Syst"'" 

Some of the solution curves are plotted (a) - (b) on the 3-D projections on the (~.~.Pc) 

and (~.~,Dc) spaces respectively, and (c) - (d) on the 2-D projections on the (~,~) and (~,Pc)' 

The dotted line in (b) is the projection of the critical surface of the system on the (~.~.Dc) 

space. To be continued··· 
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Figure 3.S Solution Curves of the 4th Order Autonoaous System 
Cont'd. Some of the solution curves ere plotted (e) - (h) on the 2·D projections on the 

(~,Dc)' (¥,Pc)' (~,Dc) and (Pc,Dc ) planes respectively. 

--~ ..... _. ~ ... -~ ._---_ .. _---------------
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typical results with 'Y - 1.2 , g 
'Y -= 4/3 , c f3 - 1/2 and Ie'" 10 are 

shown in figure 3.5. 

The maj or difference between the 3 rd order system and the 4th 

rd order system is that in the 3 order system we have to specify the 

- th normalized total energy flux E while in the 4 order system E is a free 

parameter determined by equation (3.20). If we substitute equations 

(3.20) and (3.59) into equation (3.60), then we obtain the critical line 

rd of the 3 order system (equations (3.28) - (3.30». We can choose 

equation (3.30) instead of equation (3.60) to specify P on the critical 
c 

th surface in the 4 order system, and then consider E as one of the 

parameters (the other one is r) in the parametric form of the critical 

surface. 

§3.3 Reduction of the Equations to a Second Order 
Nonlinear Ordinary Differential Equation 

for W with respect to ~ 

If the normalized energy flux E (defined by equation (3.20» (or 

energy constant E equation (3.13» is given, then the thermal plasma 

cosmic-ray system can be written as a 2nd order nonlinear D.D.E. in ~ 

with respect to A. 

From equations (3.19) and (3.20), we have 

dP c 
HI (3.82) dA 

dP 
~ t/J

1/2 -2 c P H2 (3.83) dA + 'Y A c C 
Ie 

where 

------------------ ----------
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[ 

(~+1)/2 -(~ -1)/2 (2~ -3) 
H1 - ~-1/2 A2 1 - 2 P g ~ gAg 

1 ( (~+1)/2 -(~ +1)/2 2(~ -1») ~] 
- 2 1 - P g ~ gAg dA 

H2 E ( ~ C - 1) 1. (E - ~ ~ + A 
It 

(3.84) 

1 (~+1)/2 -(~ -1)/2 2(~ -1») 
- (~ -1) P g ~ gAg 

g 
(3.85) 

Equation (3.83) can be rearranged to yield: 

p = 1- ~ ~-1/2 A2 (H - H
1

) 
c ~c 2 

(3.86) 

Differentiating this equation by A and using equation (3.82), we obtain 

a 2nd order nonlinear O.D.E. in ~ and A: 

:A(~C ~ ~-1/2 A2 (H2 - H1») = H1 (3.87) 

Substituting H1 and H2 from equations (3.84) and (3.85), equation (3.87) 

can be written as: 
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- 2 (~ -1) ~1/2 ~-3 + 2 (2~ -3) ~-1/2 ~-2 
c c 

(~ -~) (~+1)/2 -~ /2 (2~ -5») 
c g p g ~ g ~ g 
(~ -1) g 

- 4 

- 0 (3.88) 

Equation (3.88) may be written in a simpler form if we choose 

the normalized density, 

P E ~ "" ~-1/2 ~2 
Po 

as the dependent variable,so that equation (3.88) becomes: 

:~[;o ~ (Vl)/2 ;~g _ ;-1 ~4) ~l 

+ (-2 ~ P + (~c-l) E - ~ (~c+1) p-2 
(~ -~) b +1)/2 (~-1») dp + c g p g p g 
(~ -1) d~ 

g 

( 
- 2 d~ -2 d~ ,3 --1 3 -) 

+ 6 Ie ~. - d~ P + 2 d.\" + 2 p .\ - p 

"" 0 

(3.89) 

(3.90) 

If E is not given, then the thermal plasma cosmic-ray system can 

only be reduced to a 3rd order nonlinear D.D.E. in ~ with respect to .\. 

This 3
rd order equation is obtained by substituting equation (3.82) into 

equation (3.21) and then differentiating the resultant equation with 

respect to ~: 

H ~[...! .,.- 1/ 2 .\2 (2 ~ -1 _ 1:. .1.- 1 d~J-l 
1 "" d.\ ~ ~ 2 ~ d.\ 

c 

. [:~ (;0 H1) + ",1/2 ~ 2 
H1) 1 (3.91) 

Solving equations (3.88) or (3.90) with appropriate boundary 

conditions is not an easy task. However, these equations might be 

useful in finding asymptotic solutions as ~ .. 0 or .\ .. Q) , or in 
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finding approximate solutions as or as Ie -I- co , etc .. For 

example, if ;C is constant and independent of A, and if at 

A - 0 (i.e., r - co ), then the asymptotic behaviour of the normalized 

density p as A -I- 0 

p 

(Le., r -I- co ) 

- (-y +1)/2 --y 
f3 g p g 

is given by (see appendix D) 

[p~ - ::cl~_o) ~ + ... J (3.92) 

It may well be possible to determine the modification of the 

stellar wind velocity profile by the cosmic-rays by solving equations 

(3.88) or (3.90) for ~ or p in terms A, and subsequently determining the 

radial variation of the cosmic-ray pressure from equation (3.86). 

However, we do not use this approach, but instead use a numerical method 

based on iteration of the equations (3.4) and (3.13) (or equivalently 

equations (3.20) and (3.21», using the test particle solution (in which 

the cosmic-rays are assumed not to affect the flow) to start the 

iteration (chapter 6). We also use a perturbation method which is 

applicable when the cosmic-ray pressure is small (chapter 5). 

--------------.---~-- - -_._- .-~- -_._- -_. _._-_. -~---- -- - .. --~-~- ----~- ~-. 



CHAPTER 4 

THE TEST PARTICLE PICTURE 

Before consisdering the full nonlinear modification of the 

stellar wind flow by the cosmic-rays, it is instructive first to 

consider the test particle limit in which the cosmic-ray pressure 

gradient is sufficiently small, that the cosmic-rays do not 

significantly modify the wind flow. This limit applies if the 

cosmic-ray mean free path is sufficiently large, or the cosmic-ray 

pressure is sufficiently small. The cosmic-rays may then be regarded as 

test particles propagating in the given background flow (the stellar 

wind flow), and the cosmic-ray pressure and energy flux variation with 

radial distance are determined by solving the cosmic-ray energy equation 

(3.10), with the fluid velocity profile u typically taken to be that of 

the one fluid polytropic wind discussed in §2.2. 

Webb, Forman and Axford (1985) used the test particle picture to 

study cosmic-ray acceleration at stellar wind termination shocks. Using 

a reasonably realistic stellar wind flow profile, they obtained 

analytical solutions for the distribution function, number density, 

pressure and energy flux of the cosmic-rays. They showed that OB star 

stellar winds could provide a significant portion of the galactic 

cosmic-ray energy flux, if effects of losses and magnetic field geometry 

were not included. Some of their solutions clearly showed the breakdown 
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of the test particle picture since the emergent cosmic-ray energy flux 

was a c0nsiderable fraction of the mechanical energy of the wind, and 

the cosmic-ray pressure and energy flux at the shock diverged in some 

cases. A self consistent treatment, including the effects of the 

cosmic-rays on the wind, is clearly needed (c.f. Axford, Leer and 

Skadron 1977; Drury and Volk 1981; Axford, Leer and McKenzie 1982; 

McKenzie and Volk 1982; Webb 1983). We will come back to a 

self-consistent treatment in chapter 6. 

Since the cosmic-rays do not significanlty modify the wind in 

the test particle picture, the equations (3.1) - (3.5) are decoupled 

into two parts: the background flow equations and cosmic-ray energy 

equation. The background flow equations are exactly the same as those 

of one fluid polytropic stellar winds, whose properties and solutions 

were discussed in chapter 2. Using the method in §2.2, we can establish 

a realistic stellar wind velocity profile with a termination shock. 

With this profile, the cosmic-ray energy equation (3.4) or (3.10) 

becomes a linear homogeneous a. D. E. in P (the only unkown in the 
c 

equation). This linear a.D.E. with appropriate boundary conditions can 

be solved numerically, for instance, by finite difference methods (e.g. 

Keller 1968). We will use the test particle solution for the iterative 

process in solving the full nonlinear modification of the wind profile 

by the cosmic-rays in chapter 6. In this chapter we describe how to 

solve the cosmic-ray energy equation with a given background velocity 

profile. 



§4.l Numerical Solution of the Cosmic-Ray Energy Equation 

Introducing dimensionless quantities: 

r -- -R " ... " Ru 
o 

-u ... u 
u 

o 
P ... 

c 

P c 
P co 

the cosmic-ray energy equation (3.4) or (3.10) can be written as 

1 d ( 2 - dPc) - dPc 1 d 2 
e2 de e "de - u de - "Ic e2 de(e u) Pc o 
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(4.1) 

(4.2) 

We later choose the radius of the termination shock as R, the wind 

velocity just upstream of the shock as u , and the galactic cosmic-ray 
o 

pressure as P (P - P ) . co co coo For a diffusion coefficient "1 inside 

the shock (i. e. , is the 

inverse of the modulation parameter '7 1 = RUo/"l used extensively in 

modulation studies of cosmic-rays (e.g. Fisk 1969; Jokipii 1971; Fisk 

1979; Webb, Forman and Axford 1985). For large '71 (or small ~1)' the 

galactic cosmic-rays are effectively excluded from the inner solar 

cavity (1. e., 0 < r < R ), whereas particles have easier access for 

smaller '71 ' Studies of cosmic-ray acceleration by the first order Fermi 

mechanism at spherical shocks such as the termination shock to the Solar 

wind (e.g. Webb, Forman and Axford 1985), and at supernova shocks (e.g. 

Prishchep and Ptuskin 1981; Ko and Jokipii 1985) show that the shock 

appears planar to the cosmic-rays if the shock radius R is much greater 

than the convection diffusion length scales "l/uo and "2/uo (" = "2 

just downstream of the shock). Thus the shock appears planar if the 

diffusion parameters ~l and ~2 ( - "2/(Ruo) ) are small ( ~1' ~2 « 1 ). 

The physical importance of parameters "1 and ~2 in determining the 

coupling between the cosmic-rays' and the stellar wind flow becomes 
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apparent both in the test particle picture (this chapter) and in the 

full nonlinear problem (chapter 6). 

In the test particle picture, u and ~ are given functions of e, 
nd so that equation (4.2) is a homogeneous linear 2 order O.D.E. in P . 

c 

There are analytical solutions to equation (4.2) for some particular 

functional forms of u and iC (e.g. and - II 
~ a e ). If the 

velocity profile u is a complicated function of e (especially when it is 

given numerically as in the case of the one fluid polytropic stellar 

wind), then we have to use numerical methods to solve equation (4.2) for 

P . 
c 

We now discuss the appropriate boundary conditions for equation 

(4.2) for the case of galactic cosmic-rays interacting with a stellar 

wind flow and termination shock. As in Webb, Forman and Axford (1985), 

we specify the galactic cosmic-ray pressure at large distance from the 

star (P ~ P as r ~ ~). Since we assume there are no sources or 
c c~ 

sinks of cosmic-rays at the star, the cosmic-ray energy flux (4~r2F ) is 
c 

required to vanish at the origin ( r ~ 0 ), and the cosmic-ray pressure 

is expected to be finite. Strictly speaking, we should not extrapolate 

the stellar wind down to r - 0 because of the finite radius of the 

star r . 
s 

Since the radius of the star is very small compare to the 

radius of the termination shock ( r s 
-4 

- 10 r 

whether the boundary condition is taken at 

sh in case of the Sun), so 

r "" r s 
or r = 0 should 

not affect the global behaviour of the solution. 

We can in fact show that if the cosmic-ray pressure is finite as 

r ~ 0 , and for a physically realistic wind flow near r = 0 , and with 



no sources or sinks at r - 0 , then 2 411'r F -+ 0 
c 
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as r -+ 0 To see 

this we first use the one fluid polytropic wind equation (2.11) to 

determine the wind velocity near r - 0 At small radii, the kinetic 

energy flux of the wind is much less than either the gravitational 

potential energy or enthalpy flux. For a finite gas energy flux, as 

>. -+ <0 (Le. , r -+ 0) balancing the enthalpy and gravitational 

potential energy terms in the energy integral (2.11) leads to a fluid 

velocity profile of the form: 

(3-21' 1)/(')' 1- 1) u - u ~ g g * . as e -+ 0 , (4.3) 

where 

- ( l' gl -1) 1/ ( l' gl -1) -1 (3-21' 1)/(')' 1-1) 
u* EI j (1' -1) A1 (GMo) u R g g (4.4) 

0 gl 
-In order that u-+ 0 as e -+ 0 , we require (3-21'gl)/(1'gl-1) > o . 

For the case of no sources or sinks at the origin, the net 

energy flux of cosmic-rays across a sphere of radius r* can be obtained 

by integrating the cosmic-ray equation (3.4) over the sphere: 

J
e* dP - c 2 

." 4 11' U de- e de 

o 
2 - I 4 11' e F c 

c .. * 

where 

F EO 

c 

is the normalized cosmic-ray energy flux, and e* = r*/R 

(4.5) 

(4.6) 

Assuming P 
c 

is bounded in 0 < e < e* ( IPcl S IPclmax ), and integrating the right 

hand side of equation (4.5) by parts, we obtain (using the triangle 

inequality) 



Thus for 19l> 1 

-

1/(1 1-1) 
8 ~ Ip I u* e* g c max 
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(4.7) 

as and in order that 

u ~ 0 as e ~ 0 , we require (3-21 gl
)/(lgl-1) > o. These conditions 

together require that we consider one fluid polytropic winds with 

1 < 19l < 3/2 . 

We can further show (appendix E) that if U Q e~ and 

then P is finite and 
c 

at e = 0 provided ~ > v . Thus if 

then 
dP 

c = 0 
de 

at e = 0 . 

dP 
However, the specification of either Pc or deC at r = 0 seems 

to be immaterial from the point of view of the global solution. 

Solutions with finite (reasonable size) P at the origin are almost the 
c 

same as those from with at the origin, except in the region 

very close to the orgin that P approaches rapidly to the required value 
c 

at the origin. 

