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ABSTRACT 

General aspects of the two zero-n pole inverse 

Chebyshev filter are introduced in chapter one. Two equa

tions were developed to compute the coefficients of the 

transfer function for any position of the zero. For the 

two zero-six pole (2z-op) doubly terminated filter a set 

of explicit element value equations were developed that 

were within 0.7% in the -3 dB cutoff frequency in the worst 

case within the usable range of zero positions. A correc

tion factor was determined that reduced the error to a 

negligible level. A second solution (approximation) for 

the two zero-four pole, (2z-4p) doubly terminated filter 

was obtained applying the same procedure as in the 2z-6p 

case. No correction factor was needed in this instance. 

A set of exact design equations were developed for 

the two zero-six pole singly terminated configuration. 

ix 



CHAPTER 1 

INTRODUCTION 

This thesis is concerned primarily with the behav

ior and design of the two zero-six pole (2z-6p) (sixth 

order) inverse Chebyshev passive filter. However, since 

the method proposed here to determine the element values 

for the sixth order doubly terminated case applies as well 

to the fourth order (2z-4p) filter, explicit element value 

equations for this circuit will also be derived to generate 

a second solution which will be compared with the one al

ready existing. 

In a certain way, this work may be also considered 

as a complement to the one presented by Mr. David B. Henry 

in his M.S. thesis where, besides giving a complete de

scription of the general aspects of all two zero inverse 

Chebyshev filters, he focused his attention to the odd-or

dered configurations, specifically, the third, fifth and 

seventh order filters. 

For the sake of clearness, some of the most signif

icant characteristics of this family of filters (Kerwin, 

1981) are briefly mentioned in this introductory chapter. 

The general low pass two zero inverse Chebyshev 

circuit has a maximally flat magnitude (MFM) response in 

1 
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the pass band and a peak return in the stop band, with a 

zero located somewhere in between the pass band and the 

peak return. The -3 dB cutoff frequency is normalized to 

one rps. The magnitude (IT(juumax)l) and the frequency 

(uu max ) of the peak return ar~ functions of the order of 

the filter (n) and the frequency of the zero «(Jz). For a 

given order, the greater uv z ' the smaller the magnitude 

of the peak return and the same effect is observed when 

the order of the filter is increased for a given position 

of UU z . The next two equations (Henry, 1983) summarize the 

above explanation: 

( 1.1) 

T(juumax ) =-10 log 1+ dB (1. 2) 

The general low pass doubly terminated 2z-np trans

fer function is: 

Vo 1 as2+1 
TT( s )=y-:- =E-z) b n+ n-l+ d n-2+ +1 

~ s cs s ..... 
(1. 3) 

The only difference between the doubly terminated 

and the singly terminated transfer function is the value of 

the D.C. component, which instead of being one half is one. 



CHAPTER 2 

THE TWO ZERO-SIX POLE INVERSE CHEBYSHEV FILTER 

The main objective of this work is to develop a set 

of explicit element value equations for the doubly and sin

gly terminated two zero-six pole inverse Chebyshev filter 

in terms of the coefficients of the sixth order transfer 

function (2.1). The doubly and singly terminated passive 

circuit configurations selected to produce the desired re·· 

sponses are the sixth order ladder networks shown infigures 

2-1 and 5-1 rEspectively. It can be observed that the 

transmission zeros in the transfer function (1.3) are pro

duced by the parallel tuned circuit formed by the elements 

L2 and C
3

, which unfortunately causes an extra reactive 

component in the ladder (seven instead of six). 

The resistors Ri and Ro are equal in value in the 

doubly terminated circuit considered herein. In the singly 

terminated case R. will take any required value while R =00. 
1 0 

Sixth order coefficient 
development procedure 

As previously stated, one of the characteristics of 

all inverse Chebyshev filters is an MFM response in the 

pass band. In order to achieve this requirement, it is ne-

cessary that the coefficients of the squared magnitude of 

3 
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Fig. 2-1. Two zero-six pole doubly terminated circuit. 
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the transfer function meet certain conditions. Specific

ally, every coefficient in the denominator with the only 

exception of the coefficient of the highest power term, 

must be equal to the one of the same power in the numerator 

(weinberg, 1962). 

The starting point to obtain an MFM response is the 

two zero-six pole doubly terminated transfer function shown 

next: 

1 as2+1 
TT(s)=-2- ---6~--5--~4~--3---2-----

bs +cs +ds +es +fs +gs+l 
(2.1) 

From (2.1) the squared magnitude response can be obtained 

by letting s=jUJ, squaring the real and imaginary parts, 

and grouping common terms. Next, the final form of this 

equation is shown: 

(2.2) 

Applying the previously stated MFM conditions to equation 

(2.2), it can be seen that the coefficients of UJ 10, W 8, 

and W6 must be zero while the coefficients of W 4 and W 2 

must be equal to a 2 and -2a respectively. Equations (2.3) 



through (2.7) (Henry, 198J) have to be satisfied in order 

for the magnitude response to be maximally flat. 

6 

c2-2bd=O (2.J) 

d2-2ce+2bf=O (2.4) 

e2-2df+2cg-2b=O (2.5) 

f2-2eg+2d=a2 (2.6) 

g2-2f=-2a (2.7) 

Another important relation is obtained by normal

izing the -JdB cutoff frequency to one rps. Substituting 

the right hand side of equations (2.J) through (2.7) into 

(2.2) and letting UJ=l rps the squared magnitude response 

should be equal to 1/8 and (2.2) becomes: 

(2.8) 

It can easily be seen that for equation (2.8) to hold true 

it is necessary that: 

Looking at the numerator of equation (2.2), it can 

be observed that the values of UJ that make the magnitude 

response equal to zero are z/l/a , which correspond to the 



position of the zeros (Kerwin, 1981) in all two zero in

verse Chebyshev filters. Thus 

7 

(2.10) 

Solving for a from (2.10) 

a= _..;;;;1,-:-_ 

W2 
z 

(2.11) 

This important result sets the first step in the 

procedure to determine the coefficients of the transfer 

function that is selecting the position of the zero (Wz ). 

