Persistent Link:
http://hdl.handle.net/10150/607591
Title:
TRACKING RECEIVER NOISE BANDWIDTH SELECTION
Author:
Pedroza, Moises
Affiliation:
White Sands Missile Range
Issue Date:
1996-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
The selection of the Intermediate Frequency (IF) bandwidth filter for a data receiver for processing PCM data is based on using a peak deviation of 0.35 times the bit rate. The optimum IF bandwidth filter is equal to the bit rate. An IF bandwidth filter of 1.5 times the bit rate degrades the data by approximately 0.7 dB. The selection of the IF bandwidth filter for tracking receivers is based on the narrowest “noise bandwidth” that will yield the best system sensitivity. In some cases the noise bandwidth of the tracking receiver is the same as the IF bandwidth of the data receiver because it is the same receiver. If this is the case, the PCM bit rate determines the IF bandwidth and establishes the system sensitivity. With increasing bit rates and increased transmitter stability characteristics, the IF bandwidth filter selection criteria for a tracking receiver must include system sensitivity considerations. The tracking receiver IF bandwidth filter selection criteria should also be based on the narrowest IF bandwidth that will not cause the tracking errors to be masked by high bit rates and alter the pedestal dynamic response. This paper describes a selection criteria for a tracking receiver IF bandwidth filter based on measurements of the tracking error signals versus antenna pedestal dynamic response. Different IF bandwidth filters for low and high bit rates were used.
Keywords:
IF bandwidth; bit rates; tracking errors; tracking receiver; data receiver
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleTRACKING RECEIVER NOISE BANDWIDTH SELECTIONen_US
dc.contributor.authorPedroza, Moisesen
dc.contributor.departmentWhite Sands Missile Rangeen
dc.date.issued1996-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractThe selection of the Intermediate Frequency (IF) bandwidth filter for a data receiver for processing PCM data is based on using a peak deviation of 0.35 times the bit rate. The optimum IF bandwidth filter is equal to the bit rate. An IF bandwidth filter of 1.5 times the bit rate degrades the data by approximately 0.7 dB. The selection of the IF bandwidth filter for tracking receivers is based on the narrowest “noise bandwidth” that will yield the best system sensitivity. In some cases the noise bandwidth of the tracking receiver is the same as the IF bandwidth of the data receiver because it is the same receiver. If this is the case, the PCM bit rate determines the IF bandwidth and establishes the system sensitivity. With increasing bit rates and increased transmitter stability characteristics, the IF bandwidth filter selection criteria for a tracking receiver must include system sensitivity considerations. The tracking receiver IF bandwidth filter selection criteria should also be based on the narrowest IF bandwidth that will not cause the tracking errors to be masked by high bit rates and alter the pedestal dynamic response. This paper describes a selection criteria for a tracking receiver IF bandwidth filter based on measurements of the tracking error signals versus antenna pedestal dynamic response. Different IF bandwidth filters for low and high bit rates were used.en
dc.subjectIF bandwidthen
dc.subjectbit ratesen
dc.subjecttracking errorsen
dc.subjecttracking receiveren
dc.subjectdata receiveren
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607591en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.