Ibe question now remains of the appropriate boundary conditions 

to apply to the cosmic-ray pressure and energy flux at the shock. This 

question has been considered in some detail by Gleeson and Axford 

(1967), Toptygin (1980), Webb (1983) and Drury (1983). In the absence 

of sources or sinks at the shock, the appropriate boundary conditions 

are that the cosmic-ray pressure P 
c 

~ 

and energy flux F should be 
c 

continuous across the shock. These results are expected from the fact 

that the cosmic-rays interact with the background flow on the scale 
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length of the cosmic-ray mean free path which is usually much greater 

than the shock thickness (for parallel, co11ision1ess shocks, the shock 

thickness is of the order of c/tupi ' where tupi is the ion plasma 

frequency; pet:pendicu1ar shocks have a much smaller thickness of the 

order of c/tu ,where tu is the electron plasma frequency, c.f. Kennel pe pe 
-+ 

1981). At a shock the mean phase space distribution f(r,p,t) (averaged 

-+ 
over all directions of the particle momentum p) and the differential 

-+ 
flux S (see appendix B) for the cosmic-rays are continuous at the shock 

p 

(c.f. Toptygin 1980; Webb 1983; Drury 1983). Since P 
c 

-+ 
and F 

c 
are 

defined as moments of f(~,p,t) and S (c.f. equations (B.6) and (B.7», 
p 

-+ 
the continuity of P and F at the shock then follows automatically. It 

c c 
-+ -+ 

should be noted however, that the boundary conditions on f(r,p,t) and S 
p 

at the shock have been derived under quite severe physical restrictions, 

and are not necessarily expected to apply for highly anisotropic 

cosmic-ray distributions in momentum space. 

In swnmary, the boundary conditions for the cosmic-ray energy 

equation (4.2), for galactic cosmic-rays in a stellar wind flow with a 

termination shock are 

(a) as e -+ eo , 

Pc2 
-+ P (4.8) ceo 

(b) at e = esh ' 

Pc1 Pc2 (4.9) 

'Yc 
Pc1 

- 1 
dPc1 

('Y -1) u - (-y -1) #c1 de 1 c c 

-------------------------- -------
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'Yc 
Pc2 

- 1 dPc2 (4.10) 
('Y -1) u2 - (-y -1) 1e2 de c c 

(c) as e -to 0 , 

4 11' e2 [ ~c Pc1 
- 1 _ dPC1] 

0 (4.11) u1 - 1e1 de -to 

('Yc - 1) ('Y -1) c 

where the subscripts 1 and 2 denote physical values upstream and 

downstream (i. e., inside and outside) of the shock respectively. For 

the case of one fluid polytropic wind models, with fluid velocity 

profile of the form (4.3) near the star, and if the cosmic-ray diffusion 

coefficient with 1/ < (3-2'Yg1)!('Yg1-1) , then the boundary 

condition (4.11) may be replaced by: 

o as o (4.12) 

(see appendix E), and we use this for all our calculations. 

In self-consistent calculations of the full problem (chapter 6), 

since the total energy flux (sum of thermal gas and cosmic-ray energy 

flux) is conserved, it might be more appropriate to specify cosmic-ray 

energy flux rather than cosmic-ray pressure at infinity. In this case, 

we replace the boundary condition (4.8) by 

(4.13) 

Depending on the behaviour of and le l near the origin 

( e -= 0 ), the coefficients of equation (4.2) may diverge as € -+ 0 , 

and this can lead to difficulties in numerical computations. However, 

it is not necessary to compute these divergent numerical coefficients at 

e = 0 , if we use the boundary condition (4.12) at e - 0 , since using 

a crude difference scheme we have 
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first grid point next to e - O. On the other hand, if we use a higher 

order difference scheme, then we have to use both the equation (4.2) and 

the boundary condition (4.12) at e .. 0 (e.g. Smith 1978). If 

and 

finite and 
dPc1 0 at dr'" 

d2P 

near 

e ... 0 , 

e .. 0 , then equation (4.2), with P cl 

can be written as: 

- (1-'-1)-(v + 3) eV c1 
(I-' + 2) 'Y 0 (4.14) K.* T - u* e Pc c 

This equation is also true for the time dependent case if we replace the 

right hand side by an appropriately scaled time derivative of P. If 
c 

v ~ 0 and I-' ~ 1 then the coefficients of equation (4.14) are all 

finite as e ~ 0 (note that if v > 0 and I-' > 1 , we only have one 

condition, namely, equation (4.12) at e - 0 , and equation (4.14) or 

(4.2) is of no use there). From now on, our numerical solutions are 

restricted to v ~ 0 and ( 'Yg1 ~ 4/3 ), and 

we concentrate on the case where v" 0 (1. e., ;cl is constant) and 

'Ygl ~ 4/3 . 

We employ a finite difference scheme (e.g. Keller 1968) to solve 

equation (4.2) with boundary conditions (4.8) - (4.12), and the scheme 

can be summarized as follows. Equation (4.2) is discretized on a 

uniform grid by a three point scheme inside and outside the shock. At 

the shock the derivatives in equation (4.10) are discretized by a two 

point scheme. For constant ;cl and 'Yg1 ~ 4/3 , equation (4.2) or (4.14) 

d2P 
b 3 :; _c1 ... 0 I: 0 h' h ecomes ~ at s ~ ,toget er w~t 

1 de2 

dP 
c1 0 ' I' dr = ,~mp ~es 

- - nd P (~e) ... P (0) up to 2 order in ~e, where ~e is the grid spacing. 
c c 

At 

---------
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some radius, e - emax ' outside the shock we set Pc (emax) - P ceo to 

approximate the cosmic-ray pressure at infinity. The resultant system 

of linear equations are (with j denoting the grid point): 

(a) j - 0 (I.e., e - 0 ), 

- 6 ~l Pc(j) + 6 ~l Pc(j+l) - 0 

(b) 0 < j < jsh (i.e., 0 < e < esh ), 

- 1 - -1 - -
[~1 - 2 ~e (2 ~1 e - u1)] Pc (j-1) 

( - 2 1d 2-)-. 
- 2 ~1 + (~e) 'Yc e2 de(e u1) Pc(J) 

- 1 - -1 - -+ [~1 + 2 ~e (2 ~1 e - u1)] Pc (j+1) = 0 

(c) j - jsh (i.e., e = esh ), 

~1 Pc (j-1) - [~1 + ~2 - ~e 'Yc (u1 - u2)] Pc(j) 

+ ~2 Pc (j+1) - 0 

(d) jsh < j < jmax (i.e., esh < e < emax ), 

- 1 - -1 - -
[~2 - 2 ~e (2 ~2 e - u2)] Pc (j-1) 

( - 2 1d 2-) - . - 2 ~2 + (~e) 'Yc e2 de(e u2) Pc(J) 

- 1 - -1 - -+ [~2 + 2 ~e (2 ~2 e - u2)] Pc (j+1) - 0 

Note that equation (4.14) is simply P (1) - P (0) 
c c 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

If we choose Fc(emax> ... Fceo as boundary condition (equation 

(4.13», then the only change is to add one more equation at j : max 

(4.19) 
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For higher accuracy, we can use a four point or five point 

scheme for the derivatives in equations (4.2) and (4.10). We have 

tested the scheme (4.15) - (4.18) by comparing the numerical solution 

with the analytical solution obtained by Webb, Forman and Axford (1985) 

(see appendix E), in which the velocity profile: 

-u (4.20) 

where H(e) is the Heaviside step function, and are 

constants; and the diffusion coefficient is of the form: 

(4.21) 

where lelo and 1e
20 

are constants. 

well with the analytical one. 

The numerical solution agrees very 

As an example of the scheme, we use the Solar wind as the 

background flow. 

P = 1 eV cm- 3 
goo 

For a Solar wind model with 

l' gl - 1. 3 and 5/3 

the radius of the shock R = rsh - 65.2 A.U. and the upstream velocity 

at the shock 364 km s -1 Typical results shown in u ulsh . are 
0 

figures 4.1 and 4.2. In figure 4.1 l' == 4/3 and c 

1023 2 -1 while in figure 4.2 l' == 4/3 and le l 1e2 "" cm s c 

1022 2 -1 
le l 1e 2 == cm s 

It is clear in figures 4.1 and 4.2 that the cosmic-rays are 

partially excluded from the inner Solar cavity ( 0 < r < rsh ) due to 

the combined action of convection and diffusion. This is the modulation 

of galactic cosmic-rays (c.f. Parker 1958b, 1965a; Jokipii 1971; Fisk 

1979; Quenby Increasing the modulation parameter 

(or decreasing ;cl) leads to a larger modulation 

----------- --------------------
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Figure 4.1 CoBllic-Ray Preasure and Energy nUl< in 
the Test Particle Picture with Large " 
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The plotting quantities are e. r{R, u. u/uo • Pc • Pc/Pco and e2Fc· e2Fc/Fco 
-1 

where R. rsh - 65.2 A.U.. uo • ulsh - 364 km s • Pco is arbitrary and Fco • uoPco The 

normalized cosmic-ray diffusion coefficients are ;<1· "1/"0 - 2.81 and ;<2· "2/"0 - 2.81 • 

where " • Ru _ 3.55*1022 cm2 s-l . 

where 

o 0 

2.0 

r-J ~ 

U p 
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Figure 4.2 Cosalc-Ray Pre .. ure and Energy nUl< in 
the Teat Particle Picture with 811811 " 
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The plotting quantities are e. r{R. u. u/uo ' Pc • Pc/Pco and 

-1 
R. rah - 65.2 A.U.. uo • ulsh - 364 km 8 • Pco is arbitrary and 

normalized cosmic-ray diffusion coefficients are ;<1· "1/"0 - 0.281 and ;<2· "2/"0 - 0.281 , 

where " • Ru _ 3.55*1022 cm2 
8-
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effect, and the cosmic-rays are more strongly coupled to the stellar 

wind flow for larger ~l' Equivalently, the galactic cosmic-rays find it 

harder to penetrate the inner Solar cavity when the diffusion 

coefficient is small. 

The scheme (4.15) - (4.18) can easily be adapted to solve the 

time dependent cosmic-ray energy equation: 

ap 
1 a ( 2 _ ap c) 

ap 
1 a 2-c c P (4.22) aT 2 a~ ~ "ae - u a~ - 'Yc 2 a~(~ u) c e e 

where 

tu 
0 (4.23) T E! 

R 

is the time in units of the convective time scale Rlu . We have used a 
0 

Crank-Nicolson scheme inside and outside the shock and a fully backward 

implicit scheme right at the shock. Some typical results for the time 

dependent equation (4.22) are shown in figures 4.3 - 4.5 for a stellar 

wind model with M -= 6*1011 g -1 p "" 1 eV cm -3 s , ga) 

6*10- 27 -3 1.3 and 5/3 Pga) "" g cm 'Y gl 'Y g2 

In figure 4.3, where 'Y "" 4/3 and 1022 2 -1 the 
" = "2 cm s , ,c 1 

initial cosmic-ray pressure profile is p "" p 
C Ca) 

throughout the whole 

space. As time increases, the cosmic-rays inside the shock are swept 

out of the inner region by the stellar wind. It is of interest to note 

the pressure increase near the shock at early times, which presumably is 

an indication of shock acceleration of cosmic-rays. The solution at 

later time is essentially that obtained by solving the steady state 

equation (4.2). 

----------_ .. _ .... __ ... _- ..... _--- ._- --_. __ ._ ... __ .. _. __ .-._ .. _-----_._. 
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Figure 4.3 Tt.e Evolution of the Cosalc Pressure Profile with 
Pc - Pc~ Throughout the Whole Spsce aB the Initial Condition 

The plotting quantities are e· r/R. ii. u/uo • Pc • Pc/Pco and r· t/to • where 

-1 R • rsh - 65.2 A.U. • uo • ulsh - 364 km s • Pco is arbitrary and to. R/uo - 0.85 yr. The 

normalized cosmic-ray diffusion coefficients are ~l· ~l/~o - 0.281 and ~2· ~2/~o - 0.281 • 

where ~. Ru - 3.55*1022 cm2 s -1. The figure shows 5 snapshots of P in uniform time o 0 c 
interval from r - 0 to 2. The dotted lines are the initial and steady states of the system. 
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In figures 4.4 and 4.5 the initial cosmic-ray pressure profile 

is a gaussian disturbance inside the shock superimposed on the steady 

state background cosmic-ray pressure profile obtained 

figure 4.4 

while in 

~ « 1 , 

'Y ... 4/3 , c 

figure 4.5 

21 2 -1 
~1 ... 2*10 cm s 

'Y ... 4/3 
c 

and 

the diffusion time scale 

and ~2 

~ ... 1022 
2 

is much 

previously. In 

1022 2 -1 
= cm s 

2 -1 When cm s 

larger than the 

convection time scale Rlu , and the convection of the gaussian profile 
o 

is significant as shown in figure 4.4. In figure 4.5 diffusion seems to 

be more important. 

----------------------------
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Figure 4.4 TiDe Evolution of a Gaussian Perturbation Inside the Shock 
on tile Background Cosllic-Ray Pressure Profile in Case of SlIBller '" 

The plotting quantities are e .. r/R. ii .. u/uo • Pc .. Pc/Pco and ~ .. t/to • where 

-1 
R· rsh - 65.2 A.V. • uo " u lah - 364 km s • Pco is arbitrary and to" R/uo - 0.85 yr The 

- -2 
normalized cosmic-ray diffusion coefficients ara "'1 .. "1/"0 - 5.63*10 and 

iC2 • "2/"0 - 0.281 • where "0" Ruo - 3.55*10
22 

cm
2 

s-l The figure shows 5 snapshots of Pc 
in uniform time interval from ~ - 0 to 0.2. The dotted lines is the initial state of the 
system., 
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Figure 4.5 Tt.e Evolution of a Gaussian Perturbation Inside the Shock 
on the Background Cosllic-Ray Prellsure Profile in Case of Larger '" 

The plotting quantities are e .. r/R. ii .. u/uo • Pc • Pc/Pco and ~. tlto . where 

-1 
R· rsh - 65.2 A.V .• uo " 'llsh - 364 km ~ • Pco is arbitrary and to" R/uo - 0.85 yr. The 

normalized cosmic-ray diffusion coefficients are iCl .. "'1/"'0 - 0.281 and iC2 • "2/ "0 - 0.281 • 

where "0" Ruo - 3.55*1022 cm2 .-1 The figure shows 5 snapshots of Pc in uniform time 

interval from r - 0 to 0.1. The dotted linas is the initial state of the system. 
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CHAPTER 5 

PERTURBATION SOLUTIONS 

In chapter 4, we discussed the test particle limit of the 

cosmic-ray stellar wind system, in which the cosmic-ray pressure 

gradient was small enough that its effects on the background flow could 

be neglected. A natural question to ask now is: what are the 

modifications of the background flow if the backreaction of the 

cosmic-rays cannot be neglected? 

In this chapter we consider the modifications of the wind flow 

by a finite, but small cosmic-ray pressure (small pressure gradient 

also). A perturbation approach is used, in which the perturbation 

parameter, 

m 

P coo 
P goo 

(5.1) 

is the ratio of the galactic cosmic-ray pressure to the interstellar gas 

pressure. Since e is assumed to be small, the radial variation of the 

cosmic-ray pressure in the lowest order of approximation is given by the 

test particle solution of the cosmic-ray energy equation (3.4) or (4.2). 

The test particle cosmic-ray pressure solution is then used to determine 

the modification of the velocity profile of the wind and the location of 

the termination shock to O(e). The process can be iterated to 

presumably obtain a convergent solution for 

96 

P , 
g 

u and P 
c 

as 
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functions of radius provided £ is sufficiently small. This idea is 

employed in chapter 6 to find the solution to the full cosmic-ray 

modified stellar wind problem numerically. It is also possible to 

obtain higher order perturbation equations, but we restrict our 

calculations to 0(£) corrections. A similar perturbation approach has 

been used by Blandford (1980), Drury (1983) and Heavens (1983) to 

determine the power law momentum spectral index of the phase space 

distribution function in plane weakly modified cosmic-ray shocks. 

