A Low-Cost, Autonomous, Ground Station Operations Concept and Network Design for EUVE and Other Earth-Orbiting Satellites

Persistent Link:
http://hdl.handle.net/10150/608538
Title:
A Low-Cost, Autonomous, Ground Station Operations Concept and Network Design for EUVE and Other Earth-Orbiting Satellites
Author:
Abedini, A.; Moriarta, J.; Biroscak, D.; Losik, L.; Malina, R. F.
Issue Date:
1995-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The Extreme Ultraviolet Explorer (EUVE) satellite was designed to operate with the Tracking and Data Relay Satellite System (TDRSS) and Deep Space Network (DSN). NASA, the Jet Propulsion Laboratory and the Center for EUV Astrophysics have been evaluating a commercially available ground station already used for NASA's Low Earth Orbit (LEO) weather satellites. This ground station will be used in a network of unattended, autonomous ground stations for telemetry reception, processing, and routing of data over a commercial, secure data line. Plans call for EUVE to be the initial network user. This network will be designed to support many TDRSS/DSN compatible missions. It will open an era of commercial, low-cost, autonomous ground station networks. The network will be capable of supporting current and future NASA scientific missions, and NASA's LEO and geostationary weather satellites. Additionally, it could support future, commercial communication satellites in low, and possibly medium, Earth orbit. The combination of an autonomous ground station and an autonomous telemetry monitoring system will allow reduction in personnel. The EUVE Science Operations Center has already reduced console work from three shifts to one by use of autonomous telemetry monitoring software.
Keywords:
Ground Station Network; Low-Earth Orbit Satellites; Commercial off-the-Shelf Technology
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleA Low-Cost, Autonomous, Ground Station Operations Concept and Network Design for EUVE and Other Earth-Orbiting Satellitesen_US
dc.contributor.authorAbedini, A.en
dc.contributor.authorMoriarta, J.en
dc.contributor.authorBiroscak, D.en
dc.contributor.authorLosik, L.en
dc.contributor.authorMalina, R. F.en
dc.date.issued1995-11en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe Extreme Ultraviolet Explorer (EUVE) satellite was designed to operate with the Tracking and Data Relay Satellite System (TDRSS) and Deep Space Network (DSN). NASA, the Jet Propulsion Laboratory and the Center for EUV Astrophysics have been evaluating a commercially available ground station already used for NASA's Low Earth Orbit (LEO) weather satellites. This ground station will be used in a network of unattended, autonomous ground stations for telemetry reception, processing, and routing of data over a commercial, secure data line. Plans call for EUVE to be the initial network user. This network will be designed to support many TDRSS/DSN compatible missions. It will open an era of commercial, low-cost, autonomous ground station networks. The network will be capable of supporting current and future NASA scientific missions, and NASA's LEO and geostationary weather satellites. Additionally, it could support future, commercial communication satellites in low, and possibly medium, Earth orbit. The combination of an autonomous ground station and an autonomous telemetry monitoring system will allow reduction in personnel. The EUVE Science Operations Center has already reduced console work from three shifts to one by use of autonomous telemetry monitoring software.en
dc.subjectGround Station Networken
dc.subjectLow-Earth Orbit Satellitesen
dc.subjectCommercial off-the-Shelf Technologyen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608538en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.