Persistent Link:
http://hdl.handle.net/10150/611914
Title:
A Fast Realtime Simulation of a Complex Mechanical System on a Parallel Hardware Architecture
Author:
Oertel, C.-H.; Gelhaar, B.
Affiliation:
Institute for Flight Research
Issue Date:
1992-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Real-time computation speed is an additional requirement for simulations. It is necessary for 'man-in-the-loop' systems like flight simulators and for 'hardware-in-the-loop' systems where real components like new closed loop controllers are tested under realistic conditions. In the past a lot of companies have designed and built special purpose simulation computers which are very powerful but expensive and not handy enough for 'in-the-field-tests'. The progress in computer science shows a trend to distributed systems where multiple processors are running in parallel to improve the performance dramatically. At the DLR Institute for Flight Mechanics a computer system, based on the transputer, was designed to achieve the real-time simulation capabilities for the ROTEST model rotor. This four-bladed rotor is a 2.5 scale of the BO105 main rotor, equipped with elastic blades, operating at 1050 rpm. After an introduction to the ROTEST rotor, including the demands upon the simulation, a short introduction to transputers and the associated philosophy is given. The next part of the paper presents the characteristics of the simulation model, its mathematical description and the transputer architecture on which it is running. In the last part of the paper the input and output processes to the simulation are described. This includes a real-time representation of the rotor and an oscilloscope like output device, as well as analogue input and output devices to a controller.
Keywords:
Real-time simulation; transputer
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA Fast Realtime Simulation of a Complex Mechanical System on a Parallel Hardware Architectureen_US
dc.contributor.authorOertel, C.-H.en
dc.contributor.authorGelhaar, B.en
dc.contributor.departmentInstitute for Flight Researchen
dc.date.issued1992-10-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractReal-time computation speed is an additional requirement for simulations. It is necessary for 'man-in-the-loop' systems like flight simulators and for 'hardware-in-the-loop' systems where real components like new closed loop controllers are tested under realistic conditions. In the past a lot of companies have designed and built special purpose simulation computers which are very powerful but expensive and not handy enough for 'in-the-field-tests'. The progress in computer science shows a trend to distributed systems where multiple processors are running in parallel to improve the performance dramatically. At the DLR Institute for Flight Mechanics a computer system, based on the transputer, was designed to achieve the real-time simulation capabilities for the ROTEST model rotor. This four-bladed rotor is a 2.5 scale of the BO105 main rotor, equipped with elastic blades, operating at 1050 rpm. After an introduction to the ROTEST rotor, including the demands upon the simulation, a short introduction to transputers and the associated philosophy is given. The next part of the paper presents the characteristics of the simulation model, its mathematical description and the transputer architecture on which it is running. In the last part of the paper the input and output processes to the simulation are described. This includes a real-time representation of the rotor and an oscilloscope like output device, as well as analogue input and output devices to a controller.en
dc.subjectReal-time simulationen
dc.subjecttransputeren
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/611914-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.