Persistent Link:
http://hdl.handle.net/10150/611611
Title:
A GPS-Based Autonomous Onboard Destruct System
Author:
Alves, Daniel F., Jr.; Keith, Edward L.
Affiliation:
Alpha Instrumentation and Information Management; Microcosm Inc.
Issue Date:
1995-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
This paper examines the issues involved in replacing the current Range safety infrastructure with an autonomous range safety system based on GPS (Global Positioning Satellite) integrated navigation system solutions. Range safety is required in the first place because current launch vehicle navigation systems cannot meet a level of trust needed to determine if the mission is really under control and on course. Existing launch vehicle navigation is generally based on attitude and acceleration sensing instrumentation that are subject to drift, initialization errors and failures. Thus, a launch vehicle can easily be under the control of a seemingly operating navigation system, yet be steering the launch vehicle along an incorrect and dangerous flight path. Inertial-based navigation systems are good, but they cannot be trusted. The function of Range safety is to assure that untrustworthy navigation is backed up with a trusted system that has positive knowledge of the launch vehicle location, and the intelligence to decide when and where a launch vehicle must be destroyed. Combining inertial navigation, GPS derived position information and knowledge-based computer control has the potential to provide trusted and autonomous Range safety functions. The issues of autonomous Range safety are addressed in this paper.
Keywords:
Autonomous Onboard Destruct System; Range safety; Global Positioning System; GPS; Trusted autonomous Range safety; Range instrumentation; launch operations
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA GPS-Based Autonomous Onboard Destruct Systemen_US
dc.contributor.authorAlves, Daniel F., Jr.en
dc.contributor.authorKeith, Edward L.en
dc.contributor.departmentAlpha Instrumentation and Information Managementen
dc.contributor.departmentMicrocosm Inc.en
dc.date.issued1995-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThis paper examines the issues involved in replacing the current Range safety infrastructure with an autonomous range safety system based on GPS (Global Positioning Satellite) integrated navigation system solutions. Range safety is required in the first place because current launch vehicle navigation systems cannot meet a level of trust needed to determine if the mission is really under control and on course. Existing launch vehicle navigation is generally based on attitude and acceleration sensing instrumentation that are subject to drift, initialization errors and failures. Thus, a launch vehicle can easily be under the control of a seemingly operating navigation system, yet be steering the launch vehicle along an incorrect and dangerous flight path. Inertial-based navigation systems are good, but they cannot be trusted. The function of Range safety is to assure that untrustworthy navigation is backed up with a trusted system that has positive knowledge of the launch vehicle location, and the intelligence to decide when and where a launch vehicle must be destroyed. Combining inertial navigation, GPS derived position information and knowledge-based computer control has the potential to provide trusted and autonomous Range safety functions. The issues of autonomous Range safety are addressed in this paper.en
dc.subjectAutonomous Onboard Destruct Systemen
dc.subjectRange safetyen
dc.subjectGlobal Positioning Systemen
dc.subjectGPSen
dc.subjectTrusted autonomous Range safetyen
dc.subjectRange instrumentationen
dc.subjectlaunch operationsen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/611611-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.