Reduction of Enteric Pathogens and Indicator Microorganisms in the Environment and Treatment Processes

Persistent Link:
http://hdl.handle.net/10150/612535
Title:
Reduction of Enteric Pathogens and Indicator Microorganisms in the Environment and Treatment Processes
Author:
Schmitz, Bradley William
Issue Date:
2016
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The reduction of pathogenic microorganisms is essential to minimize human health risks associated with the reuse, reclamation, and recycling of wastewater and the land application of biosolids (sewage sludge). The most advanced treatment technologies, as well as, the most representative methods and indicator organisms are necessary to ensure public safety. The goal of this dissertation is to assess advanced Bardenpho wastewater treatment technologies in regards to virus removal, suggest the most appropriate viral indicators of human fecal contamination and/or treatment process controls, and develop an updated method for enumerating Ascaris ova viability in land applied biosolids. Appendix A evaluates the incidence of 11 different virus types in sewage throughout a 12-month time period, and their subsequent reduction via advanced Bardenpho treatment processes. This study showed that wastewater treatment facilities utilizing advanced Bardenpho for secondary treatment are more effective at reducing viruses in wastewater than facilities utilizing conventional aeration basin and trickling filter processes. Appendix B develops a new method for determining the viability of Ascaris ova in land applied biosolids. In this method, early development stages prior to larval-development, are included in the estimation of potential viability. Comparisons between viability enumerations suggests that the conventional microscopy method, in which only ova containing motile larva are considered viable, underestimates the number of eggs that may progress to an infectious stage. Whereas, the method based on early-to-late stage development, considers the potential viability of all eggs, providing a more conservative approach.
Type:
text; Electronic Dissertation
Keywords:
Bardenpho; Reduction; Viability; Virus; Soil, Water & Environmental Science; Ascaris
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Soil, Water & Environmental Science
Degree Grantor:
University of Arizona
Advisor:
Pepper, Ian L.; Gerba, Charles P.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleReduction of Enteric Pathogens and Indicator Microorganisms in the Environment and Treatment Processesen_US
dc.creatorSchmitz, Bradley Williamen
dc.contributor.authorSchmitz, Bradley Williamen
dc.date.issued2016-
dc.publisherThe University of Arizona.en
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en
dc.description.abstractThe reduction of pathogenic microorganisms is essential to minimize human health risks associated with the reuse, reclamation, and recycling of wastewater and the land application of biosolids (sewage sludge). The most advanced treatment technologies, as well as, the most representative methods and indicator organisms are necessary to ensure public safety. The goal of this dissertation is to assess advanced Bardenpho wastewater treatment technologies in regards to virus removal, suggest the most appropriate viral indicators of human fecal contamination and/or treatment process controls, and develop an updated method for enumerating Ascaris ova viability in land applied biosolids. Appendix A evaluates the incidence of 11 different virus types in sewage throughout a 12-month time period, and their subsequent reduction via advanced Bardenpho treatment processes. This study showed that wastewater treatment facilities utilizing advanced Bardenpho for secondary treatment are more effective at reducing viruses in wastewater than facilities utilizing conventional aeration basin and trickling filter processes. Appendix B develops a new method for determining the viability of Ascaris ova in land applied biosolids. In this method, early development stages prior to larval-development, are included in the estimation of potential viability. Comparisons between viability enumerations suggests that the conventional microscopy method, in which only ova containing motile larva are considered viable, underestimates the number of eggs that may progress to an infectious stage. Whereas, the method based on early-to-late stage development, considers the potential viability of all eggs, providing a more conservative approach.en
dc.typetexten
dc.typeElectronic Dissertationen
dc.subjectBardenphoen
dc.subjectReductionen
dc.subjectViabilityen
dc.subjectVirusen
dc.subjectSoil, Water & Environmental Scienceen
dc.subjectAscarisen
thesis.degree.namePh.D.en
thesis.degree.leveldoctoralen
thesis.degree.disciplineGraduate Collegeen
thesis.degree.disciplineSoil, Water & Environmental Scienceen
thesis.degree.grantorUniversity of Arizonaen
dc.contributor.advisorPepper, Ian L.en
dc.contributor.advisorGerba, Charles P.en
dc.contributor.committeememberRich, Virginiaen
dc.contributor.committeememberPepper, Ian L.en
dc.contributor.committeememberGerba, Charles P.en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.