For most cases considered it is found that the wind just 

upstream of the shock is noticeably decelerated by the positive galactic 

dP 
cosmic-ray pressure gradient c 

(dr > 0 ), and the stellar wind 

termination shock occurs at a smaller radius in the cosmic-ray modified 

wind flow than in the unperturbed wind. However, the simplified model 

in §S.l indicates that if there is strong acceleration of the 

cosmic-rays at the termination shock, so that the cosmic-ray energy flux 

at the shock exceeds the galactiC cosmic-ray energy flux, then the shock 

occurs at a larger radius than for the unperturbed wind. 

We first consider a simplified model (§S .1) where an analytical 

solution is possible, and then go to the full problem in §S.2. In the 

simplified model the unperturbed wind velocity upstream of the shock is 

taken to be constant, and the effects of gravity are nelgected. The 

full perturbation solution (§S.2) uses the fluid velocity profile of the 

one fluid polytropic stellar wind (§2. 2) for the unperturbed fluid 

velocity. The perturbation analysis takes into account cosmic-ray 

modifications of the critical point of the wind, the thermal gas entropy 

-------------------------------_._----_. ----



98 

constants, the location of the shock and the fluid velocity profile. 

As in chapter 3, it is convenient to work in terms of normalized 

variables. The normalized thermal gas and cosmic-ray energy fluxes are 

E 
g 

1 (~+1)/2 -(~ -1)/2 2(~ -1) 
~ ~ - ~ + (~ -1) P g ~ g ~ g 

g 

E 
c 

~c .kl/2 -2 - 1 dPc 
(, -1) ~ ~ Pc + (~ -1) ~ d~ 

c c 

(5.2) 

(5.3) 

where ~, ~, P , P and ~ are defined in §3.2. Since the total energy is 
c 

conserved, 

E - E + E g c 
(5.4) 

is a constant (c.f. equation (3.20». In matching momentum fluxes at 

the shock, it is useful to use the normalized gas momentum flux 

G 
g 

2 1 (rn) (P + P u) - if 
g g Po 0 

which in terms of ~ and ~ may be written as 

G 
g 

1 (~+1)/2 -~ /2 2~ 
~1/2 ~2 + _ P g ~ g ~ g 

~g 

(5.5) 

(5.6) 

Finally, the cosmic-ray pressure variation with radial distance is 

governed by the normalized cosmic-ray energy equation (3.21): 

o (5.7) 

§5.l Perturbation Solution'for the Simplified Model 

In this section we consider a simplified model, in which the 

thermal gas is considered to be cold inside the termination shock, and 

the effects of gravity are neglected. Upstream of the shock, the 

unperturbed wind velocity is constant, and the gas enthalpy is 
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considered negligible compared to the wind kinetic energy flux. Outside 

the shock, the plasma is hot, and the gas enthalpy dominates the kinetic 

energy flux, and the unperturbed flow is incompressible with 2 u Q l/r . 

The energy and momentum fluxes of the thermal gas in the 

simplified model are (c.f. equations (5.2) and (5.6»: 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

where the downstream 

quantities respectively. 

For the wind the appropriate boundary conditions are 1/J -. 0 , 

P -. P , p ~ p as r ~ ~ (i.e., A -. 0 ), and that·~ is finite as g g~ g~ ~ 

r ~ 0 (i.e., A ~ ~). At the shock the gas mass, momentum and energy 

fluxes are conserved (c.f. §2.2). For the cosmic-rays, P ~ P as 
c c~ 

r~~ (i.e., A -. 0 ), and P is finite as r ~ 0 (i.e., A ~ ~). The 
c 

cosmic-ray pressure and energy flux are continuous at the shock (c. f. 

§4.l). In terms of normalized variables, these boundary conditions are: 

(a) At A - 0 (i.e. , r -. ~ ) , 

"Yg2 P 

(~) Eg2 E E5I ~ (5.12) 
g~ ("Yg2- 1) Pg~ 0 

Pc2 P (5.13) 
c~ 

dP 
and for physical solutions c is finite as ). ~ 0 . 

K: dA 

(b) At the shock A - ). sh (i. e. , r ... rsh ) , 

------------------------_._-----_._--_._.------ ._--_.-. -_. 



G glsh 

P c1sh 

E glsh 

E c1sh 

(c) As A -+ 00 (Le. , 

- G g2sh 

- P c2sh 

- E g2sh 

- E c2sh 

r -+ o ), 

and 
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(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

We now pose the problem in the following way. If the galactic 

cosmic-ray pressure is zero (P - 0 ) the velocity profile is then the coo 

unperturbed (or zeroth order) profile. We want to investigate the 

effects of a finite, but small, galactic cosmic-ray pressure on this 

unperturbed velocity profile. Suppose ~ and P can be expanded in the 
c 

following perturbation series, with the small parameter f e P IP cOO goo 

~ = ~(0)(1 + f ~(1) + f2 ~(2) + ... J 
P f p(1) + f2 p(2) + ... 

c c c 

(5.19) 

(5.20) 

Similarly the gas and cosmic-ray energy fluxes E and E are expanded 
g c 

as: 

E E(O) + f E(l) + f2 E(2) + (5.21) g g g g 

E -(1) 2 -(2) + ... (5.22) f E + f E c c c 

In view of the boundary conditions at A = 0 (1. e. , r-+ oo ), we have 

-(0) 'Yg 2 P 

(~) Eg2 E e ~ 
goo ('Yg2- 1) Pgoo 0 

(5.23) 

-(1) [1 P (m] d¥(l) I ] 
Ec2 

c ~ --..Ei 1 - c2 f E 81 
f (1' -1) P kT + (1' -1) 1C2 e:u--coo c goo 0 C 0 

(5.24) 

The cosmic-ray diffusion coefficient is assumed to depend only on the 

radius. 

Using the perturbation expansions (5.19) - (5.24), and the total 
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energy flux (5.4), the gas energy fluXes (5.8) and (5.9) and the 

o cosmic-ray energy equation (5.7) we obtain the zeroth order (O(e » flow 

equations, 

The 

-Yc 
+ "":'(-y---'-'-="l-:-) 

C 

nd 2 and the 2 order (O(e » equations are 

-(0) ... E 
gec 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

~. p~2) _ _ (",(O)J 1/2 ~ -2 [~",(1) (p~l»)' 

_ 7. [[~-1 _ ~ (",(0)( (",(0»),] ",(1) _ ~ (",(1>],] p~l)] (5.30) 
1:. .,.(0) .,.(2) -Yc (0») 1/2 -2 -(2) 1 - (-(2»)' 
2 ~l ~l + (-y -1) tPl A Pcl + (-y -1) ~l Pcl 

c c 

_ _ 1:. -Yc (".(0») 1/2 A -2 .1.(1) p(l) 
2 (-y -1) ~l ~l cl (5.31) 

c 

1 (-y 2+1)/2 ( (0») -(-y 2- 1)/2 2(-y 2- 1) (2) 
- 2 P2 g tP2 gAg tP2 

+ -Yc (/0») 1/2 A -2 p(2) + 1 ;c (p(2»)' 
(-y -1) 2 c2 (-y -1) 2 c2 

c c 

1:. -Yc (tP(O») 1/2 A -2 tP(l) p(l) 
2 (-y -1) 2· 2 c2 

c 



_ i (~g2+1) p~~g2+1)/2 (~~0»)-(~g2-1)/2 A2(~g2-1) (~~1»)2 

where 

and the superscript denotes derivative with respect to A. 
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(S.32) 

(S.33) 

The 

strategy of solving these equations at O(e) is to first solve the test 

particle cosmic-ray energy equation (S.27) for p(l), and then solve the 
c 

perturbed total energy equations (S. 28) and (S. 29) for ~(1) in the 

upstream and downstream regions of the shock. The solutions for p(l) 
c 

and ~(1) must be matched at the shock by using the momentum amd energy 

balance conditions (S.14) - (S.17). 

However, the location of the shock is altered by the perturbing 

influence of the cosmic-rays, and we assume the perturbed shock radius 

is given by the expansion 

A .,. 
sh + e (S.34) 

It is found that the 1st order correction A~~) is dependent on the gas 

energy flux difference E - E gsh goo (up to O(e», or alternatively on 

Ecoo- Ecsh (see equation (S.47». 

We now proceed to obtain solutions of the perturbation equations 

up to O(e). Using Taylor series expansions, ~, 

perturbed shock radius may be expressed as: 

P and K, at the 
c 

¥(~sh) - ¥~~) [1 + , [~~~) (¥~~)( (¥~~»)' + ¥~~)] + ... J (S.3S) 

P (A h) p (1) + ... 
c s e csh (S.36) 
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- ~ + e A(l)~, + 
sh sh sh (5.37) 

where the subscript sh denotes quatities (except A) are eVa1tlated at the 

unperturbed shock radius ( A - A~~». The expressions (5.35) - (5.37) 

apply on both sides of the shock, and the Taylor series expansions are 

justified by the fact that the quantities on the upstream and downstream 

branches (excluding the shock) are smooth. 

Using the perturbation expansions (5.19) - (5.24) and 

(5.35) - (5.37), the conservation of momentum and energy fluxes of the 

thermal gas and the cosmic-rays at the shock (equations (5.14) - (5.17» 

yields conservation equations at different orders of e. At zeroth order 

energy and momentum flux conservation of the thermal gas gives: 

1: ",,(0) = 
2 Ish 

( 
(0») 1/2 

""Ish 

1 (~g2+1)/2 ( (0»)-(~g2-1)/2 
(~g2-1) /32 ""2sh 

-(0) ... E 
goo 

1 (~2+1)/2 ( (O»)-~ 2/2 __ II g .1. g 
~ ~2 ~2sh 

g2 

(5.38) 

(3.39) 

st 
At 1 order (O(e» balancing the cosmic-ray pressure and energy flux 

results in: 

-(1) . -(1) p - P c1sh c2sh (5.40) 

~c ( (0») 1/2 (A (0)r
2 

p(l) 1 
(~ -1) ""Ish sh c1sh + 

(~ -1) leI 
c c 

(p(l) )' 
clsh 

~c ( (0»)1/2 (A(0»)-2 p(l) + 1 
(~ -1) ""2sh sh c2sh (~ -1) 

1e2 c c 
(p(l) )' 

c2sh 

E$ 
-(1) 
E csh (5.41) 

Balancing the thermal gas energy and momentum fluxes at the shock at 

O(e) gives: 
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! ~(O) [(~(0»)-1 (~(O»)' ~(1) + ~(1)] 
2 . 1sh 1sh 1sh sh lsh 

_ (lg2+1)/2 ( (0»)-(lg2-1)/2 (A(0»)2(lg2- 1) 
P2 ~2sh sh 

. [2 (A (0») -1 ~ (1) _ ! [(~(O») -1 (~(O»)' A (1) + ,p(1)]] 
sh sh 2 2sh 2sh sh 2sh 

! (~(0»)1/2 [(~(0»)-1 (~(O»)' A(l) +~(1)] 
2 1sh 1sh 1sh sh 1sh 

(5.42) 

... (lg2+1)/2 ( (0»)-lg2/2 (A(0»)2(lg2- 1) 
P2 ~2sh sh 

[
2 bg2-1) (~(0»)-1 ~(1) 

192 sh sh 

_ ! [(~(O») -1 (,p(0»)' ~ (1) + ~(1)]] 
2 2sh 2sh sh 2sh (5.43) 

Using the zeroth order energy and momentum flux conservation equations 

(5.38) and (5.39), we can eliminate the normalized gas entropy constant 

in equations (5.42) and (5.43) to obtain: 

(~(O») -1 (~(O»)' A (1) + ~(1) .. (~(O») -1 (~(O»)' A (1) + ~(1) 
1sh 1sh sh 1sh 2sh 2sh sh 2sh 

~ ( 1 ) _ [4 ( 1 g2 -1) (A (0») -
1 

_ (~ ( 0 ») -
1 (~ ( 0 ») ,] A (1) 

1sh (lg2+1) sh 1sh 1sh sh 

(5.44) 

(5.45) 

Using the expression (5.8) to determine E h' and using overall gs 

energy flux conservation (equation (5.4» we find (up to O(e»: 

gsh g~ c~ csh 
E - E(O) ... e (E(l) _ E(l») 

.. ! e ~(O) [(~(O») -1 (~(O»)' A (1) + ~(1)] 
2 1sh lsh 1sh sh lsh 

so that equation (5.45) may be rearranged to yield: 

,(1) 1 (lg2+1) (0»)-1 (0) (-(1) 
A ... - ~ A E -
sh 2 (lg2-l) 1sh sh c~ 

E(l») 
csh 

(5:46) 

(5.47) 

The interesting physical result here is that ~~~) > 0 , and the radius 

of the shock in the cosmic-ray modified wind, rsh' is smaller than that 

----------------------- ---------- --------
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of the unperturbed wind, r~~), if the cosmic-ray energy flux at infinity 

exceeds its value at the shock. On the other hand if the cosmic-ray 

energy flux at the shock exceeds the cosmic-ray energy flux at infinity 

(presumably due to effective acceleration and containment of the 

cosmic-rays near the shock), then and the cosmic-rays 

force the shock outward. From equations (5.14), (5.16), (5.38) and 

(5.39), we notice that the compression ratios q B (1fJ1sh/1fJ2sh)1/2 and 

(0) ~ (.~(O)/.~(0»1/2 1 d q ~ ~ ~ are equa , an 1sh 2sh 

q 
(0) 

q 
2'Y 2 g 

('Yg2 -1) 
(5.48) 

This is a result of the simplified model. A cold gas upstream and a 

very hot gas downstream imply an infinitely strong shock, and the 

compression ratio (5.48) exceeds the compression ratio ('Yg2+l)/('Yg2-1) 

expected for an infinite Mach number shock (see §2. 2 for details). 

Basically, this is a consequence of neglecting the downstream ram 

pressure and kinetic energy flux of the gas, and is a major defect of 

the simplified model. However, this defect is eliminated in the 

extension of the perturbation method, using the one fluid polytropic 

stellar wind (with shock) for the background flow (§5.2). 

If the diffusion coefficient is proportional to radius and of 

the form: 

~10 A-
l 

[1 - H(Ash-A)] + ~20 A-
l 

H(Ash-A) 

there are simple analytical solutions to equations (5.25) 

(5.49) 

(5.29) 

subject to the appropriate boundary conditions. These analytical 

solutions show the basic features of the more realistic model (see §5.2 
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and chapter 6). Investigation of equations (5.25) - (5.29) shows that 

the equations can be solved step by step. We first find the unperturbed 

flow profile (equation (5.25) and (5.26», then solve equation (5.27) 

st for the (1 order) cosmic-ray pressure (c.f. Webb, Forman and Axford 

1985 and appendix E), then find the st 1 order correction to the 

background flow, and we can go on to 2nd order corrections in a straight 

forward way. 