Once this is done, from equations (2.11) and (2.9) the co-

efficients a and b become known. Therefore, the only ones 

left to be solved for are: c, d, e, f, and g. 

The following algebraic manipulation is used to de

termine the above mentioned unknowns. For the purpose of 

clearness only the most significant steps of this algebra

ic procedure are shown. 

Solving for f from (2.7) 

2 
f= -g- + a 

2 

Now SUbstituting (2.12) into (2.6) 

4 2 
~ +ag -2eg+2d = 0 
4 

(2.12) 

(2.13) 



Solving for d from (2.3) 

c2 
d=--2b 

Substituting (2.12) and (2.14) into (2.4) 

c
4 

2 --2ce +bg +2ab = 0 
4b2 

Now, substituting (2.14) into (2.13) 

4 
g 2 c 2 

-4-+ag -2eg+~= 0 

(2.14) 

(2.15) 

(2.16) 

Substituting equations (2.12) and (2.14) into (2.5) and 

solving for e the following relation is obtained: 

e = c2 2 - (g +2a)+2( b-cg) 
2b (2.17) 

Now, substituting (2.17) into (2.15), (2.18) is generated 

2 
~b (g2+2a)+2(b-cg) (2.18) 

Again, substituting (2.17) but this time into (2.16) gene

rates the next equation: 

4 
g 2 

--+ag -2g 4 
c 2 2 --(g +2a)+2(b-cg) 
2b 

c 2 
+-=0 

b (2.19) 

8 
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The original system of equations has been reduced 

to two (2.18 and 2.19) in two unknowns (c and g). Unfortu-

nately the resultant equations are not linear, which makes 

it difficult to explicitly solve for the two coefficients. 

Without much choice, an iterative solution will be forced. 

Once these two relations are iterated and a solution with 

the desired accuracy is met, it is very easy to determine 

the values of the rest of the unknowns by using (2.12), 

(2.14) and (2.17). 

It should also be mentioned that the former algebra

ic procedure is not unique and a different pair of final 

equations could be reached depending upon which two coeffi

cients one would like to solve for. 

The iterative method used to solve the system of 

equations (2.18) and (2.19) will be covered in chapter ). 

Sixth order doubly terminated 
transfer function 

Once the numerical values of the coefficients of the 

two zero-six pole transfer function can be determined for 

any position of the zero, the next objective is to obtain 

the same coefficients in terms of the elements of the cir

cuit by solving for the voltage transfer function (Vo/Vi ) 

of the sixth order doubly terminated circuit shown in fig

ure 2-1. A total of seven equations and seven unknowns 

should be obtained from the transfer function corresponding 

to every coefficient and reactive component respectively. 
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As previously stated, Ri and Ro will be equal in 

value. To truly simplify the algebraic work both resistors 

will be made equal to one ohm; later, by the proper imped

ance scaling the resistors could take any required value. 

Since the circuit is a ladder network it would probably be 

much easier to use linearity to solve it than any other 

method. 

Again, for the sake of clearness only the most sig

nificant steps of this procedure will be presented. Refer 

to figure 2-2 for current directions 'and reference voltages. 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 



L2 

In Ll 
VI r\~V2 L3 

+ ~ I~ 1 15 11 

V. 

11 
12[C1 14 -r C4 ~ 

Fig. 2-2. Current directions arId reference voltages in 
the sixth order doubly terminated circuit. 

.. 
--L 

C5 -r 

+ 

Ins Vo=l V. 

..... 

..... 
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(2.25) 

(2.26) 

(2.27) 

(2.28) 
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(2.29) 

It can be observed that equation (2.29) is the de-

sired transfer function to the minus one. In other words, 

one would only need to exchange the numerator and denomina

tor to obtain Vo/Vi' However, there is no need to do this 

because the seven coefficient equations in terms of the 

components of the circuit can be obtained directly from 

(2.29) and are shown next: 



2c=(LIL2L3C2C3+LIL2L3C2C4+LIL2L3C3C4+ 

L2L3C2C3C5+~2L3C2C4C5+L2L3C3C4C5) 

LIL2C3C5+LIL3C2C5+LIL3C4C5+L2L3C2C3+ 

L2L3C2C4+L2L3C3C4+L2L3C3C5+L2L3C4C5) 

2 e= ( L 1 L 2 C 2 + L 1 L 2 C 3+ L lL 3 C 2+ LIL 3C Lj. + L 2L 3 C 3 + 

L2L3C4+L2C2C3+L2C2C4+L2C2C5+ 

L2C3C4+L2C3C5+L3C2C5+L3C4C5 ) 

2f=(LIC2+LIC4+LIC5+L2C2+L2C4+ 

L2C5+L3C2+L3C4+L3C5+2L2C3) 

14 

(2.30) 

(2.31) 

(2·32) 

(2·33) 

(2·34) 

(2·35) 

(2·36) 

(2.30) through (2.36) are the coefficients equa

tions of the sixth order doubly iferminated inverse Chebyshev 

filter. 



