Persistent Link:
http://hdl.handle.net/10150/614475
Title:
Evaluation of Aminoglycoside Serum Concentration Monitoring
Author:
Sun, Gloria; Christina, Juliane; Matthias, Kathyrn
Affiliation:
College of Pharmacy, The University of Arizona
Issue Date:
2012
Rights:
Copyright © is held by the author.
Collection Information:
This item is part of the Pharmacy Student Research Projects collection, made available by the College of Pharmacy and the University Libraries at the University of Arizona. For more information about items in this collection, please contact Jennifer Martin, Associate Librarian and Clinical Instructor, Pharmacy Practice and Science, jenmartin@email.arizona.edu.
Publisher:
The University of Arizona.
Abstract:
Objectives: The primary objective of this study was to evaluate the appropriateness of when aminoglycoside serum concentrations are obtained and assess whether the timing and techniques used in obtaining aminoglycoside serum concentrations are appropriate. Additionally, pharmacists’ interpretation of aminoglycoside serum concentrations and the appropriateness of intervention in response to these results were assessed. Methods: This descriptive retrospective study to evaluate the appropriateness of aminoglycoside monitoring at an academic medical center has been approved by the Institutional Review Board. Patients over the age of 46 weeks gestational age admitted to an academic medical center between February 1, 2010 to February 1, 2011 who were prescribed intravenous aminoglycoside therapy were included in this study. Patients with therapy duration of less than 72 hours without at least one aminoglycoside level were excluded. The time of aminoglycoside concentrations in relation to time of aminoglycoside administration along with calculated pharmacokinetic parameters and therapy recommendations documented in clinical notes were also recorded. Appropriateness of aminoglycoside monitoring and documentation were determined by use of expert opinion and pharmacokinetic guidelines. Results: Timing of aminoglycoside serum concentrations and subsequent clinical assessments were evaluated in 103 subjects. The median (range) age was 28 (0.2 – 88) years. The initial aminoglycoside prescribed in 12%, 40%, and 48% of subjects was amikacin, gentamicin, and tobramycin, respectively. A total of 314 aminoglycoside concentrations were obtained: 41 amikacin, 129 gentamicin, and 144 tobramycin. At least one clinical pharmacokinetic assessment of aminoglycoside concentration(s) was written for 91 subjects (88%). The aminoglycoside indication, actual time of aminoglycoside dose administration, estimated renal function, and both goal peak/trough aminoglycoside concentrations were documented in at least one aminoglycoside clinical note for each of these 91 subjects at a rate of 95%, 80%, 89%, and 51%, respectively. Calculated peak, trough, estimated volume of distribution, and estimated half-life or ke were documented in 53 subjects. Conclusions: Aminoglycoside serum concentration monitoring can be used to maximize therapeutic outcomes while minimizing toxicity. However, errors in obtaining and evaluating serum drug levels can arise that may affect patient outcomes. For monitoring to be effective, the timing of serum concentration orders, the process of obtaining serum concentration samples, and the interpretation of data including pharmacokinetic calculations should be accurate.
Description:
Class of 2012 Abstract
Keywords:
Aminoglycoside Serum; Monitoring; Concentration
Advisor:
Matthias, Kathyrn

Full metadata record

DC FieldValue Language
dc.contributor.advisorMatthias, Kathyrnen
dc.contributor.authorSun, Gloriaen
dc.contributor.authorChristina, Julianeen
dc.contributor.authorMatthias, Kathyrnen
dc.date.accessioned2016-06-23T18:27:29Z-
dc.date.available2016-06-23T18:27:29Z-
dc.date.issued2012-
dc.identifier.urihttp://hdl.handle.net/10150/614475-
dc.descriptionClass of 2012 Abstracten
dc.description.abstractObjectives: The primary objective of this study was to evaluate the appropriateness of when aminoglycoside serum concentrations are obtained and assess whether the timing and techniques used in obtaining aminoglycoside serum concentrations are appropriate. Additionally, pharmacists’ interpretation of aminoglycoside serum concentrations and the appropriateness of intervention in response to these results were assessed. Methods: This descriptive retrospective study to evaluate the appropriateness of aminoglycoside monitoring at an academic medical center has been approved by the Institutional Review Board. Patients over the age of 46 weeks gestational age admitted to an academic medical center between February 1, 2010 to February 1, 2011 who were prescribed intravenous aminoglycoside therapy were included in this study. Patients with therapy duration of less than 72 hours without at least one aminoglycoside level were excluded. The time of aminoglycoside concentrations in relation to time of aminoglycoside administration along with calculated pharmacokinetic parameters and therapy recommendations documented in clinical notes were also recorded. Appropriateness of aminoglycoside monitoring and documentation were determined by use of expert opinion and pharmacokinetic guidelines. Results: Timing of aminoglycoside serum concentrations and subsequent clinical assessments were evaluated in 103 subjects. The median (range) age was 28 (0.2 – 88) years. The initial aminoglycoside prescribed in 12%, 40%, and 48% of subjects was amikacin, gentamicin, and tobramycin, respectively. A total of 314 aminoglycoside concentrations were obtained: 41 amikacin, 129 gentamicin, and 144 tobramycin. At least one clinical pharmacokinetic assessment of aminoglycoside concentration(s) was written for 91 subjects (88%). The aminoglycoside indication, actual time of aminoglycoside dose administration, estimated renal function, and both goal peak/trough aminoglycoside concentrations were documented in at least one aminoglycoside clinical note for each of these 91 subjects at a rate of 95%, 80%, 89%, and 51%, respectively. Calculated peak, trough, estimated volume of distribution, and estimated half-life or ke were documented in 53 subjects. Conclusions: Aminoglycoside serum concentration monitoring can be used to maximize therapeutic outcomes while minimizing toxicity. However, errors in obtaining and evaluating serum drug levels can arise that may affect patient outcomes. For monitoring to be effective, the timing of serum concentration orders, the process of obtaining serum concentration samples, and the interpretation of data including pharmacokinetic calculations should be accurate.en
dc.language.isoen_USen
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author.en
dc.subjectAminoglycoside Serumen
dc.subjectMonitoringen
dc.subjectConcentrationen
dc.titleEvaluation of Aminoglycoside Serum Concentration Monitoringen_US
dc.typetexten
dc.typeElectronic Reporten
dc.contributor.departmentCollege of Pharmacy, The University of Arizonaen
dc.description.collectioninformationThis item is part of the Pharmacy Student Research Projects collection, made available by the College of Pharmacy and the University Libraries at the University of Arizona. For more information about items in this collection, please contact Jennifer Martin, Associate Librarian and Clinical Instructor, Pharmacy Practice and Science, jenmartin@email.arizona.edu.en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.