THE HYDRODESULFURIZATION OF DIESEL FUEL TO MEET NEW EPA REQUIREMENTS

Persistent Link:
http://hdl.handle.net/10150/613264
Title:
THE HYDRODESULFURIZATION OF DIESEL FUEL TO MEET NEW EPA REQUIREMENTS
Author:
Mares-Davila, Fausto Israel; Green, Jason; Terashima, Jun; Omotinugbon, Toluwani
Issue Date:
2016
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In December 1, 2010 the EPA reduced the allowable sulfur content in diesel fuel to 15 ppm, which is now known as ultra-low sulfur diesel (ULSD). In order to reach the 15 ppm sulfur maximum, the hydrodesulfurization unit in many refineries had to be upgraded. The group has been tasked with developing an upgrade catalytic hydrodesulfurization unit for a refinery in the Delaware Valley that can treat 35,000 barrels per stream day (BPSD) of liquid feedstock containing 1.9 wt % sulfur. Performance data from the existing catalytic hydrodesulfurization unit was used to predict the performance of the upgraded unit. ChemCAD software was used for the process calculations and the feed was modeled using boiling curve data. The desulfurization reaction kinetics were based on the reduction of dibenzothiophene. The project goals are to achieve a 99% recovery of diesel fuel while reducing the sulfur content below 15 ppm. The liquid feedstock will be run through a packed bed reactor filled with CoMo/Al2O3 catalyst where the sulfur compounds will react with hydrogen gas to form hydrogen sulfide gas. An amine contactor will be used to remove sour gas from the recycle hydrogen stream and a distillation column will produce diesel.
Type:
text; Electronic Thesis
Degree Name:
B.S.
Degree Level:
Bachelors
Degree Program:
Honors College; Chemical Engineering
Degree Grantor:
University of Arizona
Advisor:
Ogden, Kim

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleTHE HYDRODESULFURIZATION OF DIESEL FUEL TO MEET NEW EPA REQUIREMENTSen_US
dc.creatorMares-Davila, Fausto Israelen
dc.creatorGreen, Jasonen
dc.creatorTerashima, Junen
dc.creatorOmotinugbon, Toluwanien
dc.contributor.authorMares-Davila, Fausto Israelen
dc.contributor.authorGreen, Jasonen
dc.contributor.authorTerashima, Junen
dc.contributor.authorOmotinugbon, Toluwanien
dc.date.issued2016-
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractIn December 1, 2010 the EPA reduced the allowable sulfur content in diesel fuel to 15 ppm, which is now known as ultra-low sulfur diesel (ULSD). In order to reach the 15 ppm sulfur maximum, the hydrodesulfurization unit in many refineries had to be upgraded. The group has been tasked with developing an upgrade catalytic hydrodesulfurization unit for a refinery in the Delaware Valley that can treat 35,000 barrels per stream day (BPSD) of liquid feedstock containing 1.9 wt % sulfur. Performance data from the existing catalytic hydrodesulfurization unit was used to predict the performance of the upgraded unit. ChemCAD software was used for the process calculations and the feed was modeled using boiling curve data. The desulfurization reaction kinetics were based on the reduction of dibenzothiophene. The project goals are to achieve a 99% recovery of diesel fuel while reducing the sulfur content below 15 ppm. The liquid feedstock will be run through a packed bed reactor filled with CoMo/Al2O3 catalyst where the sulfur compounds will react with hydrogen gas to form hydrogen sulfide gas. An amine contactor will be used to remove sour gas from the recycle hydrogen stream and a distillation column will produce diesel.en
dc.typetexten
dc.typeElectronic Thesisen
thesis.degree.nameB.S.en
thesis.degree.levelBachelorsen
thesis.degree.disciplineHonors Collegeen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorOgden, Kimen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.