CHAPTER 3 

EXPLICIT ELEMENT VALUE EQUATIONS FOR 
THE SIXTH ORDER DOUBLY TERMINATED FILTER 

The main objective in this chapter is to obtain a 

set of explicit element value equations in terms of the co

efficients of the transfer function for the two zero-six 

pole doubly terminated inverse Chebyshev filter by making 

use of equations (2.30) through (2.36) developed in chapter 

two, and the relations (2.3) through (2.7) generated as a 

result of applying the MFM conditions to the sixth order 

magnitude squared transfer function. 

Manipulation of coefficient equations 

The first approach to find a component solution will 

be to algebraically manipulate the above indicated set of 

equations in a brute force manner. Even though it does not 

look very promising it may help and save time later. ·Once 

again, only the most significant algebraic steps of this 

procedure will be shown. 

Dividing (2.31) by (2.30) the next expression is 

obtained: 

_c_ = _1_ + _1_ 
b C5 Ll (3.1) 

15 
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Rearranging (2.34) 

( 3.2) 

Now, rearranging (2.35) 

(3·3) 

Substituting (3.3) and (2.36) into (3.2) and rearranging 

terms, the next expression is found: 

It can be seen that (3.5) is a quadratic equation in 

(L l +L2+L 3) whose solution is given by: 

( 3·4) 

By observing equation (2.7) it is obvious that the square 

root term in the above equation is equal to zero, then 

(3.5) simply becomes: 

(3·6) 

Next, applying exactly the same procedure as before, but 



17 
this time solving for (C2+C4+C

5
), the following relation is 

obtained: 

Now, substituting (3.6), (3.7) and (2.36) into (2.32) and 

regrouping terms the next expression is found: 

2d=ag(Ll+L3)+LlL2C2C4+LlL2C2C5+LlL3C2C5+ 

LlL3C4C5+L2L3C2C4+L2L3C4C5 (3.8) 

Again , substituting (3.6), (3.7) and (2.36) but now into 

(2.33) and regrouping terms, the following equation is gen

erated: 

2e=ag+a(Ll+L3)+LlL2C2+LlL3C2+LlL3C4+ 

L2L3C4+L2C2C4+L2C2C5+L3C2C5+L3C4C5 

Rearranging (3.8) 

(3.10) 



Now, reorganizing (3.9) 

L2C2C4+L2C2CS+L3C2CS+L3C4CS= 

2e-ag-a(L1+L3)-L1L2C2-L1L3C2-L1L3C4-L2C3C4 

18 

(3·11) 

Equating the right hand sides of (3.10) and (3.11), equation 

(3.12) is formed. 

Simplifying and rearranging terms in (3.12) one gets: 

2 
L1(2e-aL3)-L1(a+L2C2+L3C2+L3C4)+ 

L2L3C4(CS-L1)+L2L3C2C4-2d=0 

Now, from (2.31) one can see that: 

(3·12) 

(3·13) 

(3·14) 

Substituting (3.14) back into (3.13) the next equation is 

obtained: 



222 
2eL1-aL1-aL1L3-2d-agL3-L1L3(C2+C4)-L1L2C2+ 

L2L
3

C4( C
5
-L1 )+ L ~cC - aL3( C2+C4 )=0 

1 5 

19 

(3·15) 

Rearranging terms in this last expression one obtains: 

2 2 + 2c 2eL1-aL1-aL1L3-2d+agL3-L1L2C2 L +C 
1 5 

+ 

L2L3C4(C5-L1)-(C2+C4)(LfL3+aL3)=0 (3·16) 

Now, from equations (3.6) and (3.7) it can be seen that: 

Substituting (3.17) through (3.19) inclusive, into (3.16) 

one gets: 

(3.20) 
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Regrouping and cancelling common terms, (3.20) simplifies to: 

L~C2+Lf(L3C5-gC2+L3C2-gL3-a)+Ll(2e-aL3)+aL3c5+ 

) 2c 
L3(g-Ll-L3)(g-C2-C5)(C5-Ll -2d+ L

l
+C

5 
=0 (3·21) 

It is still possible to solve for C
5 

in terms of Ll 

from (3.1) .and substitute it back into (3.21) to eliminate 

C
5

. However, at this stage actually performing this step 

serves no purpose. The best result obtained is one equation 

in three unknowns (Ll ,L
3 

and C2 ) which is still very far 

from the desired result of explicitely solving for any reac

tive component of the circuit in terms of the coefficients 

of the transfer function. 

To have been able to obtain equation (3.21) many 

hours of work were spent not only in the procedure developed 

in this section but also in other possible routes that were 

explored as well. 

It is then clear that at this point one should try 

other alternatives to satisfactorily solve the problem. One 

of them is treated in the next section. 

Developing a pattern 

As previously stated, the algebraic manipulation of 

coefficient equations did not produce satisfactory results 

for the sixth order doubly terminated filter. Therefore, 
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as an alternative one should look closer into the already 

existing solutions of this family of filters hoping to find 

a clue that can help to unravel this yet complicated prob

lem. 

It is at this stage convenient to mention that the 

solutions for the odd-ordered doubly terminated configura

tions are fairly easily found due to the obvious symmetry of 

the circuits, because by making the the symmetrical elements 

in the ladder equal (see figures 3-2 and 3-3) the complexity 

of the problem is greatly reduced. 

It was found that for the fifth order filter~arcia, 

1981) the first series reactive component in the circuit 

namely Ll , is related to some of the transfer function coef

ficients in the following form: 

(3.22) 

For the seventh order filter (Henry, 1983) the lad

der network is structured a little differently (fig. 3-3). 

