Persistent Link:
http://hdl.handle.net/10150/607695
Title:
PYROTECHNIC SHOCK AND RANDOM VIBRATION EFFECTS ON CRYSTAL OSCILLATORS
Author:
Carwell, James W.
Affiliation:
CMC Electronics Cincinnati
Issue Date:
2001-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Today’s telemetry specifications are requiring electronic systems to not only survive, but operate through severe dynamic environments. Pyrotechnic shock and Random Vibration are among these environments and have proven to be a challenge for systems that rely on highly stable, low phase noise signal sources. This paper will mathematically analyze how Pyrotechnic shock and Random Vibration events deteriorate the phase noise of crystal oscillators (XO).
Keywords:
Crystal Oscillators; Phase Noise; Pyrotechnic Shock; Random Vibration
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titlePYROTECHNIC SHOCK AND RANDOM VIBRATION EFFECTS ON CRYSTAL OSCILLATORSen_US
dc.contributor.authorCarwell, James W.en
dc.contributor.departmentCMC Electronics Cincinnatien
dc.date.issued2001-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractToday’s telemetry specifications are requiring electronic systems to not only survive, but operate through severe dynamic environments. Pyrotechnic shock and Random Vibration are among these environments and have proven to be a challenge for systems that rely on highly stable, low phase noise signal sources. This paper will mathematically analyze how Pyrotechnic shock and Random Vibration events deteriorate the phase noise of crystal oscillators (XO).en
dc.subjectCrystal Oscillatorsen
dc.subjectPhase Noiseen
dc.subjectPyrotechnic Shocken
dc.subjectRandom Vibrationen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607695en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.