Persistent Link:
http://hdl.handle.net/10150/608414
Title:
The Merging of Multisource Telemetry Data to Support Over the Horizon Missile Testing
Author:
Peterson, Dwight M.
Affiliation:
Naval Warfare Assessment Division
Issue Date:
1995-11
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The testing of instrumented missile systems with extended range capabilities present many challenges to existing T&E and training ranges. Providing over-the-horizon (OTH) telemetry data collection and displaying portions of this data in real time for range safety purposes are just a few of many factors required for successful instrumented range support. Techniques typically used for OTH telemetry data collection are to use fixed or portable antennas installed at strategic down-range locations, instrumented relay pods installed on chase aircraft, and instrumented high flying relay aircraft. Multiple data sources from these various locations typically arrive at a central site within a telemetry ground station and must be merged together to determine the best data source for real time and post processing purposes. Before multiple telemetered sources can be merged, the time skews caused by the relay of down-range land and airborne based sources must be taken into account. The time skews are fixed for land based sources, but vary with airborne sources. Various techniques have been used to remove the time skews associated with multiple telemetered sources. These techniques, which involve both hardware and software applications, have been effective, but are expensive and application and range dependent. This paper describes the use of a personal computer (PC) based workstation, configured with independent Pulse Code Modulation (PCM) decommutators/bit synchronizers, Inner-Range Instrumentation Group (IRIG) timing, and data merging resident software to perform the data merging task. Current technology now permits multiple PCM decommutators, each built as a separate virtual memory expansion (VME) card, to be installed within a PC based workstation. Each land based or airborne source is connected to a dedicated VME based PCM decommutator/bit synchronizer within the workstation. After the exercise has been completed, data merging software resident within the workstation is run which reads the digitized data from each of the disk files and aligns the data on a bit by bit basis to determine the optimum merged result. Both time based and event based alignment is performed when merging the multiple sources.This technique has application for current TOMAHAWK exercises performed at the Air Force Development Test Center, Eglin Air Force Base (AFB), Florida and the Naval Air Warfare Center/Weapons Division (NAWC/WD), Point Mugu, California and future TOMAHAWK Baseline Improvement Program (TBIP) testing.
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleThe Merging of Multisource Telemetry Data to Support Over the Horizon Missile Testingen_US
dc.contributor.authorPeterson, Dwight M.en
dc.contributor.departmentNaval Warfare Assessment Divisionen
dc.date.issued1995-11en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe testing of instrumented missile systems with extended range capabilities present many challenges to existing T&E and training ranges. Providing over-the-horizon (OTH) telemetry data collection and displaying portions of this data in real time for range safety purposes are just a few of many factors required for successful instrumented range support. Techniques typically used for OTH telemetry data collection are to use fixed or portable antennas installed at strategic down-range locations, instrumented relay pods installed on chase aircraft, and instrumented high flying relay aircraft. Multiple data sources from these various locations typically arrive at a central site within a telemetry ground station and must be merged together to determine the best data source for real time and post processing purposes. Before multiple telemetered sources can be merged, the time skews caused by the relay of down-range land and airborne based sources must be taken into account. The time skews are fixed for land based sources, but vary with airborne sources. Various techniques have been used to remove the time skews associated with multiple telemetered sources. These techniques, which involve both hardware and software applications, have been effective, but are expensive and application and range dependent. This paper describes the use of a personal computer (PC) based workstation, configured with independent Pulse Code Modulation (PCM) decommutators/bit synchronizers, Inner-Range Instrumentation Group (IRIG) timing, and data merging resident software to perform the data merging task. Current technology now permits multiple PCM decommutators, each built as a separate virtual memory expansion (VME) card, to be installed within a PC based workstation. Each land based or airborne source is connected to a dedicated VME based PCM decommutator/bit synchronizer within the workstation. After the exercise has been completed, data merging software resident within the workstation is run which reads the digitized data from each of the disk files and aligns the data on a bit by bit basis to determine the optimum merged result. Both time based and event based alignment is performed when merging the multiple sources.This technique has application for current TOMAHAWK exercises performed at the Air Force Development Test Center, Eglin Air Force Base (AFB), Florida and the Naval Air Warfare Center/Weapons Division (NAWC/WD), Point Mugu, California and future TOMAHAWK Baseline Improvement Program (TBIP) testing.en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/608414en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.