Below, we give the perturbation solution corresponding to the 

diffusion coefficient (5.49). The unperturbed velocity profile is 

.,p(0) 2 E(O) 2'Y 2 P 

(~) = 
g ~ (S.SO) 1 gco ('Yg2 - l ) Pgco 0 

1/1(0) 
2 [~r ~4 

Pgco 
(S.S1) 

>.(0) [(~ -1) f/4 (~) g2 .-2 P GM (S.S2) sh 2'Yg2 J gco Pgco (0) 
0 

The 1st order cosmic-ray pressure is (note the shock is at >.~~»: 

(S.S3) 

(S.S4) 

where 

D EO 1 + [exp ( !'7 ) - 1] ['Y - q ('Y -!!...)] 2 2 c c '71 
(S.SS) 

a EO 
1 2 1/2 2 ('71 - 2) + [('71 - 2) + 8 'Yc '71 ] } (S.S6) 

----------------- ----------- --- --- --- ---



(0) (0) 
(y,~0») 1/2 

rsh u1sh 1 
"1 

&I - -
1e1 1e10 

(0) (0) 

(A~~») 2 
rsh u2sh 1 Po 

"2 
.. - --

1e2 iC P gaJ 
20 

The st 1 order correction to the velocity profile is 

and the corrections at the shock are 

y,(1) 
sh 

(7g2+1) (D-1) (0) __ w--_ -- A 
47g2 D sh 

(7g2- 1) (D-1) 

7g2 D 
2 (D-1) 

- 7g2 -D-
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(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

From equations (3.14), the radius of the shock and the stellar wind 

velocity in physical units are 

r - r(O) [1 _ E (A(O»)-l A(l) + ... J 
sh sh sh sh 

(0) ( 1 (1) ) u ... u l+'2Ey, + ... 

(5.64) 

(5.65) 

where r(O) and u(O) are the unperturbed radius of the shock and stellar sh 

wind profile respectively. 

For the perturbed shock radius, rsh' to be less than the 

b d h k d · (0) i \ (1) b .. ( unpertur e s oc ra ~us, rsh ' we requ re Ash to e pos~t~ve see 

equation (5.64». From equation (S.61) we find A~~) > 0 whenever 

,-----_._-------- .. ---.... - .. 



and this occurs if 

or if 

'Y -q('Y -~J > 0 c c '11 

> ! ~ [( - 1) q - ~ ] 2 q 7c 'c 

1 < 1 ~ 
'11 2 - 'Yc q 
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(5.66) 

(5.67) 

(5.68) 

Since the condition (5.68) is never satisfied in practice (for 

q = 2'Yg2/('Yg2-1) from equation (5.48), condition (5.68) is impossible if 

(0) 
'Yg2 > 0, 'Yc > 0 and '11 > 0 ), then rsh < rsh if condition (5.67) 

is satisfied. 

To obtain some physical insight into the condition (5.66) we 

note from equation (5.54) that 

dr 

(5.69) 

Comparing condition (5.66) and equation (5.69) we see that rsh < r~~) 

whenever the cosmic-ray pressure gradient outside the shock is positive. 

If on the other hand 
dP 2 
dr c < 0 , the cosmic-ray pressure (and energy 

flux) at the shock exceeds that at infinity (presumably due to very 

effective acceleration of cosmic-rays at the shock) , so that 

rsh > r~~) , and the cosmic-rays push the shock outward. If the shock 

compression ratio q < 'Y /('Y -1) c c 
(e.g. q < 4 if 'Y = 4/3 ), 

c 

condition (5.67) always holds. If the shock compression ratio 

q < 'Y /('Y -1) , then condition (5.67) implies that 
c c 

if the 
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modulation paramater is small enough (or 1e1 large 

enough) . 

Numerical examples illustrating the perturbation scheme are 

shown in figures 5.1 and 5.2 for a stellar wind model with 

-1 -3 
s p ... 1 eV cm geo 

'Yg2 "" 5/3 Figure 5.1, for which 'Yc 

6*10- 27 g cm- 3 
Pgeo ... 

4/3 , shows the radial 

and 

variation of the unperturbed fluid velocity u(O) IU~~~ (curve a); the 

radial variation of P IP (curve d); and the modified stellar wind c ceo 

profile U/U~~~ (curve b) for an example in which there is relatively 

between the cosmic-rays and the thermal gas: weak coupling 

Ie l(r(O)u(O») 
1 sh 1sh 5 ( " -1 0.2 ) and Ie l(r(O)u(O») - 5 

2 sh 1sh ( "2 = 0.2 ). 

The parameter £ -= 1 since P P ceo geo 

2.0 

1.0 ---::7------------
a . I' 

.0 
.0 

I 

I 
I 

1.0 

... 1 in this example. 

d 

2.0 

Figure 5.1 Perturbation Solution for the S1ap1ified Kode1 with Large ~ 

The fluid 

The plotting quantities are e· r/R • u • u/uo and Pc· Pc/Pco' where 

(0) (0)-1 d 1 Th 11 d R • rsh - 69.6 A.V.. uo • uhh - 365 Icm s • Pco • cPg.. an C -. e norma ze 

cosmic·ray diffusion coefficients are ;<1 • ~l/~o - 5 and ;<2 • ~2/l<o' - 5, where 

I< • Ru _ 3.81*1022 cm2 s-l 
o 0 
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upstream of the shock in the cosmic-ray modified wind is seen to have 

been significantly decelerated (z 10%) by the· positive cosmic-ray 

pressure gradient, (as expected from the gas momentum equation (3.2», 

and the shock occurs at a smaller radius than in the unmodified wind 

( (0) ) 
rsh < rsh . The curve c shows for comparison, the wind velocity 

profile of an unmodified wind with the same total energy flux and gas 

density at infinity as the cosmic-ray modified wind. Accordingly, P gw 

is replaced by P gw 
+ (lg 2- 1) PgwFcw 

192 j2 

In cases of pure one fluid polytropic stellar winds (curves a 

and c) the gas is assumed incompressible outside the shock and 

consequently the gas pressure just outside the shock is P gw Balancing 

this pressure against the upstream ram pressure; and noting the gas 

[( 
(0») 2 (0)] density just upstream of the shock is given by P1sh - j/ rsh u1sh ' 

we obtain 

(c.f. equation 

(0) 
rsh 

(2.30», and 

(
. u (0) p- 1) 1/2 
J 1sh gw 

(0). . b . u1sh ~s g~ven y equat~on 

(5.70) 

(5.50). On the 

other hand for the cosmic-ray modified wind the location of the shock to 

given by (use equations (5.46), (5.47) and (5.64»: 

(0) [ 1 (lg2+
1

) (- -(0») ( (0») -1] r 1 - - E - E ~ sh 2 (lg2-1) gsh gw Ish 
(5.71) 

Thus in the cosmic-ray modified stellar wind, the shock location depends 

on the value of the normalized gas energy constant at the shock, Egsh ' 

and rsh decreases as Egsh increases. 

A further example of the perturbation solution is shown in 

~ ----.... ------



figure 5.2, for which 1 - 4/3 c 
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and the cosmic-ray diffusion 

coefficients are ~ _ ~ _ r(O)u(O) 
1 2 sh 1sh ( '11 - '12 - 1 ). The wind jus t 

upstream of the shock is more strongly decelerated and rsh is smaller 

than for the example in figure 5.1 where 5 These two 

examples show that the wind is more strongly modified, the smaller the 

value of ~1 and ~2' since the cosmic-rays are then more strongly coupled 

to the wind. 

2.0 

1.0 

.0 
.0 

b 

d 

1.0 2.0 

Figure 5.2 Perturbation Solution for the St.p1ified Model with Saa11 ~ 

The plotting 

(0) R • rsh - 69.6 A.U •• 

quantities are e • r/R • 

(0) -1 
Uo • u1sh - 365 km 8 • 

cosmic-ray diffusion coefficients ere 

~ • Ru _ 3.81*1022 cm2 s-l • 
o 0 

and • - 1. The normalized 

end 

Since we have not as yet developed a method to solve the full 

nonlinear system of equations (see chapter 6) it is difficult to gauge 

how accurate the perturbation scheme is. 

more accurate, the smaller the value of 

the cosmic-ray diffusion coefficient, 

We expec t the scheme to be 

f = P IP ,and the larger coo goo 

since for large diffusion 

---------------_._-- .. _._----------------- ----------
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coefficients the coupling between the wind and the cosmic-rays is weak. 

§5.2 Perturbation Solution for a More Realistic Model 

In this section the perturbation analysis is carried out using 

the one fluid polytropic stellar wind of §2. 2 for the unperturbed 

background flow. The fundamental equations are (5.2) - (5.7). Thus the 

gas normalized energy fluxes upstream and downstream of the shock are: 

1 1 (7gl+l )/2 -(7gl- l )/2 2b 1-1) 
Egl "2 ""1 - >. + (7 -1) PI ""1 

>. g (5.72) 
gl 

1 1 (7g2+l )/2 -(7g2- l )/2 2b 2- 1) 
Eg2 "2 ""2 - >. + (7 -1) P2 ""2 

>. g (5.73) 
g2 

The boundary conditions are the same as §5.l (equations (5.12) - (5.18» 

except P is finite as r ~ 0 (equation (5.18» is replaced by c 
dP 

c 
dr - o 

This is more suitable for numerical calculations (see §4.l). 

(5.74) 

We use the same perturbation scheme as in §5.l, but in addition 

to equations (5.19) - (5.22) we need to expand the normalized gas 

entropy constants PI and P
2 

on both sides of the shock in terms of the 

perturbation parameter f E5 P /P cOO goo 

PI ... p(O) (1 + f p(l) + ... ) 
1 1 (5.75) 

P2 ... p(O) (1 + f p(l) + ... ) 
2 2 (5.76) 

The entropy change across the shock depends on the compression ratio of 

the shock which in turns depends on the modification of the shock by the 

cosmic-rays. The downstream entropy constant is determined by the gas 

Since P and p goo goo pressure and density at infinity. are the same for 

both the unperturbed wind and for the cosmic-ray modified wind, it 
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follows that the downstream normalized entropy constant is the same in 

both cases, and 

]

2/b 2+1) 

(~) g 
o 

(5.77) 

(c.f. equation (2.38». i ?! 1 . 

The zeroth order perturbation of the total energy equation (5.4) 

gives 

! ~(O) _ A + 1 
2 (1 -1) 

g 

(fi(O»)(1g+1)/2 (~(O»)-(1g-1)/2 A2(1g-1) 

"" 'E(O) 
geo ' (5.78) 

where 'E(O) is defined by equation (5.23). geo At O( f), the cosmic-ray 

energy equation (5.7), and the total energy equation (5.4) imply 

where 

£ p(l) .., 0 
c c 

! ~(O) /1) 
2 

[1 _ [p(O)]'7g+l)/2 [~(O)r(7g+1)/2 /(7g-1») 
1 (1 +1) 

+ - g 
2 (1 -1) 

g 

(fi(O»)(1g+1)/2 (~(0»)-(1g-1)/2 A2(1g-1) fi(l) 

L 
c 

and 
-(1) 
E ceo 

( )
1/2 

~ ( 0 ) A .. 2 pc( 1 ) + -,--_1-=-:-
b

c 
-1) Ie 

"" 'E(1) 
ceo 

are defined by equations (5.33) and 

respectively. 

(5.79) 

(5.80) 

(5.24) 

The major difference between perturbation equations 

(5.78) - (5.80) and perturbation equations (5.25) - (5.29) is that the 

former set of equations contains the extra unknowns fi(O) and fi(l) As 1 2 

i §2 2 11(0) d 11(1) 
n ., P1 an P2 can be determined by the requirement that the 

upstream solution is a transonic solution. The critical point of the 

------------------------
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perturbed stellar wind is expected to depend on the cosmic-rays. Thus 

we assume that the perturbed critical point in the >"--,p plane can be 

expanded in a power series in E of the form: 

>.. _ >..(0) + E >..(1) + ... 
c c c (5.81.) 

",(~c) - "'~O) [1 + , [~?) ["'~O)( [",~O))' + ",~1)] + ... J (5.82) 

where the subscript c denotes quantities (except >..) are evaluated at the 

unperturbed critical point >..(0). 
c 

From §3.2, we recall that the 

cosmic-ray stellar wind system exhibits critical behaviour when the 

fluid velocity matches the local thermal gas sound speed and the 

acceleration of the fluid is zero. From equations (3.57) - (3.60), we 

see that fluid velocity matches the local gas sound speed when 

>..4(~gl-1)/(~gl+1) 
..pc "" Pl c 

and the acceleration of the fluid is zero when 

(5.83) 

(5.84) 

Using the perturbation expansions (5.75), (5.81), (5.82) and (5.20) for 

(5.85) 

"" 0 (5.86) 

Solving equation (5.86) for >..~O) in terms of piO), and substituting the 

result in equation (5.85) we obtain 

(2fJiO»)(~gl+l)/(5-3~gl) 

..p(O) "" 1: >..(0) 
c 2 c 

(5.87) 

(5.88) 
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Note that the point (A~O) ,~~O» is the critical point of the unperturbed 

one fluid polytropic stellar wind (c.f. equations (2.18) and (2.19». 

(5.89) 

(5.90) 

and these equations are the O(€) critical point requirements. 

Since the total energy flux for the cosmic-ray modified stellar 

wind system is conserved so that 

E -(0) + € 'E(1) -(0) + € ('E (1) + € 'E (1») + ... (5.91) = E E goo coo gc gc cc 

where -(0) and -(1) given by equations (5.23) and (5.24) E E are goo coo 

respectively. At zeroth order, equation (5.91) combined with equations 

(5.2), (5.87) and (5.88) yields 

Hence 

-(0) 
E goo 

A(O) _ 4(1g1 -1) 'E(O) 
c (s-31g1 ) goo 

pia) = ~ (A~0»)(s-31g1)/(1g1+1) 

so that the unperturbed critical point A(O) and the 
c 

constant pia) are given in terms of 'Ei~) and 1
91

. 

energy equation (5.91), gives 

-(1) 
E coo 

(5.92) 

(5.93) 

(5.94) 

normalized entropy 

At O( €), the total 

(5.95) 

From equations (5.89), (5.90) and (5.95) we can now solve for ~~l), A~l) 
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in terms of the test particle cosmic-ray quantities E(l) and 
cc 

(which in turn are determined by solving the normalized 

cosmic-ray energy (5.79) in the unperturbed flow) to obtain: 

p(l) ... 4 h'gl-l) (Ac(O»)-l (E(l) _ E(l») (5.96) 
1 (lgl+l) c~ cc 

A (1) _ (lgl+
l

) A (0) [ (1) + --.! (\ (0») -3/2 (-p(l»)'] 
c (5-31 1) c PI J2 AC cc (5.97) 

~(l) = PI (1) + [4 !7&1-~~ (A(O»)-l _ (~(O»)-l (~(O»),] A(l)' . (5.98) 
c 1

91
+ c C C C 

Since 

(5.99) 

for the one fluid polytropic stellar wind (see appendix A), we can write 

equation (5.98) as 

~(1) = p(l) + j8 (5-3 )1/2 (A(O»)-l A(l) 
c 1 (lg1+1) 191 c c 

Thus equations (5.96) - (5.100) now completely determine pi1), 

(5.100) 

A(l) and 
c 

~ (1) in terms of cosmic-ray quantities at the unperturbed critical 
c 

point. 

