Persistent Link:
http://hdl.handle.net/10150/611601
Title:
Smart PCM Encoder
Author:
Bondurant, Philip D.; Driesman, Andrew
Issue Date:
1995-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
In this paper, a new concept in PCM telemetry encoding equipment is described. Existing "programmable" PCM encoders allow only simple changes in the functionality of the hardware, such as input gain, offset, and word formatting. More importantly, these encoders do not provide capability for "in-flight" processing of signals and in general have not taken advantage of existing hardware and software digital signal processing technology. In-flight processing of signals can provide a significant reduction in the required transmission bandwidth, allowing additional data that may not have otherwise been transmitted to be sent on the telemetry channel. A modular digital signal processor (DSP) based PCM encoder architecture is described that has a set of on-board processing algorithms configurable via a simple-to-use graphical user interface. Algorithms included are compression (lossy and lossless), Fourier transforms of various resolutions (typically followed by peak detection to provide a data rate reduction), extreme values (max, min, rms), time filtering, regression, trajectory prediction, and serial data stream processing. Custom algorithms can be developed and included as part of the suite of processing algorithms. The preprocessing algorithms exist as firmware on the DSPs and can accommodate as many different signals as the processing bandwidth of the DSP can handle. Typically one DSP can handle many input signals and different algorithms. The encoder is programmable via a standard RS-232 serial interface allowing the signal input configuration, telemetry frame layout, and on-board processing algorithms to be changed quickly.
Keywords:
Telemetry; PCM Encoder; Digital Signal Processor; DSP; Signal Processing
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleSmart PCM Encoderen_US
dc.contributor.authorBondurant, Philip D.en
dc.contributor.authorDriesman, Andrewen
dc.date.issued1995-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractIn this paper, a new concept in PCM telemetry encoding equipment is described. Existing "programmable" PCM encoders allow only simple changes in the functionality of the hardware, such as input gain, offset, and word formatting. More importantly, these encoders do not provide capability for "in-flight" processing of signals and in general have not taken advantage of existing hardware and software digital signal processing technology. In-flight processing of signals can provide a significant reduction in the required transmission bandwidth, allowing additional data that may not have otherwise been transmitted to be sent on the telemetry channel. A modular digital signal processor (DSP) based PCM encoder architecture is described that has a set of on-board processing algorithms configurable via a simple-to-use graphical user interface. Algorithms included are compression (lossy and lossless), Fourier transforms of various resolutions (typically followed by peak detection to provide a data rate reduction), extreme values (max, min, rms), time filtering, regression, trajectory prediction, and serial data stream processing. Custom algorithms can be developed and included as part of the suite of processing algorithms. The preprocessing algorithms exist as firmware on the DSPs and can accommodate as many different signals as the processing bandwidth of the DSP can handle. Typically one DSP can handle many input signals and different algorithms. The encoder is programmable via a standard RS-232 serial interface allowing the signal input configuration, telemetry frame layout, and on-board processing algorithms to be changed quickly.en
dc.subjectTelemetryen
dc.subjectPCM Encoderen
dc.subjectDigital Signal Processoren
dc.subjectDSPen
dc.subjectSignal Processingen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/611601-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.