Persistent Link:
http://hdl.handle.net/10150/609220
Title:
PCI BASED TELEMETRY DECOMMUTATION BOARD
Author:
Jerome, Chris; Johnson, Edward; Sittler, Arthur; Wainwright, Ross
Affiliation:
Voss Scientific; Air Force Research Laboratory
Issue Date:
1998-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The Space Sensing & Vehicle Control Branch of the Air Force Research Laboratory and Voss Scientific, Albuquerque, NM, are developing an advanced PC and COTS-based satellite telemetry processing, analysis and display system known as the PC-Satellite Telemetry Server (PC-STS). This program grew out of a need to develop less expensive, more capable, more flexible, and expandable solutions to the satellite telemetry analysis requirements of the Air Force. Any new system must employ industry standard, open architecture, network and database protocols allowing for easy growth and migration to new technologies, as they become available. Thus, the PC-STS will run on standard personal computers and the Windows NT operating system. The focus of this work and this paper is the Telemetry Server component, and in particular, the custom-built decommutation board. The decommution board will be capable of processing frame formatted and CCSDS packet telemetry. It will be capable of fully decommutating telemetry data, converting raw data to engineering units, and providing this data to the Telemetry Server host. Time tagged engineering units or minor frames of telemetry will be transmitted to the Telemetry Server processor via on-board memory buffers. The decom board uses the PCI bus, programmable DSPs, considerable on-board memory, and a SCSI bus for local archiving. This paper presents the general architecture of the PC-STS, and discusses specific design considerations. These include trade-offs made during the design of the board’s hardware and software, operational specifications, and graphical user interfaces to program, monitor, and control the board.
Keywords:
Telemetry processing; decommutation; engineering unit conversion; PC board,; PCI bus
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePCI BASED TELEMETRY DECOMMUTATION BOARDen_US
dc.contributor.authorJerome, Chrisen
dc.contributor.authorJohnson, Edwarden
dc.contributor.authorSittler, Arthuren
dc.contributor.authorWainwright, Rossen
dc.contributor.departmentVoss Scientificen
dc.contributor.departmentAir Force Research Laboratoryen
dc.date.issued1998-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe Space Sensing & Vehicle Control Branch of the Air Force Research Laboratory and Voss Scientific, Albuquerque, NM, are developing an advanced PC and COTS-based satellite telemetry processing, analysis and display system known as the PC-Satellite Telemetry Server (PC-STS). This program grew out of a need to develop less expensive, more capable, more flexible, and expandable solutions to the satellite telemetry analysis requirements of the Air Force. Any new system must employ industry standard, open architecture, network and database protocols allowing for easy growth and migration to new technologies, as they become available. Thus, the PC-STS will run on standard personal computers and the Windows NT operating system. The focus of this work and this paper is the Telemetry Server component, and in particular, the custom-built decommutation board. The decommution board will be capable of processing frame formatted and CCSDS packet telemetry. It will be capable of fully decommutating telemetry data, converting raw data to engineering units, and providing this data to the Telemetry Server host. Time tagged engineering units or minor frames of telemetry will be transmitted to the Telemetry Server processor via on-board memory buffers. The decom board uses the PCI bus, programmable DSPs, considerable on-board memory, and a SCSI bus for local archiving. This paper presents the general architecture of the PC-STS, and discusses specific design considerations. These include trade-offs made during the design of the board’s hardware and software, operational specifications, and graphical user interfaces to program, monitor, and control the board.en
dc.subjectTelemetry processingen
dc.subjectdecommutationen
dc.subjectengineering unit conversionen
dc.subjectPC board,en
dc.subjectPCI busen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/609220en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.