We now discuss the boundary conditions at the shock and 

determine the modified quantities at the shock. As discussed in chapter 

4, the thermal gas and cosmic-rays are decoupled at the shock. 

Balancing the momentum and energy fluxes of the thermal gas at the 

shock, we obtain (c.f. equations (5.2) and (5.6»: 

1/2 1 (1 1+1)/2 -1 1/2 \2(lg1 -1) 
.1. + _ IJ g .1. g A 

~lsh 1 P1 ~lsh sh 
gl 

1/2 1 (1 2+1)/2 -lg2/ 2 2(1 2- 1) 
... .1. + _ IJ g .1. A g 

~2sh 1 P2 ~2sh sh 
g2 

(5.101) 
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- 1 
Egsh - 2 ~lsh - Ash 

1 (1 1+1)/2 -(1 1-1)/2 2(1 1-1) 
+ p g ~ gAg 

(lg1-1) 1 lsh sh 
(5.102) 

- 1 
Egsh - 2 ~2sh - Ash 

1 (1 2+1)/2 -(1 2- 1)/2 2(1 2- 1 ) 
+ p g ~ gAg 

(lg2-1) 2 2sh sh 
(5.103) 

Similarly, balancing the cosmic-ray pressure and energy flux at the 

shock gives: 

Pc1sh - Pc2sh (5.104) 

1c 1/2 -2 - 1 - dPC11 
(lc - 1 ) ~lsh Ash Pc1sh + (lc-1) ~lsh ~ sh 

1c 1/2 -2 - 1 - dPC21 
-=------'--=-:- ~ A P + ~--
(lc - 1 ) 2sh sh c2sh (lc-1) 2sh dA sh 

e Ecsh (5.105) 

Using the expansions (5.34) - (5.37) we obtain at zeroth order: 

+ 1 
(lg2 - 1 ) 

st and at 1 order (O(e»: 

(5.106) 

(5.107) 

(5.108) 

,------------------------------------------------------------------------------
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-(1) -(1) 
Pc1sh - Pc2sh I 

(5.109) 

~c (0»)1/2 
(~-1) tP1sh 

c 
(A (0») -2 p(l) + ~.=..,1,-,- (p(l) )' 

sh c1sh (~-1) ~lsh c1sh 
c 

(5.110) 

(5.111) 

(5.112) 

---------- -------- -- ---
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(5.113) 

In the above by equations 

(5.23), (5.24) and (5.110) respectively. The compression ratio of the 

shock can be expanded as: 

where 

q I!!I 
[

l/J ] 1/2 1sh 

l/J2sh 

(1) 1 
q ... '2 

[

l/J (0)] 1/2 
(0) 1sh 

q =-
l/J(O) 

2sh 

[[H~~) -1 H~~)' ~~~) 
_ [(l/J(0»)-1 (l/J(O»)' A(l) 

2sh 2sh sh 

+ l/J(1)] 
1sh 

(5.114) 

(5.115) 

(5.116) + ~~!~]] 
and (l/J(O»)' is obtained by differentiating (5.78) with respect to A: 

[~(O»)' _ 2 [1 _ 2 ~(O») (7g+
1

)/2 [~(O)r(7g -1)/2 /27g-3)] 

[1 _ ~(O»)(7g+1)/2 [~(O)r(7g+1)/2 /(7g- 1)f1 

(5.117) 

The unperturbed fluid velocity profile is the one fluid 

polytropic stellar wind discussed in §2.2, with energy integral (5.78), 

and critical point given by equations (5.87), (5.88), (5.93) and (5.94). 
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With this velocity profile, we can solve the cosmic-ray energy equation 

(5.79) with appropriate boundary conditions (see §4.l) to obtain the 

test particle cosmic-ray pressure. st The 1 order correction to the 

upstream normalized entropy constant ,8~1), is then given by equation 

(5.96). Using this value 

obtained by solving (5.80) 

of ,8~l), the modified wind profile is then 

for 1/J (1) . The 1st order correction to the 

shock radius is given by equation (5.113), and the fluid velocity in the 

region between the perturbed and unperturbed shock radii is determined 

by interpolation. 

Numerical examples illustrating the perturbation scheme are 

shown in figures 5.3 and 5.4 for a stellar wind model with 

M = 6*1011 -1 p 1 eV -3 6*10- 27 -3 1.3 g s cm Pg«J - g cm 19l = g«J 

and 192 = 5/3 Figure 5.3, for which lc -= 4/3 and 

23 2 -1 shows the unperturbed fluid velocity profile tel - te
2 

... 10 cm s , 

(curve a), the modified fluid velocity profile (curve b1), and the test 

particle solution for the cosmic-ray pressure (curve d
l
). As in figures 

5.1 and 5.2, curve c shows for comparison a one fluid polytropic stellar 

wind solution (without cosmic-rays), with the same total energy flux and 

interstellar gas density as the cosmic-ray modified stellar wind. As in 

the simpler models in §5.1 (c.f. figure 5.1 and 5.2), the fluid upstream 

of the shock is decelerated by the positive cosmic-ray pressure 

gradient. The shock radius for the cosmic-ray modified wind in this 

example is less than that the shock radius for the unperturbed wind 

(c.f. curves a and bl)' 

We also attempt to quantify the accuracy of the perturbation 

---------------------_ .. _------------------------ -----.-. ---
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Figure 5.3 

The plotting 

(0) R • rsh - 65.2 A.U. , 

d
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Perturbation Solution for a More Realistic Model with Larger ~ 

quantities are E • r/R , U • u/uo and Pc • P c/P co' where 

(0) kID·1 P P and (- 1. The normalized 
U o • u1sh - 364 s , co • ( gm 

cosmic.ray diffusion coefficients are ;1· ~l/~o - 2.81 and ;2· ~2/~o - 2.81 • where 

~ • Ru _ 3.55*1022 cm2 s·l 
o 0 
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solution. The curve d1 shows the test particle cosmic-ray pressure I 

whereas curve d2 is the corresponding solution for cosmic-ray pressure 

of the full nonlinear system of O.D.E.s (equations (3.19) and (3.21» 

for the cosmic-ray modified stellar wind. The solution of the full 

nonlinear system is obtained by integrating equations (3.19) and (3.21) 

by a Runge-Kutta routine with initial conditions (for .,p, P 
c 

chosen to be those from the perturbation solution at the shock. 

dP 
c 

and d)' ) 

The two 

solutions for P IP are very similar at c coo 

significantly different at smaller radii. 

r/r~~) > 0.7 I but are 

On the other hand I the 

perturbation solution for the modified wind profile (curve b
1

) closely 

approximates the Runge-Kutta solution (curve b2 ). 



Figure 5.4, for which 'Y .. 4/3 c 
and 2 cm s 
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-1 

shows a further example of the perturbation solution, but for a smaller 

diffusion coefficient than in figure 5.3. The cosmic-ray pressure 

gradient is larger, and the modified shock is pushed further in 

(compared to the unperturbed shock) than the example in figure 5.3. The 

relative accuracy of the perturbation solution as compared to a 

Runge-Kutta solution of the full nonlinear system is also shown. As in 

figure 5.3, the cosmic-ray modified stellar wind profile of the 

perturbation and Runge-Kutta solutions are similar, but there is a 

discrepancy between the corresponding solutions for P IP (curves d1 c ceo 

and d2 ) at small radii. 

2.0 

1.0 

.0 
.0 1.0 2.0 

Figure 5.4 Perturbation Solution for a Kore Realistic Hodel with Smaller ~ 

The plotting quantities are ( - r/R • 

(0) (0)·1 
R • rsh - 65.2 A.V.. uo • ulsh - 364 km s • Pco - .Pg~ 

cosmic·ray diffusion coefficients are Kl - Kl/Ko - 1.13 

22 2 -1 
KO • Ruo - 3.55*10 em 8 

-------- ._---- --_. ._-_. ---

and Pc - Pc/Pco ' where 

and • - 1. The normalized 

and 



CHAPTER 6 

NUMERICAL SOLUTION OF THE COSMIC-RAY 
MODIFIED STELLAR YIND PROBLEM 

In previous chapters we studied the properties of the set of 

equations describing cosmic-ray modified stellar winds (chapter 3). We 

also discussed some approximate solutions namely: the test particle 

limit (chapter 4) where the galactic cosmic-ray pressure was small 

enough that the background stellar wind flow was not significantly 

modified by the cosmic-rays; and a perturbation solution (chapter 5) in 

which the galactic cosmic-ray pressure is small but finite, and the 

background flow is modified by the cosmic-rays. In the present chapter 

we describe a numerical method to self-consistently solve the cosmic-ray 

modified stellar wind problem. 

The main advantage of the numerical method in this chapter 

compared to the perturbation scheme of chapter 5 is that the full set of 

nonlinear equations can be solved to a high degree of accuracy, and the 

cosmic-rays are no longer regarded as a perturbation. The method is an 

iteration scheme in which the cosmic-ray energy equation is first solved 

for a given background flow velocity profile (initially the flow profile 

is chosen to be that of a one fluid polytropic stellar wind with a 

termination shock). The critical point requirements are then used to 

determine an improved estimate of the upstream entropy constant of the 

gas, and improved estimates of the location of shock and critical point. 

123 
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The total energy flux integral (with cosmic-ray energy flux given by the 

test particle picture) is then used to obtain the modified wind profile. 

This completes the first iteration loop, and the new modified wind 

profile is then used to start the next iteration. 

The equations are solved for two cases. In the first case the 

diffusion coefficient outside the shock, "2' is. infinite, so that the 

cosmic-rays freely escape across the boundary at r - rsh (the shock 

radius). Since ~2 - ~ , the cosmic-rays are unaffected by the shock or 

the downstream flow, and there is no acceleration at the shock. The 

model wi th ~2 ~ ~ , is a conventional modulation model, in which the 

cosmic-ray intensity, pressure and energy flux are uniform outside the 

shock. In the second more realistic case the downstream diffusion 

coefficient is finite, and the .cosmic-rays are accelerated at the shock, 

and interact with both the upstream and downstream flow. Both models 

show that the cosmic-rays decelerate the wind just upstream of the 

shock. 

The solution method adopted implicitly assumes that the shock is 

not totally smoothed out by the cosmic-rays as can occur for example in 

two fluid hydrodynamica1 models of cosmic-ray shocks (see Drury and Volk 

1981; Axford, Leer and McKenzie 1982). Drury and Vo1k (1981) in their 

work on cosmic-ray modified shocks, obtained in some instances up to 

three possible downstream states for a given upstream state (c.f. also 

Achterberg, Blandford and Periwa1 1984, for multiple solutions of the 

cosmic-ray shock structure problem). The numerical solution of the 

cosmic-ray modified stellar wind obtained in the present chapter, for 
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given boundary conditions at r - 0 and r - ~ , appears to be unique. 

However, it may well be that there are multiple solutions of the 

cosmic-ray modified stellar wind problem similar to those obtained by 

Drury and V6lk (1981). 

In §6.l we outline the iteration scheme used to solve the 

equations. Numerical examples illustrating the iteration scheme are 

given in § 6 . 2. -

§6.l Equations and Algorithm 

From chapter 3 we recall that the equations governing the 

cosmic-ray modified stellar wind system are (equations (3.1) - (3.5»: 

-.! ~(r2 P u) 0 (6.1) 2 dr g r 

du dP dP GM 
--.S c a (6.2) Pg u- - dr - P -dr dr g 2 r , 

..! ~+2 (1 2 1'g P GM 
Fe] JZ - raJ + 

2 
0 (6.3) Pg u "2 u + r 2 dr (1' -1) Pg r g 

-.! ~(i F ) 
dP c (6.4) u --2 dr c dr r 

1'c 1 dP 
F 

c (6.5) iii P u - (1' -1) K. dr c (1' -1) c c c 

Suppose that the stellar wind velocity profile has a shock, then on 

either side of the shock, specification of P , P , u, P and F at a g g c c 

fixed point in the flow uniquely determines the solution of the system 

of first order coupled O.D.E.s (6.1) - (6.5) (c.f. §2.2). Since P , P , 
g g 

u, P and F need to be obtained on both sides of the shock, this 
c c 

involes 10 constants (which can be considered as initial conditions to 

equations (6.1) - (6.5». However, the radius of the shock needs to be 

-- -------------_. -- ---
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determined. so that overall 11 constants are involved. 

To determine the 11 constants it is necessary to impose 11 

condi tions on the flow. Two ways in which this can be achieved are 

oulined below: 

(a) Specification of P , P • if ( ... 41rp ur2
). P and F at g g g c c 

infinity imposes five conditions on the system. 

Conservation of the gas mass, momentum and energy fluxes, 

and continuity of the cosmic-ray pressure and energy flux 

at the shock imposes five more conditions. The remaining 

condition is to choose the transonic solution inside the 

shock (c.f. §2.2). 

(b) Specification of Pg • Pg ' M and Pc (or Fc) at infinity 

imposes four conditions. 

dP 

At the origin requiring P to c 

c 
dr be finite (or 0) is a fifth condition. The 

remaining conditions are the five conservation 

requirements at the shock and choosing the transonic 

solution inside the shock. 

The disadvantage of using the set of conditions (a) is that 

there is no guarantee that the cosmic-ray pressure will be finite at the 

origin. An incorrect choice of P and F at infinity. can lead to a 
c c 

solution in which P diverges at the origin. 
c 

However, by using a 

shooting method with a judicious choice of initial conditions at 

infinity. it may be possible to obtain the physically realistic solution 

of equations (6.1) - (6.5) in which P is finite at the origin. 
c 

We choose to solve the system of equations (6.1) - (6.5) using 

-------- --- -----
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the set of boundary conditions (b), in which either P is finite or c 
dP 

c· 0 
dr - as r ... 0 . One drawback in applying set (b) is that if we 

specify cosmic-ray pressure at infinity, then the total energy flux (or 

equivalently the cosmic-ray energy flux at infinity) is not known 

initially, and must be determined after the equations (6.1) - (6.5) have 

been solved. If the gas energy and cosmic-ray energy fluxes are 

specified at infinity, then the total energy flux of the system is known 

at the outset, but the cosmic-ray pressure at infinity must then be 

determined from the solution. 

