Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells

Persistent Link:
http://hdl.handle.net/10150/610241
Title:
Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells
Author:
Isakson, Brant; Olsen, Colin; Boitano, Scott
Affiliation:
Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia Charlottesville, Virginia 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA; Arizona Respiratory Center, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USA; Department of Physiology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USA
Issue Date:
2006
Publisher:
BioMed Central
Citation:
Respiratory Research 2006, 7:105 doi:10.1186/1465-9921-7-105
Journal:
Respiratory Research
Rights:
© 2006 Isakson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0)
Collection Information:
This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at repository@u.library.arizona.edu.
Abstract:
BACKGROUND:Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin alpha3beta3gamma2 (LM-332) proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC).METHODS:Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca2+ waves. Expression of connexin (Cx) mRNA and proteins were assayed by reverse transcriptase - polymerase chain reaction and immunocytochemistry, respectively.RESULTS:When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca2+ waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca2+waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins.CONCLUSION:Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function.
EISSN:
1465-993X
DOI:
10.1186/1465-9921-7-105
Version:
Final published version
Additional Links:
http://respiratory-research.com/content/7/1/105

Full metadata record

DC FieldValue Language
dc.contributor.authorIsakson, Branten
dc.contributor.authorOlsen, Colinen
dc.contributor.authorBoitano, Scotten
dc.date.accessioned2016-05-20T09:01:59Z-
dc.date.available2016-05-20T09:01:59Z-
dc.date.issued2006en
dc.identifier.citationRespiratory Research 2006, 7:105 doi:10.1186/1465-9921-7-105en
dc.identifier.doi10.1186/1465-9921-7-105en
dc.identifier.urihttp://hdl.handle.net/10150/610241-
dc.description.abstractBACKGROUND:Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin alpha3beta3gamma2 (LM-332) proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC).METHODS:Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca2+ waves. Expression of connexin (Cx) mRNA and proteins were assayed by reverse transcriptase - polymerase chain reaction and immunocytochemistry, respectively.RESULTS:When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca2+ waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca2+waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins.CONCLUSION:Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function.en
dc.language.isoenen
dc.publisherBioMed Centralen
dc.relation.urlhttp://respiratory-research.com/content/7/1/105en
dc.rights© 2006 Isakson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0)en
dc.titleLaminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cellsen
dc.typeArticleen
dc.identifier.eissn1465-993Xen
dc.contributor.departmentDepartment of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, University of Virginia Charlottesville, Virginia 22908, USAen
dc.contributor.departmentRobert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USAen
dc.contributor.departmentArizona Respiratory Center, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USAen
dc.contributor.departmentDepartment of Physiology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USAen
dc.identifier.journalRespiratory Researchen
dc.description.collectioninformationThis item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.