Persistent Link:
http://hdl.handle.net/10150/613453
Title:
A HIGH-EFFICIENCY MODE COUPLER AUTOTRACKING FEED
Author:
Cipolla, Frank; Seck, Gerry
Affiliation:
Datron Systems Inc.
Issue Date:
1990-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Datron Systems Inc. has developed a high efficiency autotrack feed series which uses a tracking mode coupler to generate track error signals. The mode coupler allows the use of a corrugated feed horn in doubly shaped or cassegrain geometries or a scaler ring feed in prime focus reflectors, to achieve extremely high overall antenna efficiencies. The low insertion loss of the mode coupler allows the incorporation of autotrack capability in an antenna system without degradation of the overall G/T or EIRP. Another feature of this feed is the excellent cross talk performance. The mode coupler is a rho-theta type tracker and as such is suitable for use in both single channel monopulse and equivalent full three channel monopulse autotrack applications. Datron has built, installed, and tested feeds of this type at S, C, and X band frequencies and is currently under contract to develop a dual K/Q band version. Datron has also integrated other components into the mode coupler feed assembly such as: amplifiers, filters, diplexers, couplers, downconverters, switches, noise sources, etc.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA HIGH-EFFICIENCY MODE COUPLER AUTOTRACKING FEEDen_US
dc.contributor.authorCipolla, Franken
dc.contributor.authorSeck, Gerryen
dc.contributor.departmentDatron Systems Inc.en
dc.date.issued1990-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractDatron Systems Inc. has developed a high efficiency autotrack feed series which uses a tracking mode coupler to generate track error signals. The mode coupler allows the use of a corrugated feed horn in doubly shaped or cassegrain geometries or a scaler ring feed in prime focus reflectors, to achieve extremely high overall antenna efficiencies. The low insertion loss of the mode coupler allows the incorporation of autotrack capability in an antenna system without degradation of the overall G/T or EIRP. Another feature of this feed is the excellent cross talk performance. The mode coupler is a rho-theta type tracker and as such is suitable for use in both single channel monopulse and equivalent full three channel monopulse autotrack applications. Datron has built, installed, and tested feeds of this type at S, C, and X band frequencies and is currently under contract to develop a dual K/Q band version. Datron has also integrated other components into the mode coupler feed assembly such as: amplifiers, filters, diplexers, couplers, downconverters, switches, noise sources, etc.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/613453-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.