Resilient Power Grid Expansion with Renewable Energy Integration and Storage System

Persistent Link:
http://hdl.handle.net/10150/623157
Title:
Resilient Power Grid Expansion with Renewable Energy Integration and Storage System
Author:
Alsuhaim, Bader Mansour
Issue Date:
2016
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 31-Jan-2019
Abstract:
A resilient power grid system is important to ensure the delivery of power to consumers while minimizing the cost of new technologies. Due to the increase of electricity consumption and CO2 emission, renewable energies and energy storage system are a compelling alternative. We started to identify decisions that need to be made, and parameters associated to model a power grid system expansion plan. Then, we investigated a utility company demand for the next 15 years. Also, we identified their current resources, and used that as a starting point. Then, we formulated an optimization model for a power grid expansion with different types of renewable energies, such as solar and wind, to meet the demand and minimize the cost of installation; as well as, a battery storage system (Lithium-ion) that is considered to come up with an optimal solution of a resilient power grid. Moreover, uncertainties of renewables are considered in the model, and robust optimization formulation is used to model them. Existing coal facilities are considered as a part of the model as well, and this part is designed on the optimization model in a way that would help decrease the use of such facilities and still manage them to meet demand. Numerical experiments are performed on several scenarios, and compared to what the utility company has forecasted in terms of cost, and renewable energies integration.A resilient power grid system is important to ensure the delivery of power to consumers while minimizing the cost of new technologies. Due to the increase of electricity consumption and CO2 emission, renewable energies and energy storage system are a compelling alternative. We started to identify decisions that need to be made, and parameters associated to model a power grid system expansion plan. Then, we investigated a utility company demand for the next 15 years. Also, we identified their current resources, and used that as a starting point. Then, we formulated an optimization model for a power grid expansion with different types of renewable energies, such as solar and wind, to meet the demand and minimize the cost of installation; as well as, a battery storage system (Lithium-ion) that is considered to come up with an optimal solution of a resilient power grid. Moreover, uncertainties of renewables are considered in the model, and robust optimization formulation is used to model them. Existing coal facilities are considered as a part of the model as well, and this part is designed on the optimization model in a way that would help decrease the use of such facilities and still manage them to meet demand. Numerical experiments are performed on several scenarios, and compared to what the utility company has forecasted in terms of cost, and renewable energies integration.
Type:
text; Electronic Thesis
Keywords:
Power Grid Expansion; Renewable; Storage System; Industrial Engineering; Optimization
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Industrial Engineering
Degree Grantor:
University of Arizona
Advisor:
Fan, Neng

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleResilient Power Grid Expansion with Renewable Energy Integration and Storage Systemen_US
dc.creatorAlsuhaim, Bader Mansouren
dc.contributor.authorAlsuhaim, Bader Mansouren
dc.date.issued2016-
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.releaseRelease after 31-Jan-2019en
dc.description.abstractA resilient power grid system is important to ensure the delivery of power to consumers while minimizing the cost of new technologies. Due to the increase of electricity consumption and CO2 emission, renewable energies and energy storage system are a compelling alternative. We started to identify decisions that need to be made, and parameters associated to model a power grid system expansion plan. Then, we investigated a utility company demand for the next 15 years. Also, we identified their current resources, and used that as a starting point. Then, we formulated an optimization model for a power grid expansion with different types of renewable energies, such as solar and wind, to meet the demand and minimize the cost of installation; as well as, a battery storage system (Lithium-ion) that is considered to come up with an optimal solution of a resilient power grid. Moreover, uncertainties of renewables are considered in the model, and robust optimization formulation is used to model them. Existing coal facilities are considered as a part of the model as well, and this part is designed on the optimization model in a way that would help decrease the use of such facilities and still manage them to meet demand. Numerical experiments are performed on several scenarios, and compared to what the utility company has forecasted in terms of cost, and renewable energies integration.A resilient power grid system is important to ensure the delivery of power to consumers while minimizing the cost of new technologies. Due to the increase of electricity consumption and CO2 emission, renewable energies and energy storage system are a compelling alternative. We started to identify decisions that need to be made, and parameters associated to model a power grid system expansion plan. Then, we investigated a utility company demand for the next 15 years. Also, we identified their current resources, and used that as a starting point. Then, we formulated an optimization model for a power grid expansion with different types of renewable energies, such as solar and wind, to meet the demand and minimize the cost of installation; as well as, a battery storage system (Lithium-ion) that is considered to come up with an optimal solution of a resilient power grid. Moreover, uncertainties of renewables are considered in the model, and robust optimization formulation is used to model them. Existing coal facilities are considered as a part of the model as well, and this part is designed on the optimization model in a way that would help decrease the use of such facilities and still manage them to meet demand. Numerical experiments are performed on several scenarios, and compared to what the utility company has forecasted in terms of cost, and renewable energies integration.en
dc.typetexten
dc.typeElectronic Thesisen
dc.subjectPower Grid Expansionen
dc.subjectRenewableen
dc.subjectStorage Systemen
dc.subjectIndustrial Engineeringen
dc.subjectOptimizationen
thesis.degree.nameM.S.en
thesis.degree.levelmastersen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineIndustrial Engineeringen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorFan, Nengen
dc.contributor.committeememberFan, Nengen
dc.contributor.committeememberLepore, Roberten
dc.contributor.committeememberCheng, Jianqiangen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.