However, the first parallel reactive component which is Cl , 

is related to the transfer function coefficients in exactly 

the same way Ll is for the fifth order; in other words 

(3.23) 
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Fig. 3-1. Two zero-four pole doubly terminated circuit. 
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Fig. 3-2. Two zero-five pole doubly terminated circuit. 
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For the fourth order filter (Garcia, 1981) it was 

found that only the first series reactive element (not sym

metric network) Ll is equal to: 

c 
L =-1 d (3·24) 

Apparently there is no defined pattern in the rela

tion of the first reactive component in the previously 

mentioned circuits to some of the coefficients. However, 

from equation (2.3) it can readily be seen that: 

c 2b 
(f"2-c- (3.25) 

Suddenly, this has become a very defined pattern where the 

first reactive parallel or series element in the circuit, 

despite the order of the filter, is equal to 2b/c and cer

tainly it will be worth trying. 

If Ll in the sixth order filter is made equal to 

2b/c then from expression (3.1) it can easily be seen that: 

2b 
L = C =-- ( 3. 26 ) 

1 5 c 

This simple result seems to be very powerful. The first 

step in this new approach is to let Ll =C5 and substitute it 
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back in equation (3.21) generating the following expression: 

c 
-~)=O 

L3 
1 

(3·27) 

Even though (3.21) was greatly reduced in complexi

ty, still there are two unknowns in a single equation (L3 
and C2 ). 

With certainty the most significant clue one can 

obtain from (3.26) is the fact that the first reactive se

ries element (Ll ) is equal to the last reactive parallel 

component (C5). This opens a possibility never considered 

in this type of two zero filter before. Recall that in the 

even-ordered Butterworth and Chebyshev filters (Weinberg, 

1962) That is exactly the pattern the values of their ele-

ments follow. In other words, the first series reactive 

element in the ladder is equal in value to the last reac

tive parallel component; The first parallel reactive element 

is also equal in value to the last series reactive compo~ 

nent in the ladder and so on. Applying this pattern to the 

sixth order filter the following component relations are 

forced. 

(3·28) 
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Now, by letting C2=L
3 

and Ll =2b/C in equation(3.27) 

the next expression is generated: 

2 2b ce c4 c2d 
L +2L (- -g) +-1 3 - 2 -a=O 

3 3 c b 8b 2b 

This is a quadratic equation in L3 whose solution is.given 

by: 

L =g_ 2b _ 
3 c (3·30) 

One could be tempted to leave this expression the way it is. 

However, still further simplification can be achieved. But 

before any thing is done it should be noted that the radical 

would have to be equal to L2 to be consistent with equation 

(3.6). From (2.3) one can see that: 

(3·31) 

Substituting (3.31) back into the radical one gets: 

(3.32) 

Rearranging and simplifying common terms, the next relation 

is obtained: 
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-J 2b 2 -d2+2ce 
L = (g--) -( -a) 2 c 2b (3·33) 

From (2.4) one can see that: 

(3·34) 

Substituting this back into (3.33) the next expression is 

obtained: 

Recall that: 

L = (g-----) -f+a V 2b 2 
2 c 

I L C - 2b - c 1- 5--C cr 

(3.35) can be written in terms of Ll 

From (3.6) one can see that: 

L =C =g-L -L 3 2 1 2 

(3·35) 

(3.36) 

(3·37) 

(3·38) 
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And finally: 

C = a (3.39) 
3 L2 

The design equations (3.36) through (3.39) consti-

tute an explicit solution to the two zero-six pole doubly 

terminated inverse Chebyshev filter. 

Verification of design equations 

One way to verify the set of design equations just 

obtained in the previous section, would be to compute the 

coefficients of the transfer function for several different 

positions of U1 z • Then determine the values of the compo

nents of the circuit using the design relations (3.36) 

through (3.39) and SUbstitute these results in the original 

coefficient equations (2·30 through 2.36) and observe if 

the numerical values of the coefficients one started with 

are obtained. 

The proposed procedure was tried for several diffe-

rent positions of U1 z between 1.7 and 3.0 rps, which is the 

most usable range for the sixth order filter (Henry, 1983) . 

It was found that the coefficient equations were not satis-

fied exactly and as a matter-of-fact the error increased as 

U1 z was set closer to the -3 dB cutoff frequency. The re

maining three coefficient relations were exact. 



The results in table 3-1, using the extreme values 

of the usable range for GU z illustrate this unexpected 

problem. 
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The obvious question now is, how these deviations 

in the coefficient equations affect the performance of the 

filter? Basically, the -3 dB cutoff frequency moves from 

one rps towards a lower value as GU z is placed closer to 

the cutoff frequency. The effect on the frequency and mag

nitude of the peak return is negligible, at least in the 

usable range of GU z ' 

Figure 3-4 clearly illustrates the -3 dB point devi

ation as a function of UJz' The data corresponding to this 

plot is shown in table 3-2. 

Determining a correction factor 

The exact cause that produces this deviation in the 

coefficient equations has not yet been determined. However, 

in the search for such an answer the attempt was made to see 

if a correction factor could be applied to one of the design 

equations to reduce the encountef.ed deviation. 

By observing the developing procedure of design 

equations (3.36) through (3.39),i one can readily see that Ll 

and Cs are determined in a straifhtforward manner and both 

are explicitly independent of th~ coefficient a. Recall 

that the error is a function of Ithe. position of the zero or 

the coefficient a. L3 is found by a simple subtraction of 
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Table 3-1- Deviation in coefficient equations forGJ equal 
1.7 and 3.0 rps. Z 

GJz Eq. Exact result Actual result Error 

(2·30) 2b=1·307958478. 2b=1.295672502 0·94% 

(2·31) 2c=5·289616488 2c=5·239929817 0.94% 
1·7 

2d=10.69607448 . (2·32) 2d=10.63714327 0.55% 

(2·33) 2c=13·76284227 2e=13.74525881 0.13% 

(2·30) 2b=1·777777777 2b=1·776391598 0.078% 

(2·31) 2c=6·955257776 2c=6.949834582 0.078% 
3·0 

2d=13·60564051 (2·32) 2d=13·59948978 0.045% 

(2·33) 2e=16.89158031 2e=16.88992459 0.010% 
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Table 3-2. Deviation in the -3dB cutoff 
frequency as a function of(J z. 

