Persistent Link:
http://hdl.handle.net/10150/611592
Title:
The Omni-Directional Differential Sun Sensor
Author:
Swartwout, Michael; Olsen, Tanya; Kitts, Christopher
Affiliation:
Stanford University
Issue Date:
1995-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The Stanford University Satellite Systems Development Laboratory will flight test a telemetry reengineering experiment on its student-built SAPPHIRE spacecraft. This experiment utilizes solar panel current information and knowledge of panel geometry in order to create a virtual sun sensor that can roughly determine the satellite's sun angle. The Omni-Directional Differential Sun Sensor (ODDSS) algorithm normalizes solar panel currents and differences them to create a quasi-linear signal over a particular sensing region. The specific configuration of the SAPPHIRE spacecraft permits the construction of 24 such regions. The algorithm will account for variations in panel outputs due to battery charging, seasonal fluctuations, solar cell degradation, and albedo affects. Operationally, ODDSS telemetry data will be verified through ground processing and comparison with data derived from SAPPHIRE's infrared sensors and digital camera. The expected sensing accuracy is seven degrees. This paper reviews current progress in the design and integration of the ODDSS algorithm through a discussion of the algorithm's strategy and a presentation of results from hardware testing and software simulation.
Keywords:
Sun Sensing; Differential Sensing; Sensor Fusion; Attitude Estimation; Solar Panel Telemetry
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleThe Omni-Directional Differential Sun Sensoren_US
dc.contributor.authorSwartwout, Michaelen
dc.contributor.authorOlsen, Tanyaen
dc.contributor.authorKitts, Christopheren
dc.contributor.departmentStanford Universityen
dc.date.issued1995-11-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe Stanford University Satellite Systems Development Laboratory will flight test a telemetry reengineering experiment on its student-built SAPPHIRE spacecraft. This experiment utilizes solar panel current information and knowledge of panel geometry in order to create a virtual sun sensor that can roughly determine the satellite's sun angle. The Omni-Directional Differential Sun Sensor (ODDSS) algorithm normalizes solar panel currents and differences them to create a quasi-linear signal over a particular sensing region. The specific configuration of the SAPPHIRE spacecraft permits the construction of 24 such regions. The algorithm will account for variations in panel outputs due to battery charging, seasonal fluctuations, solar cell degradation, and albedo affects. Operationally, ODDSS telemetry data will be verified through ground processing and comparison with data derived from SAPPHIRE's infrared sensors and digital camera. The expected sensing accuracy is seven degrees. This paper reviews current progress in the design and integration of the ODDSS algorithm through a discussion of the algorithm's strategy and a presentation of results from hardware testing and software simulation.en
dc.subjectSun Sensingen
dc.subjectDifferential Sensingen
dc.subjectSensor Fusionen
dc.subjectAttitude Estimationen
dc.subjectSolar Panel Telemetryen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/611592-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.