We now describe an algorithm to solve the set of equations 

(6.1) - (6.5) subject to boundary conditions (b). Firstly, we reduce 

equations (6.1) - (6.5) to two coupled equations: the total energy 

integral (see §3.2) and the cosmic-ray energy equation (see §4.1). The 

two relevant equations (3.20) and (4.2) can be written as: 

where 

~ ~(e2 
dP 

- c) 
" de e2 de 

E ... 
c 

E -
dP - c - u-
de 

E + E g c 

- "Ic ~ ~(e2 u) 'P 
e2 de c 

0 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

The quanti ties A, tP, P , fJ, E and " are defined by equations (3.14), 
c 

(3.22) and (3.23), and e, u, P and K are defined by equation (4.1). 
c 

Although different scales are used in equations (6.6) and (6.7), we find 

that the equations are easier to handle in this way because of the 



techniques we have developed in §2.2 and §4.1. 

related to P and F by c c 
P 

(~) Pc P 
co 

c Po 0 

E P R2 .-1 (~) F u J c co 0 
0 

where 

1c 1 F P -Ea U - (-y -1) K. c (1 -1) c c c 
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Note that P and E are 
c c 

(6.10) 

c (6.11) 

dP 
C 

de 
(6.12) 

We use an iterative approach to self-consistently solve 

equations (6.6) and (6.7) with the assumption that the flow contains a 

shock somewhere in the vicinity of the termination shock of the one 

fluid polytropic stellar wind solution used in the first iteration. We 

initially set up the fluid velocity profile of the one fluid polytropic 

stellar wind including a termination shock as in §2. 2. Using this 

background velocity profile we then solve the cosmic-ray energy equation 

(6.7) (in test particle picture) for P and F by the difference scheme c c 

developed in §4.l. The critical point requirements for the cosmic-ray 

modified stellar wind (see §3.2) are then used to determine the modified 

* normalized entropy constant Pl for the flow inside the shock. These 

requirements also lead to an improved estimate of the locations of the 

critical point and the shock. 

In determining the locations of the critical point and the 

shock, we have to make use of the thermal gas energy flux which depends 

on the total energy and cosmic-ray energy fluxes (c.f. equation (6.6». 

If the cosmic-ray pressure is specified at infinity, then the total 

-----_._-_. ---_.- --_. 
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energy flux changes at each iteration. In this case the total energy 

flux is taken as 

E +E gco cmax (6.13) 

where 

192 P 

(~) E E ~ (6.14) gco (lg2- l ) Pgco 0 

E SiI P R2 .-1 (~) Fc(emax> (6.15) cmax co U o J kT 
0 

and emax is the maximum radius used in the difference scheme in solving 

for the cosmic-ray pressure. If we specfiy the cosmic-ray energy flux 

at infinity (Le., we use equation (4.13) as one of the boundary 

conditions), then the total energy flux is constant during the iteration 

process. We still use the approximation (6.13), but E is now a 

constant. 

We now proceed to find the modified normalized entropy constant 

* PI upstream of the shock (P2 does not change, 

* . expressions for PI and the modified cr~tica1 

c.f. §5.2). We determine 

* point A in terms of the 
c 

cosmic-ray quantities P and E evaluated at the approximate critical cc cc 

point obtained in the previ.ous iteration. Since the critical point 

( A A ) in general does not coincide with one of the grid points of c 

the difference scheme in solving for P , it is necessary to evaluate P 
c cc 

and E by interpolation. From §3.2, we have cc 

(6.16) 

(6.17) 
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on the critical surface. Substituting the expressions (6.16) and (6.17) 

into equations (6.8) and (6.9) we obtain the gas and cosmic-ray energy 

fluxes E and E at the critical point in the form gc cc 
1 (~l+l ) * ( *)4(~ 1-1)/(~ 1+1) * 

E - g f3 A g g - A 
gc 2 (~gl-l) 1 c c 

E ~c (*)1/2 (A*)-4/(~gl+1) p 
cc (~-l) f3l c cc 

c 

+ 1 K. [( *)-1/2 (A*)4/(~gl+1) 
(~ -1) f31 c 

c 

_ 2 [p~t/2 [~:]'31g1-1)/(1g1+1)] 

From overall energy conservation (equation (6.6» we also have 

E gc ... E - E 
cc 

* Solving equation (6.18) for f3 l gives 

* b gl -
l

) (- *) f3 ~ 2 - E + A 
1 (~gl+l) gc c 

* and substituting this value of f3
1 

in equation (6.19) yields 

E ~c 2 (~gl-l) (E + A*) (A*)-2 P 
[ ]

1/2 

cc (~c-l) (~gl+l) gc c c cc 

+ 4 (~gl-l) [2 (~gl-l) (E + A*) 
(~gl+l) (~gl+l) gc c 

• -:-----,:0.,- K. g A - E 
1 - [(5-3~ 1) * 

(~c-l) 4(~gl-l) c gc 

-1/2 

* A 
c 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

Taking into account the expression (6.20) for E , equation (6.22) can gc 

* now be solved to obtain the new approximate critical point A in terms 
c 

of P and E evaluated at the critical point obtained in the previous cc cc 

iteration. * * Equation (6.21) then yields f3 l in terms of E and A . 
cc c 

Equation (6.22) can also be written in the form: 



* 

(-y 1+1) g 

[E -cc 
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(6.23) 

Thus A can be solved either by iteration from equation (6.23), or by 
c 

using a bisection method on equation (6.22) or (6.23). 

To determine the modified shock radius, we first note that 

E gsh E - E csh (6.24) 

gives the gas energy flux at the shock radius Ash (or r sh) of the 

previous iteration. Using this value for the gas energy flux, and the 

* value of P1 calculated from equation (6.21), we determine the new shock 

* * radius Ash (or r sh) as in §2.2. Having determined the new shock radius 

we re-sca1e the radial variable from e - r/rsh to e* * r/rsh (i.e., 

. * , we choose the spat~a1 scale R as r sh). As a consequence of re-sca1ing 

the radial variable, it is then necessary to replace 

* 
K. ... K./(r hU ) s 0 

by 

-* K. K./ (r hU) in further calculations. s 0 
A similar re-sca1ing process 

must be carried out for the thermal gas energy flux profile, since the 

numerical solution grid is either stretched or contracted by the 

re-sca1ing. Practically speaking, we stretch or contract the thermal 

gas energy flux profile (ff g or Eg) along the radial axis until r sh 

* -* coincides with rsh' and take this new profile (Fg or 

thermal gas energy flux with the new shock radius 

-* E ) 
g 

* r sh · 

as the modified 

The modified 

* velocity (u or t/J ) can then be determined from equation (6.8) as in 

§2.2. With this new profile, we can determine the modified cosmic-ray 
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pressure by using the test particle calculation. This completes an 

iteration loop. The iteration process can be summarized in the. 

following diagrams: 

(a) Specification of galactic cosmic-ray pressure, 

INPUT 

(b) Specification of galactic cosmic-ray energy flux 

(equivalently, total energy flux), 

INPUT 

The input to the iteration loop includes the one fluid polytropic 

stellar wind. Note that -* E ... E 
g g 

on the grid points. 

The maj or disadvantage of this algorithm is that we cannot 

specify both galactic cosmic-ray pressure and energy flux. Otherwise, 

we will over determine the system, because we require a finite 

-------------------------------------
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cosmic-ray pressure at the origin. 

§6.2 Applications of the Algorithm 

In this section we present numerical examples of the algorithm 

developed in §6.1. We first consider the case where the diffusion 

coefficient is infinite outside the shock (1C2 "" co ), and the 

cosmic-rays are unaffected by the flow outside the shock. We then go on 

to consider examples in which 1C2 is finite outside the shock. 

§6.2.l Case IC = co 2-

For there is no interaction between the cosmic-rays 

and the thermal gas outside the shock, and the cosmic-ray pressure and 

energy flux at the shock are the same as those at infinity. We only 

need to calculate the cosmic-ray pressure inside the shock. We require 

the cosmic-ray pressure to be finite at the origin, so we can choose 

either the cosmic-ray pressure or the energy flux at the shock 

(equivalently, at infinity) but not both as the remaining boundary 

condition for the cosmic-ray energy equation (6.7). In the following 

computation, we take the specification of the energy flux as the 

boundary condition, so we have a fixed total energy flux before 

iteration. Even if the thermal gas energy flux at the shock is known 

from the boundary condition (actually it is equal to the enthalpy flux 

at infinity), the radius of the shock cannot be determined at the start 

of the iteration process, because the entropy constant inside the shock 

changes in each iteration. Figures 6.1 and 6.2 show the radial 
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-variation of and u - uluo ' 

where R is the radius of the shock, u is the velocity just upstream of 
o 

the shock of the initial one fluid polytropic stellar wind without 

cosmic-rays and P is the gas pressure at infinity, P The stellar co goo 

wind model used in figure 6.1 and 6.2 has M - 6*1011 g s-l 

P 1 eV cm -3 6*10- 27 g -3 
'Y gl - 1. 3 and 'Y g2 ... 5/3 , Pgoo cm goo 

In figure 6.1 co 4/3 If. - 10
23 2 -1 and F IF -= 0.3 'Yc If. 1 cm s 2 coo goo 

while in figure 6.2 - 4/3 
22 2 -1 and 'Yc , If. - If. - 10 cm s 1 2 

F IF - 1 . coo goo 
- 2-The features of P , e F and u are basically the same as 

c c 

in chapter 5. The wind just upstream of the shock is decelerated by the 

positive cosmic-ray pressure gradient. In the radial range 

0.04 < r/R < 0.6 in figure 6.2, the wind velocity is essentially 

constant, and the cosmic-ray energy flux is essentially zero. In this 

region the total energy flux is essentially the kinetic energy flux of 

the wind. As the shock is approached from the upstream side the kinetic 

energy of the wind decreases, with part of the energy being converted to 

cosmic-ray energy, and part being used to incease the enthalpy of the 

gas. The deceleration of the wind is more prominent if If.l is smaller 

(figure 6.2) when compared with the larger If.l case (figure 6.1). 

The iterative solution was compared with Runge-Kutta integration 

of the equations using the values of the iteration solution at the shock 

as initial values. The two agree very well with each other. Actually, 

-5 
the fractional discrepancy between them is smaller than 10 (except at 

region close to the origin) provided that the galactic cosmic_ray 

pressure is not too large, say P < P coo goo One defect in the algorithm 
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Figure 6.1 Exact Solution for the Case ~l 1. Large and ~2 i. Infinite 

The plotting quantities are e· r/R. u. u/uo • Pc • Pc/Pco and e2F
c • e2Fc/Fco 

where R. r.h - 65.1 A.U. • Uo - 364 \em sol • Pco • Pg .. - 1 eV cm-
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F • u P - 5.82*10-5 erg cm- 2 
B-

1 The normalized cosmic-ray diffusion coefficients are 
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Figure 6.2 Exact Solution for the Case ~l 1s S .. 11 and ~2 is Infinite 

The plotting quantities are e· r/R. u. u/uo • Pc • Pc/Pco and e2Fc· e2Fc/Fco 

where R. rsh - 65.1 A.U. • "0 - 364 \em .-1 • Pco • Pg .. - 1 eV cm- 3 and 

F .. u P 5.82*10-5 erg cm- 2 s-l The normalized cosmic-ray diffusion coefficients are co 0 co 

~1 • ~l/~o - 0.282 and ~2· ~2/~0 - 0.282 • where ~o· Ruo - 3.55*10
22 

cm
2 

s-l . 
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is that the iteration initially converges very fast to a solution 

(presumably one of the physical ones, since the solution agrees very 

well with the Runge-Kutta solution), but then starts to diverge with 

further iterations. This defect becomes more serious if the cosmic-ray 

pressure at infinity is large. 

§6.2.2 Case ~2 is finite 

We now go on to the general case where ~2 is finite. We specify 

the galactic cosmic-ray energy flux in order to have a fixed total 

energy flux during the iteration. Two typical resul ts are shown in 

figures 6.3 and 6.4 for a stellar wind model 

p == 1 eV cm -3 , Pgex> "" gex> 

In figure 6.3 'Yc 4/3 

while in figure 6.4 

6*10- 27 g -3 cm 

~1 .,. ~2 = 1023 

'Y - 4/3 c , 

'Y gl "" 1. 3 

cm2 s-l and 

and 'Y g2 .,. 5/3 

F IF = 0.25 cex> goo 

1022 2 -1 
~1 - ~2 - cm s and 

F IF - 1. They show the same features as in figures 6.1 and 6.2, coo goo 

where the wind is decelerated just upstream of the shock. The 

deceleration is more pronounced, the smaller the value of ~ (c. f. 

figures 6.3 and 6.4). 

The algorithm has the same problem as in previous case where 

~2 == 00 , namely the iteration converges to a solution for a while and 

then diverges with further iterations. Even though the algorithm has 

this defect, the iteration solution agrees very well with the 

Runge-Kutta solution. -4 The fractional discrepancy is about 10 . 
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Figure 6.3 Ezact Solution for the Case ~l and ~2 are Large 

The plotting quantities are and (2j1o • (2F /F c c co f 

where R • rsh - 64.0 A.U .• P • P - 1 eV cm- 3 and 
CD &"" 

Fco • uoPco - 5.82*10-5 erg cm- 2 s-l The normalized cosmic-ray diffusion. coefficients 
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22 

cm
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Figure 6.4 Exact Solution for the Case ~l and ~2 are Saal1 
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The plotting quantities are (. r/R. u. u/uo • Pc • Pc/Pco and e2j1o
c • e2Fc/Fco 

where R. rsh - 62.5 A.U .• U
o 

- 364 km s-l • Pco • Pg~ - 1 eV cm- 3 and 

Feo • u P - 5.82*10- 5 erg cm- 2 s-l o CD 
The normalized cosmic-ray diffusion coefficients are 

~1 • Kl/Ko - 0.294 and ~2· «2/KO - 0.294 • where «0· Ruo - 3.41*10
22 

cm
2 

s-l . 
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§6.3 Conclusion 

In this dissertation we developed a self-consistent 

hydrodynamical model describing the modification of a stellar wind by 

the galactic cosmic-rays. The model was inspired in part by the work on 

cosmic-ray modified shock waves initially developed by Axford, Leer and 

Skadron (1977), Drury and Vo1k (1981) and Axford, Leer and McKenzie 

(1982). These models describe at a hydro dynamical level the 

acceleration of cosmic-rays in plane parallel shocks by the first order 

Fermi mechanism (c.f. Axford, Leer and Skadron 1977; Krymskii 1977; Bell 

1978a, b' , Blandford and Ostriker 1978). Hydromagnetic waves (e.g. 

Alfven waves) or magnetic irregularities travelling in the background 

gas scatter the cosmic-rays, and are the intermediary via which energy 

and momentum are transferred between the thermal gas and the 

cosmic-rays. This coupling can be described by a mean hydrodynamical 

diffusion coefficient which in general depends on the power in the 

scattering wave field. 

To model the iteraction of the cosmic-rays with a stellar wind 

flow, it is necessary to modify the above hydrodynamical equations to 

apply in a spherical geometry, and to include the effects of gravity on 

the flow. In contrast to cosmic-ray acceleration in plane parallel 

shocks, where the cosmic-rays continuously gain energy by scattering 

back and forth across the shock, cosmic-rays propagating in a stellar 

wind with termination shock tend to lose energy in the diverging flow 

upstream of the shock due to adiabatic deceleration (e.g. Parker 1965a), 

which is offset to some extent by Fermi acceleration at the shock. This 

.. _-_. __ .. _----------------- ._ ..... _-
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added complication of the transport of cosmic-rays in the stellar wind 

problem is mainly due to the spherical geometry of the flow. 

