Persistent Link:
http://hdl.handle.net/10150/613931
Title:
Optimum Digital Data Storage on Magnetic Tape
Author:
Hedeman, W. R., Jr.; Law, E. L.
Affiliation:
Pacific Missile Test Center
Issue Date:
1979-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
An instrumentation magnetic tape recorder, free of tape drop-outs, wow and flutter, is simulated by filters and a chromatic noise source. At a fixed bit error probability the capacity of the link is measured as a function of rms signal-to-noise ratio for NRZ-L, Manchester and Miller codes. Two operating regions are observed: (1) noise limited at low values of SNR and (2) band limited at high values of SNR. In the noise limited region doubling the data rate requires a 6 dB increase in SNR; in the band limited region an increase of approximately 12 dB is required to produce the same result. The conclusion is that, for baseband recording of digital data, operation should be in the noise limited region slightly below the transition to the band limited region. If SNR margin is available at this operating point more data per square of tape can be stored by increasing the number of tracks rather than increasing the storage per track. The theoretical penalty of 3.5 dB for the Miller code bit detector should, and does, result in a data rate decrease to .67 of the data rate with the NRZ-L code at the same SNR in the noise limited region. For the Manchester code the transition to the band limited region occurs at a lower SNR than for either NRZ-L or Miller codes. It is concluded that the Manchester code would result in approximately the same data storage per square of tape as NRZ-L, and more than Miller, if the number of tracks is doubled.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleOptimum Digital Data Storage on Magnetic Tapeen_US
dc.contributor.authorHedeman, W. R., Jr.en
dc.contributor.authorLaw, E. L.en
dc.contributor.departmentPacific Missile Test Centeren
dc.date.issued1979-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractAn instrumentation magnetic tape recorder, free of tape drop-outs, wow and flutter, is simulated by filters and a chromatic noise source. At a fixed bit error probability the capacity of the link is measured as a function of rms signal-to-noise ratio for NRZ-L, Manchester and Miller codes. Two operating regions are observed: (1) noise limited at low values of SNR and (2) band limited at high values of SNR. In the noise limited region doubling the data rate requires a 6 dB increase in SNR; in the band limited region an increase of approximately 12 dB is required to produce the same result. The conclusion is that, for baseband recording of digital data, operation should be in the noise limited region slightly below the transition to the band limited region. If SNR margin is available at this operating point more data per square of tape can be stored by increasing the number of tracks rather than increasing the storage per track. The theoretical penalty of 3.5 dB for the Miller code bit detector should, and does, result in a data rate decrease to .67 of the data rate with the NRZ-L code at the same SNR in the noise limited region. For the Manchester code the transition to the band limited region occurs at a lower SNR than for either NRZ-L or Miller codes. It is concluded that the Manchester code would result in approximately the same data storage per square of tape as NRZ-L, and more than Miller, if the number of tracks is doubled.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/613931-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.