Persistent Link:
http://hdl.handle.net/10150/613089
Title:
SATELLITE DATA LINK STANDARDS*
Author:
Lt. Gibson, Col. R.H.; Maj. Sutton, R.V.; Rodriguez, T.M.; Tamura, Y.
Affiliation:
Air Force Systems Command; The Aerospace Corporation
Issue Date:
1982-09
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Flexibility and survivability of Space Communications dictate the interoperability of communication links between as many satellites as feasible. Interoperability increases survivability by providing alternate paths. Interoperability also improves total system reliability and cost effectiveness, and it permits a flexible, distributed communications architecture to evolve. To implement this approach, functional satellite data link standards are needed to pull together mission data relay, communications, and tracking, telemetry and command (TT&C) requirements so that they can be satisfied by a common link design. The basic requirement which unifies these diverse users is their need for uplink jamming protection and scintillation resistance (in a perturbed atmosphere) at low (75 bps to 19.2Kbps) data rates. While the downlink and crosslink requirements are more diverse, they do not constitute major drivers of the standard. This paper describes Space Division’s standardization effort, the links to be standardized, the parameters that must be defined and an evolutionary implementation approach. The first satellite-ground links to be standardized will use 44/20 GHz with wideband spreading for jam resistance, while the crosslinks will use 60 GHz to avoid terrestrial jamming. Key issues are discussed, such as the conflicting requirements between TT&C and communications and the tradeoffs between minimum designs and flexibility.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSATELLITE DATA LINK STANDARDS*en_US
dc.contributor.authorLt. Gibson, Col. R.H.en
dc.contributor.authorMaj. Sutton, R.V.en
dc.contributor.authorRodriguez, T.M.en
dc.contributor.authorTamura, Y.en
dc.contributor.departmentAir Force Systems Commanden
dc.contributor.departmentThe Aerospace Corporationen
dc.date.issued1982-09-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractFlexibility and survivability of Space Communications dictate the interoperability of communication links between as many satellites as feasible. Interoperability increases survivability by providing alternate paths. Interoperability also improves total system reliability and cost effectiveness, and it permits a flexible, distributed communications architecture to evolve. To implement this approach, functional satellite data link standards are needed to pull together mission data relay, communications, and tracking, telemetry and command (TT&C) requirements so that they can be satisfied by a common link design. The basic requirement which unifies these diverse users is their need for uplink jamming protection and scintillation resistance (in a perturbed atmosphere) at low (75 bps to 19.2Kbps) data rates. While the downlink and crosslink requirements are more diverse, they do not constitute major drivers of the standard. This paper describes Space Division’s standardization effort, the links to be standardized, the parameters that must be defined and an evolutionary implementation approach. The first satellite-ground links to be standardized will use 44/20 GHz with wideband spreading for jam resistance, while the crosslinks will use 60 GHz to avoid terrestrial jamming. Key issues are discussed, such as the conflicting requirements between TT&C and communications and the tradeoffs between minimum designs and flexibility.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/613089-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.