The basic equations governing the cosmic-ray modified stellar 

wind system are equations (6.1) - (6.5). The main purpose of the 

present work is to solve these equations self-consistently. In doing 

so, we made use of the techniques developed in chapters 2 and 4. In 

chapter 2, we learnt how to set up a stellar wind velocity profile 

including a termination shock. In chapter 4, we developed a finite 

difference scheme to solve the cosmic-ray energy equations (6.4) - (6.5) 

with a given background flow velocity profile. Employing the techniques 

developed in chapters 2 and 4, an iterative algorithm was devised in 

this chapter to solve the set of equations (6.1) -(6.5) to a high degree 

of accuracy. Each of the solution examples in figures 6.1 - 6.4 shows 

the same characteristics, namely, a sub-shock and deceleration of the 

flow velocity upstream of the shock. In one dimensional two fluid 

hydrodynamical models of cosmic-ray shocks (Drury and Volk 1981; Axford, 

Leer and Mckenxie 1982), smooth transitions from upstream to downstream 

state are possible. The absence of smooth transitions in our 

calculation may only be an artifact of the solution method we used. The 

reason is two fold: firstly, we searched for solutions using the one 

fhlid polytropic stellar wind with has a termination shock to start the 

iteration; secondly, and more importantly, the iteration algorithm 

developed in this chapter does not applied for large galactic cosmic-ray 

pressures or energy fluxes, which can presumably smooth out the 

termination shock completely. Drury and Volk (1981) also showed that 

~-------------------- .. -----
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for one dimensional cosmic-ray shocks, up to three possible downstream 

states could be obtained for a given upstream state for small upstream 

cosmic-ray pressures, and Mach numbers of order greater than five. We 

speculated that the cosmic-ray modified wind also possesses multiple 

solutions (at least in the small diffusion coefficient or large shock 

radius cases), but the solution obtained in this chapter, for given 

boundary conditions at the origin (or the star) and infinity, appears to 

be unique. This might also be an artifact of the solution method used. 

The other possible reason for the lack of multiple solutions is that the 

Mach number of the termination shock is so large that there is only one 

solution. 

The influence of galactic cosmic-ray pressure on the stellar 

wind can easily be seen in the perturbation approach discussed in 

chapter 5. The perturbation solutions showed that the flow velocity 

upstream of the shock was decelerated and the stellar wind termination 

shock was pushed inward by the positive galactic cosmic-ray pressure 

gradient. 

The mathematical characteristics of the set of equations 

governing cosmic-ray modified stellar winds (equations (6.1) - (6.5» 

were discussed in chapter 3. Analysis showed that the singularities of 

these equations were considerably more complex than those of the one 

fluid poly topic stellar winds (c.f. chapter 2). The topology of the 

solution curves in the vicinity of the singularities is an intriguing 

mathematical problem and is interesting to pursue. 

---------------------------- ----- -- -- ------



APPENDIX A 

CRITICAL POINTS OF THE ONE FLUID POLYTROPIC 
STELLAR WIND MOMENTUM EQUATION 

In this appendix we determine the nature of the critical points 

of the one fluid polytropic stellar wind momentum equation (2.10): 

This equation can be written as an autonomous system of O.D.E.s: 

where 

pel _ 2 p(~+1)/2 ~-(~-1)/2 A(2~-3) 

Q & ~ (1 _ p(~+1)/2 ~-(~+1)/2 A2(~-1)J 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

One critical point of these equations (the sonic point of 

equation (A.1» occurs where P-Q-O Setting P-Q=O in 

equations (A.3) and (A.4) we obtain 

~c - ~ AC - ! (2P)(~+1)/(S-3~) (A.S) 

After linearizing around (A,~) (AC'~C)' the system of equations 

(A.2) may be written as: 

where 

A E3 

[
A-A] ~s ~_~c 

c 

[

- b-l) 

(3-2~) 
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(A.6) 

(A.7) 
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The matrix ! has eigenvalues 

(
5-3 ) 1/2 -1 

I' - + ~ ), ± - 2 c 
(A.B) 

For 1 < -y < 5/3 , the eigenvalues J.'± are real and of opposite 

sign which indicates that the critical point is a saddle point. The 

eigenvectors corresponding to 1'+ and I' are 

2 T 
(l'(-y+1) [(-y-1) + J(5-3-y)/2]) and (l'(-y!1)[(-y-1) - j(5-3-y)/2])T 

respectively. For -y > 5/3 , the eigenvalues are complex conjugates. 

The critical point is then either a centre or a focus (spiral point) 

(e.g. see Coddington and Levinson 1955). Note the linear analysis 

indicates that for -y > 5/3 , the critical point is a centre. However, 

the full nonlinear system (A.2) at this point may be either a focus or a 

centre. 

The point (),,~) - (0,0) is also a critical point since P and Q 

both become infinite at this point. To see this we note that the 

solution curves passing through (0,0) behave like as ), -to a 

see §2.2). So if we write the equation (A.1) as: 

:s [:)- [::) e [:~J (A.9) 

then by equations (A.3), (A.4) and ~ - B ),4 as ), -to a we have, as 

(),,~) -to (0,0) , 

P' -to -2 p-(-y+1)/2 B(-y+1)/2 ),4 -to a (A.10) 

Q' -to 
_1 p-(-y+1)/2 B(-y-1)/2 
2 

). -to a (A.11) 

This verifies that (),,~) ... (0,0) is indeed a critical point. In fact, 

this point a node since ~ - B ),4 as ). -to a 



APPENDIX B 

COSMIC-RAY ENERGY EQUATION AND 
COSMIC-RAY ENERGY FLUX 

In this appendix, we derive the cosmic-ray energy equation (3.4) 

and the expression (3.5) for the cosmic-ray energy flux, from the 

cosmic-ray transport equation (e.g. ,Parker 1965a; Gleeson and Axford 

1967; Jokipii and Parker 1970; Skilling 1975) 

af ~.Vf 1 4 af at + - V.(~.Vf) - 3 V·u p ap Q (B.1) 

4 
where f(x,p, t) is the mean phase space distribution for cosmic-rays 

• 4 (averaged over all d~rections of the individual particle momentum p), ~ 

4 
is the diffusion tensor, u is the background fluid velocity and Q is the 

source term. The effects of second order Fermi acceleration have been 

-t 
neglected in transport equation (B.1). Strictly speaking the velocity u 

should be replaced by the velocity of the waves that scatter the 

-t 4 -t -t 
cosmic-rays, V ... U + V , where V is the velocity of the waves w w 

relative to the fluid, but since Iv I « I~I w 
we have to a 

first approximation. It can also be shown (e.g. Do1ginov and Toptygin 

1966; Gleeson and Axford 1967) that the net streaming flux of particles 

with momentum in the 

4 

S 
P 

range (p,p+dp) is given by 

2 1 af-t 
a - 4 ~ p (3 p ap u + ~.Vf) 

In terms of the differential number density 2 U 15 4 ~ p f 
p 

(B.2) 

and the 

-t 
streaming flux S , the transport equation can also be written in the 

p 

conservation form 
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au a (1 ) -P. + V·s + - - p 11.vu at p ap 3 p 
(B.3) 

To obtain the cosmic-ray equation (3.4), multiply the cosmic-ray 

continuity equation (B.3) by the particle kinetic energy 

T 
_ 

( 2 2 2 4)1/2 2 pc +mc -mc 
o 0 

(where m is the rest mass of the particle 
o 

and c is the speed of light) and then integrate over all momenta p we 

find: 

aE 
--.£ + v.p. at c 

where 

is the cosmic-ray energy density; 

is the cosmic-ray energy flux; 

... * u·VP + Q 
c 

P c Ea ~ [v P U dp o P 

(B.4) 

(B.S) 

(B.6) 

(B.7) 

is the cosmic-ray pressure (v is the individual particle speed); and 

Substituting the expression (B.2) for 
... 
S 

P 
in 

integrating over all momenta, we obtain 

where 

... 
F 

c 
... 

(E + P ) u - <K>·VE c c c 

e [K.V(T U ) dp 
0= P 

(E.8) 

equation (B.6) and 

(B.9) 

(B.10) 

... 
In obtaining the u·VP term in equation (B.4) and the expression (B.9) 

c ... 
for F , we have used the result 

c 

._--------------------_._-_._----------
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[ T aa (p U ) dp - 3 P (B.ll) o p p c 

which is obtained by integrating by parts and assuming that the 

distribution function, f, is such that as p ... 0 and 

p ... 00. Note also that dT 
- -v dp gives the individual particle speed. 

For a fully relativistic cosmic-ray gas, equations (B.5) and 

(B.7) yield the polytropic relation (or the caloric equation of state): 

E 
c (B.12) 

where "I = 4/3 is the cosmic-ray adiabatic (or polytropic) index. An c 

equation of state of the form (B.12) also applies for a non-relativistic 

cosmic-ray gas (in which "I ... 5/3 ), and also for a cosmic-ray gas c 

whose distribution function has a momentum spectrum of the form f a p-a 

with a constant and 4 < a < 5 (in this case 'Yc - a/3 ). These 

examples suggest in general that "I lies in the range 4/3 < "I < 5/3 . 
c c 

For the equation of state (B.12), the cosmic-ray energy flux (B.9) 

reduces to 

... 
F 

c 
(B .13) 



APPENDIX C 

THIRD ORDER REAL LINEAR AUTONOMOUS SYSTEM 
OF ORDINARY DIFFERENTIAL EOUATIONS 

In this appendix we disscuss the qualitative behaviour of a 

general third order (or three dimensional) real linear autonomous system 

of D.D.E.'s. The system can be represented by 

cIX 
dt 

-. 
AX (C.l) 

where 
-. T 
X = (x,y,z) and A is a general 3*3 matrix. Since every matrix 

can be brought to one of the real Jordan canonical forms (see e.g. 

Hirsch and Smale 1974) by similarity transformations, so it is 

sufficient for us to consider A in Jordan form only. There are four 

cases: 

[~1 
0 

:J I. A J.L 2 (C.2) 

0 

[: 

-b 

:J II. A = a (C.3) 

0 

[~1 
0 

:J III. A = J.L l 
(C.4) 

0 

[~ 
0 

:] IV. A J.L (C.S) 

1 

The solutions of equation (C.l) corresponding to these Jordan canonical 

forms are: 
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1'1t 
x x e 

0 

I. 
1'2t 

Y Yo e (C.6) 

1'3t 
z z e 

0 

[xo cos(bt) sin(bt)] at x - Yo e 

II. [x sin(bt) + y cos(bt)] at y e o 0 
(C.7) 

1'3t 
z z e 

0 

1'1t 
x x e 

0 

t 
1'1t 1'1t 

Y x e + y e 
0 0 

III. (C.B) 

1'3t 
z z e 

0 

x x e I't 
0 

x t I't +y I't e e 
0 0 

IV. Y (C.9) 

1 t 2 x ep.t + y t el't I't 
2" x + z e 

0 0 0 0 
z 

Since the real parameters 1'1' 1'2' 1'3' a, b and I' can be positive, 

negative or zero and can equal each other, there are 20 distinct 

configurations for case I, 1B.for case II, 13 for case III and 3 for 

case IV. 

As an example, let us consider the case corresponding to §3.2.1. 

In this case, 1'1' 1'2 and 1'3 are distinct and one of them, say 1'3' is 

zero, so that case I and II are the relevant ones. From equations (C.6) 

and (C.7) we notice that each solution curve lies in a plane parallel to 

x-y plane, because z => Z 
o 

at any time. The three different 

configurations, node, focus and saddle, are sketched in 

figures C.1 - C.3 with the z-axis as the line of critical points. 

------------------- .. _---_._--_._---------_. ----_.-
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We now consider the eigenvectors corresponding to the matrices 

(C.2) - (C.S). Case I has 3 eigenvectors, 
T T 

(1,0,0,) , (0,1,0) and 

T T 
(0, 0,1) ; case II has 1 real eigenvector, (0, 0,1) ; case III has 2 

eigenvectors, T T (0,1,0) and (0,0,1); case IV has 1 eigenvector, 

T 
(0,0,1). If the paramet~rs, ~1' ~2' ~3 and ~, are not zero, then the 

real eigenvectors correspond to some preferred directions for the 

solution curves of the system under investigation. If some of the 

eigenvalues are zero, then those eigenvectors corresponding to zero 

eigenvalues are tangent (or parallel) to the critical line or surface of 

the system. This can be seen as follows. The matrix A in equation 

(C.1) is singular because some of its eigenvalues are zero. Critical 

-+ 

points occur when 
dX . 
dt - a , i.e, when 
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-. 
AX - o (C.lO) 

This is a system of dependent linear equations if the matrix ~ is 

singular. The solution is a line or a surface (or even the whole three 

dimensional space if ~ is a null matrix), and we called this the 

Critical Line or Surface. * Now if ~ is one of the real eigenvalues of 

* ~, then the components of the eigenvector corresponding to ~ are given 

by the following system of linear equations: 

(~ - * ~ !) [~] 0 (C.ll) 

If ~ * .". 0 then equation (C.lO) is exactly the same as equation 

(C.ll), and the direction of the critical line (or surface) is the same 

as the direction of the eigenvector corresponding to the zero 

eigenvalue. 

This property of zero eigenvalue is true in nonlinear system 

also. Consider the following system: 

:t[~] rex
•
y

•
z

)] '- Q(x,y,z) (C.12) 

R(x,y,z) 

where 

R(x,y,z) Q(x,y,z) P(x,y,z) + P(x,y,z) Q(x,y,z) (C.13) 

so that R depends on P and Q. Assume that the surface P(x,y. z) - 0 

and Q(x,y,z) - 0 intersect, then the system will have a critical line, 

and along this line (the intersection line of P - Q ... 0 ) we have 

d T 
dt(x,y,z) O. At a point on this critical line, the tangent vector 

has to be perpendicular to both normal vectors to the surfaces 
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P(x,y,z) - 0 and Q(x,y,z) - 0 . Let t .. (u, v, w) T be the tangent 

vector, then we have 

t Vpl 
c 

t vQ1c 

o 

o 

(C.14) 

(C.lS) 

where the subscript c denotes quantities are evaluated at the critical 

line. The relations (C.14) and (C.1S) can be written in the matrix 

form: 

~* [:J [~ 
P 

::L [:] e 
y 0 (C.16) 

~ 
and solving this matrix equation for (u,v,w) T yields the direction of 

the tangent vector to the critical line. 

Linearizing the nonlinear autonomous system (C .12) about its 

critical line we obtain 

[X-X] r-xc

] 
:t y-y: B y-Yc 

"" 
z-z z-z c c 

where 

[a 
P P P x Y z 

B IE! ~ ~ Qz -= 

P + fJ ~ aP +fJQ a P + fJ x y y z 
T and (x ,y ,z) is a point on the critical line. c c c 

(C.17) 

QJ 
(C.lS) 

The matrix B in 
-= 

equation (C.lS) is singular so at least one of its eigenvalues is zero. 

The eigenvector (x-x y-y z-z) corresponding to the zero eigenvalue, c' c' c 

satisfies the following equation 

[
X-X] 

!! y-y: 

z-z 
c 

o (C.l9) 
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By comparing equations (C.16) and (C.18), we notice that they are 

exactly the same set of linear equations (because the third row of the 

matrix B is a linear combination of the first two rows). As a result 

the eigenvector corresponding to the zero eigenvalue of the linearized 

system is tangent (or parallel) to the critical line of the nonlinear 

system. 

