Persistent Link:
http://hdl.handle.net/10150/613414
Title:
HIGH- “G” DIGITAL MEMORY TELEMETERS
Author:
Liang, Yanxi; Dai, Lihong
Affiliation:
Xian, Electro-Mechanical Information Technology Institute In China
Issue Date:
1990-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
With the speedy development of microelectronics and computer technology, there has arisen a particular memory telemetry branch in projectile telemetry area. Researches and experiments have been done a lot by telemetry communities in many countries. Various memory telemetry devices have been evolved for mutifarious application objects or purposes. The measurement of terminal environmental parameters is characterized by its ephemeral duration in which on-board system will undergo two, firing and impact, overloads, the latter, often reaching beyond 80,000g, is more severe than the former. Moreover, targets usually consist of such different materils as gravels, steel, or concrete, etc. In addition, the irregularity of these materits makes the mechanical conditions of the projectile penetrating into them a great deal more intricate. In order to measure the acceleration, the axial and tangential forces, the mechanism actions and the like of the parts of a fuze on impact, a high-g memory telemeter and accelerometer with an integrated operational amplifier have been developed. Field tests have also been carried out.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleHIGH- “G” DIGITAL MEMORY TELEMETERSen_US
dc.contributor.authorLiang, Yanxien
dc.contributor.authorDai, Lihongen
dc.contributor.departmentXian, Electro-Mechanical Information Technology Institute In Chinaen
dc.date.issued1990-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractWith the speedy development of microelectronics and computer technology, there has arisen a particular memory telemetry branch in projectile telemetry area. Researches and experiments have been done a lot by telemetry communities in many countries. Various memory telemetry devices have been evolved for mutifarious application objects or purposes. The measurement of terminal environmental parameters is characterized by its ephemeral duration in which on-board system will undergo two, firing and impact, overloads, the latter, often reaching beyond 80,000g, is more severe than the former. Moreover, targets usually consist of such different materils as gravels, steel, or concrete, etc. In addition, the irregularity of these materits makes the mechanical conditions of the projectile penetrating into them a great deal more intricate. In order to measure the acceleration, the axial and tangential forces, the mechanism actions and the like of the parts of a fuze on impact, a high-g memory telemeter and accelerometer with an integrated operational amplifier have been developed. Field tests have also been carried out.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/613414-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.