ADVANCE PRACTICAL CHANNEL SIMULATORS FOR LEO SATELLITE CHANNELS WITH SELECTIVE FADING AND DOPPLER SHIFTS

Persistent Link:
http://hdl.handle.net/10150/607588
Title:
ADVANCE PRACTICAL CHANNEL SIMULATORS FOR LEO SATELLITE CHANNELS WITH SELECTIVE FADING AND DOPPLER SHIFTS
Author:
Haghdad, Mehdi; Feher, Kamilo
Affiliation:
University of California Davis
Issue Date:
2001-10
Rights:
Copyright © International Foundation for Telemetering
Collection Information:
Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
Publisher:
International Foundation for Telemetering
Journal:
International Telemetering Conference Proceedings
Abstract:
Dynamic hardware and software schemes for trajectory based simulation of LEO satellite channel are presented and evaluated. The simulation models are based on the practical LEO satellite channels and change dynamically with the trajectory using the latitude and longitude of the LEO satellite as input. The hardware simulator is consisted of a trajectory based selective fade generator, a trajectory based Doppler shifter, trajectory based time shadowing simulator and a standard channel for addition of noise, ACI and CCI. A FQPSK modulated signal is passed through a trajectory based dynamic fade generator and the spectrum is distorted. Then the resulting signal is exposed to a trajectory based dynamic Doppler Shifter, simulating the passage of the satellite overhead. Then the proper AWGN, ACI or CCI is added to the signal. At the final stage the signal is passed through a trajectory based time Shadowing simulator. The software simulator is a dynamic real time simulator written in MatLab and its structure is similar to the hardware simulator.
Keywords:
Modulation; FQPSK; LEO satellites; selective fading; Doppler Shift; channel simulation
Sponsors:
International Foundation for Telemetering
ISSN:
0884-5123; 0074-9079
Additional Links:
http://www.telemetry.org/

Full metadata record

DC FieldValue Language
dc.language.isoen_USen
dc.titleADVANCE PRACTICAL CHANNEL SIMULATORS FOR LEO SATELLITE CHANNELS WITH SELECTIVE FADING AND DOPPLER SHIFTSen_US
dc.contributor.authorHaghdad, Mehdien
dc.contributor.authorFeher, Kamiloen
dc.contributor.departmentUniversity of California Davisen
dc.date.issued2001-10en
dc.rightsCopyright © International Foundation for Telemeteringen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
dc.publisherInternational Foundation for Telemeteringen
dc.description.abstractDynamic hardware and software schemes for trajectory based simulation of LEO satellite channel are presented and evaluated. The simulation models are based on the practical LEO satellite channels and change dynamically with the trajectory using the latitude and longitude of the LEO satellite as input. The hardware simulator is consisted of a trajectory based selective fade generator, a trajectory based Doppler shifter, trajectory based time shadowing simulator and a standard channel for addition of noise, ACI and CCI. A FQPSK modulated signal is passed through a trajectory based dynamic fade generator and the spectrum is distorted. Then the resulting signal is exposed to a trajectory based dynamic Doppler Shifter, simulating the passage of the satellite overhead. Then the proper AWGN, ACI or CCI is added to the signal. At the final stage the signal is passed through a trajectory based time Shadowing simulator. The software simulator is a dynamic real time simulator written in MatLab and its structure is similar to the hardware simulator.en
dc.subjectModulationen
dc.subjectFQPSKen
dc.subjectLEO satellitesen
dc.subjectselective fadingen
dc.subjectDoppler Shiften
dc.subjectchannel simulationen
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/607588en
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.typetexten
dc.typeProceedingsen
dc.relation.urlhttp://www.telemetry.org/en
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.