------------



APPENDIX D 

ASYMPTOTIC SOLUTIONS 

In this appendix we give an example of the application of 

equation (3.90), namely, we want to find the asymptotic behaviour of p 
as A ~ O. The energy integral (3.13) and the energy equation of the 

thermal plasma (3.12) can be written in terms of p and A, where 

p "" .,p-1/2 A2 , 

1 --2 4 1 (1 +1)/2 (1 -1) 
A - A + f3 g -p g E ... 2 p (1

g
- 1) 

1c --1 - 1 dPc 
+ (1 -1) p Pc + (1 -1) ~ dA 

c c 
(D.l) 

( 
(1 +1)/2 _(1 -2) --3 4) dp 

f3 g p g - p A 
dA 

2 3 --1 dPc ... 1 - 2 -p- A - P dA (D.2) 

Following the same procedure as §3.3, equation (3.90) can be written in 

the form: 
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(6 ).2 2 --1 ).3 1 - 1 die -2 + ~ die ).3) + + = P - P -= d). P - d>' 
" " " " 

0 

For a finite value of E, and the cosmic-ray energy flux as r ... 

equation (0.1), the density p in general must be finite as 

( P ... P as r'" co). Thus at large radii, we may write 
co 

where 

We consider two 

v > 0 

p P (1 + 6) 
<lO 

6(>') ... 0 as ). ... 0 

cases: (a) " is constant and 

§D.l Case" is Constant 

(b) " = tc o 
>.-v 
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(0.3) 

co, in 

r ... co 

(0.4) 

(0.5) 

with 

Substituting equation (0.4) into equation (0.3) and letting 

>. ... 0 we obtain (keeping only the largest terms in each coefficient) 

the equation governing the asymptotic behaviour of p (or 6): 

(0.6) 

Introducing a new independent variable X to replace 0 (e.g. see Murphy 

1960) : 

(0.7) 

------ ------------



equation (0.6) reduces to the linear equation: 

2 
!!..x+b~+'1 cx - 0 
dA2 dA g 

where 

-('1 +1)/2 -('1 -1) 
b ... -2 {3 g P g 

co 

1 -('1 +1)/2 -'1 
+ ('1 -1) - E {3 g p g + 

c - co 
Ie 

C Ell 

The general solution of equation (0.8) is 

where 
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(0.8) 

(0.9) 

(0.10) 

(0.11) 

(0.12) 

and AI' A2 are constants. Equations (0.7) and (0.11) give the general 

solution of equation (0.6) 

S - ~ log(A~ exp(a+A) + A~ eXp(a_A») 
g 

* * 

(0.13) 

where Al and A2 are constants. The appropriate boundary conditions at 

A = 0 (actually they are initial conditions according to equation 

(0.6» are equations (0.2) and (0.5). Thus at A - 0 : 

s -= 0 (0.14) 

~Io - 6 & p-(~g+1)/2 P~-~g (p~ - ::clo1 (0.15) 

Substituting equations (0.14) and (0.15) into equation (0.13) gives 

(-y tJ.-a) 
g + 

(a - a ) - + 
(0.16) 

Although equation (0.13) is the solution of equation (0.6), it is only 

an approximation to the solution of equation (0.3) as A ~ O. If we 

---------- -------- ~~-----~ --- .----~~---~~--- ---~ 
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expand equation (0.13) lITe get the asymptotic solution for equation (0.3) 

as >.... 0 As >. ... 0 • 

s - ~ >. - 2~ (lg ~ - Q_) (lg ~ _ Q+) >.2 + •.. 
g 

Hence the density p near >. - 0 is given by 

p - ~I POJ + d>' 0 >. 

(0.17) 

(0.18) 

which is just the Taylor series expansion of p around >. "" O. The 

above analysis has the advantage that we don't have to assume p can be 

expanded by a Taylor series beforehand. 

§0.2 .... C ... as:::..:e"'--...:.:IC'--=~IC, 0 >.-11 with II > 0 

With - - -II 
IC "" IC >. 

o • 
II > 0 • then as >. ... 0 equation (0.3) 

becomes (keeping only the largest terms in each coefficient): 

d2!, ()2 d>.; + 19 :~ - II >.-1 :~ + II ~' >.-1 0 (0.19) 

where 

-(1 +1)/2 -(1 -1) 
~' !I!! f3 g p g 

OJ 
(0.20) 

Introducting two new variables wand r to replace Sand >.: 

1 
"" - log(Cw) 

19 
>.(11+1) (0.21) 

(C is a constant), the non-linear O.O.E. (0.19) reduces to a linear 

a.O.E. in wand r. 
2 

d ~ + 1 II (II + 1)-2 ~, r-(211+l)/(II+l) w - a 
dr g 

Equation (0.22) is of the form 

d
2 

k ~ + a x y = 0 
dx2 

(0.22) 

(0.23) 
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This equation can be transformed to Bessel's equation (e.g. see Murphy 

1960) by taking the following changes of variables in sequence: 

xl - x 
(k+2)/2 

(0.24) 

After some manipulations equation (0.23) becomes: 

== 0 (0.25) 

which is Bessel's equation of order 1/(k+2) .Thus the general solution 

to equation (0.22) is: 

(a) if v is not an integer, 

w - C1 Jf J(V+1)(2j1gV~'r1/2/(v+1» 
+ C Jf J (2j1 v~'r1/2/(v+1» 

2 -(v+1) g (0.26) 

(b) if v is an integer, 

w - C1 Jf J(V+1)(2j1gV~'r1/2/(v+1» 
+ c Jf y (2~r1/2/(v+1» 

2 (v+1) g (0.27) 

where C1 ' C2 are constants, and Jp(z) and Yp(z) are Bessel and Neuman 

function respectively. The power series expansion of J (z) and Y (z) 
p p 

are (e.g. Whittaker and Watson 1927): 

co 2 (_l)k + k! (p+k) ! 
k-O 

where 

J (z) 
P 

Y (z) 
p 

co 

\ ( -1) k (~2J (p+2k) 
L k!r(p+k+1) 

k=O 
p-1 2 (P-~~l)! (~) (-p+2k) 

k ... O 

(~)(P+2k) (2 
p+k 

z 
+ 2 1 - 2 -1 log('2) m -

m-1 

k 

2 m-
1
) 

m=l 

lim (1 1 + ! - log(m)} 0.5772157 1 - + - + ... 
~c:o 2 m 

-----------------------------

(0.28) 

(0.29) 

(0.30) 
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is the Euler's constant. Substituting equations (D.26) - (D.29) into 

equation (D.21) we obtain 

(a) if v is not an integer, 

(b) if v is an integer, 

1 [~ (_l)k ("I v~,)(v+2k+1)/2 A(v+k+l) 
S - ~ log Cl L k!(v+k+l)! g 

g k=O 
v 

C \ (v-k)! ( ~,)(-v+2k-1)/2 Ak 
- 2 L k! 'Yg

V 

k=O 
co k 

C· \ (-1) ('V v~,)(v+2k+1)/2 A(v+k+1) 
+ 2 L k!(v+k+l)! 'g 

k ... O 
v+k+l k 

(log('YgV~IA) + 2 "I - 2 m-
l 

- 2 m-
l
)] 

m=l m=l 

Applying the boundary condition (D.14), we obtain: 

(a) if v is not an integer, 

C - r(-v)('Y v~,)(v+l)/2 
2 g 

(b) if v is an integer, 

C - - ~('Y v~,)(v+l)/2 
2 v! g 

dP 
c 

Since ~ dA is finite and 
- - -v 
~ - ~ A o 

(v>O), 

The other boundary condition (D.15) is then 

o Q g - g d ~1 -("I +1)/2 -("I -1) 
d>' 0 .. f' Pco ... ~' 

as 

(D.31) 

(D.32) 

(0.33) 

(0.34) 

A -+ 0 . 

(0.35) 
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and this is automatically satisfied. This can be seen by 

differentiating equations (D.31) and (D.32) and letting A ~ 0 • 

Finally, by expanding equations (D.31) and (D.32) for A ~ 0 , we obtain 

the asymptotic solution of equation (D.3) 

p P (1 + ~' A) 
~ 

(D.36) 

which is also just the Taylor series expansion of p around A = 0 



APPENDIX E 

ANALYTICAL SOLUTION AND 
BOUNDARY CONDITIONS AT THE ORIGIN 

Analytical solutions (in test particle picture) to the steady 

state cosmic-ray energy equation (4.2) with some specfic velocity 

profiles are discussed in this appendix. As a consequence, some 

criteria can be set up for the boundary conditions at the origin. 

§E.l Analytical Solution 

The steady state cosmic-ray energy equaion (4.2) 

o (E.l) 

-where e, U, P amd ~ defined by equation (4.1), can easily be solved if 
c 

the divergence of the velocity is zero, i.e., in spherical case, 

- -2 u2 e u (E.2) 

-where u2 is a constant. In this case equation (E.l) becomes 

_1 _d (~2 _ dPc) _ dPc 
e2 de" ~ de - u de o (E.3) 

with general solution: 

P c 
(E.4) 

where Bl and B2 are constants. 

Analytical solutions of equation (E.l) exist if 

160 
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-u - and - - II 
" - "1 e (E.5) 

where u1 , K1 , I' and II are constants. Wi th a change of independent 

variable (provided that II ~ 1 ): 

-u 
1 _1 e(1+JJ -II) 

(1+1'-11) 
"1 

z - (E.6) 

equation (E.1) becomes a version of Kummer's equation 

d2P dP 
c + ( (2+1-') ) c (2+1') P == 0 

z dz2 (1+1'-11) - z dz - (1+1'-11) ~c c (E.7) 

The general solution of this equation is given in terms of confluent 

hypergeometric functions (e.g. see Erde1yi et al. 1953; Lebedev 1965). 

For -y > 1 and not an integer, there are three relevant cases (note 
c 

for arbitrary -y , there may be five distinct cases). 
c 

(2+1-') (a) If (1 ) is not an integer, then +1'-11 
-P A F f (2+1') (2+1-'). z) 

c - 1 1 1 (1+1'-11) Yc '(l+JJ-II) , 
Z-(l+II)/(l+JJ-II) F (2+1-') (1+11) (1-'-211).Z) 

+ A2 1 1 (l+JJ-II) Yc -(l+JJ-II) '(1+1'-11) , 

where 

k ~ 0 

and r(a) is the Gamma function. 

(b) If (~::~~) is a positive integer, then 

Pc - Al 1F1(~!:~~)Yc'(~!:~~);z) 
+ A G ( (2+1-') (2+1'). z) 

2 (1+1'-11) Yc '(l+JJ-II) , 

where 

G(a,-y;z) a 1F1(a,1;z) log(z) 

(E.8) 

(E.9) 

(E.10) 

(E.ll) 

---------------_. __ .... __ .. 



p 
c 

(c) 
(2+~) 

If (l+~-v) is a non-positive integer, then 

A -(l+v)/(l+~-v) 
." 1 z 

A -(l+v)/(l+~-v) 
+ 2 z 
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(E.12) 

(E.13) 

(E.14) 

Imposing suitable boundary conditions, the constants A1 , A2 , Bl 

and B2 can be determined. Although the solution can be written down in 

terms of special functions (confluent hypergeometric functions), its 

behaviour is not very transparent. The case where the solution is 

simple enough to analyze easily is the cases not included in the 

transformation (E.6), namely, ~ - 0 and v" l. Let the velocity 

profile (4.18) 

-u .. (E.15) 

(U1 and u2 are constants), represents the stellar wind and consider a 

diffusion coefficient (4.19) 

~ - ~1 [1 - H(e-esh)] + ~2 e- 2 H(e-esh) (E.l6) 

(~1 and ~2 are constants). The solution (Webb, Forman and Axford 1985) 

to equation (E.1) with boundary conditions, P is finite at the origin, 
c 

P "" P c ceo at infinity and continuity of P and F 
c c 

at the shock, is 

a 
A1 e + [1 P 

c 

+ (B1 exp(-
1 -2 
2 112 e ) (E.l7) 

where 

----------------- --------------------- ---------
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(E.18) 

(E.19) 

(E.20) 

(E.2l) 

(E.22) 

(E.23) 

This solution can easily be visualized. Starting from zero at the 

origin (r - 0 ), P c increases to some 

algebraically, and then approachs P exponentially outside the shock. ceo 

§E.2 Boundaty Conditions at the Origin 

We now study the behaviour of the solutions (E. 8), (E.l1) and 

(E.14) near the origin (as e ~ 0 ): 

(a) if (2+y) is not an integer, then 
(1+1'-11) 

:1)-(1+11)/(1+1'-11) 

tel 

---------- ------- --- - -- ------ ----

(E.24) 
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We notice that P is finite if one of the following is true: c 

Also 

(b) 

(1) l+l'-v > 0 

(2) 1+1'-11 > 0 

l+v > 0 , Al is finite, and A2 = 0 ; 

l+v < 0 , Al and A2 are finite. 

dP c 0 if one of the following is true: de ... 

(1) I' > v 2+v > 0 Al is finite, and A2 -= 0 

(2) I' > v , 2+v < 0 , Al and A2 are finite; 

(3) I' < v , l+l'-v > 0, 2+v < 0 , Al -= 0 

finite. 

If n & (2+1') is a positive integer, then 
(l+l'-v) 

-
Pc -= Al (1 + ~c U_

1 e(l+l'-v) + ... J 
(l+l'-v) 

#c
1 

-
[ ( 

1 U_1) 
log (l+w v ) 

#c
1 

+ (1 + I' - v) log(e) + ... 

+ (w(n~ ) - wen) - w(l» + c 

and A2 is 

+ (-l)IT(n-l)r(n)r(n~c -n+1) ( 1 til) (l-.n) _ (l+v) + ... J 
r(n~ ) (l+l'-v) _ e (E.2S) 

c #c
1 

Pc is finite if l+l'-v > 0 , Al is finite, and A2 = 0 , and 

dP 
c 

de -= 0 if I' > v , Al is finite, and A2 = 0 

() If (2+~) i ... h erne (1 ) s a non-pos1t1ve 1nteger, t en +I'-v 

P 
c ( 

1 til) (l-m) _ (l+v) 
A - e 1 (l+l'-v)-

#c
1 

. 

-m(~ -1)+1 U J 
c 1 e(l+l'-v) + ... 

(2-m)(1+I'-v) -
#c

1 



(
lUI) (l-m) 

+A -2 (1+1'-11)-
"1 

-
[10g( 1 u1) + (1 + I' - II) log(e) + ... 

(1+J,&-1I) -
"1 

+ (~(ml -m+1) - ~(2-m) - ~(1)} + ... 
c 

(-1)(2-m)r(1-m)r(2-m)r(ml ) 
c 

+ ------------~~------~~-------------r(ml -m+1) c 

U1) (m-I) _ (1+11) 
=- e 
"1 

+ ... J 

165 . 

(E.26) 

Pc is finite if 1+1'-11 > 0, 1+11 < 0 , A1 and A2 are finite, 

and if 1+1'-11 > 0 , 2+11 < 0 , 

are finite. 

As an example, if I' > 0 .and II > 0 , then case (c) is irrelevant, and 

dP 
Pc is finite and deC - 0 at the origin provided I' > II • 

From equation (E.17) we notice that for the case I' = 0 and 

II = 1 , P - 0 c· 
and at the origin provided Q+-1 > 0 (i. e. , 
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