(Jz -3dB (rps) Error 

1·7 0·9930 0·70% 

1·9 0·9959 0.41% 

2.1 0·9974 0.26% 

2·3 0·9983 0.17% 

2·5 0·9988 0.12% 

2·7 0·9992 0.08% 

2·9 0·9994 0.06% 

3·1 0·9995 0.05% 



1.000 
-3 dB Freq. (rps) 

0.999 

0.998 

0.997 

0·996 

0.995 

0.994 
W z (rps) 

0.99301rr-----Ir-----.r-----.-----~~----~----~~----~ 
1.7 1.9 2.1 2.) 2·5 2.7 2·9 3.1 

Fig. 3-4. -3dB cutoff frequency deviation as a function of wz • 
\...0 
l\) 
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Ll plus L2 from the coefficient g. Again, L3 is not a good 

candidate to receive a correction factor. C
3 

is selected at 

at the very end of the design proced1ll'e to set the zero; so 

it can not be altered. However, L2 is also directly in

volved in the setting of U}Z (3.39) and not only that but 

explicitly its equation (3.37) contains the coefficient a. 

Since the error increases with g, a correction factor could 

be applied to (3.37) to reduce in an adequate amount the ef

fect contributed by the presence of coefficient a in this 

relation. When a factor greater than one is introduced di

viding a, L2 decreases which is the right direction to go 

because L3 will increase in value making its contribution 

overcome this drawback and still make the coefficient equa

tions approach the correct result. 

From table 3-1 the equation with greater error is 

(2.30). Therefore, § will be adjusted to satisfy this equa

tion. The other coefficient relations are not expected to 

reduce its error as much as (2.30) will, but hopefully, 

enough so as to be close to an exact solution. 

Naming the correction factor K, design equation 

(3.37) becomes: 

(3.40) 



Remember, the other design equations remain unaltered in 

form. 

The limits of K in the usable range of the filter 

were found to be 1.0699 and 1.2575 for U1 z equal ~o 1.7 

and 3.0 rps respectively. 
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It can be observed from table 3-3 that the error 

was reduced in all equations. Equation (2.31) was deleted 

from table 3-3 because has the same error than (2.30). 

Twelve more correction factors were computed to reduce the 

error very muy like those in table 3-3. This results are 

plotted in figure 3-5 and data tabulated in table 3-4. 

To have an idea how much the -3 dB cutoff frequency 

is corrected, CU z of 1.7 rps will be used. With the ele

ments without any correction the magnitude of the response 

at 1 rps is -9.184 dB when it should be -9.0309. Including 

the correction factor in the calculations of the components 

the magnitude of the response at 1 rps turned out to be 

-9.0253 dB. So the error is greatly reduced. 

The complete frequency response for several diffe

rent positions of CU z are included in chapter 6. 
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Table 3-3. Deviation in coefficient equations with 
correction factor. 

Wz Eq. 

(2·30) 

1.7 (2·32) 

(2·33) 

(2·30) 

3.0 (2.32) 

(2·73) 

Exact result Actual result 

2b;z1·307958478 2b=1·307956092 

2d=10.69607448 2d=10.67486538 

2e=13·76284227 2e=13·75501603 

2b=1.777777777 2b=1·777777743 

2d=13.60564051 2d=13.60342741 

2e=16.89158031 2e=16.89097304 

Error 

0.00018% 

0.20000% 

0.05700% 

0.000002% 

0.016000% 

0.003600% 
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Table )-4. K as a function 
of Wz ' 

Wz (rps) Correction 
Factor (K2 

1·7 1.2575 

1.8 1.2228 

1·9 1.1950 

2.0 1.1725 

2.1 1.15)8 

2.2 1.1)82 

2.) 1.1250 

2.4 1.11)6 

2·5 1.10)8 

2.6 1.0952 

2·7 1.0877 

2.8 1. 0810 

2·9 1.0752 

).0 1.0699 

).1 1. 0652 



1.26 
Correction Factor K 

1.22 

L18 

1.14 

1.10 

Wz (rps) 

1.06 I 1 

1·7 3·1 

Fig. 3-5~ Correction Factor K as a function ofWz • \..oJ 
---J 



Determining the transfer 
functions coefficients 

As stated in chapter 2, in order to determine the 

coefficients of the sixth order transfer function for 
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different values of GU z within the specified usable range, 

equations (2.18) and (2.19) had to be iterated because of 

their nonlinear characteristics. The computer program used 

to solve for the coefficients c and g is GOSPEL (General 

Optimization Software Package for ELectrical networks) 

optimization strategy OPT4 Newton-Raphson (Huelsman, 1968). 

