Persistent Link:
http://hdl.handle.net/10150/611597
Title:
High Performance CCSDS Processing Systems for EOS-AM Spacecraft Integration and Test
Author:
Brown, Barbara; Bennett, Toby; Betancourt, Jose
Affiliation:
NASA, Goddard Space Flight Center; RMS Technologies
Issue Date:
1995-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The Earth Observing System-AM (EOS-AM) spacecraft, the first in a series of spacecraft for the EOS, is scheduled for launch in June of 1998. This spacecraft will carry high resolution instruments capable of generating large volumes of earth science data at rates up to 150 Mbps. Data will be transmitted in a packet format based upon the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) recommendations. The Data Systems Technology Division (DSTD) at NASA's Goddard Space Flight Center (GSFC) has developed a set of high performance CCSDS return-link processing systems to support testing and verification of the EOS-AM spacecraft. These CCSDS processing systems use Versa Module Eurocard bus (VMEBus) Very Large Scale Integration (VLSI)-based processing modules developed for the EOS ground segment to acquire and handle the high rate EOS data. Functions performed by these systems include frame synchronization, Reed-Solomon error correction, fill frame removal, virtual channel sorting, packet service processing, and data quality accounting. The first of the systems was delivered in October 1994 to support testing of the onboard formatting equipment. The second and third systems, delivered in April 1995, support spacecraft checkout and verification. This paper will describe the function and implementation of these systems.
Keywords:
CCSDS Processing; VLSI; High Performance Telemetry Processing
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleHigh Performance CCSDS Processing Systems for EOS-AM Spacecraft Integration and Testen_US
dc.contributor.authorBrown, Barbaraen
dc.contributor.authorBennett, Tobyen
dc.contributor.authorBetancourt, Joseen
dc.contributor.departmentNASA, Goddard Space Flight Centeren
dc.contributor.departmentRMS Technologiesen
dc.date.issued1995-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe Earth Observing System-AM (EOS-AM) spacecraft, the first in a series of spacecraft for the EOS, is scheduled for launch in June of 1998. This spacecraft will carry high resolution instruments capable of generating large volumes of earth science data at rates up to 150 Mbps. Data will be transmitted in a packet format based upon the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) recommendations. The Data Systems Technology Division (DSTD) at NASA's Goddard Space Flight Center (GSFC) has developed a set of high performance CCSDS return-link processing systems to support testing and verification of the EOS-AM spacecraft. These CCSDS processing systems use Versa Module Eurocard bus (VMEBus) Very Large Scale Integration (VLSI)-based processing modules developed for the EOS ground segment to acquire and handle the high rate EOS data. Functions performed by these systems include frame synchronization, Reed-Solomon error correction, fill frame removal, virtual channel sorting, packet service processing, and data quality accounting. The first of the systems was delivered in October 1994 to support testing of the onboard formatting equipment. The second and third systems, delivered in April 1995, support spacecraft checkout and verification. This paper will describe the function and implementation of these systems.en
dc.subjectCCSDS Processingen
dc.subjectVLSIen
dc.subjectHigh Performance Telemetry Processingen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/611597-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.