IMPROVING THE DETECTION EFFICIENCY OF CONVENTIONAL PCM/FM TELEMETRY BY USING A MULTI-SYMBOL DEMODULATOR

Persistent Link:
http://hdl.handle.net/10150/607710
Title:
IMPROVING THE DETECTION EFFICIENCY OF CONVENTIONAL PCM/FM TELEMETRY BY USING A MULTI-SYMBOL DEMODULATOR
Author:
Geoghegan, Mark
Affiliation:
Nova Engineering Inc.
Issue Date:
2000-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Binary PCM/FM has been widely adopted as a standard by the telemetry community. It offers a reasonable balance between detection efficiency and spectral efficiency, with very simple implementation in both the transmitter and receiver. Current technology, however, allows practical implementations of more sophisticated demodulators, which can substantially improve the detection efficiency of the waveform, with no changes to the modulator. This is accomplished by exploiting the memory inherent in the phase continuity of the waveform. This paper describes the implementation and performance of a noncoherent multi-symbol demodulator for PCM/FM. Sensitivity to offsets in carrier frequency, timing, and modulation index is also examined. Simulation results are presented which demonstrate improvements in detection efficiency of approximately 2.5 dB over traditional noncoherent single symbol detectors.
Keywords:
Multiple Symbol Demodulation; Binary PCM/FM; Noncoherent Detection
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleIMPROVING THE DETECTION EFFICIENCY OF CONVENTIONAL PCM/FM TELEMETRY BY USING A MULTI-SYMBOL DEMODULATORen_US
dc.contributor.authorGeoghegan, Marken
dc.contributor.departmentNova Engineering Inc.en
dc.date.issued2000-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractBinary PCM/FM has been widely adopted as a standard by the telemetry community. It offers a reasonable balance between detection efficiency and spectral efficiency, with very simple implementation in both the transmitter and receiver. Current technology, however, allows practical implementations of more sophisticated demodulators, which can substantially improve the detection efficiency of the waveform, with no changes to the modulator. This is accomplished by exploiting the memory inherent in the phase continuity of the waveform. This paper describes the implementation and performance of a noncoherent multi-symbol demodulator for PCM/FM. Sensitivity to offsets in carrier frequency, timing, and modulation index is also examined. Simulation results are presented which demonstrate improvements in detection efficiency of approximately 2.5 dB over traditional noncoherent single symbol detectors.en
dc.subjectMultiple Symbol Demodulationen
dc.subjectBinary PCM/FMen
dc.subjectNoncoherent Detectionen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607710en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.