Persistent Link:
http://hdl.handle.net/10150/611863
Title:
An Enhanced Resolution Spaceborne Scatterometer
Author:
Long, David G.
Affiliation:
Brigham Young University
Issue Date:
1993-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Spaceborne wind scatterometers are designed principally to measure radar backscatter from the ocean's surface for the determination of the near-surface wind direction and speed. Although measurements of the radar backscatter are made over land, application of these measurements has been limited primarily to the calibration of the instrument due to their low resolution (typically 50 km). However, a recently developed resolution enhancement technique can be applied to the measurements to produced medium-scale radar backscatter images of the earth's surface. Such images have proven useful in the study of tropical vegetation3 as well as glacial5 and sea6 ice. The technique has been successfully applied2 to Seasat scatterometer (SASS) data to achieve image resolution as fine as 3-4 km. The method can also be applied to ERS-l scatterometer data. Unfortunately, the instrument processing method employed by SASS limits the ultimate resolution which can be obtained with the method. To achieve the desired measurement overlap, multiple satellite passes are required. However, with minor modifications to future Doppler scatterometer systems (such as the NASA scatterometer [NSCAT] and its follow-on EoS-era scatterometer NEXSCAT) imaging resolutions down to 1-2 km for land/ice and 5-10 km for wind measurement may be achieved on a single pass with a moderate increase in downlink bandwidth (from 3.1 kbps to 750 kbps). This paper describes these modifications and briefly describes some of the applications of this medium-scale Ku-band imagery for vegetation studies, hydrology, sea ice mapping, and the study of mesoscale winds.
Keywords:
Scatterometry; Enhanced Resolution; Radar Remote Sensing
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleAn Enhanced Resolution Spaceborne Scatterometeren_US
dc.contributor.authorLong, David G.en
dc.contributor.departmentBrigham Young Universityen
dc.date.issued1993-10-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractSpaceborne wind scatterometers are designed principally to measure radar backscatter from the ocean's surface for the determination of the near-surface wind direction and speed. Although measurements of the radar backscatter are made over land, application of these measurements has been limited primarily to the calibration of the instrument due to their low resolution (typically 50 km). However, a recently developed resolution enhancement technique can be applied to the measurements to produced medium-scale radar backscatter images of the earth's surface. Such images have proven useful in the study of tropical vegetation3 as well as glacial5 and sea6 ice. The technique has been successfully applied2 to Seasat scatterometer (SASS) data to achieve image resolution as fine as 3-4 km. The method can also be applied to ERS-l scatterometer data. Unfortunately, the instrument processing method employed by SASS limits the ultimate resolution which can be obtained with the method. To achieve the desired measurement overlap, multiple satellite passes are required. However, with minor modifications to future Doppler scatterometer systems (such as the NASA scatterometer [NSCAT] and its follow-on EoS-era scatterometer NEXSCAT) imaging resolutions down to 1-2 km for land/ice and 5-10 km for wind measurement may be achieved on a single pass with a moderate increase in downlink bandwidth (from 3.1 kbps to 750 kbps). This paper describes these modifications and briefly describes some of the applications of this medium-scale Ku-band imagery for vegetation studies, hydrology, sea ice mapping, and the study of mesoscale winds.en
dc.subjectScatterometryen
dc.subjectEnhanced Resolutionen
dc.subjectRadar Remote Sensingen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/611863-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.