Persistent Link:
http://hdl.handle.net/10150/608532
Title:
RADAR BACKSCATTER MEASUREMENT ACCURACY FOR SPACEBORNE SCANNING PENCIL-BEAM SCATTEROMETERS
Author:
Long, David G.
Issue Date:
1995-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
A radar scatterometer transmits a series of RF pulses and measures the total-power (energy) of the backscattered signal. Measurements of the backscattered energy from the ocean's surface can be used to infer the near-surface wind vector [7]. Accurate backscatter energy measurements are required to insure accurate wind estimates. Unfortunately, the signal measurement is noisy so a separate measurement of the noise-only total-power is subtracted from the signal measurement to estimate the echo signal energy. A common metric for evaluating the accuracy of the scatterometer energy measurement is the normalized signal variance, termed K(p). In designing a scatterometer tradeoffs in design parameters are made to minimize K(p). Spaceborne scatterometers have traditionally been based on fan-beam antennas and CW modulation for which expressions for K(p) exist. Advanced pencil-beam scatterometers, such as SeaWinds currently being developed by NASA use modulated Signals so that new K(p) expressions are required. This paper outlines the derivation of the generalized K(p) expression. While very complicated in its exact form, with a simplified geometry the K(p) expression can be related to the radar ambiguity function. The resulting analysis yields insights into the tradeoffs inherent in a scatterometer design and permits analytic tradeoffs in system performance.
Keywords:
Scatterometry; Measurement Accuracy; SeaWinds
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleRADAR BACKSCATTER MEASUREMENT ACCURACY FOR SPACEBORNE SCANNING PENCIL-BEAM SCATTEROMETERSen_US
dc.contributor.authorLong, David G.en
dc.date.issued1995-11en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractA radar scatterometer transmits a series of RF pulses and measures the total-power (energy) of the backscattered signal. Measurements of the backscattered energy from the ocean's surface can be used to infer the near-surface wind vector [7]. Accurate backscatter energy measurements are required to insure accurate wind estimates. Unfortunately, the signal measurement is noisy so a separate measurement of the noise-only total-power is subtracted from the signal measurement to estimate the echo signal energy. A common metric for evaluating the accuracy of the scatterometer energy measurement is the normalized signal variance, termed K(p). In designing a scatterometer tradeoffs in design parameters are made to minimize K(p). Spaceborne scatterometers have traditionally been based on fan-beam antennas and CW modulation for which expressions for K(p) exist. Advanced pencil-beam scatterometers, such as SeaWinds currently being developed by NASA use modulated Signals so that new K(p) expressions are required. This paper outlines the derivation of the generalized K(p) expression. While very complicated in its exact form, with a simplified geometry the K(p) expression can be related to the radar ambiguity function. The resulting analysis yields insights into the tradeoffs inherent in a scatterometer design and permits analytic tradeoffs in system performance.en
dc.subjectScatterometryen
dc.subjectMeasurement Accuracyen
dc.subjectSeaWindsen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608532en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.