Persistent Link:
http://hdl.handle.net/10150/609345
Title:
Architectures for Real-Time Digital Channel Simulators
Author:
O'Grady, E. P.
Affiliation:
University of Maryland
Issue Date:
1975-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
This paper suggests an all-digital, time domain approach for real-time simulation of digital communications channels and proposes four possible implementations of the time-domain approach using standard minicomputers or microprocessors and peripheral random number generators. The time-domain method is based on simulating the digital channel on a bits-in, bits-out basis with bit errors introduced into the bit stream in a manner which approximates the error sequence of a real (or hypothetical) communications channel. The error sequence of the simulator can duplicate a measured error sequence or it can be generated by a stochastic model of the error sequence. The four proposed implementations represent different levels of complexity in the architecture of the channel simulator. The first proposed implementation employs only a single computer; the second employs a computer and a peripheral random number generator; the third employs a computer and multiple peripheral random number generators; the fourth employs multiple computers and multiple peripheral random number generators. The significance of the time-domain approach lies in its potential application to the design of high performance, general-purpose media simulators at greatly reduced cost due to the use of standard hardware and relatively simple processing.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleArchitectures for Real-Time Digital Channel Simulatorsen_US
dc.contributor.authorO'Grady, E. P.en
dc.contributor.departmentUniversity of Marylanden
dc.date.issued1975-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThis paper suggests an all-digital, time domain approach for real-time simulation of digital communications channels and proposes four possible implementations of the time-domain approach using standard minicomputers or microprocessors and peripheral random number generators. The time-domain method is based on simulating the digital channel on a bits-in, bits-out basis with bit errors introduced into the bit stream in a manner which approximates the error sequence of a real (or hypothetical) communications channel. The error sequence of the simulator can duplicate a measured error sequence or it can be generated by a stochastic model of the error sequence. The four proposed implementations represent different levels of complexity in the architecture of the channel simulator. The first proposed implementation employs only a single computer; the second employs a computer and a peripheral random number generator; the third employs a computer and multiple peripheral random number generators; the fourth employs multiple computers and multiple peripheral random number generators. The significance of the time-domain approach lies in its potential application to the design of high performance, general-purpose media simulators at greatly reduced cost due to the use of standard hardware and relatively simple processing.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/609345en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.