Persistent Link:
http://hdl.handle.net/10150/608892
Title:
TRANSIENT REDUCTION ANALYSIS using NEURAL NETWORKS (TRANN)
Author:
Larson, P. T.; Sheaffer, D. A.
Affiliation:
Sandia National Laboratories
Issue Date:
1992-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Our telemetry department has an application for a data categorization/compression of a high speed transient signal in a short period of time. Categorization of the signal reveals important system performance and compression is required because of the terminal nature of our telemetry testing. Until recently, the hardware for the system of this type did not exist. A new exploratory device from Intel has the capability to meet these extreme requirements. This integrated circuit is an analog neural network capable of performing 2 billion connections per second. The two main advantages of this chip over traditional hardware are the obvious computation speed of the device and the ability to compute a three layer feed-forward neural network classifier. The initial investigative development work using the Intel chip has been completed. The results from this proof of concept will show data categorization/compression performed on the neural network integrated circuit in real time. We will propose a preliminary design for a transient measurement system employing the Intel integrated circuit.
Keywords:
Neural Network; Signal Processing
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleTRANSIENT REDUCTION ANALYSIS using NEURAL NETWORKS (TRANN)en_US
dc.contributor.authorLarson, P. T.en
dc.contributor.authorSheaffer, D. A.en
dc.contributor.departmentSandia National Laboratoriesen
dc.date.issued1992-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractOur telemetry department has an application for a data categorization/compression of a high speed transient signal in a short period of time. Categorization of the signal reveals important system performance and compression is required because of the terminal nature of our telemetry testing. Until recently, the hardware for the system of this type did not exist. A new exploratory device from Intel has the capability to meet these extreme requirements. This integrated circuit is an analog neural network capable of performing 2 billion connections per second. The two main advantages of this chip over traditional hardware are the obvious computation speed of the device and the ability to compute a three layer feed-forward neural network classifier. The initial investigative development work using the Intel chip has been completed. The results from this proof of concept will show data categorization/compression performed on the neural network integrated circuit in real time. We will propose a preliminary design for a transient measurement system employing the Intel integrated circuit.en
dc.subjectNeural Networken
dc.subjectSignal Processingen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608892en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.