Persistent Link:
http://hdl.handle.net/10150/609389
Title:
Optimum Detection of Quantized PAM Data Signals
Author:
Foschini, G. J.; Gitlin, R. D.; Weinstein, S. B.
Affiliation:
Bell Telephone Laboratories
Issue Date:
1976-09
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The degree of complexity of a digital signal processor is closely related to the precision with which samples of an incoming analog waveform are represented. There is considerable interest in determining how coarse this representation can be without seriously degrading performance from that of an ideal processor of unquantized samples. This question is examined for a receiver of noisy, linearly-distorted PAM signals. An optimum (maximum likelihood) detectors analogous to the Viterbi detector for unquantized samples, is derived for the case of a quantized sample sequence. Performance is evaluated under the assumption of high signal-to-noise ratio, and the resultant error probability is a good approximation for coarse quantization, and an upper bound for any degree of quantization. For a specified error probability, the degree of quantization suggested by this approach is conservative. Since receiver complexity is closely associated with the length of the digital representation of an input sample, an upper bound on receiver complexity is also suggested. Numerical evaluation of the error probability is quite tedious for an arbitrary Channel; however, system performance may be readily evaluated for partial-response signaling. For the partial-response channels(1,1) and (1,2,1), it is shown that five and six bit quantizers provide, respectively, a degradation of less than 1 dB in SNR from the infinitely quantized (Viterbi) receiver.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleOptimum Detection of Quantized PAM Data Signalsen_US
dc.contributor.authorFoschini, G. J.en
dc.contributor.authorGitlin, R. D.en
dc.contributor.authorWeinstein, S. B.en
dc.contributor.departmentBell Telephone Laboratoriesen
dc.date.issued1976-09en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe degree of complexity of a digital signal processor is closely related to the precision with which samples of an incoming analog waveform are represented. There is considerable interest in determining how coarse this representation can be without seriously degrading performance from that of an ideal processor of unquantized samples. This question is examined for a receiver of noisy, linearly-distorted PAM signals. An optimum (maximum likelihood) detectors analogous to the Viterbi detector for unquantized samples, is derived for the case of a quantized sample sequence. Performance is evaluated under the assumption of high signal-to-noise ratio, and the resultant error probability is a good approximation for coarse quantization, and an upper bound for any degree of quantization. For a specified error probability, the degree of quantization suggested by this approach is conservative. Since receiver complexity is closely associated with the length of the digital representation of an input sample, an upper bound on receiver complexity is also suggested. Numerical evaluation of the error probability is quite tedious for an arbitrary Channel; however, system performance may be readily evaluated for partial-response signaling. For the partial-response channels(1,1) and (1,2,1), it is shown that five and six bit quantizers provide, respectively, a degradation of less than 1 dB in SNR from the infinitely quantized (Viterbi) receiver.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/609389en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.