Persistent Link:
http://hdl.handle.net/10150/613786
Title:
GPS SOLVES THE COMBAT PILOT TRAINING RANGE PROBLEMS
Author:
Hoefener, Carl E.; Wechel, Robert Van
Affiliation:
Interstate Electronics Corporation
Issue Date:
1990-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
For more than 20 years combat pilot training instrumentation has taken place on Air Force and Navy TACTS/ACMI ranges. The original ranges were designed to instrument a cylinder in space 30 miles in diameter from 5,000 feet to 55,000 feet and to handle up to eight participants. As fighter combat techniques have advanced and battle tactics have been revised to take into account more advanced weapons systems, the capabilities of the existing ranges have become extremely taxed. For example, modifications have been added on to the original systems so that the tracking altitude could be lowered to 100 feet (by adding radar altimeters to the instrumentation pods); the number of participants could be increased to 36 (by lowering the system sample rates), and the range area could be expanded (by increasing the number of ground tracking sites required from seven to a dozen or more). Clearly these were bandaid fixes, and the total capability of the ranges suffered, but since no satisfactory alternate systems were available, these systems continue to be used. During the past twenty years, however, significant advances have taken place in all areas of instrumentation system technology. By the application of modern technology, a new generation of air combat training ranges cm be made available that will greatly enhance the training capability of our armed forces and will be capable of training them in the new tactics required by the fighter weapons systems of the future. Among these training advantages will be the following capabilities: ! Tracking over an entire 25,000-square-mile or larger range area. ! Precision tracking of up to 100 participants. ! Tracking of all vehicles from ground level to 100,000-foot altitude. ! Only a few nonsurveyed portable groundsites will be required. ! An unlimited number of portable unmanned threat emitters can be provided at a fraction of the cost of existing threats. ! The entire range can be made portable. ! Modern display capability will greatly enhance pilot recall ability required for mission debriefing. By applying GPS, optimizing the datalinks, and restructuring the range design concept, these advantages can be realized. This paper discusses the application of modern range system technology to the design of the TACTS/ACMI ranges of the future.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleGPS SOLVES THE COMBAT PILOT TRAINING RANGE PROBLEMSen_US
dc.contributor.authorHoefener, Carl E.en
dc.contributor.authorWechel, Robert Vanen
dc.contributor.departmentInterstate Electronics Corporationen
dc.date.issued1990-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractFor more than 20 years combat pilot training instrumentation has taken place on Air Force and Navy TACTS/ACMI ranges. The original ranges were designed to instrument a cylinder in space 30 miles in diameter from 5,000 feet to 55,000 feet and to handle up to eight participants. As fighter combat techniques have advanced and battle tactics have been revised to take into account more advanced weapons systems, the capabilities of the existing ranges have become extremely taxed. For example, modifications have been added on to the original systems so that the tracking altitude could be lowered to 100 feet (by adding radar altimeters to the instrumentation pods); the number of participants could be increased to 36 (by lowering the system sample rates), and the range area could be expanded (by increasing the number of ground tracking sites required from seven to a dozen or more). Clearly these were bandaid fixes, and the total capability of the ranges suffered, but since no satisfactory alternate systems were available, these systems continue to be used. During the past twenty years, however, significant advances have taken place in all areas of instrumentation system technology. By the application of modern technology, a new generation of air combat training ranges cm be made available that will greatly enhance the training capability of our armed forces and will be capable of training them in the new tactics required by the fighter weapons systems of the future. Among these training advantages will be the following capabilities: ! Tracking over an entire 25,000-square-mile or larger range area. ! Precision tracking of up to 100 participants. ! Tracking of all vehicles from ground level to 100,000-foot altitude. ! Only a few nonsurveyed portable groundsites will be required. ! An unlimited number of portable unmanned threat emitters can be provided at a fraction of the cost of existing threats. ! The entire range can be made portable. ! Modern display capability will greatly enhance pilot recall ability required for mission debriefing. By applying GPS, optimizing the datalinks, and restructuring the range design concept, these advantages can be realized. This paper discusses the application of modern range system technology to the design of the TACTS/ACMI ranges of the future.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/613786-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.