Persistent Link:
http://hdl.handle.net/10150/613599
Title:
INDUSTRIAL SCALE PRODUCTION OF SELF-HEALING CONCRETE
Author:
Sedgwick, Sarina Ann; Lopez, Paola; Reynolds, Katherine; Wilkening, Jean
Issue Date:
2016
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Concrete is one of the most versatile and common building materials used in industry. However, concrete is prone to cracks, which can eventually lead to collapse of structures. Self-healing concrete, which prevents large cracks by filling micro-cracks as they form, has the potential to mitigate the problems associated with cracking. The mechanism behind self-healing concrete uses a biological agent, such as the Bacillus Subtilis bacteria, which is added to the concrete mix and autonomously heals small cracks by precipitating calcium carbonate. Encapsulating the bacteria with the aggregate not only improves bacterial survival, but also increases the overall tensile strength of the concrete. In addition to the bacteria and aggregate, a cement plant was also designed. Cement is a fine powder which, when mixed with water, has a cohesive property which holds the other components of concrete together. The manufacturing process of cement starts with crushed limestone, which is heated in a kiln until it forms the nodules of calcium silicates that make up clinker, which is then crushed into cement powder. Although more research is necessary to determine the long-term performance and impact, the further development and implementation of self-healing concrete is a worthwhile and potentially profitable pursuit.
Type:
text; Electronic Thesis
Degree Name:
B.S.
Degree Level:
Bachelors
Degree Program:
Honors College; Chemical Engineering
Degree Grantor:
University of Arizona
Advisor:
Ogden, Kimberly

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleINDUSTRIAL SCALE PRODUCTION OF SELF-HEALING CONCRETEen_US
dc.creatorSedgwick, Sarina Annen
dc.creatorLopez, Paolaen
dc.creatorReynolds, Katherineen
dc.creatorWilkening, Jeanen
dc.contributor.authorSedgwick, Sarina Annen
dc.contributor.authorLopez, Paolaen
dc.contributor.authorReynolds, Katherineen
dc.contributor.authorWilkening, Jeanen
dc.date.issued2016-
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractConcrete is one of the most versatile and common building materials used in industry. However, concrete is prone to cracks, which can eventually lead to collapse of structures. Self-healing concrete, which prevents large cracks by filling micro-cracks as they form, has the potential to mitigate the problems associated with cracking. The mechanism behind self-healing concrete uses a biological agent, such as the Bacillus Subtilis bacteria, which is added to the concrete mix and autonomously heals small cracks by precipitating calcium carbonate. Encapsulating the bacteria with the aggregate not only improves bacterial survival, but also increases the overall tensile strength of the concrete. In addition to the bacteria and aggregate, a cement plant was also designed. Cement is a fine powder which, when mixed with water, has a cohesive property which holds the other components of concrete together. The manufacturing process of cement starts with crushed limestone, which is heated in a kiln until it forms the nodules of calcium silicates that make up clinker, which is then crushed into cement powder. Although more research is necessary to determine the long-term performance and impact, the further development and implementation of self-healing concrete is a worthwhile and potentially profitable pursuit.en
dc.typetexten
dc.typeElectronic Thesisen
thesis.degree.nameB.S.en
thesis.degree.levelBachelorsen
thesis.degree.disciplineHonors Collegeen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorOgden, Kimberlyen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.