Persistent Link:
http://hdl.handle.net/10150/609698
Title:
ON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERS
Author:
Ghrayeb, Ali A.
Affiliation:
New Mexico State University
Issue Date:
1997-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Sandia National Laboratories (SNL) currently achieves a bandwidth efficiency (h ) of 0.5 to 1.0 bps/Hz by using traditional modulation schemes, such as, BPSK and QFSK. SNL has an interest in increasing the present bandwidth efficiency by a factor of 4 or higher with the same allocated bandwidth (about 10 MHz). Simulations have shown that 32- QAM trellis-coded modulation (TCM) gives a good bit error rate (BER) performance, and meets the requirements as far as the bandwidth efficiency is concerned. Critical to achieving this is that the receiver be able to achieve timing synchronization. This paper examines a particular timing recovery algorithm for all-digital receivers. Timing synchronization in a digital receiver can be achieved in different ways. One way of achieving this is by interpolating the original sampled sequence to produce another sampled sequence synchronized to the symbol rate or a multiple of the symbol rate. An adaptive sampling conversion algorithm which performs this function was developed by Floyd Gardner in 1993. In the present work, his algorithm was applied to two different modulation schemes, BPSK and 4-ary PAM. The two schemes were simulated in the presence of AWGN and ISI along with Gardner’s algorithm for timing recovery, and a fractionally spaced equalizer (T/2 FSE) for equalization. Simulations show that the algorithm gives good BER performance for BPSK in all the situations, and at different sampling frequencies, but unfortunately poor performance for the 4-ary PAM scheme. This indicates that Gardner’s algorithm for sampling conversion is not suitable for multi-level signaling schemes.
Keywords:
Bandwidth Efficiency; Trellis Coded Modulation; Symbol Timing Recovery; Equalization; Intersymbol Interference (ISI); Digital Receivers; Adaptive Sampling Conversion
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleON SYMBOL TIMING RECOVERY IN ALL-DIGITAL RECEIVERSen_US
dc.contributor.authorGhrayeb, Ali A.en
dc.contributor.departmentNew Mexico State Universityen
dc.date.issued1997-10-
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractSandia National Laboratories (SNL) currently achieves a bandwidth efficiency (h ) of 0.5 to 1.0 bps/Hz by using traditional modulation schemes, such as, BPSK and QFSK. SNL has an interest in increasing the present bandwidth efficiency by a factor of 4 or higher with the same allocated bandwidth (about 10 MHz). Simulations have shown that 32- QAM trellis-coded modulation (TCM) gives a good bit error rate (BER) performance, and meets the requirements as far as the bandwidth efficiency is concerned. Critical to achieving this is that the receiver be able to achieve timing synchronization. This paper examines a particular timing recovery algorithm for all-digital receivers. Timing synchronization in a digital receiver can be achieved in different ways. One way of achieving this is by interpolating the original sampled sequence to produce another sampled sequence synchronized to the symbol rate or a multiple of the symbol rate. An adaptive sampling conversion algorithm which performs this function was developed by Floyd Gardner in 1993. In the present work, his algorithm was applied to two different modulation schemes, BPSK and 4-ary PAM. The two schemes were simulated in the presence of AWGN and ISI along with Gardner’s algorithm for timing recovery, and a fractionally spaced equalizer (T/2 FSE) for equalization. Simulations show that the algorithm gives good BER performance for BPSK in all the situations, and at different sampling frequencies, but unfortunately poor performance for the 4-ary PAM scheme. This indicates that Gardner’s algorithm for sampling conversion is not suitable for multi-level signaling schemes.en
dc.subjectBandwidth Efficiencyen
dc.subjectTrellis Coded Modulationen
dc.subjectSymbol Timing Recoveryen
dc.subjectEqualizationen
dc.subjectIntersymbol Interference (ISI)en
dc.subjectDigital Receiversen
dc.subjectAdaptive Sampling Conversionen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123-
dc.identifier.issn0074-9079-
dc.identifier.urihttp://hdl.handle.net/10150/609698-
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.