Impact of the Melting of the Greenland Ice Sheet on the Atlantic Meridional Overturning Circulation in 21st Century Model Projections

Persistent Link:
http://hdl.handle.net/10150/613379
Title:
Impact of the Melting of the Greenland Ice Sheet on the Atlantic Meridional Overturning Circulation in 21st Century Model Projections
Author:
Beadling, Rebecca Lynn
Issue Date:
2016
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Contemporary observations show an increase in the melting of the Greenland Ice Sheet (GrIS) since the early 21st century. Located near the critical sites of oceanic deep convection and deep water formation, the melting of the GrIS has the potential to directly impact the Atlantic Meridional Overturning Circulation (AMOC) by freshening ocean surface waters in these regions. The majority of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models project a decline in AMOC strength by 10-50% during the 21st century, in response to the increase in atmospheric greenhouse gas (GHG) concentrations. However, due to the simple treatment of polar ice sheets and the lack of a dynamical ice sheet component in these models, these projections likely underestimated the impacts of the GrIS melt, leading to uncertainty in projecting future AMOC evolution and climate change around Greenland. To better understand the impact of the GrIS melt on the AMOC, we perform a series of 21st century projection runs with a state-of-the-art Earth System Model-GFDL ESM2Mb. We consider a medium and a high Representative Concentration Pathway (RCP) scenario (RCP4.5 and RCP8.5, respectively). Unlike the CMIP5-standard RCP runs which included only radiative forcing, the new model experiments are also forced with additional and potentially more realistic meltwater discharge from the GrIS. This meltwater discharge is estimated based on a model-based relationship between the GrIS surface melt and the 500hPa atmospheric temperature anomalies over Greenland. The model simulations indicate that compared to the RCP4.5-only and RCP8.5-only projections, the additional melt water from the GrIS can further weaken the AMOC, but with a relatively small magnitude. The reason is that radiative forcing already weakens the deep convection and deep water formation in the North Atlantic, therefore limiting the magnitude of further weakening of AMOC due to the additional meltwater. The modeling results suggest that the AMOC's sensitivity to freshwater forcing due to the GrIS melt is highly dependent on the location and strength of oceanic deep convection sites in ESM2Mb as well as the pathways of the meltwater towards these regions. The additional meltwater contributes to the minimum surface warming (so-called "warming hole") south of Greenland. These simulations with ESM2Mb contribute to the Atlantic Meridional Overturning Circulation Model Intercomparison Project (AMOCMIP), a community effort between international modeling centers to investigate the impacts of the melting of the GrIS on the AMOC and quantify the associated uncertainty.
Type:
text; Electronic Thesis
Keywords:
Climate Modeling; Greenland Ice Sheet; Geosciences; AMOC
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Geosciences
Degree Grantor:
University of Arizona
Advisor:
Yin, Jianjun

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleImpact of the Melting of the Greenland Ice Sheet on the Atlantic Meridional Overturning Circulation in 21st Century Model Projectionsen_US
dc.creatorBeadling, Rebecca Lynnen
dc.contributor.authorBeadling, Rebecca Lynnen
dc.date.issued2016-
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractContemporary observations show an increase in the melting of the Greenland Ice Sheet (GrIS) since the early 21st century. Located near the critical sites of oceanic deep convection and deep water formation, the melting of the GrIS has the potential to directly impact the Atlantic Meridional Overturning Circulation (AMOC) by freshening ocean surface waters in these regions. The majority of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models project a decline in AMOC strength by 10-50% during the 21st century, in response to the increase in atmospheric greenhouse gas (GHG) concentrations. However, due to the simple treatment of polar ice sheets and the lack of a dynamical ice sheet component in these models, these projections likely underestimated the impacts of the GrIS melt, leading to uncertainty in projecting future AMOC evolution and climate change around Greenland. To better understand the impact of the GrIS melt on the AMOC, we perform a series of 21st century projection runs with a state-of-the-art Earth System Model-GFDL ESM2Mb. We consider a medium and a high Representative Concentration Pathway (RCP) scenario (RCP4.5 and RCP8.5, respectively). Unlike the CMIP5-standard RCP runs which included only radiative forcing, the new model experiments are also forced with additional and potentially more realistic meltwater discharge from the GrIS. This meltwater discharge is estimated based on a model-based relationship between the GrIS surface melt and the 500hPa atmospheric temperature anomalies over Greenland. The model simulations indicate that compared to the RCP4.5-only and RCP8.5-only projections, the additional melt water from the GrIS can further weaken the AMOC, but with a relatively small magnitude. The reason is that radiative forcing already weakens the deep convection and deep water formation in the North Atlantic, therefore limiting the magnitude of further weakening of AMOC due to the additional meltwater. The modeling results suggest that the AMOC's sensitivity to freshwater forcing due to the GrIS melt is highly dependent on the location and strength of oceanic deep convection sites in ESM2Mb as well as the pathways of the meltwater towards these regions. The additional meltwater contributes to the minimum surface warming (so-called "warming hole") south of Greenland. These simulations with ESM2Mb contribute to the Atlantic Meridional Overturning Circulation Model Intercomparison Project (AMOCMIP), a community effort between international modeling centers to investigate the impacts of the melting of the GrIS on the AMOC and quantify the associated uncertainty.en
dc.typetexten
dc.typeElectronic Thesisen
dc.subjectClimate Modelingen
dc.subjectGreenland Ice Sheeten
dc.subjectGeosciencesen
dc.subjectAMOCen
thesis.degree.nameM.S.en
thesis.degree.levelmastersen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineGeosciencesen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorYin, Jianjunen
dc.contributor.committeememberOverpeck, Jonathanen
dc.contributor.committeememberGoodman, Paulen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.