The values of c and g obtained from the above men-

tioned iterative procedure in all cases made equations 

(2.18) and (2.19) equal to a number no greater than ±10-6, 

when both should have been equal to zero. The rest of the 

coefficients were easily found by using (2.12), (2.14) and 

(2.17). Substituting these results in the MFM equations 

the deviation from zero never was greater than ±10-6. As an 

example, for W z equal 2 rps a=0.25. b=0.75, the GOSPEL 

program gave the following values for c and g: 

c-=2·988299065 

g=3.309576357 

then d, e and f were calculated to be: 

d=5·953287535 

e=7·53848l956 

f=6.408563l05 



substituting these values in the MFM equations the next 

results are achieved: 

c2-2bd=-10-9 

d2-2ce+2bf=-3.2xlO-8 

e2-2df+2cg-2b=0.000000000 

2 2 6 -8 f -2eg+2d-a = xlO 

g2-2f+2a=0.000000000 
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Each coefficient (except a and b) is plotted as a 

function of GJ z (figures 3-6 through 3-10). The component 

values are easily calculated from the design equations once 

the coefficients are known. Also the elements of the cir-

cuit with the correction factor included are plotted as a 

function of GJ z and shown in figures 3-11 through 3-14. 
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CHAPTER 4 

A SECOND SOLUTION FOR THE TWO ZERO-FOUR POLE 
DOUBLY TERMINATED FILTER 

As previously stated, there is already a set ot 

explicit element value equations (Garcia, 1981) for the two 

zero-four pole doubly terminated inverse Chebyshev filter. 

The method used by Mr. Garcia to solve for the components 

of the circuit was direct manipulation of the coefficient 

and MFM equations. From this algebraic manipulation a 

quartic equation in Ll was obtained, whose complicated 

solution gave birth to the first set of component relations 

for the mentioned filter. Recall that this method was 

applied to the sixth order circuit, but it was virtually 

impossible even to obtain a sixth order equation to work 

with much less a solution due to the complicated 2z-6p 

coefficient expressions. Therefore, to get satisfactory 

results other alternatives had to be tried. 

Next, Garcia's equations are shown (see figure 3-1 

for components position in the ladder). 

(4.1) 
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fourth order filter 
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(4.2) 

(4.3) 

(4.4) 

(4·5) 

Once an approximate solution for the two zero-six 

pole doubly terminated circuit was found by applying a 

method not ever tried before in this particular even~rdered 

configuration, it would be interesting to see how the fourth 

order doubly terminated filter behaves when the method of 

equating inductor and capacitor values is applied to it. 

Using linearity in the circuit of figure 3-1 the 

following set of coefficient equations are oQtained: 



Rearranging (4.9) 
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(4.6) 

(4.8) 

(4.10) 

(4.11 ) 

substituting (4.10) into (4.8) and rearranging terms one 

gets: 

(4.12) 

substituting (4.11) into (4.12) one obtains: 

(4.13) 



It can be seen that (4.13) is a quadratic equation in 

(Ll +L2 ) whose solution is: 
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(L +L )=e ± - I e2-2d+2a 
1 2 V (4.14) 

The following equation (Henry, 1983) comes from the MFM 

requirements: 

(4.15) 

Therefore, it can readily be seen that (4.14), reduces to: 

(4.16) 

Using the same procedure as above but now for (C2+C4 ) the 

next expression is obtained: 

(4.17) 

Applying the pattern proposed in chapter 3 to the circuit 

in figure 3-1, the following relation between elements is 

forced: 
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Then, equation (4.6) becomes: 

(4.18 ) 

Rearranging terms 

2 2b L (L +a)=- -L a 
1 2 L1 2 (4.19) 

Substituting (4.6) into (4·7) letting L1=C4 and L2=C2 , and 

rearranging terms, the next expression is found: 

L1 ( L~+a )=2c- 2b 
L1 

(4.20) 

Equating the right hand sides of (4,19) and (4.20) and 

reorganizing terms the following equation is obtained: 

From (4.16) one can see that: 

L =e-L 2 1 

(4.21) 

(4.22) 
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Substituting (4.22) back into (4.21) and rearranging terms 

one gets: 

(4.23) 

This is a cuadratic equation in Ll whose solution is given 

by: 

2c+ae- -J (2c+ae )2-16ab I 
L =--------~~~~~------1 2a 

Which can be also put in the following final form: 

From (4.22) 

Finally 

-J I c e c e 2 4b L =C4=-+-- (- +-)--1 a 2 a 2 a 

C=~ 
3 L2 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

Equations (4.25), (4.26) and (4.27) constitute a second 

solution (approximate) to the doubly terminated fourth 

order filter. 
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Verification of design equations 

Applying the same method used to verity the design 

equations for the sixth order filter to the (2z-4p) confi

guration one could determine the accuracy of the design 

-equations and at the same time find out if there is a need 

for a correction factor to be introduced. Again, the most 

usable range for 6J z (Henry, 1983) for the fouth order 

filter was determined to be from 2.3 to about 5 rps. For 

this verification 6J z will be chosen a little below the 

lower limit and another one somewhere in the middle of the 

given range, therefore two convenient values for 6J z would 

be 2 and 3 rps. 

starting with 2 rps the coefficient a can be found 

from (2.11) 

- 1 - 1 - 0 25 a-~--z:r-- . 
Wz 

making use of (2.9) b is found to be 

b=1-a=O·75 

In order to have an MFM response the next set of 

relations (Henry, 1983) must be satisfied. 

e2-2d=-2a 

d2-2ce+2b=a2 

c2-2bd=O 

(4.28) 

(4.29) 

(4·30) 
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Expression (4.31) (Kerwin, 1981) is obtained as a result of 

manipulating these relations. 

4 2 e2 -J I e +4ae -8e 2(1-a) (-2--+a) +8(1-a)=0 (4.31) 

Using a hand-held programmable calculator (4.31) was ite

rated to give a value for e equal to 2.253900266. The 

rest of the coefficients are very easily determined from 

(4.28) and (4.30). Results for U;z=2 rps are summarized 

next: 

a=0.25 

b=0·75 

c=2.045739428 

d=2·790033205 

e=2.253900266 

Now, making use of (4.25), (4.26) and (4.27) the values of 

the components are found. 

