Persistent Link:
http://hdl.handle.net/10150/611884
Title:
Software Techniques for Recovering Noisy Telemetry
Author:
Sweet, John E.; Holmes, Harlan H.
Affiliation:
Rockwell International Corporation
Issue Date:
1993-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Software techniques for data quality and useability enhancement are used at two steps in the processing of PCM (Pulse Code Modulation) radio telemetry. The first is a software group synchronization which is used where traditional method has failed. The other is a tool for producing a single best quality data file from diverse receivers. Recovering even small segments of valid information from noisy signals may be of major concert. The importance in many applications is because poor signal power is induced by events of great interest such as failure, detonation or exhaust gas dynamics. The radio receiver and bit synchronizer perform nearly optimally in processing of low signal to noise transmissions. It is found that the group synchronization process can be improved with software algorithm. It is convenient to merge available data from a single test into a single file of best available data. Detected signals are recorded at dispersed tracking stations with varying signal quality over time. Upon achieving the best data from each tracking source the reconstructed data from a collection of all sources is further merged. By using known content to detect bit errors a single file of best quality data is available for analysis. Comparative performance data from use on ICBM telemetry is included. A missile is an example of application where the data recovery is particularly critical at events such as staging and launch.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSoftware Techniques for Recovering Noisy Telemetryen_US
dc.contributor.authorSweet, John E.en
dc.contributor.authorHolmes, Harlan H.en
dc.contributor.departmentRockwell International Corporationen
dc.date.issued1993-10-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractSoftware techniques for data quality and useability enhancement are used at two steps in the processing of PCM (Pulse Code Modulation) radio telemetry. The first is a software group synchronization which is used where traditional method has failed. The other is a tool for producing a single best quality data file from diverse receivers. Recovering even small segments of valid information from noisy signals may be of major concert. The importance in many applications is because poor signal power is induced by events of great interest such as failure, detonation or exhaust gas dynamics. The radio receiver and bit synchronizer perform nearly optimally in processing of low signal to noise transmissions. It is found that the group synchronization process can be improved with software algorithm. It is convenient to merge available data from a single test into a single file of best available data. Detected signals are recorded at dispersed tracking stations with varying signal quality over time. Upon achieving the best data from each tracking source the reconstructed data from a collection of all sources is further merged. By using known content to detect bit errors a single file of best quality data is available for analysis. Comparative performance data from use on ICBM telemetry is included. A missile is an example of application where the data recovery is particularly critical at events such as staging and launch.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/611884-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.