Persistent Link:
http://hdl.handle.net/10150/607604
Title:
TELEMETRY CHALLENGES FOR BALLISTIC MISSILE TESTING IN THE CENTRAL PACIFIC
Author:
Markwardt, Jack; LaPoint, Steve
Issue Date:
1996-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The Ballistic Missile Defense Organization (BMDO) is developing new Theater Missile Defense (TMD) and National Missile Defense (NMD) weapon systems to defend against the expanding ballistic missile threat. In the arms control arena, theater ballistic missile threats have been defined to include systems with reentry velocities up to five kilometers per second and strategic ballistic missile threats have reentry velocities that exceed five kilometers per second. The development and testing of TMD systems such as the Army Theater High Altitude Area Defense (THAAD) and the Navy Area Theater Ballistic Missile Defense (TBMD) Lower Tier, and NMD systems such as the Army Exoatmospheric Kill Vehicle and the Army Ground-Based Radar, pose exceptional challenges that stem from extreme acquisition range and high telemetry data transfer rates. Potential Central Pacific range locations include U.S. Army Kwajalien Atoll/Kwajalein Missile Range (USAKA/KMR) and the Pacific Missile Range Facility (PMRF) with target launches from Vandenberg Air Force Base, Wake Island, Aur Atoll, Johnston Island, and, possibly, an airborne platform. Safety considerations for remote target launches dictate utilization of high-data-rate, on-board instrumentation; technical performance measurement dictates transmission of focal plane array data; and operational requirements dictate intercepts at exoatmospheric altitudes and long slant ranges. The high gain, high data rate, telemetry acquisition requirements, coupled with loss of the upper S-band spectrum, may require innovative approaches to minimize electronic noise, maximize telemetry system gain, and fully utilize the limited S-band telemetry spectrum. The paper will address the emerging requirements and will explore the telemetry design trade space.
Keywords:
Ballistic Missile Defense; BMD; Instrumentation; Missile Defense; National Missile Defense; NMD; Telemetry; Time-Space-Position-Information; Theater Ballistic Missile Defense; (TBMD)
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleTELEMETRY CHALLENGES FOR BALLISTIC MISSILE TESTING IN THE CENTRAL PACIFICen_US
dc.contributor.authorMarkwardt, Jacken
dc.contributor.authorLaPoint, Steveen
dc.date.issued1996-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe Ballistic Missile Defense Organization (BMDO) is developing new Theater Missile Defense (TMD) and National Missile Defense (NMD) weapon systems to defend against the expanding ballistic missile threat. In the arms control arena, theater ballistic missile threats have been defined to include systems with reentry velocities up to five kilometers per second and strategic ballistic missile threats have reentry velocities that exceed five kilometers per second. The development and testing of TMD systems such as the Army Theater High Altitude Area Defense (THAAD) and the Navy Area Theater Ballistic Missile Defense (TBMD) Lower Tier, and NMD systems such as the Army Exoatmospheric Kill Vehicle and the Army Ground-Based Radar, pose exceptional challenges that stem from extreme acquisition range and high telemetry data transfer rates. Potential Central Pacific range locations include U.S. Army Kwajalien Atoll/Kwajalein Missile Range (USAKA/KMR) and the Pacific Missile Range Facility (PMRF) with target launches from Vandenberg Air Force Base, Wake Island, Aur Atoll, Johnston Island, and, possibly, an airborne platform. Safety considerations for remote target launches dictate utilization of high-data-rate, on-board instrumentation; technical performance measurement dictates transmission of focal plane array data; and operational requirements dictate intercepts at exoatmospheric altitudes and long slant ranges. The high gain, high data rate, telemetry acquisition requirements, coupled with loss of the upper S-band spectrum, may require innovative approaches to minimize electronic noise, maximize telemetry system gain, and fully utilize the limited S-band telemetry spectrum. The paper will address the emerging requirements and will explore the telemetry design trade space.en
dc.subjectBallistic Missile Defenseen
dc.subjectBMDen
dc.subjectInstrumentationen
dc.subjectMissile Defenseen
dc.subjectNational Missile Defenseen
dc.subjectNMDen
dc.subjectTelemetryen
dc.subjectTime-Space-Position-Informationen
dc.subjectTheater Ballistic Missile Defenseen
dc.subject(TBMD)en
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607604en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.