Persistent Link:
http://hdl.handle.net/10150/613170
Title:
AIRBORNE DATA ACQUISITION and RELAY SYSTEM
Author:
Netzer, Allan
Issue Date:
1991-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The Air Force Flight Test Center (AFFTC), 6545th Test Group, is the Air Force center of expertise for Unmanned Air Vehicle (UAV) test and evaluation (T&E). To facilitate this mission, the 6545th Test Group developed three NC-130 Surrogate Carrier Launch Platform (SCLP) aircraft for UAV test support. The SCLP aircraft support various test functions including avionics testing, captive-carriage, and launch of UAVs and missiles. The system can support concept validation and early Developmental Test and Evaluation (DT&E) without requiring the operational launch platform, freeing these critical assets from test support. The SCLP aircraft use a palletized “roll-on/roll-off” approach to increase test support flexibility and decrease test costs. Capabilities include airborne command and control, flight termination, telemetry tracking, recording, relay of in-flight test vehicle data, and engineering test stations for airborne data analysis and test control. The SCLP can captive-carry, launch, and operate a test article out of line of sight of range ground stations. SCLP can display engineering data and relay the data to a Mission Control Center (MCC). Additionally, the SCLP permits autonomous operation on undeveloped airspace or supplements capabilities at existing facilities. Early SCLP configurations were used during concept validation of the air-launched Tacit Rainbow missile, while later variations supported several efforts, including classified programs. This paper describes the telemetry-tracking and relay capabilities of the SCLP using the Airborne Data Acquisition and Relay System (ADARS) station. The ADARS uses a combination of tracking and omni-directional antennas to acquire, track, record, and retransmit telemetry data. The combination of two directional tracking antennas and diversity combining of the received signals enables the system to reliably acquire test vehicle data at relatively low signal levels or with high fade rates. The system proved very versatile and was modified to support various special project requirements. The system is currently configured to receive and retransmit telemetry data up to a rate of 1.92 Megabits per second (Mbps).
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleAIRBORNE DATA ACQUISITION and RELAY SYSTEMen_US
dc.contributor.authorNetzer, Allanen
dc.date.issued1991-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe Air Force Flight Test Center (AFFTC), 6545th Test Group, is the Air Force center of expertise for Unmanned Air Vehicle (UAV) test and evaluation (T&E). To facilitate this mission, the 6545th Test Group developed three NC-130 Surrogate Carrier Launch Platform (SCLP) aircraft for UAV test support. The SCLP aircraft support various test functions including avionics testing, captive-carriage, and launch of UAVs and missiles. The system can support concept validation and early Developmental Test and Evaluation (DT&E) without requiring the operational launch platform, freeing these critical assets from test support. The SCLP aircraft use a palletized “roll-on/roll-off” approach to increase test support flexibility and decrease test costs. Capabilities include airborne command and control, flight termination, telemetry tracking, recording, relay of in-flight test vehicle data, and engineering test stations for airborne data analysis and test control. The SCLP can captive-carry, launch, and operate a test article out of line of sight of range ground stations. SCLP can display engineering data and relay the data to a Mission Control Center (MCC). Additionally, the SCLP permits autonomous operation on undeveloped airspace or supplements capabilities at existing facilities. Early SCLP configurations were used during concept validation of the air-launched Tacit Rainbow missile, while later variations supported several efforts, including classified programs. This paper describes the telemetry-tracking and relay capabilities of the SCLP using the Airborne Data Acquisition and Relay System (ADARS) station. The ADARS uses a combination of tracking and omni-directional antennas to acquire, track, record, and retransmit telemetry data. The combination of two directional tracking antennas and diversity combining of the received signals enables the system to reliably acquire test vehicle data at relatively low signal levels or with high fade rates. The system proved very versatile and was modified to support various special project requirements. The system is currently configured to receive and retransmit telemetry data up to a rate of 1.92 Megabits per second (Mbps).en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/613170-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.