Persistent Link:
http://hdl.handle.net/10150/608565
Title:
A DATABASE-DRIVEN SOFTWARE SYSTEM FOR SATELLITE TELEMETRY DECOMMUTATION
Author:
Culver, Randy
Affiliation:
LORAL FEDERAL SYSTEMS
Issue Date:
1994-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Satellite Telemetry can be characterized as having relatively low bandwidths, complex wavetrains, and very large numbers of measurands. Ground systems which monitor on-orbit vehicles must process, analyze, display, and archive the telemetry data received during contacts with the satellites. Data from perhaps thousands of individual measurands must be extracted from very complex wavetrains and processed during a live contact. Most commercially available telemetry systems are not well suited to handling satellite wavetrains because they were built for range telemetry and flight test applications which typically deal with limited numbers of measurands. This paper describes the design of a software system which was built specifically to process satellite telemetry. The database-driven system performs full decommutation of very complex wavetrains entirely in software. The system provides for defining the satellite vehicle's telemetry in multiple databases which define the wavetrain formats, the measurands themselves, how they are to be processed, and associated data conversion and calibration information. The database accommodates the complexities typically found in satellite telemetry such as multiple wavetrain formats, embedded streams, measurand dependencies, segmented measurands, and supercommutated, subcommutated, and sub-subcommutated data. A Code Generator builds a set of control structures from the wavetrain and measurand definitions in the database. It then generates highly optimized in-line software libraries for processing the satellite vehicle's telemetry. These libraries are linked to a Server process for run-time execution. During execution, raw telemetry frames are passed to the Server which uses the libraries to decommutate, limit check, convert, and calibrate the measurand data. A Client process attaches to the Server process to allow user applications to access both raw and processed telemetry for display, logging, and additional processing.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA DATABASE-DRIVEN SOFTWARE SYSTEM FOR SATELLITE TELEMETRY DECOMMUTATIONen_US
dc.contributor.authorCulver, Randyen
dc.contributor.departmentLORAL FEDERAL SYSTEMSen
dc.date.issued1994-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractSatellite Telemetry can be characterized as having relatively low bandwidths, complex wavetrains, and very large numbers of measurands. Ground systems which monitor on-orbit vehicles must process, analyze, display, and archive the telemetry data received during contacts with the satellites. Data from perhaps thousands of individual measurands must be extracted from very complex wavetrains and processed during a live contact. Most commercially available telemetry systems are not well suited to handling satellite wavetrains because they were built for range telemetry and flight test applications which typically deal with limited numbers of measurands. This paper describes the design of a software system which was built specifically to process satellite telemetry. The database-driven system performs full decommutation of very complex wavetrains entirely in software. The system provides for defining the satellite vehicle's telemetry in multiple databases which define the wavetrain formats, the measurands themselves, how they are to be processed, and associated data conversion and calibration information. The database accommodates the complexities typically found in satellite telemetry such as multiple wavetrain formats, embedded streams, measurand dependencies, segmented measurands, and supercommutated, subcommutated, and sub-subcommutated data. A Code Generator builds a set of control structures from the wavetrain and measurand definitions in the database. It then generates highly optimized in-line software libraries for processing the satellite vehicle's telemetry. These libraries are linked to a Server process for run-time execution. During execution, raw telemetry frames are passed to the Server which uses the libraries to decommutate, limit check, convert, and calibrate the measurand data. A Client process attaches to the Server process to allow user applications to access both raw and processed telemetry for display, logging, and additional processing.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608565en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.