Persistent Link:
http://hdl.handle.net/10150/615316
Title:
THE USE OF THE CONICAL SCAN EARTH SENSOR IN COMMUNICATION SATELLITE APPLICATIONS
Author:
Fowler, Robert Z.
Affiliation:
ITHACO, Inc.
Issue Date:
1981-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Infra-red horizon sensors are almost universally used as the primary attitude sensor for pitch and roll on present day three-axis stabilized communication satellites. When used with a momentum wheel, yaw is also controlled without direct sensing. The application flexibility of the mechanically scanned Conical Earth Sensor, and it’s recent availability as a component designed for precision, long life performance have resulted in renewed interest in its use on communication satellites. The Conical Earth Sensor will provide accurate on-orbit attitude sensing in pitch and roll. It can provide attitude sensing all the way from the shuttle orbit to synchronous for booster control, and is particularly attractive for multiple burn, multiple orbit transfer. It can provide accurate nadir sensing 100% of the time in the highly elliptical Molniya twelvehour orbit. It can facilitate wide angle attitude sensing for antennae calibration maneuvers. It can be used in a static mode as a horizon crossing indicator for spacecraft that go up as spinners, and then for normal on-orbit sensing as a scanner. It can be readily hardened to both nuclear and lazer threats, unlike static sensors that are highly susceptible to thermal transients. It has a simple, rugged, and stable construction that is not sensitive to resonance effects from other mechanical devices on the spacecraft such as momentum or reaction wheels.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleTHE USE OF THE CONICAL SCAN EARTH SENSOR IN COMMUNICATION SATELLITE APPLICATIONSen_US
dc.contributor.authorFowler, Robert Z.en
dc.contributor.departmentITHACO, Inc.en
dc.date.issued1981-10-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractInfra-red horizon sensors are almost universally used as the primary attitude sensor for pitch and roll on present day three-axis stabilized communication satellites. When used with a momentum wheel, yaw is also controlled without direct sensing. The application flexibility of the mechanically scanned Conical Earth Sensor, and it’s recent availability as a component designed for precision, long life performance have resulted in renewed interest in its use on communication satellites. The Conical Earth Sensor will provide accurate on-orbit attitude sensing in pitch and roll. It can provide attitude sensing all the way from the shuttle orbit to synchronous for booster control, and is particularly attractive for multiple burn, multiple orbit transfer. It can provide accurate nadir sensing 100% of the time in the highly elliptical Molniya twelvehour orbit. It can facilitate wide angle attitude sensing for antennae calibration maneuvers. It can be used in a static mode as a horizon crossing indicator for spacecraft that go up as spinners, and then for normal on-orbit sensing as a scanner. It can be readily hardened to both nuclear and lazer threats, unlike static sensors that are highly susceptible to thermal transients. It has a simple, rugged, and stable construction that is not sensitive to resonance effects from other mechanical devices on the spacecraft such as momentum or reaction wheels.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/615316-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.