Persistent Link:
http://hdl.handle.net/10150/624221
Title:
SYMBOL SET SELECTION IN GSSK MIMO SYSTEMS WITH CORRELATED ANTENNAS
Author:
Shrestha, Mandip
Advisor:
Borah, Deva K.
Affiliation:
New Mexico State University, Klipsch School of Elec. & Comp. Eng.
Issue Date:
2016-11
Rights:
Copyright © held by the author; distribution rights International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Generalized space shift keying (GSSK) is a transmission scheme where only antenna indices are used to send information from the transmitter to a receiver. This paper investigates the best symbol set selection problem in GSSK multiple-input-multiple-output (MIMO) systems when the transmit antennas are correlated. Although multiple antennas can increase data rate and signal quality without increasing the bandwidth, spatial correlations among the antennas highly affect the performance of the system. The idea here is to maximize the inter-symbol Euclidean distance to obtain the best symbol set. Recently such an algorithm has been proposed for the visible light communication (VLC) systems. This paper adopts this VLC algorithm for radio frequency (RF) communication systems. The results show that the proposed symbol set design can provide several dBs of gain in the symbol error rate (SER) performance over randomly selected symbol sets in GSSK systems.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSYMBOL SET SELECTION IN GSSK MIMO SYSTEMS WITH CORRELATED ANTENNASen_US
dc.contributor.authorShrestha, Mandipen
dc.contributor.advisorBorah, Deva K.en
dc.contributor.departmentNew Mexico State University, Klipsch School of Elec. & Comp. Eng.en
dc.date.issued2016-11-
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractGeneralized space shift keying (GSSK) is a transmission scheme where only antenna indices are used to send information from the transmitter to a receiver. This paper investigates the best symbol set selection problem in GSSK multiple-input-multiple-output (MIMO) systems when the transmit antennas are correlated. Although multiple antennas can increase data rate and signal quality without increasing the bandwidth, spatial correlations among the antennas highly affect the performance of the system. The idea here is to maximize the inter-symbol Euclidean distance to obtain the best symbol set. Recently such an algorithm has been proposed for the visible light communication (VLC) systems. This paper adopts this VLC algorithm for radio frequency (RF) communication systems. The results show that the proposed symbol set design can provide several dBs of gain in the symbol error rate (SER) performance over randomly selected symbol sets in GSSK systems.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/624221-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.