Persistent Link:
http://hdl.handle.net/10150/613879
Title:
Reconstructing Pulse-Code Modulation Telemetry Data with Dropouts
Author:
Hull, M. L.; Mote, C. D., Jr.; Lamoreux, L. W.
Affiliation:
University of California, Davis; University of California, Berkeley
Issue Date:
1979-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
A data handling system was developed which transfers serial pulse-code modulation (PCM) telemetry data from an analog tape to a digital tape for analysis on a digital computer. The PCM data were collected from field experiments in snow skiing which measured the excitation between the ski boot and the ski. PCM data were FM transmitted and stored on an analog tape recorder. In the laboratory, data were decoded from the tape and parallel input to a Nova minicomputer which buffered the data and wrote tapes compatible with a CDC 6400 computer. A custom-built PCM decoder provided control and status commands to drive the minicomputer interrupt logic. The data transfer rate was 50 kbits/s. Special consideration was given to the problem of information losses. Lost data frames were not stored by the minicomputer and the data time series on the digital tape is discontinuous at each loss point. Spectral analysis of data with discontinuities produces erroneous results. Fourier coefficients and power spectra were computed for both continuous and discontinuous signals. Discontinuities caused significant reductions in amplitude and increase in bandwidth of spectrum estimates. Unique software eliminated data discontinuities by reconstructing the original time-base with linearly interpolated pseudo-data. Results are presented which show the enhanced accuracy obtained in spectrum estimates with the reconstructed data.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleReconstructing Pulse-Code Modulation Telemetry Data with Dropoutsen_US
dc.contributor.authorHull, M. L.en
dc.contributor.authorMote, C. D., Jr.en
dc.contributor.authorLamoreux, L. W.en
dc.contributor.departmentUniversity of California, Davisen
dc.contributor.departmentUniversity of California, Berkeleyen
dc.date.issued1979-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractA data handling system was developed which transfers serial pulse-code modulation (PCM) telemetry data from an analog tape to a digital tape for analysis on a digital computer. The PCM data were collected from field experiments in snow skiing which measured the excitation between the ski boot and the ski. PCM data were FM transmitted and stored on an analog tape recorder. In the laboratory, data were decoded from the tape and parallel input to a Nova minicomputer which buffered the data and wrote tapes compatible with a CDC 6400 computer. A custom-built PCM decoder provided control and status commands to drive the minicomputer interrupt logic. The data transfer rate was 50 kbits/s. Special consideration was given to the problem of information losses. Lost data frames were not stored by the minicomputer and the data time series on the digital tape is discontinuous at each loss point. Spectral analysis of data with discontinuities produces erroneous results. Fourier coefficients and power spectra were computed for both continuous and discontinuous signals. Discontinuities caused significant reductions in amplitude and increase in bandwidth of spectrum estimates. Unique software eliminated data discontinuities by reconstructing the original time-base with linearly interpolated pseudo-data. Results are presented which show the enhanced accuracy obtained in spectrum estimates with the reconstructed data.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/613879-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.