Persistent Link:
http://hdl.handle.net/10150/609825
Title:
THE RECURSIVE ALGORITHMS FOR GDOP AND POSITIONING SOLUTION IN GPS
Author:
Qing, Chang; Zhongkan, Liu; Qishan, Zhang
Issue Date:
1997-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
This paper proves theoretically that GDOP decreases as the number of satellites is increased.This paper proposes two recursive algorithms for calculating the GDOP and positioning solution.These algorithms not only can recursively calculate the GDOP and positioning solution, but also is very flexible in obtaining the best four-satellite positioning solution ,the best five-satellite positioning solution and the all visible satellite positioning solution according to given requirements. In the need of the two algorithms,this paper extends the definition of the GDOP to the case in which the number of visible satellites is less than 4.
Keywords:
GPS; GDOP; Positioning solution; Algorithm; Generalized inverse
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleTHE RECURSIVE ALGORITHMS FOR GDOP AND POSITIONING SOLUTION IN GPSen_US
dc.contributor.authorQing, Changen
dc.contributor.authorZhongkan, Liuen
dc.contributor.authorQishan, Zhangen
dc.date.issued1997-10-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThis paper proves theoretically that GDOP decreases as the number of satellites is increased.This paper proposes two recursive algorithms for calculating the GDOP and positioning solution.These algorithms not only can recursively calculate the GDOP and positioning solution, but also is very flexible in obtaining the best four-satellite positioning solution ,the best five-satellite positioning solution and the all visible satellite positioning solution according to given requirements. In the need of the two algorithms,this paper extends the definition of the GDOP to the case in which the number of visible satellites is less than 4.en
dc.subjectGPSen
dc.subjectGDOPen
dc.subjectPositioning solutionen
dc.subjectAlgorithmen
dc.subjectGeneralized inverseen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/609825-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.