Ll=C4=0.668473700 (H,F) 

L2=C2=1.585426566 (H,F) 

C3=0.157686269 (F) 

Substituting these element values in equations (4.6) 

through (4.10) and dividing by two, the next results are 

obtained: 

b=0·749939069 

c=2.045557128 

d=2·790033205 



e=2.253900266 

a=0.25 
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It can be observed by comparing results that only 

coefficients band c show a very small numerical error, so 

small that probably there is no need for a correction factor 

to be introduced. In the next chapter the response of this 

filter will be tested. 

For the sake of completeness the values of the com

ponents using Garcia's relations are shown below (Wz=2 rps). 

~1=0.73323l2l2 H 

L2=1.520669054 H 

C2=1.67 0339249 F 

C4=0.58356l0l8 F 

C
3

=0.16440l320 F 

It should also be mentioned that when these results 

are substituted back in the coefficient equations, practi

cally no numerical error is found in any of the coefficients. 

For (Jz=3 rps as expected, the difference between 

the exact and the actual values was even smaller than the 

previous one as can be seen below: 

Exact result 

2b=1·777777777 

2c=4·7269l8605 

Actual result 

2b=1·777773004 

2c=4.726905420 

Error 

0.00027% 

0.00027% 



CHAPTER 5 

SINGLY TERMINATED TWO ZERO-SIX POLE 
INVERSE CHEBYSHEV FILTER 

Another basic circuit in passive LC filters is the 

singly terminated case, and although it is much more sen

sitive than the doubly terminated one, it is still widely 

used. In the singlY terminated configuration Ro=oo (figure 

5-1). For the sake of completeness the design equations-in 

terms of the coefficients of the transfer function (coeffi

cients are the same in both, singly and doubly terminated 

cases) are presented in this chapter. 

A solution for the singly terminated case 

Applying linearity to the circuit of figure 5-1, 

the following coefficient equations are obtained: 

d=LIL2C2C3+LIL2C2C4+LIL2C2C5+LIL2C3C4+LIL2C3C5+ 

LIL3C2C5+LIL3C4C5+L2L3C3C5+L2L3C4C5 

e=L2C2C4+L2C2C3+L2C2C5+L2C3C4+L2C3C5+L3C2C5+L3C4C5 
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(5.5) 

(5.6) 

(5·7) 

Showing the algebraic steps of this procedure 

serves no purpose therefore, only the results (design equa

tions) are presented in this section. 

I 

a c=-
3 L2 

(5.8) 

(5.10) 

(5.11) 
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1 
d-eL 1 

(5.12) 

(5.13) 

(5.14) 

The design equations (5.8) through (5.14) consti

tute an explicit solution to the sixth order singly 

terminated inverse Chebyshev filter. 

Verification of design equations 

The same procedure used in previous chapters for 

verifying the design equations was followed for the singly 

terminated circuit. w z was chosen to be 2 rps. When the 

element values were substituted back in the coefficient 

equations the results were exact, proving that the design 

equations are not in this case, an approximation. The re

sponse of this filter is shown in chapter 6. 
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CHAPTER 6 

RESULTS AND CONCLUSIONS 

Using a hand-held programmable calculator with 

circuit analysis capability, the frequency response of 

the doubly terminated sixth order filter was obtained for 

three different values of W z (1.7. 2.4 and 3.0 rps). The 

design equations used included the correction factor K. 

Figures 6-1, 6-2 and 6-3 show the graphs and tables 6-1, 

6-2 and 6-3 the plotted data. Also a frequency response 

for the (2z-6p) singlY terminated filter is included in 

figure 6-4 and data in table 6-4. 

For the fourth order doubly terminated filter a 

frequency response (figure 6-5) is obtained using the de

sign equations developed in chapter 4 and compared to the 

frequency response obtained from the exact design equations 

(table 6-5). 
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Table 6-1. Normalized frequency 
response forW = 1.7 
r:Qs doubl;y te.rfl'iinate_d 

W=1.7 rps 

W (rps) Vo/Vi (dB) 

0.2 - 6.0206 

0.4 - 6.0224 

0.6 - 6.0404 

0.8 - 6.2741 

0·9 - 6.9773 

1.0 - 9·0253 

1.2 - 18.0100 

1.4 - 29·6622 

1.6 - 45·6309 

1·7 -220.0000 

1.8 - 51.2772 

2.0 - 46·7555 

2.0821 - 46·5638 

2.2 - 46.8358 

2.4 - 48.0178 

2.6 - 49·5953 

2.8 - 51·3210 

3·0 - 53·0887 

3·2 - 54.8476 

3·6 - 58.25116 

4.0 - 61.4528 
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Fig. 6-1. (2z-6p) doubly terminated frequency response for wz=1.7 rps. 
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Table 6-2. Normalized frequency response 
for (Jz=2.4 rps doubly termi
nated. 

0.2 - 6.0206 
0.4 - 6.0210 
0.6 - 6.0313 
0.8 - 6.2808 
0·9 - 7.0360 
1.0 - 9·0277 
1.2 - 16.7305 
1.4 - 25·5470 
1.6 - 33·9627 
1.8 - 42.1738 
2.0 - 50·7840 
2.2 - 61. 3869 
2.4 227·1000 
2.6 - 69·3701 
2.8 - 66.8713 
2·9393 - 66.57671 
3·0 - 66,6174 

3·2 - 67·1663 
3·4 - 68.0828 

3·6 - 69·18352 
3·8 - 70·3775 
4.0 - 71.6150 
4.4 - 74.1173 
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Table 6-3. Normalized frequency response 
for Wz=3.0 rps doubly termi
nated. 

