Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods

Persistent Link:
http://hdl.handle.net/10150/618720
Title:
Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods
Author:
Nouri, Hamideh; Glenn, Edward; Beecham, Simon; Chavoshi Boroujeni, Sattar; Sutton, Paul; Alaghmand, Sina; Noori, Behnaz; Nagler, Pamela
Affiliation:
Univ Arizona, Dept Soil Water & Environm Sci; US Geol Survey, Southwest Biol Sci Ctr
Issue Date:
2016-06-10
Publisher:
MDPI AG
Citation:
Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods 2016, 8 (6):492 Remote Sensing
Journal:
Remote Sensing
Rights:
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Collection Information:
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
Abstract:
Despite being the driest inhabited continent, Australia has one of the highest per capita water consumptions in the world. In addition, instead of having fit-for-purpose water supplies (using different qualities of water for different applications), highly treated drinking water is used for nearly all of Australia's urban water supply needs, including landscape irrigation. The water requirement of urban landscapes, particularly urban parklands, is of growing concern. The estimation of evapotranspiration (ET) and subsequently plant water requirements in urban vegetation needs to consider the heterogeneity of plants, soils, water, and climate characteristics. This research contributes to a broader effort to establish sustainable irrigation practices within the Adelaide Parklands in Adelaide, South Australia. In this paper, two practical ET estimation approaches are compared to a detailed Soil Water Balance (SWB) analysis over a one year period. One approach is the Water Use Classification of Landscape Plants (WUCOLS) method, which is based on expert opinion on the water needs of different classes of landscape plants. The other is a remote sensing approach based on the Enhanced Vegetation Index (EVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra satellite. Both methods require knowledge of reference ET calculated from meteorological data. The SWB determined that plants consumed 1084 mmyr(-1) of water in ET with an additional 16% lost to drainage past the root zone, an amount sufficient to keep salts from accumulating in the root zone. ET by MODIS EVI was 1088 mmyr(-1), very close to the SWB estimate, while WUCOLS estimated the total water requirement at only 802 mmyr(-1), 26% lower than the SWB estimate and 37% lower than the amount actually added including the drainage fraction. Individual monthly ET by MODIS was not accurate, but these errors were cancelled out to give good agreement on an annual time step. We conclude that the MODIS EVI method can provide accurate estimates of urban water requirements in mixed landscapes large enough to be sampled by MODIS imagery with 250-m resolution such as parklands and golf courses.
Note:
Open Access Journal
ISSN:
2072-4292
DOI:
10.3390/rs8060492
Keywords:
evapotranspiration; urban irrigation; drainage; lysimeter; Neutron Moisture Meter (NMM); soil water balance
Version:
Final published version
Sponsors:
SA Water Corporation [SW100201]; Goyder Institute for Water Research
Additional Links:
http://www.mdpi.com/2072-4292/8/6/492

Full metadata record

DC FieldValue Language
dc.contributor.authorNouri, Hamidehen
dc.contributor.authorGlenn, Edwarden
dc.contributor.authorBeecham, Simonen
dc.contributor.authorChavoshi Boroujeni, Sattaren
dc.contributor.authorSutton, Paulen
dc.contributor.authorAlaghmand, Sinaen
dc.contributor.authorNoori, Behnazen
dc.contributor.authorNagler, Pamelaen
dc.date.accessioned2016-08-24T01:04:16Z-
dc.date.available2016-08-24T01:04:16Z-
dc.date.issued2016-06-10-
dc.identifier.citationComparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods 2016, 8 (6):492 Remote Sensingen
dc.identifier.issn2072-4292-
dc.identifier.doi10.3390/rs8060492-
dc.identifier.urihttp://hdl.handle.net/10150/618720-
dc.description.abstractDespite being the driest inhabited continent, Australia has one of the highest per capita water consumptions in the world. In addition, instead of having fit-for-purpose water supplies (using different qualities of water for different applications), highly treated drinking water is used for nearly all of Australia's urban water supply needs, including landscape irrigation. The water requirement of urban landscapes, particularly urban parklands, is of growing concern. The estimation of evapotranspiration (ET) and subsequently plant water requirements in urban vegetation needs to consider the heterogeneity of plants, soils, water, and climate characteristics. This research contributes to a broader effort to establish sustainable irrigation practices within the Adelaide Parklands in Adelaide, South Australia. In this paper, two practical ET estimation approaches are compared to a detailed Soil Water Balance (SWB) analysis over a one year period. One approach is the Water Use Classification of Landscape Plants (WUCOLS) method, which is based on expert opinion on the water needs of different classes of landscape plants. The other is a remote sensing approach based on the Enhanced Vegetation Index (EVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra satellite. Both methods require knowledge of reference ET calculated from meteorological data. The SWB determined that plants consumed 1084 mmyr(-1) of water in ET with an additional 16% lost to drainage past the root zone, an amount sufficient to keep salts from accumulating in the root zone. ET by MODIS EVI was 1088 mmyr(-1), very close to the SWB estimate, while WUCOLS estimated the total water requirement at only 802 mmyr(-1), 26% lower than the SWB estimate and 37% lower than the amount actually added including the drainage fraction. Individual monthly ET by MODIS was not accurate, but these errors were cancelled out to give good agreement on an annual time step. We conclude that the MODIS EVI method can provide accurate estimates of urban water requirements in mixed landscapes large enough to be sampled by MODIS imagery with 250-m resolution such as parklands and golf courses.en
dc.description.sponsorshipSA Water Corporation [SW100201]; Goyder Institute for Water Researchen
dc.language.isoenen
dc.publisherMDPI AGen
dc.relation.urlhttp://www.mdpi.com/2072-4292/8/6/492en
dc.rights© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).en
dc.subjectevapotranspirationen
dc.subjecturban irrigationen
dc.subjectdrainageen
dc.subjectlysimeteren
dc.subjectNeutron Moisture Meter (NMM)en
dc.subjectsoil water balanceen
dc.titleComparing Three Approaches of Evapotranspiration Estimation in Mixed Urban Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methodsen
dc.typeArticleen
dc.contributor.departmentUniv Arizona, Dept Soil Water & Environm Scien
dc.contributor.departmentUS Geol Survey, Southwest Biol Sci Ctren
dc.identifier.journalRemote Sensingen
dc.description.noteOpen Access Journalen
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.