0.2 - 6.0206 
0.4 - 6.0208 
0.6 - 6.0300 
0.8 - 6.28933 
0·9 7·05958 
1.0 - 9·02940 
1.2 - 16.42135 
1.4 - 24·71991 
1.6 - 32.40586 
1.8 - 39·50684 
2.2 - 52·79105 
2.6 - 66.87447 
2.8 - 76.45254 
3·0 -232.40000 
3·2 - 82.83239 
3·4 - 79.69551 
3·6 - 78.88523 
3·6742 - 78.83861 
3·8 - 78·94488 
4.0 - 79·42805 
4.2 - 80.14243 
4.6 - 81. 91503 
5·0 - 83.87672 
5·6 - 86.87580 
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Table 6-4. Normalized frequency response 
for GU z=2.0 rps singly termi
nated. 

W =2.0 rps z 
W (rps) Vo/Vi (dB ) 

2.0xl0-l 0.00 
4.0 " 0.00 
6.0 " 0.0064 
8.0 " 0.23163 

10.0 " - 3·01030 
12.0 " 11.2203 
14.0 " - 20·9205 
16.0 " 30.8731 
18.0 " - 42·5591 
20.0 " -220.0000 
22.0 " - 52.14759 
24.0 " - 50.257562 
24.4 " - 50.212533 
24·5 " - 50.210946 
24.6 " - 50.212825 
26.0 " - 50.52108 
28.0 " - 51·5148 
30.0 " - 52.8176 
32.0 " - 54.2567 
34.0 " - 55·7495 
36.0 " - 57·25257 
38.0 " - 58·74245 
40.0 " - 60.2060 
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Fig. 6-4. (2z-6p) singly terminated frequency response for Wz=2.0 rps. 
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Table 6-5. (2z-4p) doubly terminated exact 
and approximate frequency 
response. 

Wz=2.0 rps V o/Vi (dB) 

W (rps) Exact response Appr~~imate_ 

0.0 - 6.0206 - 6.0206 

0.4 - 6.0223 - 6.0224 

0.8 - 6·5658 - 6.5667 

1.0 - 9·0309 - 9·0317 

1.2 - 14.4122 - 14.4119 

1.6 - 28·7486 - 28·7475 

2.0 -220.0000 -201. 6000 

2.4 - 41. 0710 - 41. 0699 

2.8 - 39.6509 - 39·6499 

2.8284 - 39·6473 - 39.6463 

3·2 - 40.0730 - 40.0721 

3·6 - 41. 0224 - 41.0215 

4.0 - 42.1453 - 42.1444 
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Practical circuit built and tested 

A (2z-6p) doubly terminated filter was designed and 

built using the corrected equations in chapter 3. fz was 

located at 4000 Hz and the -3dB cutoff frequency was at 

2000 Hz. The filter was impedance scaled to 1000 ohms. 

The calculated components (already frequency and 

impedance scaled) are listed next. 

L = 39.945 mH 1 

C5= 39·945 nF 

L2=134.352 mH 

C4=134.352 nF 

L
3
=104. 986 m 

C2=104.986 nF 

C
3
= 11. 784 nF 

The components used were measured in the HP 4262A 

LCR meter U of A ID No. 7148, at a frequency of 1 KHz. 

Ll=39.4 mH 

Ql=76 .9 

C5=39.9 nF 

C
3

=11. 8 nF 

L2=133.5 mH 

Q2=100 

C4=133.6 nF 

Ri=1005D. 

C2=103 nF 

Ro=1008..o... 



Equipment used: 

FLUKE 8810A Digital Multimeter U of A ID No. 6790. 

FLUKE 7260A Universal Counter/Timer U of A ID No. 6789. 

H.P. 339A Distortion Analyser U of A ID No. 7913. 

H.P. 1220A Oscilloscope U of A ID No. 6076. 
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The circuit was fed through a unity gain non

inverting opamp (LM741) so the internal resistance of the 

oscillator did not affect the performance of the circuit. 

The input voltage Vi (opamp output) was kept at all times 

at 0.5V RMS. 

The results are tabulated in table 6-6 and the 

measure response is shown in figure 6-6. 



Table 6-6. (2z-6p) doubly terminated 
measured response. 

V.=0·5V. 
~ 

RMS fz=4000 Hz 

f (Hz) V o/Vi (dB) 

20 - 6.0580 
500 - 6.0918 

1000 - 6.1491 
1600 - 6.5485 
1900 - 8.0991 
1990 - 9·11216 
2000 - 9·2436 
2800 -26.1427 
3400 -41.0115 
3800 -53·5568 
3900 -57·7215 
4000 -61·5142 
41.00 -60·3544 
4700 -54.0665 
4900 -53·8074 
5200 -53·9801 
5600 -54.7042 
6000 -55.4940 
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Conclusions 

Since the circuit is of the doubly terminated type 

it is extremely insensitive to variations in the components 

(Orchard, 1979). It is this property that made the approx

imate solution possible. 

Even though the solution found for the sixth order 

doubly terminated filter is not exact, the calculated fre

quency response and the measured results showed that it is 

a good approximation. 

Another way one can deal with the cutoff frequency 

deviation problem is to simply frequency scale the circuit 

to break at a desired frequency using the data of table 3-2 

to correct the -3 dB frequency. 

The results for the 2z-4p doubly terminated circuit 

using the developed design equations in chapter 4 were 

surprisingly good. There was no need for a correction fac

tor to be introduced since the response of the filter with 

(Jz=rps was almost free of error, and even that error de

creases as 6U z is increased. 

The constructed circuit responded very well in the 

pass band. The -3 dB cutoff frequency was off by about 10 

Hz. which is less than 1% error. However, in the stop band 

the response did not go beyond -60 dB probably due to some 

noise at the output of the circuit near the zero frequency. 
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